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5. Duality

e Lagrange dual problem
e weak and strong duality
e geometric interpretation

e optimality conditions

e examples

e generalized inequalities
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Lagrangian
standard form problem (not necessarily convex)

minimize  fo(x)
subject to  f;(z) <

variable x € R", domain D, optimal value p*

Lagrangian: L : R" x R™ x R”P - R, with dom L =D x R™ x R?,

Lz, \,v) —|—Z)\ fi(x -|—sz'hi($)
i=1

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier associated with f;(z) <0

e 1; is Lagrange multiplier associated with h;(z) = 0

Duality
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Lagrange dual function

Lagrange dual function: ¢ : R x R” — R,

g\, v) = inf L(z,\,v)

xeD
= Inf (fo(x) + ) Nifilz)+ ) Vihi(x)>
i=1 i=1

g is concave, can be —oo for some A, v
lower bound property: if A = 0, then g(\,v) < p*

. o f 4 : x~ feasible when f_i(x~) <0 and h_i(x~) =0, alsoA_i2 0
proof: if T is feasible and A > 0, then hems A s e o

fol#) = L(#, A\,v) > inf Liz,\,v) = (A, v)
xre

minimizing over all feasible = gives p* > g(\,v)
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x~ feasible when f_i(x~) ≤ 0 and h_i(x~) = 0, also λ_i ≥ 0
then Σ_i λ_i f_i(x~) + Σ_i v_i h_i(x~) ≤ 0


Least-norm solution of linear equations

minimize zlx

subject to Ax =1b
Ax-b=0

dual function
e Lagrangianis L(z,v) = 212 + v1(Az — b)

e to minimize L over x, set gradient equal to zero:

Vol(z,v) =22+ A'v=0 =— z=—(1/2)A"v

e plug in in L to obtain g:
1
g(v) = L((-1/2)ATv,v) = —ZI/TAATV — bl
a concave function of v

lower bound property: p* > —(1/4)vT AATY — b1y for all v

Duality


Ax - b = 0


Standard form LP

minimize ¢!z

subjectto Ar=0b, x>0
Ax-b=0 -x<0
dual function

e Lagrangian is

Lz, \v) = caot+vi(Az—-b) - o
= bv+(c+Av Nz

e [ is affine in 2, hence

Otherwise for any nonzero vector y, we can
make y’x arbitrarily small

g(\v) = inf L(z, A, v) = {

—00
g is linear on affine domain {(\,v) | AYv — XA+ ¢ = 0}, hence concave

lower bound property: p* > —blvif ATv4+c>0
RecallA’v-A+c=0
ThenA'v+c=A

Duality ButAz20 5-5
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for any nonzero vector y, we can
make y’x arbitrarily small

- x ≤ 0

Recall A’v - λ + c = 0
Then A’v + c = λ
But λ ≥ 0
Then A’v + c ≥ 0

Ax - b = 0


Equality constrained norm minimization

minimize |||
subject to Ax =1b
_Ax+b=0

dual function

g(v) = inf(||z| — vl Ax + bTV) =
= b’vx-l- inf_x( |x] - v’Ax))

where ||v||. = supy,,j<; u" v is dual norm of || - |

—o0  otherwise

{ vlv  ||ATY]. <1

Lety =Av, proof: follows from inf,.(||z|| — y'z) = 0 if ||y||+ < 1, —oo otherwise

o if ||lyll« <1, then ||z|| — y'z > 0 for all 2, with equality if z =0

Cauchy-Schwarz: y’x < |y|_* |x] = |x| ]
since

o if [|y|l« > 1, choose = = tu where [Jul] < 1, uly = [|y|l+ > 1: L= sup_{uiet} wy > 1

xI -y’ = tJul - ty'u = tu] - t [y|_*
= t([lull = llylls) = —oc0 ast — oo
<0

lower bound property: p* > bl if |ATv]], <1
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= b’v + inf_x( |x| - v’Ax )

Let y = A’v,

Cauchy-Schwarz: y’x ≤ |y|_* |x| ≤ |x|

since
|y|_* = sup_{|u|≤1} u’y > 1

< 0

|x| - y’x = t |u| - t y’u = t |u| - t |y|_*

- A x + b = 0


Two-way partitioning

minimize I Wzx
subjectto z?=1, i=1,...,n

x_i is-1or+1
e a nonconvex problem; feasible set contains 2" discrete points
e interpretation: partition {1,...,n} in two sets; W;, is cost of assigning

i, j to the same set; —W,; is cost of assigning to different sets

(one set is all i’s where x_i = -1, the second set is all i’s where x_i = +1)

dual function

g(v) = inf(z? Wz + Z vi(z? — 1)) = infa? (W + diag(v))z — 1'v
B { —11y W + diag(v) = 0

—00 otherwise T

if W+diag(v) has at least
one negative eigenvalue

lower bound property: p* > —11v if W + diag(v) = 0 we can make x'(W-+diag(v))x

arbitrarily small
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if W+diag(v) has at least
one negative eigenvalue
we can make x’(W+diag(v))x
arbitrarily small

x_i   is -1 or + 1

( one set is all i’s where x_i = -1, the second set is all i’s where x_i = +1 )


The dual problem

Lagrange dual problem

maximize g(\,v)
subjectto A >0

e finds best lower bound on p*, obtained from Lagrange dual function
e a convex optimization problem; optimal value denoted d*
e )\, v are dual feasible if A = 0, (\,v) € domg

e often simplified by making implicit constraint (A, ) € dom g explicit

example: standard form LP and its dual (page 5-5)

minimize ¢’z maximize —blv
subject to Az =1b subject to A'v+c¢ >0
x>0
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A nice example of why we care about dual problems

: o] " -

minimize

xl Ax + 26Tz

subject to xTr <1

A % 0, hence nonconvex

xX’x-1<0

dual function: g()\) = inf, (27 (A + M)z + 2072 — \)

e unbounded below if A+ AT # 0

e minimized by x = —(A + M )Tb otherwise: g(\) = —bT (A + XI)Tb — X

dual problem

maximize —bT (A + XI)Tb — )
subject to. A+ A = 0

2) If not (A+Al) 2 0, one eigenvalue is negative, there exists

eigenvector u where u’(A+Al)u < 0.

Recall L(x,A) = xX’(A+Al)x + 2 b’x - A

Both x’(A+Al)x and b’x can be made -infinity. Let x =t u.

If b'u > 0, take t = -infinity, if b'u < 0, take t = +infinity
Duality

1) For simplicity assume (A+Al) > 0

L(x,A) = xX’Ax + 2 b’x + A(xX’x - 1) = xX’(A+Al)x + 2 b’x - A
d(A) = inf_x L(x,A)
dL/dx = 2(A+Al)x +2b =0 => x** =-(A+Al)*-1b

Then g(A) = L(x**,A) = -b’ (A+Al)*-1 b - A
Lagrange dual: max g(A) s.t. A2 0

Let A = UDU’, then A+Al = U(D+AI)U’ = U S(A) U, where s_ii(A) = d_ii + A
Then (A+Al)A-1 = U SA-1(A) U’, where s_ii*-1(A) = 1/(d_ii + A)

Let U =[u_1 ... u_n], where u_i are column eigenvectors
gA)=-b’USA 1A U b-A=-Z_ib u_is_ii*~M(A)u’_ib-A
=-2_is_ii*1(A) (b’ u_i)*2-A )
dg/dA =Z_i (b’ u_i)*2 / (d_ii + A)*2 -1
Easy to use a ONE-DIMENSIONAL gradient ascent or Newton method!
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A nice example of why we care about dual problems

1) For simplicity assume (A+λI) > 0

L(x,λ) = x’Ax + 2 b’x + λ(x’x - 1) = x’(A+λI)x + 2 b’x - λ
g(λ) = inf_x L(x,λ)
dL/dx = 2(A+λI)x + 2b = 0   =>   x^* = -(A+λI)^-1 b

Then g(λ) = L(x^*,λ) = -b’ (A+λI)^-1 b - λ
Lagrange dual: max g(λ) s.t. λ ≥ 0

Let A = UDU’, then A+λI = U(D+λI)U’ = U S(λ) U’, where s_ii(λ) = d_ii + λ
Then (A+λI)^-1 = U S^-1(λ) U’, where s_ii^-1(λ) = 1/(d_ii + λ)

Let U = [u_1 … u_n], where u_i are column eigenvectors
g(λ) = -b’ U S^-1(λ) U’ b - λ = -Σ_i b’ u_i s_ii^-1(λ) u’_i b - λ
        = -Σ_i s_ii^-1(λ) (b’ u_i)^2 - λ
dg/dλ = Σ_i (b’ u_i)^2 / (d_ii + λ)^2 - 1
Easy to use a ONE-DIMENSIONAL gradient ascent or Newton method!

x’x - 1 ≤ 0

2) If not (A+λI) ≥ 0, one eigenvalue is negative, there exists
eigenvector u where u’(A+λI)u < 0.
Recall L(x,λ) = x’(A+λI)x + 2 b’x - λ
Both x’(A+λI)x and b’x can be made -infinity. Let x = t u.
If b'u > 0, take t = -infinity, if b'u < 0, take t = +infinity


Lagrange dual and conjugate function

minimize  fo(x)
subjectto Ax <b, Czx=d

dual function

g\ v) = inf  (fo(x)+ (A"AN+C"v) 'z —b" N —d"v)

rxedom fj

= inf_x{ fo(x) + (A’A+C’v)’x } -b’A -d’v
= -sup_x{ (-A’A-C’v)’x -fo(x) } -b’A -d’v
= - fo*(-A’A-C’v) - b’A -d’v

e recall definition of conjugate f*(y) = Sup,cqom s (' = — f())

e simplifies derivation of dual if conjugate of f is known

example: entropy maximization

mn
— E x;log x;, edi™
i=1

1=1
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= inf_x{ fo(x) + (A’λ+C’v)’x } - b’λ - d’v
= - sup_x{ (-A’λ-C’v)’x - fo(x) } - b’λ - d’v
= - fo*(-A’λ-C’v) - b’λ - d’v


Weak and strong duality

.o * * Remember the lower bound property: if A 2 0 then g(A,v) < p**
Weak duahty' d S p By taking the optimal A** and vA*, d** = g(AM,vA*) < pA*

e always holds (for convex and nonconvex problems)
e can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP Duality gap: pA* - dA*

maximize —17v
subject to W + diag(v) = 0

gives a lower bound for the two-way partitioning problem on page 57
strong duality: d* = p*
e does not hold in general

e (usually) holds for convex problems

e conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Remember the lower bound property: if λ ≥ 0 then g(λ,v) ≤ p^*
By taking the optimal λ^* and v^*, d^* = g(λ^*,v^*) ≤ p^*

Duality gap: p^* - d^*


Slater’s constraint qualification

strong duality holds for a convex problem

minimize  fo(x)
subject to fz( ) <0, i=1,....,m
Ax =10

if it is strictly feasible, 7.e.,

Jx filz) <0, i=1,...,m, Az =b

f

strict inequality

e also guarantees that the dual optimum is attained (if p* > —o0)

e can be sharpened:
Assume f_1(x) ... f_k(x) are affine and dom(fo) open, then the REFINED Slater’s condition is
thereisanx, f i(x)s0fori=1...k f_ i(x) <0 fori=k+1...m Ax=b

Thus, if all inequalities are affine (k=m) then strict inequality is not necessary!

e there exist many other types of constraint qualifications

Duality 5-11


Assume f_1(x) … f_k(x) are affine and dom(fo) open, then the REFINED Slater’s condition is
       there is an x,      f_i(x) ≤ 0 for i = 1…k          f_i(x) < 0 for i = k+1…m         Ax = b

Thus, if all inequalities are affine (k=m) then strict inequality is not necessary!

strict inequality


Inequality form LP

primal problem

minimize clzx

subject to Ax <b

dual function

g(\) = inf ((c+ AT )T — bT)\) —

x

—bTN ATA+¢=0
— 00 otherwise

dual problem
maximize —b1 )\
subjectto ATA4+c¢=0, A>0

e from Slater’'s condition: p* = d* it Ax < b for some ¥

e in fact, p* = d* except when primal and dual are infeasible (refined siater’s)
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Quadratic program

primal problem (assume P € S” )
minimize 2! Px
subject to Az <b

dual function

g(A) = inf (ZETPQZ + )\T(Ax _ b)) —

X

1
—Z)\TAP_lATA — b\

dual problem
maximize —(1/HNTAP7TATN — b1\
subject to A >0

e from Slater’s condition: p* = d* if Ax < b for some ¥
® In faCt, p* = d* a|ways (refined Slater’s)

5-13
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Geometric interpretation

for simplicity, consider problem with one constraint f;(z) <0 o <0
interpretation of dual function:
d(A) =inf_{xin D} (fo(x) + AfI(x)) equivalent to: u t
g(A) = ( igfeg(t +Au),  where G ={(f1(z), fo(z)) | z € D}
u?

min fo(x)
s.t. f1(x)<0

fo(x) fo(x)
t

min t
st. uso
(ut)in G

(Clearly in this
example there is not
,,,,,,,,,,,,,,,,,,,, 4 ; strong duality)
Au'+ t'= g(\) \

Let t**,u”* = arginf_{(u,t) in G} (t+Au)

Then t+Au 2 tA* + A ur* u u
It is a supporting hyperplane! f1(x) W\ f1(x)

e \u+t=g(\) is (non-vertical) supporting hyperplane to G

Dual: A** = argmax_{A20} g(A)

e hyperplane intersects t-axis at t = g(\) d™ = (A" is the “Tightast® supporting hyperplane

what if all u 2 07 ( you cannot go up without violating the definition
(i.e. 1 (X? - 0 for all x) of supporting hyperplane )

Constraint is f1(x) <0 A*

Then solution has f1(x) =0 P . 5-15
VERTICAL supporting hyperplane 1 >

AN = infinity


g(λ) = inf_{x in D} ( fo(x) + λ f1(x) )      equivalent to:

t

fo(x)

f1(x)

fo(x)

f1(x)

min fo(x)
s.t.  f1(x) ≤ 0

min fo(x)
s.t.  f1(x) ≤ 0

min t
s.t.  u ≤ 0
       (u,t) in G

Let t^*,u^* = arginf_{(u,t) in G} (t+λu)
Then t+λu ≥ t^* + λ u^*
It is a supporting hyperplane!

*

*

Dual: λ^* = argmax_{λ≥0} g(λ)
d^* = g(λ^*) is the “tightest” supporting hyperplane
( you cannot go up without violating the definition
  of supporting hyperplane )

(Clearly in this
example there is not
strong duality)

p^*

what if all u ≥ 0?
(i.e. f1(x) ≥ 0 for all x)
Constraint is f1(x) ≤ 0
Then solution has f1(x) = 0
VERTICAL supporting hyperplane
λ^* = infinity

u


epigraph variation: same interpretation if G is replaced with

A= {(u,t) | fi(x) <wu, fo(xr) <t for some x € D}
t

A

\u + t' = g()\)\p
g(N)

strong duality

e holds if there is a non-vertical supporting hyperplane to A at (0, p*)

e for convex problem, A is convex, hence has supp. hyperplane at (0, p*)

~

e Slater’s condition: if there exist (u,t) € A with @ < 0, then supporting
hyperplanes at (0, p*) must be non-vertical

(explained in previous slide)
Duality 5-16
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*

*

(explained in previous slide)


Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

2 woN e

primal constraints: f;(x) <0,i=1,...,m, hi(x)=0,i=1,...,p ;epgis"?;'"ty)

dual constraints: A > (0 (Dual feasiblity)

. £, _ - if A_i >0 then f_i(x) =
complementary slackness: A;fi(z) =0,i=1,...,m 550 <0then A i=0

. gradient of Lagrangian with respect to x vanishes: (Stationarity)

V fo(z +§:AVﬂ +§:th

from page 5-17: if strong duality holds and x, A, v are optimal, then they
must satisfy the KK'T conditions

General idea, for general possibly nonconvex primal problem: OPTIMAL => KKT satisfied.
(subject to some technical conditions)
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(Stationarity)

(Primal
feasibility)

(Dual feasiblity)

if λ_i > 0 then f_i(x) = 0
if f_i(x) < 0 then λ_i = 0

General idea, for general possibly nonconvex primal problem: OPTIMAL => KKT satisfied.
(subject to some technical conditions)


Complementary slackness

assume strong duality holds, x* is primal optimal, (A*, v*) is dual optimal
fo(xA*) = g(AM*,vA%) = inf_x L(x, A**, vA¥)

inf | fo(z) + Y Nifilm) + ) vihi(x)
1=1 1=1

fol@®) + ) A fila*) + ) vihi(a?)
=1 1=1
< fo(z™)

since h_i(x**) = 0 given that x** is feasible:

hence, the two inequalities hold with equality Z_IA_i"f_i(x"*) =0

but each term in sum is nonpositive (none

of the terms can be negative because there
* minimizes L(CE, )\*, V*) will not be a positive to make sum = 0)

o \'fi(x*)=0fori=1,...,m (known as complementary slackness):

N> 0= fi(z*) =0, filz") <0= A\ =0

Duality 5-17


fo(x^*) = g(λ^*,v^*) = inf_x  L(x, λ^*, v^*)

since h_i(x^*) = 0 given that x^* is feasible:
      Σ_i λ_i^* f_i(x^*) = 0
but each term in sum is nonpositive (none
of the terms can be negative because there
will not be a positive to make sum = 0)


KKT conditions for convex problem

General idea, for convex primal problem: KKT satisfied => OPTIMAL and thus KKT satisfied <=> OPTIMAL
(subject to some technical conditions)

If z, 5\ v satisfy KKT for a convex problem, then they are optimal:

] ~ ~ Y ~ Since A~_i f_i(x~) = 0, and also h_i(x~)=0
e from complementary slackness: fo([l?) = L(LU, )\, V) then £_i A~_i f i(x~) + Z_iv~_ih_i(x~) =0

e from 4th condition (and convexity): g(A, ) = L(Z, \, D)
_ Stationarity: gradient of L(x, A~, v~) w.r.t. x vanishes,
~\ ~ => x~ minimizes L ... (this is why we assumed convexity
hence' fo(x) T g()‘v V) otherwise stationarity does not
zero duality gap since x~ = x**, A~ = AA*, v~ = vA* imply that x~ is the minimizer of L)
fo(xA*) = pA* = d”r* = g(Ar,vAY) => L(x~,A~,v~) =inf_x L(x, A~, v~)
= g(A~, v~)

if Slater’s condition is satisfied:

x is optimal if and only if there exist A, v that satisfy KKT conditions

Slide 5-11: Slater => strong duality

Slide 5-18: Strong duality + OPTIMAL => KKT satisfied
Here so far: KKT satisfied => OPTIMAL

Therefore assume Slater: KKT satistied <=> OPTIMAL
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Since λ~_i f_i(x~) = 0, and also h_i(x~)=0
then Σ_i λ~_i f_i(x~) + Σ_i v~_i h_i(x~) = 0

General idea, for convex primal problem: KKT satisfied => OPTIMAL and thus KKT satisfied <=> OPTIMAL
(subject to some technical conditions)

Stationarity: gradient of L(x, λ~, v~) w.r.t. x vanishes,
=> x~ minimizes L  ... (this is why we assumed convexity
                                      otherwise stationarity does not
                                      imply that x~ is the minimizer of L)
=> L(x~,λ~,v~) = inf_x  L(x, λ~, v~)
                         = g(λ~, v~)

zero duality gap since x~ = x^*, λ~ = λ^*, v~ = v^*
                                      fo(x^*) =  p^* = d^* = g(λ^*,v^*)

Slide 5-11: Slater => strong duality
Slide 5-18: Strong duality + OPTIMAL => KKT satisfied
Here so far: KKT satisfied => OPTIMAL
Therefore assume Slater: KKT satistied <=> OPTIMAL


Lagrangian:
L(x,A,v) =Z_i{-log(x_i+a_i) } -N'x +v(1’x - 1)
=2 i{-log(x_i+a_i)-A_ix_i+vx_i}-v
gy Then:
example: water-filling (assume «; > 0) dL/dx_ii = -1/(x_i+a_i) -A_i +v=0

minimize  —Y_ "  log(x; + ;)

subjectto >0, 1lz=1

X < -1 =
Primal feasibility x=0 Tx-1=0

x iIs optimal iff x > 0, 172 = 1, and there exist A € R", v € R such that

Dual Complementary Stationarity

feasibility slackness 1

A=0,  Nz;=0, ———— 4N =v
Ti + Q

® |f v << 1/05@': )\z o O and XT; = 1/y — (because A_i cannot be negative)
o if v Z 1/041'2 )\z =V — 1/Oéz and Xr; = 0 (because A_i x_i = 0)

e determine v from 172z =>"" max{0,1/v —a;} =1

interpretation

e n patches; level of patch 7 is at height «;
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Lagrangian:
L(x,λ,v) = Σ_i { - log(x_i+a_i) } - λ’x + v(1’x - 1)
              = Σ_i { - log(x_i+a_i) - λ_i x_i + v x_i } - v
Then:
dL/dx_i = -1/(x_i+a_i) - λ_i + v = 0

-x ≤ 0

1’x - 1 = 0

Complementary
slackness

Stationarity

Dual
feasibility

Primal feasibility

(because λ_i cannot be negative)

(because λ_i x_i = 0)


Duality and problem reformulations

e equivalent formulations of a problem can lead to very different duals

e reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

e introduce new variables and equality constraints
e make explicit constraints implicit or vice-versa

e transform objective or constraint functions

e.g., replace fo(x) by ¢(fo(x)) with ¢ convex, increasing

Duality 5-24



Introducing new variables and equality constraints

minimize  fo(Ax + b)

e dual function is constant: g = inf, L(xz) = inf, fo(Ax + b) = p*

e we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize  fo(y) maximize blv — fi(v)
subject to Ax+b—y =0 subject to A'v =0

dual function follows from

g(v) = inf(fo(y) —viy +viAz +b'v)
L,y
=inf_y {fo(y)-v'y} +inf x{V'Ax} +b’v
=-sup_y { -fo(y) + Vly} +inf_ x {V'Ax } + b’v
=| -fo*(v) +b’'v ifAv=0
| -infinity otherwise

Note: if A’v # 0, we can pick x so that v’Ax is arbitrarily small

Duality
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= inf_y { fo(y) - v’y } + inf_x { v’Ax } + b’v
= - sup_y { -fo(y) + v’y} + inf_x { v’Ax } + b’v
= | -fo*(v) + b’v    if A’v = 0
   | -infinity           otherwise

Note: if A’v ≠ 0, we can pick x so that v’Ax is arbitrarily small


norm approximation problem: minimize ||Ax — b||

minimize  ||y||
subjectto y=Ax —b

can look up conjugate of || - ||, or derive dual directly

g(v) = f(|lyll+ vy — v Az +b7v)
x7y

[ oty (yl+0Ty) ATy =0
- —00 otherwise

B vlv Alv =0, |v|<1
—0o0 otherwise

(see page 5-6)
dual of norm approximation problem

maximize blv
subject to ATv =0, |v].<1

Duality
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(see page 5-6)


Implicit constraints

LP with box constraints: primal and dual problem

minimize c¢l'x maximize —blv — 1T ;1 — 1T\,
subject to Ax =0b subjectto ¢+ ATv+ X =Xy =0
-1=<z=x1 A=0, A2=0

reformulation with box constraints made implicit

e —-1<2x=<1
00 otherwise

minimize  fo(z) = {

subject to Ax =1b

dual function
. T T _
glv) = _félfjl(c r+ v (Ax — b))

= inf_{|x|_infty < 1} {(A’v+c)’x} - b’v
- sup_{|x|_infty < 1} {(-A’v-c)’x} - b’V
- |A’v+c|_1 -b’v ... by norm duality

dual problem: maximize —b'v — ||ATv + ¢|;
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= inf_{|x|_infty ≤ 1} {(A’v+c)’x} - b’v
= - sup_{|x|_infty ≤ 1} {(-A’v-c)’x} - b’v
= - |A’v+c|_1 - b’v     … by norm duality


Problems with generalized inequalities

minimize  fo(x)
subject to  fi(z) <k, 0, i=1,...,m
hz():O, izl,...,p

<k, Is generalized inequality on R”i

definitions are parallel to scalar case:

e Lagrange multiplier for f;(x) <k, 0 is vector \; € R¥

e Lagrangian L: R" x R" x ... x R x R? — R, is defined as

L(:E, ALy s Am, V) — fO(aj) + Z )‘szz(x) + Z Vihi(x)
1=1 1=1

e dual function g: R* x -+ x R"™ x R? — R, is defined as

g A1,y Am,v) = inf L(x, A1, A, V)

xeD
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lower bound property: if A; = 0, then g A1,y A, V) < p*
Slide 2-21:

proof: if T is feasible and A\ > g+ 0, then If A_i 2 0 with respect to dual cone K_i*
P70 and f_i(x~) < 0 with respect to cone K_i
then A_i"f_i(x~) <0
Jol(

) > fo(f)+z>\ffi(f)+zl/ihi(5f)

> inf L(z, A1, ..., Am, V)

SR

xeD
= g()\l,...,)\m,l/)
minimizing over all feasible & gives p* > g(A1,..., A\, V)

dual problem

maximize  g(A1,..., Am, V)
subject to  \; ~ K 0, 2=1,....m

e weak duality: p* > d* always

e strong duality: p* = d* for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)
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spongebob


Slide 2-21:
If λ_i ≥ 0 with respect to dual cone K_i*
and f_i(x~) ≤ 0 with respect to cone K_i
then λ_i ’ f_i(x~) ≤ 0

i


Semidefinite program

primal SDP (F;, G € S%)

minimize clzx

subjectto x1F1+---+x,F, G

Remember tr(A’B) is the

L . . L inner-product of matrices A and B
e Lagrange multiplier is matrix Z € S

e Lagrangian L(z,Z) = clo +tr (Z(x1Fy + -+ + 2, F, — G))
= -tr(ZG) + Z_i x_i (c_i + tr(Z F_i))
° d uaI fU nction Note: if c_i + tr(Z F_i) # 0, we can pick x_i so that x_i (c_i + tr(Z F_i)) is arbitrarily small

—tr(GZ) tr(F;Z)+c¢; =0, i=1,...,n

9(Z) = igfL(x, Z) = { — 00 otherwise

dual SDP

maximize —tr(GZ2)
subjectto Z >0, tr(F;Z)+c¢ =0, i=1,....n

p* = d* if primal SDP is strictly feasible (3z with 21 F} + - - - 4+ 2, F,, < G)
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Remember tr(A’B) is the
inner-product of matrices A and B

= -tr(ZG) + Σ_i x_i (c_i + tr(Z F_i))
Note: if c_i + tr(Z F_i) ≠ 0, we can pick x_i so that x_i (c_i + tr(Z F_i)) is arbitrarily small


