3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions

Definition

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if $\operatorname{dom} f$ is a convex set and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$

- f is concave if $-f$ is convex
- f is strictly convex if $\operatorname{dom} f$ is convex and

$$
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)
$$

for $x, y \in \operatorname{dom} f, x \neq y, 0<\theta<1$

Examples on \mathbf{R}

convex:

- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- exponential: $e^{a x}$, for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^{p}$ on \mathbf{R}, for $p \geq 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}
concave:
- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbf{R}^{n} and $\mathbf{R}^{m \times n}$

affine functions are convex and concave; all norms are convex examples on \mathbf{R}^{n}

- affine function $f(x)=a^{T} x+b$
- norms: $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \geq 1 ;\|x\|_{\infty}=\max _{k}\left|x_{k}\right|$

examples on $\mathbf{R}^{m \times n}(m \times n$ matrices $)$

- affine function

$$
f(X)=\operatorname{tr}\left(A^{T} X\right)+b=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} X_{i j}+b
$$

- spectral (maximum singular value) norm

$$
f(X)=\|X\|_{2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{T} X\right)\right)^{1 / 2}
$$

Restriction of a convex function to a line

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(t)=f(x+t v), \quad \operatorname{dom} g=\{t \mid x+t v \in \operatorname{dom} f\}
$$

is convex (in t) for any $x \in \operatorname{dom} f, v \in \mathbf{R}^{n}$
can check convexity of f by checking convexity of functions of one variable
example. $f: \mathbf{S}^{n} \rightarrow \mathbf{R}$ with $f(X)=\log \operatorname{det} X, \operatorname{dom} f=\mathbf{S}_{++}^{n}$

$$
\begin{aligned}
g(t)=\log \operatorname{det}(X+t V) & =\log \operatorname{det} X+\log \operatorname{det}\left(I+t X^{-1 / 2} V X^{-1 / 2}\right) \\
& =\log \operatorname{det} X+\sum_{i=1}^{n} \log \left(1+t \lambda_{i}\right)
\end{aligned}
$$

where λ_{i} are the eigenvalues of $X^{-1 / 2} V X^{-1 / 2}=U D U^{\prime}$ then $1+t U^{\prime} U^{\prime}=U(I+t D) U^{\prime}$ g is concave in t (for any choice of $X \succ 0, V$); hence f is concave

Extended-value extension

extended-value extension \tilde{f} of f is

$$
\tilde{f}(x)=f(x), \quad x \in \operatorname{dom} f, \quad \tilde{f}(x)=\infty, \quad x \notin \operatorname{dom} f
$$

often simplifies notation; for example, the condition

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad \tilde{f}(\theta x+(1-\theta) y) \leq \theta \tilde{f}(x)+(1-\theta) \tilde{f}(y)
$$

(as an inequality in $\mathbf{R} \cup\{\infty\}$), means the same as the two conditions

- $\operatorname{dom} f$ is convex
- for $x, y \in \operatorname{dom} f$,

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

First-order condition

f is differentiable if $\operatorname{dom} f$ is open and the gradient

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right)
$$

exists at each $x \in \operatorname{dom} f$
1st-order condition: differentiable f with convex domain is convex iff

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } x, y \in \operatorname{dom} f
$$

$f(y)$

$$
f(x)+\nabla f(x)^{T}(y-x)
$$

first-order approximation of f is global underestimator

Second-order conditions

f is twice differentiable if $\operatorname{dom} f$ is open and the Hessian $\nabla^{2} f(x) \in \mathbf{S}^{n}$,

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}, \quad i, j=1, \ldots, n
$$

exists at each $x \in \operatorname{dom} f$
2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if

$$
\nabla^{2} f(x) \succeq 0 \quad \text { for all } x \in \operatorname{dom} f
$$

- if $\nabla^{2} f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex

Examples

quadratic function: $f(x)=(1 / 2) x^{T} P x+q^{T} x+r$ (with $P \in \mathbf{S}^{n}$)

$$
\nabla f(x)=P x+q, \quad \nabla^{2} f(x)=P
$$

convex if $P \succeq 0$
least-squares objective: $f(x)=\|A x-b\|_{2}^{2}$

$$
\nabla f(x)=2 A^{T}(A x-b), \quad \nabla^{2} f(x)=2 A^{T} A
$$

convex (for any A)
quadratic-over-linear: $f(x, y)=x^{2} / y$

$$
\nabla^{2} f(x, y)=\frac{2}{y^{3}}\left[\begin{array}{c}
y \\
-x
\end{array}\right]\left[\begin{array}{c}
y \\
-x
\end{array}\right]^{T} \succeq 0
$$

convex for $y>0$

log-sum-exp: $f(x)=\log \sum_{k=1}^{n} \exp x_{k}$ is convex

$$
\nabla^{2} f(x)=\frac{1}{\mathbf{1}^{T} z} \operatorname{diag}(z)-\frac{1}{\left(\mathbf{1}^{T} z\right)^{2}} z z^{T} \quad\left(z_{k}=\exp x_{k}\right)
$$

to show $\nabla^{2} f(x) \succeq 0$, we must verify that $v^{T} \nabla^{2} f(x) v \geq 0$ for all v :

$$
v^{T} \nabla^{2} f(x) v=\frac{\left(\sum_{k} z_{k} v_{k}^{2}\right)\left(\sum_{k} z_{k}\right)-\left(\sum_{k} v_{k} z_{k}\right)^{2}}{\left(\sum_{k} z_{k}\right)^{2}} \geq 0
$$

since $\left(\sum_{k} v_{k} z_{k}\right)^{2} \leq\left(\sum_{k} z_{k} v_{k}^{2}\right)\left(\sum_{k} z_{k}\right)$ (from Cauchy-Schwarz inequality)
More clearly: $a_{-} k=v_{-} k$ sqrt(z_k), b_k = sqrt(z_k), then <a,b> $\leq|a| _2|b| _2$
geometric mean: $f(x)=\left(\prod_{k=1}^{n} x_{k}\right)^{1 / n}$ on \mathbf{R}_{++}^{n} is concave (similar proof as for log-sum-exp)

Epigraph and sublevel set

α-sublevel set of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$:

$$
C_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

sublevel sets of convex functions are convex (converse is false) epigraph of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$:

$$
\text { epi } f=\left\{(x, t) \in \mathbf{R}^{n+1} \mid x \in \operatorname{dom} f, f(x) \leq t\right\}
$$

f is convex if and only if epi f is a convex set
(the norm cone is the epigraph of the norm function)

Jensen's inequality

basic inequality: if f is convex, then for $0 \leq \theta \leq 1$,

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

extension: if f is convex, then

$$
f(\mathbf{E} z) \leq \mathbf{E} f(z)
$$

for any random variable z
basic inequality is special case with discrete distribution

$$
\operatorname{prob}(z=x)=\theta, \quad \operatorname{prob}(z=y)=1-\theta
$$

Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show $\nabla^{2} f(x) \succeq 0$
3. show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition
- minimization
- perspective

Positive weighted sum \& composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$
sum: $f_{1}+f_{2}$ convex if f_{1}, f_{2} convex (extends to infinite sums, integrals) composition with affine function: $f(A x+b)$ is convex if f is convex
examples

- log barrier for linear inequalities

$$
f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right), \quad \operatorname{dom} f=\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\}
$$

- (any) norm of affine function: $f(x)=\|A x+b\|$

Pointwise maximum

if f_{1}, \ldots, f_{m} are convex, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex

examples

- piecewise-linear function: $f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$ is convex
- sum of r largest components of $x \in \mathbf{R}^{n}$:

$$
f(x)=x_{[1]}+x_{[2]}+\cdots+x_{[r]}
$$

is convex $\left(x_{[i]}\right.$ is i th largest component of $\left.x\right)$
proof:

$$
f(x)=\max \left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\}
$$

An index of a vector entry goes from 1 to n
There are n choose r sets of r different indices
We can define $m=n$ choose r functions that sum r entries (See the first line of slide)

Pointwise supremum

if $f(x, y)$ is convex in x for each $y \in \mathcal{A}$, then

$$
g(x)=\sup _{y \in \mathcal{A}} f(x, y)
$$

is convex

examples

- support function of a set $C: S_{C}(x)=\sup _{y \in C} y^{T} x$ is convex
- distance to farthest point in a set C :

$$
f(x)=\sup _{y \in C}\|x-y\|
$$

- maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^{n}$,

$$
\lambda_{\max }(X)=\sup _{\|y\|_{2}=1} y^{T} X y
$$

Composition with scalar functions

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $h: \mathbf{R} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))
$$

f is convex if $\begin{array}{llr}n \text { convex, } h \text { convex } & \text { nondecreasing } \\ g \text { concave, } h \text { convex } & \text { nonincreasing }\end{array}$
g
h

- proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x) \quad \text { nondecreasing: } \mathrm{h}^{\prime} \geq 0
$$

examples

- $\exp g(x)$ is convex if g is convex
- $1 / g(x)$ is convex if g is concave and positive

Vector composition

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ and $h: \mathbf{R}^{k} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))=h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right) \quad \quad \mathrm{f}: \mathrm{R}^{\wedge} \mathrm{n} \text { to } \mathrm{R}
$$

f is convex if $\begin{aligned} & g_{i} \text { convex, } h \text { convex } \\ & g_{i} \text { concave, } h \text { convex } \quad \begin{array}{c}\text { nondecreasing in each argument } \\ \text { nonincreasing in each argument }\end{array}\end{aligned}$ proof (for $n=1$, differentiable g, h)

$\mathrm{n} \times \mathrm{n}$	$\mathrm{n} \times \mathrm{k}$	k $\times \mathrm{k}$	$\mathrm{k} \times \mathrm{n}$	$1 \times \mathrm{k}$	$\mathrm{k} \times \mathrm{n} \times$
$f^{\prime \prime}(x)=g^{\prime}(x)^{T} \nabla^{2} h(g(x)) g^{\prime}(x)+\nabla h(g(x))^{T} g^{\prime \prime}(x)$					
Hessian	each g1...gk has $\mathbf{R}^{\wedge} \mathrm{n}$ gradient	Hessian			each g1...gk has $R^{\wedge}\{n \times$ $n\}$ Hessian

examples

- $\sum_{i=1}^{m} \log g_{i}(x)$ is concave if g_{i} are concave and positive
- $\log \sum_{i=1}^{m} \exp g_{i}(x)$ is convex if g_{i} are convex

Minimization

if $f(x, y)$ is convex in (x, y) and C is a convex set, then

$$
g(x)=\inf _{y \in C} f(x, y)
$$

is convex

examples

- $f(x, y)=x^{T} A x+2 x^{T} B y+y^{T} C y$ with

$$
\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0, \quad C \succ 0
$$

minimizing over y gives $g(x)=\inf _{y} f(x, y)=x^{T}\left(A-B C^{-1} B^{T}\right) x$
g is convex, hence Schur complement $A-B C^{-1} B^{T} \succeq 0 \quad$ (iff [AB; $\left.\mathrm{B}^{\wedge} \mathrm{T} \mathrm{C}\right] \geq 0$)

- distance to a set: $\operatorname{dist}(x, S)=\inf _{y \in S}\|x-y\|$ is convex if S is convex
(Example: Lagrange dual, we will see it next week)

Perspective

the perspective of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the function $g: \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(x, t)=t f(x / t), \quad \operatorname{dom} g=\{(x, t) \mid x / t \in \operatorname{dom} f, t>0\}
$$

g is convex if f is convex

examples

- $f(x)=x^{T} x$ is convex; hence $g(x, t)=x^{T} x / t$ is convex for $t>0$
- negative logarithm $f(x)=-\log x$ is convex; hence relative entropy $g(x, t)=t \log t-t \log x$ is convex on \mathbf{R}_{++}^{2}
- if f is convex, then

$$
g(x)=\left(c^{T} x+d\right) f\left((A x+b) /\left(c^{T} x+d\right)\right)
$$

is convex on $\left\{x \mid c^{T} x+d>0,(A x+b) /\left(c^{T} x+d\right) \in \operatorname{dom} f\right\}$

The conjugate function

the conjugate of a function f is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)
$$

Properties:
f^{*} is convex (even if f is not):
$y x-f(x)$ is convex in y
conjugate is pointwise supremum
$f^{* *}=f, \quad$ if f is convex and epi f is a closed set
for differentiable $\mathrm{f}, \mathrm{f}^{*}$ is also called Fenchel conjugate or Legendre transform

examples

- negative logarithm $f(x)=-\log x$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x>0}(x y+\log x) \\
& = \begin{cases}-1-\log (-y) & y<0 \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- strictly convex quadratic $f(x)=(1 / 2) x^{T} Q x$ with $Q \in \mathbf{S}_{++}^{n}$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x}\left(y^{T} x-(1 / 2) x^{T} Q x\right) \\
& =\frac{1}{2} y^{T} Q^{-1} y
\end{aligned}
$$

Quasiconvex functions

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is quasiconvex if $\operatorname{dom} f$ is convex and the sublevel sets

$$
S_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

are convex for all α

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on \mathbf{R}
- $\operatorname{ceil}(x)=\inf \{z \in \mathbf{Z} \mid z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ is quasiconcave on \mathbf{R}_{++}^{2}
- linear-fractional function

$$
f(x)=\frac{a^{T} x+b}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

is quasilinear

- distance ratio

$$
f(x)=\frac{\|x-a\|_{2}}{\|x-b\|_{2}}, \quad \operatorname{dom} f=\left\{x \mid\|x-a\|_{2} \leq\|x-b\|_{2}\right\}
$$

is quasiconvex

Properties

modified Jensen inequality: for quasiconvex f

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad f(\theta x+(1-\theta) y) \leq \max \{f(x), f(y)\}
$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

sums of quasiconvex functions are not necessarily quasiconvex

