10. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton's method
- implementation

Unconstrained minimization

$$
\operatorname{minimize} \quad f(x)
$$

- f convex, twice continuously differentiable (hence $\operatorname{dom} f$ open)
- we assume optimal value $p^{\star}=\inf _{x} f(x)$ is attained (and finite)

We will assume that $x^{\wedge *}=$ argmin_x $f(x)$ exists and is unique Recall $p^{\wedge *}=f\left(x^{\wedge *}\right)$
unconstrained minimization methods

- produce sequence of points $x^{(k)} \in \operatorname{dom} f, k=0,1, \ldots$ with

$$
f\left(x^{(k)}\right) \rightarrow p^{\star} \quad \text { as } \mathrm{k}->\text { infinity }
$$

$x^{\wedge}(0), x^{\wedge}(1), \ldots$ is a minimizing sequence to the problem
Algorithm stops when $f\left(x^{\wedge}(k)\right)-p^{\wedge *} \leq \varepsilon$, for some tolerance $\varepsilon>0$

- can be interpreted as iterative methods for solving optimality condition

$$
\nabla f\left(x^{\star}\right)=0
$$

Strong convexity and implications

f is strongly convex on S if there exists an $m>0$ such that

$$
\nabla^{2} f(x) \succeq m I \quad \text { for all } x \in S
$$

implications

- for $x, y \in S$,

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|x-y\|_{2}^{2}
$$

hence, S is bounded
Assume f is twice differentiable
By Taylor's theorem, there exists a z in the line segment from x to y such that

$$
\begin{aligned}
f(y) & =f(x)+d f(x)^{\prime}(y-x)+1 / 2(y-x)^{\prime} d^{\wedge} 2 f(z)(y-x) \\
& \geq f(x)+d f(x)^{\prime}(y-x)+1 / 2(y-x)^{\prime}(m I)(y-x) \quad \ldots \text { since } f \text { is strongly convex } \\
& =f(x)+d f(x)^{\prime}(y-x)+1 / 2 m|y-x| 2^{\wedge} 2
\end{aligned}
$$

(Taylor's theorem is a generalization of the mean value theorem, and is very related to, but is not exactly the same as Taylor series)

Descent methods

$$
x^{(k+1)}=x^{(k)}+t^{(k)} \Delta x^{(k)} \text { with } f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)
$$

- other notations: $x^{+}=x+t \Delta x, x:=x+t \Delta x$
- Δx is the step, or search direction; t is the step size, or step length
- from convexity, $f\left(x^{+}\right)<f(x)$ implies $\nabla f(x)^{T} \Delta x<0$ (i.e., Δx is a descent direction)

General descent method.

From convexity (slide 3-7):
$f\left(x^{\wedge}+\right) \geq f(x)+\operatorname{df}(x)^{\prime}\left(x^{\wedge}+-x\right)$ $=f(x)+t d f(x) \cdot \Delta x$ Thus: $f\left(x^{\wedge}+\right)-f(x) \geq t d f(x)^{\prime} \Delta x$

If $f\left(x^{\wedge}+\right)<f(x)$ then:
$0>f\left(x^{\wedge}+\right)-f(x) \geq t d f(x)^{\prime} \Delta x$ Thus: $\operatorname{df}(\mathrm{x})^{\prime} \Delta \mathrm{x}<0$
given a starting point $x \in \operatorname{dom} f$. repeat

1. Determine a descent direction Δx. (Each algorithm has its own way for choosing $\Delta \mathrm{x}$)
2. Line search. Choose a step size $t>0$.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

Line search types

exact line search: $t=\operatorname{argmin}_{t>0} f(x+t \Delta x)$
backtracking line search (with parameters $\alpha \in(0,1 / 2), \beta \in(0,1)$)
(one of the many inexact methods)

- starting at $t=1$, repeat $t:=\beta t$ until since $\beta<1, \mathrm{t}:=\beta \mathrm{t}$ reduces t

$$
f(x+t \Delta x)<f(x)+\alpha t \nabla f(x)^{T} \Delta x \quad \text { (Armijo-Goldstein condition) }
$$

Since Δx is a descent direction (see previous slide) then $\operatorname{df}(x)$ ' $\Delta x<0$
For small t, we have:
$\mathrm{f}(\mathrm{x}+\mathrm{t} \Delta \mathrm{x}) \approx \mathrm{f}(\mathrm{x})+\mathrm{tdf}(\mathrm{x})^{\prime} \Delta \mathrm{x}<\mathrm{f}(\mathrm{x})+\alpha \mathrm{tdf}(\mathrm{x})^{\prime} \Delta \mathrm{x}$
Thus, the procedure will eventually terminate.

Gradient descent method

general descent method with $\Delta x=-\nabla f(x)$

```
given a starting point x\in\operatorname{dom}f.
repeat
    1. }\Deltax:=-\nablaf(x)
    2. Line search. Choose step size t via exact or backtracking line search.
    3. Update. }x:=x+t\Deltax\mathrm{ .
until stopping criterion is satisfied.
```

- stopping criterion usually of the form $\|\nabla f(x)\|_{2} \leq \epsilon$
- convergence result: for strongly convex f,

$$
f\left(x^{(k)}\right)-p^{\star} \leq c^{k}\left(f\left(x^{(0)}\right)-p^{\star}\right) \quad \text { (linear convergence) }
$$

$c \in(0,1)$ depends on $m, x^{(0)}$, line search type

- very simple, but often very slow; rarely used in practice

quadratic problem in \mathbf{R}^{2}

$$
f(x)=(1 / 2)\left(x_{1}^{2}+\gamma x_{2}^{2}\right) \quad(\gamma>0)
$$

with exact line search, starting at $x^{(0)}=(\gamma, 1)$:

$$
x_{1}^{(k)}=\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{k}, \quad x_{2}^{(k)}=\left(-\frac{\gamma-1}{\gamma+1}\right)^{k}
$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma=10$:

nonquadratic example

$$
f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

backtracking line search

exact line search
a problem in \mathbf{R}^{100}

'linear' convergence, i.e., a straight line on a semilog plot

Steepest descent method

normalized steepest descent direction (at x, for norm $\|\cdot\|$):

$$
\Delta x_{\text {nsd }}=\operatorname{argmin}\left\{\nabla f(x)^{T} v \mid\|v\|=1\right\}
$$

interpretation: for small $v, f(x+v) \approx f(x)+\nabla f(x)^{T} v$; direction $\Delta x_{\text {nsd }}$ is unit-norm step with most negative directional derivative (unnormalized) steepest descent direction

$$
\Delta x_{\mathrm{sd}}=\|\nabla f(x)\|_{*} \Delta x_{\mathrm{nsd}}
$$

steepest descent method

- general descent method with $\Delta x=\Delta x_{\text {sd }}$
- convergence properties similar to gradient descent

examples

- Euclidean norm: $\Delta x_{\mathrm{sd}}=-\nabla f(x)$
- quadratic norm $\|x\|_{P}=\left(x^{T} P x\right)^{1 / 2}\left(P \in \mathbf{S}_{++}^{n}\right): \Delta x_{\mathrm{sd}}=-P^{-1} \nabla f(x)$
- ℓ_{1}-norm: $\Delta x_{\text {sd }}=-\left(\partial f(x) / \partial x_{i}\right) e_{i}$, where $\left|\partial f(x) / \partial x_{i}\right|=\|\nabla f(x)\|_{\infty}$ unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_{1}-norm:

choice of norm for steepest descent

$$
\begin{array}{r}
P=\left[\begin{array}{ll}
2 & 0 ; \\
0 & 8
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
& P=\left[\begin{array}{ll}
8 & 0 \\
0 & 2
\end{array}\right]
\end{aligned}
$$

> éllipses "align" better with objective function
> thus convergence is faster

- steepest descent with backtracking line search for two quadratic norms (two different P's)
- ellipses show $\left\{x \mid\left\|x-x^{(k)}\right\|_{P}=1\right\}$

See Figure 9.13

- equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_{P}$: gradient descent after change of variables $\bar{x}=P^{1 / 2} x$

See Figures 9.14, 9.15
shows choice of P has strong effect on speed of convergence

Newton step

(Uses the Hessian as a good ellipse, see previous slide)

$$
\Delta x_{\mathrm{nt}}=-\nabla^{2} f(x)^{-1} \nabla f(x)
$$

interpretations

- $x+\Delta x_{\mathrm{nt}}$ minimizes second order approximation

$$
\widehat{f}(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v
$$

Second order Taylor series approximation (we are discarding the remainder term)

- $x+\Delta x_{\mathrm{nt}}$ solves linearized optimality condition

$$
\nabla f(x+v) \approx \nabla \widehat{f}(x+v)=\nabla f(x)+\nabla^{2} f(x) v=0
$$

- Δx_{nt} is steepest descent direction at x in local Hessian norm

$$
\|u\|_{\nabla^{2} f(x)}=\left(u^{T} \nabla^{2} f(x) u\right)^{1 / 2}
$$

$$
\text { Let } \begin{aligned}
H & =d^{\wedge} 2 f(x) \\
d & =d f(x)
\end{aligned}
$$

From slide 10-11 we have:
min d'u
s.t. $u^{\prime} H u=1$

Let $u=H^{\wedge}-1 / 2 s$
$\min \left(H^{\wedge}-1 / 2 d\right)$'s
s.t. s 's $=1$
$L(s, v)=\left(H^{\wedge}-1 / 2 d\right)$'s $+v\left(s^{\prime} s-1\right)$
dL/ds $=H^{\wedge}-1 / 2 d+2 v s=0$
$s^{\wedge *}=-1 /(2 v) H^{\wedge}-1 / 2 d$
Then:

$$
\begin{aligned}
\mathbf{u}^{\wedge *} & =H^{\wedge}-1 / 2 \mathbf{S}^{\wedge *} \\
& =-1 /(2 \mathrm{v}) H^{\wedge}-1 \mathrm{~d}
\end{aligned}
$$

which is the direction of $\Delta x _n t!$
dashed lines are contour lines of f; ellipse is $\left\{x+v \mid v^{T} \nabla^{2} f(x) v=1\right\}$ arrow shows $-\nabla f(x)$

Newton decrement

$$
\lambda(x)=\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}
$$

a measure of the proximity of x to x^{\star}

properties

- gives an estimate of $f(x)-p^{\star}$, using quadratic approximation \widehat{f} :

$$
f(x)-\inf _{y} \widehat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

$$
\text { Let } \mathrm{H}=\mathrm{d}^{\wedge} 2 \mathrm{f}(\mathrm{x})
$$

$$
d=d f(x)
$$

$$
\lambda=\lambda(x)
$$

$$
\Delta x=\Delta x _n t=-H^{\wedge}-1 d
$$

$$
\inf _y f^{\wedge}(y)=f^{\wedge}(x+\Delta x)
$$

$$
=f(x)+d^{\prime} \Delta x+1 / 2 \Delta x^{\prime} H \Delta x
$$

$$
=f(x)-1 / 2 d^{\prime} H^{\wedge}-1 d
$$

$$
f(x)-\inf _y f^{\wedge}(y)=1 / 2 d^{\prime} H^{\wedge}-1 d=1 / 2 \lambda^{\wedge} 2
$$

$$
\text { Thus } \lambda=\operatorname{sqrt}\left(d^{\prime} H^{\wedge}-1 d\right)
$$

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon>0$. repeat

1. Compute the Newton step and decrement.

$$
\Delta x_{\mathrm{nt}}:=-\nabla^{2} f(x)^{-1} \nabla f(x) ; \quad \lambda^{2}:=\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)
$$

2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x:=x+t \Delta x_{\mathrm{nt}}$.
affine invariant, i.e., independent of linear changes of coordinates:
Newton iterates for $\tilde{f}(y)=f(T y)$ with starting point $y^{(0)}=T^{-1} x^{(0)}$ are

$$
\begin{aligned}
& y^{(k)}=T^{-1} x^{(k)} \\
& \mathrm{x}=\mathrm{Ty} \quad \mathrm{y}=\mathrm{T}^{\wedge}-1 \mathrm{x} \\
& \begin{array}{l}
\text { Let } \mathrm{Hf} \sim(\mathrm{y})=\mathrm{d}^{\wedge} \mathbf{2} \mathrm{f} \sim(\mathrm{y}) \\
\mathrm{df} \sim(\mathrm{y})=\mathrm{T}^{\prime} \mathrm{df}(\mathrm{~T} \mathrm{y})=\mathrm{T}^{\prime} \mathrm{df}(\mathrm{x}
\end{array} \\
& \Delta y=-\operatorname{Hf} \sim(y)^{\wedge}-1 \operatorname{df}(y)=-\left(T^{\prime} \operatorname{Hf}(x) T\right)^{\wedge}-1 T^{\prime} d f(x) \\
& H f \sim(y)=T^{\prime} H f(T y) T=T^{\prime} H f(x) T \\
& y^{\wedge}(k)=y+\Delta y=T^{\wedge}-1(x+\Delta x)=T^{\wedge}-1 x^{\wedge}(k)
\end{aligned}
$$

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$
H \Delta x=-g
$$

where $H=\nabla^{2} f(x), g=\nabla f(x)$
via Cholesky factorization

$$
H=L L^{T}, \quad \Delta x_{\mathrm{nt}}=-L^{-T} L^{-1} g, \quad \lambda(x)=\left\|L^{-1} g\right\|_{2}
$$

- cost $(1 / 3) n^{3}$ flops for unstructured system
- cost $\ll(1 / 3) n^{3}$ if H sparse, banded
example of dense Newton system with structure

$$
f(x)=\sum_{i=1}^{n} \psi_{i}\left(x_{i}\right)+\psi_{0}(A x+b), \quad H=D+A^{T} H_{0} A
$$

- assume $A \in \mathbf{R}^{p \times n}$, dense, with $p \ll n$
- D diagonal with diagonal elements $\psi_{i}^{\prime \prime}\left(x_{i}\right) ; H_{0}=\nabla^{2} \psi_{0}(A x+b)$
method 1: form H, solve via dense Cholesky factorization: (cost $(1 / 3) n^{3}$) method 2 (page 9-15): factor $H_{0}=L_{0} L_{0}^{T}$; write Newton system as

$$
D \Delta x+A^{T} L_{0} w=-g, \quad L_{0}^{T} A \Delta x-w=0
$$

eliminate Δx from first equation; compute w and Δx from

$$
\left(I+L_{0}^{T} A D^{-1} A^{T} L_{0}\right) w=-L_{0}^{T} A D^{-1} g, \quad D \Delta x=-g-A^{T} L_{0} w
$$

cost: $2 p^{2} n$ (dominated by computation of $L_{0}^{T} A D^{-1} A^{T} L_{0}$)

