
Convex Optimization — Boyd & Vandenberghe

10. Unconstrained minimization

• terminology and assumptions

• gradient descent method

• steepest descent method

• Newton’s method

• self-concordant functions

• implementation

10–1

spongebob
Taken from http://stanford.edu/class/ee364a/lectures.html
Annotated by Jean Honorio jhonorio@purdue.edu

spongebob

Unconstrained minimization

minimize f(x)

• f convex, twice continuously differentiable (hence dom f open)

• we assume optimal value p⋆ = infx f(x) is attained (and finite)

unconstrained minimization methods

• produce sequence of points x(k) ∈ dom f , k = 0, 1, . . . with

f(x(k)) → p⋆

• can be interpreted as iterative methods for solving optimality condition

∇f(x⋆) = 0

Unconstrained minimization 10–2

spongebob
as k -> infinity

spongebob
x^(0), x^(1), ... is a minimizing sequence to the problem
Algorithm stops when f(x^(k)) - p^* ≤ ε, for some tolerance ε > 0

spongebob
Text

spongebob
We will assume that x^* = argmin_x f(x) exists and is unique
Recall p^* = f(x^*)

Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

∇2f(x) ≽ mI for all x ∈ S

implications

• for x, y ∈ S,

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
∥x− y∥22

hence, S is bounded

• p⋆ > −∞, and for x ∈ S,

f(x)− p⋆ ≤
1

2m
∥∇f(x)∥22

useful as stopping criterion (if you know m)

Unconstrained minimization 10–4

spongebob

spongebob
Assume f is twice differentiable
By Taylor’s theorem, there exists a z in the line segment from x to y such that
f(y) = f(x) + df(x)’(y-x) + ½ (y-x)’ d^2 f(z) (y-x)
 ≥ f(x) + df(x)’(y-x) + ½ (y-x)’ (m I) (y-x) … since f is strongly convex
 = f(x) + df(x)’(y-x) + ½ m |y-x|_2^2

(Taylor’s theorem is a generalization of the mean value theorem,
and is very related to, but is not exactly the same as Taylor series)

Descent methods

x(k+1) = x(k) + t(k)∆x(k) with f(x(k+1)) < f(x(k))

• other notations: x+ = x+ t∆x, x := x+ t∆x

• ∆x is the step, or search direction; t is the step size, or step length

• from convexity, f(x+) < f(x) implies ∇f(x)T∆x < 0
(i.e., ∆x is a descent direction)

General descent method.

given a starting point x ∈ dom f .
repeat

1. Determine a descent direction ∆x.
2. Line search. Choose a step size t > 0.
3. Update. x := x + t∆x.

until stopping criterion is satisfied.

Unconstrained minimization 10–5

spongebob
(Each algorithm has its own way for choosing Δx)

spongebob

spongebob
From convexity (slide 3-7):
f(x^+) ≥ f(x) + df(x)’(x^+ - x)
 = f(x) + t df(x)’Δx
Thus: f(x^+) - f(x) ≥ t df(x)’Δx

If f(x^+) < f(x) then:
0 > f(x^+) - f(x) ≥ t df(x)’Δx
Thus: df(x)’Δx < 0

Line search types

exact line search: t = argmint>0 f(x+ t∆x)

backtracking line search (with parameters α ∈ (0, 1/2), β ∈ (0, 1))

• starting at t = 1, repeat t := βt until

f(x+ t∆x) < f(x) + αt∇f(x)T∆x

• graphical interpretation: backtrack until t ≤ t0

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T∆xf(x) + t∇f(x)T∆x

Unconstrained minimization 10–6

spongebob
since β < 1, t := β t reduces t

spongebob

spongebob
Since Δx is a descent direction (see previous slide) then df(x)’Δx < 0
For small t, we have:

f(x + t Δx) ≈ f(x) + t df(x)’Δx < f(x) + α t df(x)’Δx

Thus, the procedure will eventually terminate.

spongebob
(Armijo–Goldstein condition)

spongebob
(one of the many inexact methods)

Gradient descent method

general descent method with ∆x = −∇f(x)

given a starting point x ∈ dom f .
repeat

1. ∆x := −∇f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + t∆x.

until stopping criterion is satisfied.

• stopping criterion usually of the form ∥∇f(x)∥2 ≤ ϵ

• convergence result: for strongly convex f ,

f(x(k))− p⋆ ≤ ck(f(x(0))− p⋆)

c ∈ (0, 1) depends on m, x(0), line search type

• very simple, but often very slow; rarely used in practice

Unconstrained minimization 10–7

spongebob
(linear convergence)

spongebob

quadratic problem in R2

f(x) = (1/2)(x2
1 + γx2

2) (γ > 0)

with exact line search, starting at x(0) = (γ, 1):

x(k)
1 = γ

(
γ − 1

γ + 1

)k

, x(k)
2 =

(
−
γ − 1

γ + 1

)k

• very slow if γ ≫ 1 or γ ≪ 1

• example for γ = 10:

x1

x
2

x(0)

x(1)

−10 0 10

−4

0

4

Unconstrained minimization 10–8

nonquadratic example

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

x(0)

x(1)

x(2)

x(0)

x(1)

backtracking line search exact line search

Unconstrained minimization 10–9

a problem in R100

f(x) = cTx−
500∑

i=1

log(bi − aTi x)

k

f
(x

(k
))

−
p
⋆

exact l.s.

backtracking l.s.

0 50 100 150 200
10−4

10−2

100

102

104

‘linear’ convergence, i.e., a straight line on a semilog plot

Unconstrained minimization 10–10

Steepest descent method

normalized steepest descent direction (at x, for norm ∥ · ∥):

∆xnsd = argmin{∇f(x)Tv | ∥v∥ = 1}

interpretation: for small v, f(x+ v) ≈ f(x) +∇f(x)Tv;
direction ∆xnsd is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

∆xsd = ∥∇f(x)∥∗∆xnsd

satisfies ∇f(x)T∆xsd = −∥∇f(x)∥2∗

steepest descent method

• general descent method with ∆x = ∆xsd

• convergence properties similar to gradient descent

Unconstrained minimization 10–11

spongebob

examples

• Euclidean norm: ∆xsd = −∇f(x)

• quadratic norm ∥x∥P = (xTPx)1/2 (P ∈ Sn
++): ∆xsd = −P−1∇f(x)

• ℓ1-norm: ∆xsd = −(∂f(x)/∂xi)ei, where |∂f(x)/∂xi| = ∥∇f(x)∥∞

unit balls and normalized steepest descent directions for a quadratic norm
and the ℓ1-norm:

−∇f(x)

∆xnsd

−∇f(x)

∆xnsd

Unconstrained minimization 10–12

spongebob
P defines the
shape of the ellipse

spongebob
L1 ball

choice of norm for steepest descent

x(0)

x(1)
x(2)

x(0)

x(1)

x(2)

• steepest descent with backtracking line search for two quadratic norms

• ellipses show {x | ∥x− x(k)∥P = 1}

• equivalent interpretation of steepest descent with quadratic norm ∥ · ∥P :
gradient descent after change of variables x̄ = P 1/2x

shows choice of P has strong effect on speed of convergence

Unconstrained minimization 10–13

spongebob
P = [2 0;
 0 8]

spongebob
P = [8 0;
 0 2]

spongebob
(two different P’s)

spongebob

spongebob

spongebob
ellipses “align” better
with objective function
thus convergence is faster

spongebob
See Figure 9.13

spongebob
See Figures 9.14, 9.15

Newton step

∆xnt = −∇2f(x)−1∇f(x)

interpretations

• x+∆xnt minimizes second order approximation

f̂(x+ v) = f(x) +∇f(x)Tv +
1

2
vT∇2f(x)v

• x+∆xnt solves linearized optimality condition

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) +∇2f(x)v = 0

f

f̂

(x, f(x))

(x + ∆xnt, f(x + ∆xnt))

f ′

f̂ ′

(x, f ′(x))

(x + ∆xnt, f
′(x + ∆xnt))

Unconstrained minimization 10–14

spongebob
Second order
Taylor series
approximation
(we are discarding
the remainder term)

spongebob
(Uses the Hessian as a good ellipse, see previous slide)

• ∆xnt is steepest descent direction at x in local Hessian norm

∥u∥∇2f(x) =
(
uT∇2f(x)u

)1/2

x

x + ∆xnt

x + ∆xnsd

dashed lines are contour lines of f ; ellipse is {x+ v | vT∇2f(x)v = 1}

arrow shows −∇f(x)

Unconstrained minimization 10–15

spongebob
Text

spongebob
Let H = d^2 f(x)
 d = df(x)
From slide 10-11 we have:

min d’u
s.t. u’ H u = 1

Let u = H^-½ s

min (H^-½ d)’s
s.t. s’s = 1

L(s,v) = (H^-½ d)’s + v (s’s - 1)
dL/ds = H^-½ d + 2 v s = 0
s^* = -1/(2v) H^-½ d

Then:
u^* = H^-½ s^*
 = -1/(2v) H^-1 d

which is the direction of Δx_nt !

Newton decrement

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

a measure of the proximity of x to x⋆

properties

• gives an estimate of f(x)− p⋆, using quadratic approximation f̂ :

f(x)− inf
y
f̂(y) =

1

2
λ(x)2

• equal to the norm of the Newton step in the quadratic Hessian norm

λ(x) =
(
∆xT

nt∇
2f(x)∆xnt

)1/2

• directional derivative in the Newton direction: ∇f(x)T∆xnt = −λ(x)2

• affine invariant (unlike ∥∇f(x)∥2)

Unconstrained minimization 10–16

spongebob
Remember p^* = inf_y f(y)

spongebob

spongebob

spongebob
Let H = d^2 f(x)
 d = df(x)
 λ = λ(x)
 Δx = Δx_nt = -H^-1 d

inf_y f^(y) = f^ (x + Δx)
 = f(x) + d’Δx + ½ Δx’ H Δx
 = f(x) - ½ d’ H^-1 d

f(x) - inf_y f^(y) = ½ d’ H^-1 d = ½ λ^2

Thus λ = sqrt(d’ H^-1 d)

Newton’s method

given a starting point x ∈ dom f , tolerance ϵ > 0.
repeat

1. Compute the Newton step and decrement.

∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x).
2. Stopping criterion. quit if λ2/2 ≤ ϵ.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + t∆xnt.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f̃(y) = f(Ty) with starting point y(0) = T−1x(0) are

y(k) = T−1x(k)

Unconstrained minimization 10–17

spongebob
y = T^-1 x
Δy = - Hf~(y)^-1 df(y) = - (T’ Hf(x) T)^-1 T’ df(x)
 = - T^-1 Hf(x)^-1 df(x) = T^-1 Δx
y^(k) = y + Δy = T^-1 (x + Δx) = T^-1 x^(k)

spongebob
x = T y
Let Hf~(y) = d^2 f~(y)
df~(y) = T’ df(T y) = T’ df(x)
Hf~(y) = T’ Hf(T y) T = T’ Hf(x) T

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

H∆x = −g

where H = ∇2f(x), g = ∇f(x)

via Cholesky factorization

H = LLT , ∆xnt = −L−TL−1g, λ(x) = ∥L−1g∥2

• cost (1/3)n3 flops for unstructured system

• cost ≪ (1/3)n3 if H sparse, banded

Unconstrained minimization 10–29

example of dense Newton system with structure

f(x) =
n∑

i=1

ψi(xi) + ψ0(Ax+ b), H = D +ATH0A

• assume A ∈ Rp×n, dense, with p ≪ n

• D diagonal with diagonal elements ψ′′
i (xi); H0 = ∇2ψ0(Ax+ b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n3)

method 2 (page 9–15): factor H0 = L0LT
0 ; write Newton system as

D∆x+ATL0w = −g, LT
0A∆x− w = 0

eliminate ∆x from first equation; compute w and ∆x from

(I + LT
0AD−1ATL0)w = −LT

0AD−1g, D∆x = −g −ATL0w

cost: 2p2n (dominated by computation of LT
0AD−1ATL0)

Unconstrained minimization 10–30

