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5. Duality

• Lagrange dual problem

• weak and strong duality

• geometric interpretation

• optimality conditions

• perturbation and sensitivity analysis

• examples

• generalized inequalities
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Lagrangian

standard form problem (not necessarily convex)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

variable x ∈ Rn, domain D, optimal value p⋆

Lagrangian: L : Rn × Rm × Rp → R, with domL = D × Rm × Rp,

L(x,λ, ν) = f0(x) +
m
∑

i=1

λifi(x) +
p
∑

i=1

νihi(x)

• weighted sum of objective and constraint functions

• λi is Lagrange multiplier associated with fi(x) ≤ 0

• νi is Lagrange multiplier associated with hi(x) = 0
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Lagrange dual function

Lagrange dual function: g : Rm × Rp → R,

g(λ, ν) = inf
x∈D

L(x,λ, ν)

= inf
x∈D

(

f0(x) +
m
∑

i=1

λifi(x) +
p
∑

i=1

νihi(x)

)

g is concave, can be −∞ for some λ, ν

lower bound property: if λ ≽ 0, then g(λ, ν) ≤ p⋆

proof: if x̃ is feasible and λ ≽ 0, then

f0(x̃) ≥ L(x̃,λ, ν) ≥ inf
x∈D

L(x,λ, ν) = g(λ, ν)

minimizing over all feasible x̃ gives p⋆ ≥ g(λ, ν)
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x~ feasible when f_i(x~) ≤ 0 and h_i(x~) = 0, also λ_i ≥ 0
then Σ_i λ_i f_i(x~) + Σ_i v_i h_i(x~) ≤ 0



Least-norm solution of linear equations

minimize xTx
subject to Ax = b

dual function

• Lagrangian is L(x, ν) = xTx+ νT (Ax− b)

• to minimize L over x, set gradient equal to zero:

∇xL(x, ν) = 2x+ATν = 0 =⇒ x = −(1/2)ATν

• plug in in L to obtain g:

g(ν) = L((−1/2)ATν, ν) = −
1

4
νTAATν − bTν

a concave function of ν

lower bound property: p⋆ ≥ −(1/4)νTAATν − bTν for all ν
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Ax - b = 0



Standard form LP

minimize cTx
subject to Ax = b, x ≽ 0

dual function

• Lagrangian is

L(x,λ, ν) = cTx+ νT (Ax− b)− λTx

= −bTν + (c+ATν − λ)Tx

• L is affine in x, hence

g(λ, ν) = inf
x

L(x,λ, ν) =

{

−bTν ATν − λ+ c = 0
−∞ otherwise

g is linear on affine domain {(λ, ν) | ATν − λ+ c = 0}, hence concave

lower bound property: p⋆ ≥ −bTν if ATν + c ≽ 0
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for any nonzero vector y, we can
make y’x arbitrarily small

- x ≤ 0

Recall A’v - λ + c = 0
Then A’v + c = λ
But λ ≥ 0
Then A’v + c ≥ 0

Ax - b = 0



Equality constrained norm minimization

minimize ∥x∥
subject to Ax = b

dual function

g(ν) = inf
x
(∥x∥ − νTAx+ bTν) =

{

bTν ∥ATν∥∗ ≤ 1
−∞ otherwise

where ∥v∥∗ = sup∥u∥≤1 u
Tv is dual norm of ∥ · ∥

proof: follows from infx(∥x∥ − yTx) = 0 if ∥y∥∗ ≤ 1, −∞ otherwise

• if ∥y∥∗ ≤ 1, then ∥x∥ − yTx ≥ 0 for all x, with equality if x = 0

• if ∥y∥∗ > 1, choose x = tu where ∥u∥ ≤ 1, uTy = ∥y∥∗ > 1:

∥x∥ − yTx = t(∥u∥ − ∥y∥∗) → −∞ as t → ∞

lower bound property: p⋆ ≥ bTν if ∥ATν∥∗ ≤ 1
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= b’v + inf_x( |x| - v’Ax )

Let y = A’v,

Cauchy-Schwarz: y’x ≤ |y|_* |x| ≤ |x|

since
|y|_* = sup_{|u|≤1} u’y > 1

< 0

|x| - y’x = t |u| - t y’u = t |u| - t |y|_*

- A x + b = 0



Two-way partitioning

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n

• a nonconvex problem; feasible set contains 2n discrete points

• interpretation: partition {1, . . . , n} in two sets; Wij is cost of assigning
i, j to the same set; −Wij is cost of assigning to different sets

dual function

g(ν) = inf
x
(xTWx+

∑

i

νi(x
2
i − 1)) = inf

x
xT (W + diag(ν))x− 1Tν

=

{

−1Tν W + diag(ν) ≽ 0
−∞ otherwise

lower bound property: p⋆ ≥ −1Tν if W + diag(ν) ≽ 0

example: ν = −λmin(W )1 gives bound p⋆ ≥ nλmin(W )
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if W+diag(v) has at least
one negative eigenvalue
we can make x’(W+diag(v))x
arbitrarily small

x_i   is -1 or + 1

( one set is all i’s where x_i = -1, the second set is all i’s where x_i = +1 )



The dual problem

Lagrange dual problem

maximize g(λ, ν)
subject to λ ≽ 0

• finds best lower bound on p⋆, obtained from Lagrange dual function

• a convex optimization problem; optimal value denoted d⋆

• λ, ν are dual feasible if λ ≽ 0, (λ, ν) ∈ dom g

• often simplified by making implicit constraint (λ, ν) ∈ dom g explicit

example: standard form LP and its dual (page 5–5)

minimize cTx
subject to Ax = b

x ≽ 0

maximize −bTν
subject to ATν + c ≽ 0
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A nonconvex problem with strong duality

minimize xTAx+ 2bTx
subject to xTx ≤ 1

A ̸≽ 0, hence nonconvex

dual function: g(λ) = infx(xT (A+ λI)x+ 2bTx− λ)

• unbounded below if A+ λI ̸≽ 0 or if A+ λI ≽ 0 and b ̸∈ R(A+ λI)

• minimized by x = −(A+ λI)†b otherwise: g(λ) = −bT (A+ λI)†b− λ

dual problem and equivalent SDP:

maximize −bT (A+ λI)†b− λ
subject to A+ λI ≽ 0

b ∈ R(A+ λI)

maximize −t− λ

subject to

[

A+ λI b
bT t

]

≽ 0

strong duality although primal problem is not convex (not easy to show)
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A nice example of why we care about dual problems

1) For simplicity assume (A+λI) > 0

L(x,λ) = x’Ax + 2 b’x + λ(x’x - 1) = x’(A+λI)x + 2 b’x - λ
g(λ) = inf_x L(x,λ)
dL/dx = 2(A+λI)x + 2b = 0   =>   x^* = -(A+λI)^-1 b

Then g(λ) = L(x^*,λ) = -b’ (A+λI)^-1 b - λ
Lagrange dual: max g(λ) s.t. λ ≥ 0

Let A = UDU’, then A+λI = U(D+λI)U’ = U S(λ) U’, where s_ii(λ) = d_ii + λ
Then (A+λI)^-1 = U S^-1(λ) U’, where s_ii^-1(λ) = 1/(d_ii + λ)

Let U = [u_1 … u_n], where u_i are column eigenvectors
g(λ) = -b’ U S^-1(λ) U’ b - λ = -Σ_i b’ u_i s_ii^-1(λ) u’_i b - λ
        = -Σ_i s_ii^-1(λ) (b’ u_i)^2 - λ
dg/dλ = Σ_i (b’ u_i)^2 / (d_ii + λ)^2 - 1
Easy to use a ONE-DIMENSIONAL gradient ascent or Newton method!

x’x - 1 ≤ 0

2) If not (A+λI) ≥ 0, one eigenvalue is negative, there exists
eigenvector u where u’(A+λI)u < 0.
Recall L(x,λ) = x’(A+λI)x + 2 b’x - λ
Both x’(A+λI)x and b’x can be made -infinity. Let x = t u.
If b'u > 0, take t = -infinity, if b'u < 0, take t = +infinity



Lagrange dual and conjugate function

minimize f0(x)
subject to Ax ≼ b, Cx = d

dual function

g(λ, ν) = inf
x∈dom f0

(

f0(x) + (ATλ+ CTν)Tx− bTλ− dTν
)

= −f∗
0 (−ATλ− CTν)− bTλ− dTν

• recall definition of conjugate f∗(y) = supx∈dom f(y
Tx− f(x))

• simplifies derivation of dual if conjugate of f0 is known

example: entropy maximization

f0(x) =
n
∑

i=1

xi log xi, f∗
0 (y) =

n
∑

i=1

eyi−1
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= inf_x{ fo(x) + (A’λ+C’v)’x } - b’λ - d’v
= - sup_x{ (-A’λ-C’v)’x - fo(x) } - b’λ - d’v
= - fo*(-A’λ-C’v) - b’λ - d’v



Weak and strong duality

weak duality: d⋆ ≤ p⋆

• always holds (for convex and nonconvex problems)

• can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize −1Tν
subject to W + diag(ν) ≽ 0

gives a lower bound for the two-way partitioning problem on page 5–7

strong duality: d⋆ = p⋆

• does not hold in general

• (usually) holds for convex problems

• conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Remember the lower bound property: if λ ≥ 0 then g(λ,v) ≤ p^*
By taking the optimal λ^* and v^*, d^* = g(λ^*,v^*) ≤ p^*

Duality gap: p^* - d^*



Slater’s constraint qualification

strong duality holds for a convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

if it is strictly feasible, i.e.,

∃x ∈ intD : fi(x) < 0, i = 1, . . . ,m, Ax = b

• also guarantees that the dual optimum is attained (if p⋆ > −∞)

• can be sharpened: e.g., can replace intD with relintD (interior
relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

• there exist many other types of constraint qualifications
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Assume f_1(x) … f_k(x) are affine and dom(fo) open, then the REFINED Slater’s condition is
       there is an x,      f_i(x) ≤ 0 for i = 1…k          f_i(x) < 0 for i = k+1…m         Ax = b

Thus, if all inequalities are affine (k=m) then strict inequality is not necessary!

strict inequality



Inequality form LP

primal problem
minimize cTx
subject to Ax ≼ b

dual function

g(λ) = inf
x

(

(c+ATλ)Tx− bTλ
)

=

{

−bTλ ATλ+ c = 0
−∞ otherwise

dual problem
maximize −bTλ
subject to ATλ+ c = 0, λ ≽ 0

• from Slater’s condition: p⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p⋆ = d⋆ except when primal and dual are infeasible
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(refined Slater’s)



Quadratic program

primal problem (assume P ∈ Sn
++)

minimize xTPx
subject to Ax ≼ b

dual function

g(λ) = inf
x

(

xTPx+ λT (Ax− b)
)

= −
1

4
λTAP−1ATλ− bTλ

dual problem

maximize −(1/4)λTAP−1ATλ− bTλ
subject to λ ≽ 0

• from Slater’s condition: p⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p⋆ = d⋆ always
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(refined Slater’s)



Geometric interpretation

for simplicity, consider problem with one constraint f1(x) ≤ 0

interpretation of dual function:

g(λ) = inf
(u,t)∈G

(t+ λu), where G = {(f1(x), f0(x)) | x ∈ D}

G

p⋆

g(λ)
λu + t = g(λ)

t

u

G

p⋆

d⋆

t

u

• λu+ t = g(λ) is (non-vertical) supporting hyperplane to G

• hyperplane intersects t-axis at t = g(λ)
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g(λ) = inf_{x in D} ( fo(x) + λ f1(x) )      equivalent to:

t

fo(x)

f1(x)

fo(x)

f1(x)

min fo(x)
s.t.  f1(x) ≤ 0

min fo(x)
s.t.  f1(x) ≤ 0

min t
s.t.  u ≤ 0
       (u,t) in G

Let t^*,u^* = arginf_{(u,t) in G} (t+λu)
Then t+λu ≥ t^* + λ u^*
It is a supporting hyperplane!

*

*

Dual: λ^* = argmax_{λ≥0} g(λ)
d^* = g(λ^*) is the “tightest” supporting hyperplane
( you cannot go up without violating the definition
  of supporting hyperplane )

(Clearly in this
example there is not
strong duality)

p^*

what if all u ≥ 0?
(i.e. f1(x) ≥ 0 for all x)
Constraint is f1(x) ≤ 0
Then solution has f1(x) = 0
VERTICAL supporting hyperplane
λ^* = infinity

u



epigraph variation: same interpretation if G is replaced with

A = {(u, t) | f1(x) ≤ u, f0(x) ≤ t for some x ∈ D}

A

p⋆

g(λ)

λu + t = g(λ)

t

u

strong duality

• holds if there is a non-vertical supporting hyperplane to A at (0, p⋆)

• for convex problem, A is convex, hence has supp. hyperplane at (0, p⋆)

• Slater’s condition: if there exist (ũ, t̃) ∈ A with ũ < 0, then supporting
hyperplanes at (0, p⋆) must be non-vertical
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spongebob

*

*

(explained in previous slide)



Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable fi, hi):

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p

2. dual constraints: λ ≽ 0

3. complementary slackness: λifi(x) = 0, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +
m
∑

i=1

λi∇fi(x) +
p
∑

i=1

νi∇hi(x) = 0

from page 5–17: if strong duality holds and x, λ, ν are optimal, then they
must satisfy the KKT conditions
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(Stationarity)

(Primal
feasibility)

(Dual feasiblity)

if λ_i > 0 then f_i(x) = 0
if f_i(x) < 0 then λ_i = 0

General idea, for general possibly nonconvex primal problem: OPTIMAL => KKT satisfied.
(subject to some technical conditions)



Complementary slackness

assume strong duality holds, x⋆ is primal optimal, (λ⋆, ν⋆) is dual optimal

f0(x
⋆) = g(λ⋆, ν⋆) = inf

x

(

f0(x) +
m
∑

i=1

λ⋆
i fi(x) +

p
∑

i=1

ν⋆i hi(x)

)

≤ f0(x
⋆) +

m
∑

i=1

λ⋆
i fi(x

⋆) +
p
∑

i=1

ν⋆i hi(x
⋆)

≤ f0(x
⋆)

hence, the two inequalities hold with equality

• x⋆ minimizes L(x,λ⋆, ν⋆)

• λ⋆
i fi(x

⋆) = 0 for i = 1, . . . ,m (known as complementary slackness):

λ⋆
i > 0 =⇒ fi(x

⋆) = 0, fi(x
⋆) < 0 =⇒ λ⋆

i = 0
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fo(x^*) = g(λ^*,v^*) = inf_x  L(x, λ^*, v^*)

since h_i(x^*) = 0 given that x^* is feasible:
      Σ_i λ_i^* f_i(x^*) = 0
but each term in sum is nonpositive (none
of the terms can be negative because there
will not be a positive to make sum = 0)



KKT conditions for convex problem

if x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal:

• from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

• from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

hence, f0(x̃) = g(λ̃, ν̃)

if Slater’s condition is satisfied:

x is optimal if and only if there exist λ, ν that satisfy KKT conditions

• recall that Slater implies strong duality, and dual optimum is attained

• generalizes optimality condition ∇f0(x) = 0 for unconstrained problem
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Since λ~_i f_i(x~) = 0, and also h_i(x~)=0
then Σ_i λ~_i f_i(x~) + Σ_i v~_i h_i(x~) = 0

General idea, for convex primal problem: KKT satisfied => OPTIMAL and thus KKT satisfied <=> OPTIMAL
(subject to some technical conditions)

Stationarity: gradient of L(x, λ~, v~) w.r.t. x vanishes,
=> x~ minimizes L  ... (this is why we assumed convexity
                                      otherwise stationarity does not
                                      imply that x~ is the minimizer of L)
=> L(x~,λ~,v~) = inf_x  L(x, λ~, v~)
                         = g(λ~, v~)

zero duality gap since x~ = x^*, λ~ = λ^*, v~ = v^*
                                      fo(x^*) =  p^* = d^* = g(λ^*,v^*)

Slide 5-11: Slater => strong duality
Slide 5-18: Strong duality + OPTIMAL => KKT satisfied
Here so far: KKT satisfied => OPTIMAL
Therefore assume Slater: KKT satistied <=> OPTIMAL



example: water-filling (assume αi > 0)

minimize −
∑n

i=1 log(xi + αi)
subject to x ≽ 0, 1Tx = 1

x is optimal iff x ≽ 0, 1Tx = 1, and there exist λ ∈ Rn, ν ∈ R such that

λ ≽ 0, λixi = 0,
1

xi + αi
+ λi = ν

• if ν < 1/αi: λi = 0 and xi = 1/ν − αi

• if ν ≥ 1/αi: λi = ν − 1/αi and xi = 0

• determine ν from 1Tx =
∑n

i=1max{0, 1/ν − αi} = 1

interpretation

• n patches; level of patch i is at height αi

• flood area with unit amount of water

• resulting level is 1/ν⋆
i

1/ν⋆

xi

αi
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Lagrangian:
L(x,λ,v) = Σ_i { - log(x_i+a_i) } - λ’x + v(1’x - 1)
              = Σ_i { - log(x_i+a_i) - λ_i x_i + v x_i } - v
Then:
dL/dx_i = -1/(x_i+a_i) - λ_i + v = 0

-x ≤ 0

1’x - 1 = 0

Complementary
slackness

Stationarity

Dual
feasibility

Primal feasibility

(because λ_i cannot be negative)

(because λ_i x_i = 0)



Duality and problem reformulations

• equivalent formulations of a problem can lead to very different duals

• reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

• introduce new variables and equality constraints

• make explicit constraints implicit or vice-versa

• transform objective or constraint functions

e.g., replace f0(x) by φ(f0(x)) with φ convex, increasing
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Introducing new variables and equality constraints

minimize f0(Ax+ b)

• dual function is constant: g = infxL(x) = infx f0(Ax+ b) = p⋆

• we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize f0(y)
subject to Ax+ b− y = 0

maximize bTν − f∗
0 (ν)

subject to ATν = 0

dual function follows from

g(ν) = inf
x,y

(f0(y)− νTy + νTAx+ bTν)

=

{

−f∗
0 (ν) + bTν ATν = 0

−∞ otherwise
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= inf_y { fo(y) - v’y } + inf_x { v’Ax } + b’v
= - sup_y { -fo(y) + v’y} + inf_x { v’Ax } + b’v
= | -fo*(v) + b’v    if A’v = 0
   | -infinity           otherwise

Note: if A’v ≠ 0, we can pick x so that v’Ax is arbitrarily small



norm approximation problem: minimize ∥Ax− b∥

minimize ∥y∥
subject to y = Ax− b

can look up conjugate of ∥ · ∥, or derive dual directly

g(ν) = inf
x,y

(∥y∥+ νTy − νTAx+ bTν)

=

{

bTν + infy(∥y∥+ νTy) ATν = 0
−∞ otherwise

=

{

bTν ATν = 0, ∥ν∥∗ ≤ 1
−∞ otherwise

(see page 5–4)

dual of norm approximation problem

maximize bTν
subject to ATν = 0, ∥ν∥∗ ≤ 1
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(see page 5-6)



Implicit constraints

LP with box constraints: primal and dual problem

minimize cTx
subject to Ax = b

−1 ≼ x ≼ 1

maximize −bTν − 1Tλ1 − 1Tλ2

subject to c+ATν + λ1 − λ2 = 0
λ1 ≽ 0, λ2 ≽ 0

reformulation with box constraints made implicit

minimize f0(x) =

{

cTx −1 ≼ x ≼ 1

∞ otherwise
subject to Ax = b

dual function

g(ν) = inf
−1≼x≼1

(cTx+ νT (Ax− b))

= −bTν − ∥ATν + c∥1

dual problem: maximize −bTν − ∥ATν + c∥1
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= inf_{|x|_infty ≤ 1} {(A’v+c)’x} - b’v
= - sup_{|x|_infty ≤ 1} {(-A’v-c)’x} - b’v
= - |A’v+c|_1 - b’v     … by norm duality



Problems with generalized inequalities

minimize f0(x)
subject to fi(x) ≼Ki 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

≼Ki is generalized inequality on Rki

definitions are parallel to scalar case:

• Lagrange multiplier for fi(x) ≼Ki 0 is vector λi ∈ Rki

• Lagrangian L : Rn × Rk1 × · · ·× Rkm × Rp → R, is defined as

L(x,λ1, · · · ,λm, ν) = f0(x) +
m
∑

i=1

λT
i fi(x) +

p
∑

i=1

νihi(x)

• dual function g : Rk1 × · · ·× Rkm × Rp → R, is defined as

g(λ1, . . . ,λm, ν) = inf
x∈D

L(x,λ1, · · · ,λm, ν)
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lower bound property: if λi ≽K∗
i
0, then g(λ1, . . . ,λm, ν) ≤ p⋆

proof: if x̃ is feasible and λ ≽K∗
i
0, then

f0(x̃) ≥ f0(x̃) +
m
∑

i=1

λT
i fi(x̃) +

p
∑

i=1

νihi(x̃)

≥ inf
x∈D

L(x,λ1, . . . ,λm, ν)

= g(λ1, . . . ,λm, ν)

minimizing over all feasible x̃ gives p⋆ ≥ g(λ1, . . . ,λm, ν)

dual problem

maximize g(λ1, . . . ,λm, ν)
subject to λi ≽K∗

i
0, i = 1, . . . ,m

• weak duality: p⋆ ≥ d⋆ always

• strong duality: p⋆ = d⋆ for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)
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spongebob


Slide 2-21:
If λ_i ≥ 0 with respect to dual cone K_i*
and f_i(x~) ≤ 0 with respect to cone K_i
then λ_i ’ f_i(x~) ≤ 0

i



Semidefinite program

primal SDP (Fi, G ∈ Sk)

minimize cTx
subject to x1F1 + · · ·+ xnFn ≼ G

• Lagrange multiplier is matrix Z ∈ Sk

• Lagrangian L(x, Z) = cTx+ tr (Z(x1F1 + · · ·+ xnFn −G))

• dual function

g(Z) = inf
x

L(x, Z) =

{

− tr(GZ) tr(FiZ) + ci = 0, i = 1, . . . , n
−∞ otherwise

dual SDP

maximize − tr(GZ)
subject to Z ≽ 0, tr(FiZ) + ci = 0, i = 1, . . . , n

p⋆ = d⋆ if primal SDP is strictly feasible (∃x with x1F1 + · · ·+ xnFn ≺ G)
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Remember tr(A’B) is the
inner-product of matrices A and B

= -tr(ZG) + Σ_i x_i (c_i + tr(Z F_i))
Note: if c_i + tr(Z F_i) ≠ 0, we can pick x_i so that x_i (c_i + tr(Z F_i)) is arbitrarily small


