Convex Optimization — Boyd & Vandenberghe

5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^{\star}

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$,

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$

=
$$\inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some λ , ν

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$

proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then then $\Sigma_i \lambda_i f_i(x^{-}) + \Sigma_i \lambda_i f_i(x^{-}) + \Sigma_i \lambda_i f_i(x^{-})$

x~ feasible when $f_i(x~) \le 0$ and $h_i(x~) = 0$, also $\lambda_i \ge 0$ then $\Sigma_i \lambda_i f_i(x~) + \Sigma_i v_i h_i(x~) \le 0$

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, \nu)$

Least-norm solution of linear equations

minimize
$$x^T x$$

subject to $Ax = b$
Ax - b = 0

dual function

- Lagrangian is $L(x,\nu) = x^T x + \nu^T (Ax b)$
- to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \quad \Longrightarrow \quad x = -(1/2)A^T \nu$$

• plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T\nu - b^T\nu$$

a concave function of ν

lower bound property: $p^{\star} \geq -(1/4)\nu^T A A^T \nu - b^T \nu$ for all ν

Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b, & x \succeq 0\\ & \mathbf{Ax} \cdot \mathbf{b} = \mathbf{0} & -\mathbf{x} \leq \mathbf{0} \end{array}$$

dual function

• Lagrangian is

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

• L is affine in x, hence

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \begin{cases} -b^T\nu & A^T\nu - \lambda + c = 0\\ -\infty & \text{otherwise } \frac{\text{for any nonzero vector y, we can}}{\text{make y'x arbitrarily small}} \end{cases}$$

g is linear on affine domain $\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\}$, hence concave

lower bound property: $p^{\star} \ge -b^T \nu$ if $A^T \nu + c \succeq 0$ Puality $p^{\star} \ge -b^T \nu$ $p^{\pm} \ge -b^T \nu$ $p^{$

5–5

Equality constrained norm minimization

minimize
$$||x||$$

subject to $Ax = b$
-Ax+b=0

dual function

$$g(\nu) = \inf_{\substack{x \\ = b'v + \inf_{\perp} x(|x| - v'Ax|)}} (\|x\| - \nu^T A x + b^T \nu) = \begin{cases} b^T \nu & \|A^T \nu\|_* \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

where $\|v\|_* = \sup_{\|u\| \le 1} u^T v$ is dual norm of $\|\cdot\|$

Let y = A'v, proof: follows from $\inf_x(||x|| - y^T x) = 0$ if $||y||_* \le 1$, $-\infty$ otherwise

• if
$$||y||_* \leq 1$$
, then $||x|| - y^T x \geq 0$ for all x , with equality if $x = 0$
Cauchy-Schwarz: $y' \leq |y|_* |x| \leq |x|$
• if $||y||_* > 1$, choose $x = tu$ where $||u|| \leq 1$, $u^T y = ||y||_* > 1$: $|y|_* = \sup_{|y|_* = \sup_{|y|_*} = \sup_{|y|_*} |y| \leq 1} u'y > 1$
 $||x| - y'x = t|u| - t|y|_*$
 $= t(||u|| - ||y||_*) \rightarrow -\infty$ as $t \rightarrow \infty$

< 0

lower bound property: $p^{\star} \geq b^T \nu$ if $\|A^T \nu\|_* \leq 1$

Two-way partitioning

$$\begin{array}{lll} \mbox{minimize} & x^T W x \\ \mbox{subject to} & x_i^2 = 1, & i = 1, \ldots, n \\ & x_i is -1 or + 1$ \end{array}$$

- a nonconvex problem; feasible set contains 2^n discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets; W_{ij} is cost of assigning i, j to the same set; $-W_{ij}$ is cost of assigning to different sets (one set is all i's where x_i = -1, the second set is all i's where x_i = +1)

dual function

$$g(\nu) = \inf_{x} (x^T W x + \sum_{i} \nu_i (x_i^2 - 1)) = \inf_{x} x^T (W + \operatorname{diag}(\nu)) x - \mathbf{1}^T \nu$$
$$= \begin{cases} -\mathbf{1}^T \nu & W + \operatorname{diag}(\nu) \succeq 0\\ -\infty & \operatorname{otherwise} \end{cases}$$

lower bound property: $p^{\star} \geq -\mathbf{1}^T \nu$ if $W + \operatorname{diag}(\nu) \succeq 0$

if W+diag(v) has at least one negative eigenvalue we can make x'(W+diag(v))x arbitrarily small

The dual problem

Lagrange dual problem

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$

- $\bullet\,$ finds best lower bound on $p^{\star}\textsc{,}$ obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d^{\star}
- λ , ν are dual feasible if $\lambda \succeq 0$, $(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit

example: standard form LP and its dual (page 5-5)

$$\begin{array}{lll} \mbox{minimize} & c^T x & \mbox{maximize} & -b^T \nu \\ \mbox{subject to} & Ax = b & \mbox{subject to} & A^T \nu + c \succeq 0 \\ & x \succeq 0 & \end{array}$$

A nice example of why we care about dual problems <u>A nonconvex problem with strong duality</u>

 $\begin{array}{ll} \mbox{minimize} & x^TAx + 2b^Tx \\ \mbox{subject to} & x^Tx \leq 1 \\ \mbox{,} & \mathbf{x'x-1 \leq 0} \end{array}$

 $A \not\succeq 0$, hence nonconvex

dual function: $g(\lambda) = \inf_x (x^T (A + \lambda I) x + 2b^T x - \lambda)$

- unbounded below if $A + \lambda I \not\succeq 0$
- minimized by $x = -(A + \lambda I)^{\dagger} b$ otherwise: $g(\lambda) = -b^T (A + \lambda I)^{\dagger} b \lambda$

1) For simplicity assume $(A+\lambda I) > 0$

dual problem

maximize $-b^T (A + \lambda I)^{\dagger} b - \lambda$ subject to $A + \lambda I \succeq 0$

2) If not $(A+\lambda I) \ge 0$, one eigenvalue is negative, there exists eigenvector u where u' $(A+\lambda I)u < 0$.

Recall $L(x,\lambda) = x'(A+\lambda I)x + 2 b'x - \lambda$

Both x'(A+ λ I)x and b'x can be made -infinity. Let x = t u. If b'u > 0, take t = -infinity, if b'u < 0, take t = +infinity $L(x,\lambda) = x'Ax + 2 b'x + \lambda(x'x - 1) = x'(A+\lambda I)x + 2 b'x - \lambda$ g(\lambda) = inf_x L(x,\lambda) dL/dx = 2(A+\lambda I)x + 2b = 0 => x^* = -(A+\lambda I)^-1 b

Then $g(\lambda) = L(x^*,\lambda) = -b' (A+\lambda I)^{-1} b - \lambda$ Lagrange dual: max $g(\lambda)$ s.t. $\lambda \ge 0$

Let A = UDU', then A+ λ I = U(D+ λ I)U' = U S(λ) U', where s_ii(λ) = d_ii + λ Then (A+ λ I)^-1 = U S^-1(λ) U', where s_ii^-1(λ) = 1/(d_ii + λ)

Let U = [u_1 ... u_n], where u_i are column eigenvectors $g(\lambda) = -b' U S^{-1}(\lambda) U' b - \lambda = -\Sigma_i b' u_i s_ii^{-1}(\lambda) u'_i b - \lambda$ $= -\Sigma_i s_ii^{-1}(\lambda) (b' u_i)^2 - \lambda$ $dg/d\lambda = \Sigma_i (b' u_i)^2 / (d_ii + \lambda)^2 - 1$ Easy to use a ONE-DIMENSIONAL gradient ascent or Newton method!

Lagrange dual and conjugate function

minimize $f_0(x)$ subject to $Ax \leq b$, Cx = d

dual function

$$g(\lambda,\nu) = \inf_{x \in \text{dom } f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$

= inf_x{ fo(x) + (A'\lambda+C'v)'x } - b'\lambda - d'\v
= - sup_x{ (-A'\lambda-C'v)'x - fo(x) } - b'\lambda - d'\v
= - fo*(-A'\lambda-C'v) - b'\lambda - d'\v

- recall definition of conjugate $f^*(y) = \sup_{x \in \mathbf{dom} f} (y^T x f(x))$
- simplifies derivation of dual if conjugate of f_0 is known

example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

Remember the lower bound property: if $\lambda \ge 0$ then $g(\lambda,v) \le p^*$ By taking the optimal λ^* and v^* , $d^* = g(\lambda^*,v^*) \le p^*$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP
 Duality gap: p^* - d^*

maximize
$$-\mathbf{1}^T \nu$$

subject to $W + \mathbf{diag}(\nu) \succeq 0$

gives a lower bound for the two-way partitioning problem on page 5-7

strong duality: $d^{\star} = p^{\star}$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

if it is strictly feasible, *i.e.*,

$$\exists x \qquad f_i(x) < 0, \quad i = 1, \dots, m, \qquad Ax = b$$
strict inequality

- also guarantees that the dual optimum is attained (if $p^{\star} > -\infty$)
- can be sharpened:

Assume $f_1(x) \dots f_k(x)$ are affine and dom(fo) open, then the REFINED Slater's condition is there is an x, $f_i(x) \le 0$ for i = 1...k $f_i(x) < 0$ for i = k+1...m Ax = b

Thus, if all inequalities are affine (k=m) then strict inequality is not necessary!

• there exist many other types of constraint qualifications

Inequality form LP

primal problem

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \preceq b \end{array}$

dual function

$$g(\lambda) = \inf_{x} \left((c + A^T \lambda)^T x - b^T \lambda \right) = \begin{cases} -b^T \lambda & A^T \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

dual problem

$$\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0, \quad \lambda \succeq 0 \end{array}$$

• from Slater's condition: $p^{\star} = d^{\star}$ if $A\tilde{x} \prec b$ for some \tilde{x}

• in fact, $p^{\star} = d^{\star}$ except when primal and dual are infeasible (refined Stater's)

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^n$)

 $\begin{array}{ll} \text{minimize} & x^T P x\\ \text{subject to} & Ax \preceq b \end{array}$

dual function

$$g(\lambda) = \inf_{x} \left(x^T P x + \lambda^T (A x - b) \right) = -\frac{1}{4} \lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

dual problem

maximize
$$-(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

subject to $\lambda \succeq 0$

- from Slater's condition: $p^{\star} = d^{\star}$ if $A\tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star} = d^{\star}$ always (refined Slater's)

Geometric interpretation

epigraph variation: same interpretation if \mathcal{G} is replaced with

strong duality

- holds if there is a non-vertical supporting hyperplane to \mathcal{A} at $(0, p^{\star})$
- for convex problem, ${\cal A}$ is convex, hence has supp. hyperplane at $(0,p^{\star})$
- Slater's condition: if there exist (ũ, t̃) ∈ A with ũ < 0, then supporting hyperplanes at (0, p^{*}) must be non-vertical

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- 1. primal constraints: $f_i(x) \le 0$, i = 1, ..., m, $h_i(x) = 0$, i = 1, ..., p (Primal feasibility)
- 2. dual constraints: $\lambda \succeq 0$ (Dual feasiblity)
- 3. complementary slackness: $\lambda_i f_i(x) = 0$, $i = 1, \dots, m$ if $\lambda_i > 0$ then $f_i(x) = 0$ if $f_i(x) < 0$ then $\lambda_i = 0$
- 4. gradient of Lagrangian with respect to x vanishes: (Stationarity)

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

from page 5–17: if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions

General idea, for general possibly nonconvex primal problem: OPTIMAL => KKT satisfied. (subject to some technical conditions)

Complementary slackness

assume strong duality holds, x^{\star} is primal optimal, $(\lambda^{\star}, \nu^{\star})$ is dual optimal $fo(x^*) = g(\lambda^*, v^*) = inf_x L(x, \lambda^*, v^*)$ $\inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i^* f_i(x) + \sum_{i=1}^{P} \nu_i^* h_i(x) \right)$ $\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$ $\leq f_0(x^*)$ since h $i(x^*) = 0$ given that x^* is feasible: hence, the two inequalities hold with equality Σ i λ i^{*} f i(x^{*}) = 0 but each term in sum is nonpositive (none of the terms can be negative because there x^{\star} minimizes $L(x, \lambda^{\star}, \nu^{\star})$ will not be a positive to make sum = 0) • $\lambda_i^{\star} f_i(x^{\star}) = 0$ for $i = 1, \dots, m$ (known as complementary slackness): $\lambda_i^{\star} > 0 \Longrightarrow f_i(x^{\star}) = 0, \qquad f_i(x^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0$

KKT conditions for convex problem

General idea, for convex primal problem: KKT satisfied => OPTIMAL and thus KKT satisfied <=> OPTIMAL (subject to some technical conditions)

if \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

• from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ • from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ • hence, $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$ • hence, $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$ • from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ • from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ • from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

zero duality gap since $x \sim = x^*$, $\lambda \sim = \lambda^*$, $v \sim = v^*$ fo(x^*) = $p^* = d^* = q(\lambda^*, v^*)$ => x~ minimizes L ... (this is why we assumed convexity otherwise stationarity does not imply that x~ is the minimizer of L)
=> L(x~,λ~,v~) = inf_x L(x, λ~, v~) = g(λ~, v~)

if Slater's condition is satisfied:

x is optimal if and only if there exist λ , ν that satisfy KKT conditions

Slide 5-11: Slater => strong duality Slide 5-18: Strong duality + OPTIMAL => KKT satisfied Here so far: KKT satisfied => OPTIMAL Therefore assume Slater: KKT satistied <=> OPTIMAL

• if
$$u < 1/lpha_i$$
: $\lambda_i = 0$ and $x_i = 1/
u - lpha_i$ (because `_i` cannot be negative)

• if
$$\nu \geq 1/lpha_i$$
: $\lambda_i = \nu - 1/lpha_i$ and $x_i = 0$ (because λ_i x_i = 0)

• determine
$$\nu$$
 from $\mathbf{1}^T x = \sum_{i=1}^n \max\{0, 1/\nu - \alpha_i\} = 1$

interpretation

• n patches; level of patch i is at height α_i

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions

e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing

Introducing new variables and equality constraints

minimize $f_0(Ax+b)$

- dual function is constant: $g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless

reformulated problem and its dual

$$\begin{array}{ll} \mbox{minimize} & f_0(y) & \mbox{maximize} & b^T \nu - f_0^*(\nu) \\ \mbox{subject to} & Ax + b - y = 0 & \mbox{subject to} & A^T \nu = 0 \\ \end{array}$$

dual function follows from

$$g(\nu) = \inf_{x,y} (f_0(y) - \nu^T y + \nu^T A x + b^T \nu)$$

= inf_y { fo(y) - v'y } + inf_x { v'Ax } + b'v
= - sup_y { -fo(y) + v'y } + inf_x { v'Ax } + b'v
= | -fo*(v) + b'v if A'v = 0
| -infinity otherwise

Note: if $A'v \neq 0$, we can pick x so that v'Ax is arbitrarily small

norm approximation problem: minimize ||Ax - b||

 $\begin{array}{ll} \text{minimize} & \|y\| \\ \text{subject to} & y = Ax - b \end{array}$

can look up conjugate of $\|\cdot\|,$ or derive dual directly

$$g(\nu) = \inf_{x,y} (\|y\| + \nu^T y - \nu^T A x + b^T \nu)$$

=
$$\begin{cases} b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0\\ -\infty & \text{otherwise} \end{cases}$$

=
$$\begin{cases} b^T \nu & A^T \nu = 0, \quad \|\nu\|_* \le 1\\ -\infty & \text{otherwise} \end{cases}$$

(see page 5-6)

dual of norm approximation problem

$$\begin{array}{ll} \text{maximize} & b^T\nu\\ \text{subject to} & A^T\nu=0, \quad \|\nu\|_*\leq 1 \end{array}$$

Implicit constraints

LP with box constraints: primal and dual problem

$$\begin{array}{lll} \text{minimize} & c^T x & \text{maximize} & -b^T \nu - \mathbf{1}^T \lambda_1 - \mathbf{1}^T \lambda_2 \\ \text{subject to} & Ax = b & \text{subject to} & c + A^T \nu + \lambda_1 - \lambda_2 = 0 \\ & -\mathbf{1} \preceq x \preceq \mathbf{1} & \lambda_1 \succeq 0, \quad \lambda_2 \succeq 0 \end{array}$$

reformulation with box constraints made implicit

minimize
$$f_0(x) = \begin{cases} c^T x & -\mathbf{1} \leq x \leq \mathbf{1} \\ \infty & \text{otherwise} \end{cases}$$

subject to $Ax = b$

dual function

$$g(\nu) = \inf_{\substack{-1 \leq x \leq 1}} (c^T x + \nu^T (Ax - b))$$

= inf_{|x|_infty \leq 1} {(A'v+c)'x} - b'v
= - sup_{|x|_infty \leq 1} {(-A'v-c)'x} - b'v
= - |A'v+c|_1 - b'v ... by norm duality

dual problem: maximize $-b^T \nu - \|A^T \nu + c\|_1$

Problems with generalized inequalities

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \preceq_{K_i} 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

 \preceq_{K_i} is generalized inequality on \mathbf{R}^{k_i}

definitions are parallel to scalar case:

- Lagrange multiplier for $f_i(x) \preceq_{K_i} 0$ is vector $\lambda_i \in \mathbf{R}^{k_i}$
- Lagrangian $L: \mathbf{R}^n \times \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$L(x, \lambda_1, \cdots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

• dual function $g: \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$g(\lambda_1, \ldots, \lambda_m, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda_1, \cdots, \lambda_m, \nu)$$

lower bound property: if $\lambda_i \succeq_{K_i^*} 0$, then $g(\lambda_1, \dots, \lambda_m, \nu) \leq p^*$ proof: if \tilde{x} is feasible and $\lambda_i \succeq_{K_i^*} 0$, then $f_0(\tilde{x}) \geq f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i^T f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x})$ $\geq \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$ $= g(\lambda_1, \dots, \lambda_m, \nu)$

minimizing over all feasible \tilde{x} gives $p^* \ge g(\lambda_1, \ldots, \lambda_m, \nu)$

dual problem

maximize
$$g(\lambda_1, \ldots, \lambda_m, \nu)$$

subject to $\lambda_i \succeq_{K_i^*} 0, \quad i = 1, \ldots, m$

- weak duality: $p^{\star} \geq d^{\star}$ always
- strong duality: $p^* = d^*$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

primal SDP
$$(F_i, G \in \mathbf{S}^k)$$

minimize $c^T x$
subject to $x_1F_1 + \dots + x_nF_n \preceq G$
• Lagrange multiplier is matrix $Z \in \mathbf{S}^k$
• Lagrangian $L(x, Z) = c^T x + \mathbf{tr} (Z(x_1F_1 + \dots + x_nF_n - G))$
= $tr(ZG) + \sum_{i \neq i} (c_i + tr(Z + D))$
• dual function
 $g(Z) = \inf_x L(x, Z) = \begin{cases} -\mathbf{tr}(GZ) & \mathbf{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$
dual SDP
maximize $-\mathbf{tr}(GZ)$
subject to $Z \succeq 0, \quad \mathbf{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n$

 $p^{\star} = d^{\star}$ if primal SDP is strictly feasible ($\exists x \text{ with } x_1F_1 + \cdots + x_nF_n \prec G$)