
Convex Optimization — Boyd & Vandenberghe

11. Equality constrained minimization

• equality constrained minimization

• eliminating equality constraints

• Newton’s method with equality constraints

• infeasible start Newton method

• implementation
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Equality constrained minimization

minimize f(x)
subject to Ax = b

• f convex, twice continuously differentiable

• A ∈ Rp×n with rankA = p

• we assume p⋆ is finite and attained

optimality conditions: x⋆ is optimal iff there exists a ν⋆ such that

∇f(x⋆) +ATν⋆ = 0, Ax⋆ = b
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spongebob


< n      (fewer constraints than unknowns)

(primal feasibility)

(stationarity)



equality constrained quadratic minimization (with P ∈ Sn
+)

minimize (1/2)xTPx+ qTx+ r
subject to Ax = b

optimality condition:

[
P AT

A 0

] [
x⋆

ν⋆

]
=

[
−q
b

]

• coefficient matrix is called KKT matrix

• KKT matrix is nonsingular if and only if

Ax = 0, x ̸= 0 =⇒ xTPx > 0

• equivalent condition for nonsingularity: P +ATA ≻ 0
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equivalent to:
P x* + A’ v* + q = 0
A x* = b

L(x,v) = ½ x’ P x + q’ x + r + v’ (Ax - b)
0 = dL/dx = P x + q + A’ v

, if non-singular => unique primal-dual pair (x*,v*)

Assume Ax=0, x ≠ 0, Px=0, then [P A’] [x] = [0] and thus, the KKT matrix is singular
                                                       [A  0] [0]    [0]
Assume KKT is singular, there exists x in R^n, z in R^p such that [P A’] [x] = [0]
                                                                                                                [A  0] [z]    [0]
thus, Ax=0 and Px+A’z=0 => 0 = x’(Px+A’z) = x’Px + (Ax)’z = x’Px => Px = 0 (which contradicts P pos.semidef. unless x=0)
                                                 Then we must have z ≠ 0, but then 0 = Px+A’z = A’z (which contradicts rank A = p)

Recall that a matrix Q is nonsingular iff y = 0 is the only solution of Qy = 0



Newton step

Newton step ∆xnt of f at feasible x is given by solution v of

[
∇2f(x) AT

A 0

] [
v
w

]
=

[
−∇f(x)

0

]

interpretations

• ∆xnt solves second order approximation (with variable v)

minimize f̂(x+ v) = f(x) +∇f(x)Tv + (1/2)vT∇2f(x)v
subject to A(x+ v) = b

• ∆xnt equations follow from linearizing optimality conditions

∇f(x+ v) +ATw ≈ ∇f(x) +∇2f(x)v +ATw = 0, A(x+ v) = b
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L(v,w) = df(x)’v + ½ v’ d^2f(x) v + w (Av)
0 = dL/dv = df(x) + d^2f(x) v + A’w

equivalent to:
d^2f(x) v + A’w + df(x) = 0
A v = 0

assume x is feasible: Ax=b
we want Av=0



Newton decrement

λ(x) =
(
∆xT

nt∇
2f(x)∆xnt

)1/2
=

(
−∇f(x)T∆xnt

)1/2

properties

• gives an estimate of f(x)− p⋆ using quadratic approximation f̂ :

f(x)− inf
Ay=b

f̂(y) =
1

2
λ(x)2

• directional derivative in Newton direction:

d

dt
f(x+ t∆xnt)

∣∣∣∣
t=0

= −λ(x)2

• in general, λ(x) ̸=
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2
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Let y = x + Δx
inf_{Ay=b} f^(y) = f^ (x + Δx)
                            = f(x) + d’Δx + ½ Δx’ H Δx
                            = f(x) - Δx’ H Δx - w’A Δx + ½ Δx’ H Δx  ... since d = -H Δx - A’w
                            = f(x) - ½ Δx’ H Δx                                    ... since A Δx = 0
f(x) - inf_y f^(y) = ½ Δx’ H Δx = ½ λ^2
Thus λ = sqrt( Δx’ H Δx )

Similarly:
inf_{Ay=b} f^(y) = f^ (x + Δx)
                            = f(x) + d’Δx + ½ Δx’ H Δx
                            = f(x) + d’ Δx - ½ d’ Δx - ½ w’ A Δx  ... since H Δx = -d - A’w
                            = f(x) + ½ d’ Δx                                 ... since A Δx = 0
f(x) - inf_y f^(y) = -½ d’ Δx = ½ λ^2
Thus λ = sqrt( -d’ Δx )

Let H = d^2 f(x)
       d = df(x)
       λ = λ(x)
       Δx = Δx_nt = v in previous slide

[H A’] [Δx] = [-d]
[A  0] [ w ]    [ 0 ]
then: A Δx = 0

f^ (x+Δx) = f(x) + d’Δx + ½ Δx’ H Δx
L(Δx,w) = d’Δx + ½ Δx’ H Δx + w (A Δx)
0 = dL/dΔx = d + H Δx + A’w

Then d = -H Δx - A’w
          H Δx = -d - A’w

p* = inf_{Ay=b} f(y)



Newton’s method with equality constraints

given starting point x ∈ dom f with Ax = b, tolerance ϵ > 0.

repeat

1. Compute the Newton step and decrement ∆xnt, λ(x).
2. Stopping criterion. quit if λ2/2 ≤ ϵ.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + t∆xnt.

• a feasible descent method: x(k) feasible and f(x(k+1)) < f(x(k))

• affine invariant
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if df(x) ≠ 0
df(x)’ Δx = -λ(x)^2 < 0 (see slide 10-5)

A Δx = 0, then A t Δx = 0 for any t>0

min f~(y) = f(T y)
s.t. A T y = b

x = T y,    let Hf~(y) = d^2 f~(y)
                     H = Hf(x), d = df(x)
df~(y) = T’ df(T y) = T’ d
Hf~(y) = T’ Hf(T y) T = T’ H T

[Hf~(y)   T’A’] [Δy] = [-df~(y)]
[  A T        0  ] [ u ]     [    0     ]

then Δy = T^-1 Δx,      y^(k) = y + Δy = T^-1 (x + Δx) = T^-1 x^(k)

Text

                                                                                                                        (T nonsingular)
Then [ T’ H T    T’A’ ] [Δy] = [-T’ d]    =>   T’ H T Δy + T’A’w = -T’ d    =>   H T Δy + A’w = -d
          [   A T        0   ] [ w ]    [   0  ]            A T Δy = 0                                  A T Δy = 0

Also [H  A’] [Δx] = [-d]                              H Δx + A’ w = -d
         [A  0 ] [ w ]    [ 0 ]                              A Δx = 0

Thus Δx = T Δy



Newton step at infeasible points

2nd interpretation of page 11–6 extends to infeasible x (i.e., Ax ̸= b)

linearizing optimality conditions at infeasible x (with x ∈ dom f) gives

[
∇2f(x) AT

A 0

] [
∆xnt

w

]
= −

[
∇f(x)
Ax− b

]
(1)

primal-dual interpretation

• write optimality condition as r(y) = 0, where

y = (x, ν), r(y) = (∇f(x) +ATν, Ax− b)

• linearizing r(y) = 0 gives r(y +∆y) ≈ r(y) +Dr(y)∆y = 0:

[
∇2f(x) AT

A 0

] [
∆xnt

∆νnt

]
= −

[
∇f(x) +ATν

Ax− b

]

same as (1) with w = ν +∆νnt
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Although Ax ≠ b, we want A(x+Δx) = b, thus   A Δx = -(Ax-b)

(Good if you dont want to find a feasible point to start the Newton method)

min f(x)
s.t. Ax=b

L(x,v) = f(x) + v(Ax-b)
dL/dx = df(x) + A’v = 0

(1st order Taylor)

y=(x,v)  => Δy=(Δx,Δv)

Since  Dr(y) Δy = -r(y)   we have:

r(y)_1 = df(x)+A’v
r(y)_2 = Ax-b
Dr(y)_{11} = d(r(y)_1)/dx = d( df(x)+A’v )/dx = d^2f(x)
Dr(y)_{12} = d(r(y)_1)/dv = d( df(x)+A’v )/dv = A’
Dr(y)_{21} = d(r(y)_2)/dx = d( Ax-b )/dx = A
Dr(y)_{22} = d(r(y)_2)/dv = d( Ax-b )/dv = 0



Infeasible start Newton method

given starting point x ∈ dom f , ν, tolerance ϵ > 0, α ∈ (0, 1/2), β ∈ (0, 1).

repeat

1. Compute primal and dual Newton steps ∆xnt, ∆νnt.
2. Backtracking line search on ∥r∥2.

t := 1.
while ∥r(x + t∆xnt, ν + t∆νnt)∥2 > (1 − αt)∥r(x, ν)∥2, t := βt.

3. Update. x := x + t∆xnt, ν := ν + t∆νnt.
until Ax = b and ∥r(x, ν)∥2 ≤ ϵ.

• not a descent method: f(x(k+1)) > f(x(k)) is possible

• directional derivative of ∥r(y)∥2 in direction ∆y = (∆xnt,∆νnt) is

d

dt
∥r(y + t∆y)∥2

∣∣∣∣
t=0

= −∥r(y)∥2
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Since we want r(y) = 0, it is natural to try to decrease the norm of r(y)

Thus, the norm of r
decreases in the Newton
direction



Solving KKT systems

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]

solution methods

• LDLT factorization

• elimination (if H nonsingular)

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

• elimination with singular H: write as

[
H +ATQA AT

A 0

] [
v
w

]
= −

[
g +ATQh

h

]

with Q ≽ 0 for which H +ATQA ≻ 0, and apply elimination

Equality constrained minimization 11–12

Originally:      Hv+A’w = -g,    Av = -h
Now:               (H+A’QA)v + A’w = -g - A’Qh,    Av = -h
Equivalent if: A’QAv = -A’Qh    … true since Av = -h

Recall: Ax=0, x ≠ 0 => xPx>0
Therefore x(P+A’QA)x = xPx + |Q^½ Ax|_2^2 > 0

Hv+A’w = -g    =>    v = -H^-1 (g + A’w)
Av = -h             =>    -A H^-1 g - A H^-1 A’w = -h
                                 w = (A H^-1 A’)^-1 (h - A H^-1 g)


