5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

variable $x \in \mathbf{R}^{n}$, domain \mathcal{D}, optimal value p^{\star}
Lagrangian: $L: \mathbf{R}^{n} \times \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$, with $\operatorname{dom} L=\mathcal{D} \times \mathbf{R}^{m} \times \mathbf{R}^{p}$,

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

- weighted sum of objective and constraint functions
- λ_{i} is Lagrange multiplier associated with $f_{i}(x) \leq 0$
- ν_{i} is Lagrange multiplier associated with $h_{i}(x)=0$

Lagrange dual function

Lagrange dual function: $g: \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$,

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
\end{aligned}
$$

g is concave, can be $-\infty$ for some λ, ν
lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$

$$
f_{0}(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=g(\lambda, \nu)
$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, \nu)$

Least-norm solution of linear equations

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} x \\
\text { subject to } & A x=b \\
\text { Ax-b=0 }
\end{array}
$$

dual function

- Lagrangian is $L(x, \nu)=x^{T} x+\nu^{T}(A x-b)$
- to minimize L over x, set gradient equal to zero:

$$
\nabla_{x} L(x, \nu)=2 x+A^{T} \nu=0 \quad \Longrightarrow \quad x=-(1 / 2) A^{T} \nu
$$

- plug in in L to obtain g :

$$
g(\nu)=L\left((-1 / 2) A^{T} \nu, \nu\right)=-\frac{1}{4} \nu^{T} A A^{T} \nu-b^{T} \nu
$$

a concave function of ν
lower bound property: $p^{\star} \geq-(1 / 4) \nu^{T} A A^{T} \nu-b^{T} \nu$ for all ν

Standard form LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \quad x \succeq 0 \\
& \mathrm{Ax}-\mathrm{b}=0 \\
-\mathrm{x} \leq 0
\end{array}
$$

dual function

- Lagrangian is

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{T} x+\nu^{T}(A x-b)-\lambda^{T} x \\
& =-b^{T} \nu+\left(c+A^{T} \nu-\lambda\right)^{T} x
\end{aligned}
$$

- L is affine in x, hence

$$
g(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu)= \begin{cases}-b^{T} \nu & A^{T} \nu-\lambda+c=0 \\ -\infty & \text { otherwise for any nonzero vector } y, \text { we can } \\ \text { make } y^{\prime} \times \text { arbitrarily small }\end{cases}
$$

g is linear on affine domain $\left\{(\lambda, \nu) \mid A^{T} \nu-\lambda+c=0\right\}$, hence concave
lower bound property: $p^{\star} \geq-b^{T} \nu$ if $A^{T} \nu+c \succeq 0$

Equality constrained norm minimization

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\| \\
\text { subject to } & A x=b \\
& -\mathrm{Ax}+\mathrm{b}=0
\end{array}
$$

dual function

$$
g(\nu)=\inf _{x}\left(\|x\|-\nu^{T} A x+b^{T} \nu\right)= \begin{cases}b^{T} \nu & \left\|A^{T} \nu\right\|_{*} \leq 1 \\ & =b^{\prime} v+\inf _\mathbf{x}\left(|\mathrm{x}|-v^{\prime} \mathrm{Ax}\right)\end{cases}
$$

where $\|v\|_{*}=\sup _{\|u\| \leq 1} u^{T} v$ is dual norm of $\|\cdot\|$
Let $y=A^{\prime} v$, proof: follows from $\inf _{x}\left(\|x\|-y^{T} x\right)=0$ if $\|y\|_{*} \leq 1,-\infty$ otherwise

- if $\|y\|_{*} \leq 1$, then $\|x\|-y^{T} x \geq 0$ for all x, with equality if $x=0$

$$
\text { Cauchy-Schwarz: } y^{\prime} x \leq \overline{|y|_{-}^{*}}|x| \leq|x|
$$

- if $\|y\|_{*}>1$, choose $x=t u$ where $\|u\| \leq 1, u^{T} y=\|y\|_{*}>1$: $\underset{\substack{\text { since } \\|y|^{*}=\text { sup_ }\{|u| \leq 1\} \\ u^{\prime} y>1}}{ }$

$$
\begin{aligned}
|\mathrm{x}|-\mathrm{y}^{\prime} \mathrm{x} & =\mathrm{t}|\mathrm{u}|-\mathrm{t} \mathrm{y}^{\prime} \mathrm{u}=\mathrm{t}|\mathrm{u\mid}-\mathrm{t}| \mathrm{y}| |^{*} \\
& =t \underbrace{\|u\|-\|y\|_{*}}_{<0}) \rightarrow-\infty \quad \text { as } t \rightarrow \infty
\end{aligned}
$$

lower bound property: $p^{\star} \geq b^{T} \nu$ if $\left\|A^{T} \nu\right\|_{*} \leq 1$

Two-way partitioning

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} W x \\
\text { subject to } \quad x_{i}^{2}=1, \quad i=1, \ldots, n \\
\mathrm{x}_{i} \mathrm{i} \text { is }-1 \text { or }+1
\end{array}
$$

- a nonconvex problem; feasible set contains 2^{n} discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets; $W_{i j}$ is cost of assigning i, j to the same set; $-W_{i j}$ is cost of assigning to different sets (one set is all 1 's where $\mathrm{x}_{-} \mathrm{i}=-1$, the second set is all i^{\prime} s where $\mathrm{x}_{-} \mathrm{i}=+1$)

dual function

$$
\begin{aligned}
g(\nu)=\inf _{x}\left(x^{T} W x+\sum_{i} \nu_{i}\left(x_{i}^{2}-1\right)\right) & =\inf _{x} x^{T}(W+\operatorname{diag}(\nu)) x-\mathbf{1}^{T} \nu \\
& = \begin{cases}-\mathbf{1}^{T} \nu & W+\operatorname{diag}(\nu) \succeq 0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

lower bound property: $p^{\star} \geq-1^{T} \nu$ if $W+\operatorname{diag}(\nu) \succeq 0$
if W+diag(v) has at least one negative eigenvalue we can make $x^{\prime}(W+d i a g(v)) x$ arbitrarily small

The dual problem

Lagrange dual problem

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, \nu) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- finds best lower bound on p^{\star}, obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d^{\star}
- λ, ν are dual feasible if $\lambda \succeq 0,(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit
example: standard form LP and its dual (page 5-5)

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \text { maximize } \\
\text { subject to } & -b^{T} \nu \\
\text { subject to } & A^{T} \nu+c \succeq 0
\end{array}
$$

A nice example of why we care about dual problems

A nonconvox problem with stromg duality

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} A x+2 b^{T} x \\
\text { subject to } & x^{T} x \leq 1 \\
& x^{\prime} x-1 \leq 0
\end{array}
$$

Range of a matrix A in $R^{\wedge}\left\{m^{*} n\right\}$:
$R(A)=\left\{A x \mid x\right.$ in $\left.R^{\wedge} n\right\}$

* The span of columns of A
* The set of vectors y for which $A x=y$ has a solution
dual function: $g(\lambda)=\inf _{x}\left(x^{T}(A+\lambda I) x+2 b^{T} x-\lambda\right)$
- unbounded below if $A+\lambda I \nsucceq 0$ or if $A+\lambda I \succeq 0$ and $b \notin \mathcal{R}(A+\lambda I)$
- minimized by $x=-(A+\lambda I)^{\dagger} b$ otherwise: $g(\lambda)=-b^{T}(A+\lambda I)^{\dagger} b-\lambda$

For simplicity assume $(A+\lambda I)>0$
dual problem
$L(x, \lambda)=x^{\prime} A x+2 b^{\prime} x+\lambda\left(x^{\prime} x-1\right)=x^{\prime}(A+\lambda I) x+2 b^{\prime} x-\lambda$
$g(\lambda)=$ inf_x $L(x, \lambda)$
$d L / d x=2(A+\lambda I) x+2 b=0 \quad \Rightarrow \quad x^{\wedge *}=-(A+\lambda I)^{\wedge}-1 b$
maximize $\quad-b^{T}(A+\lambda I)^{\dagger} b-\lambda$
subject to

$$
A+\lambda I \succeq 0
$$

$$
b \in \mathcal{R}(A+\lambda I) \quad \begin{array}{ll}
\text { Let } A=U D U ', \text { then } A+\lambda I=U(D+\lambda I) U^{\prime}=U S(\lambda) U^{\prime}, \text { where } s _i i(\lambda)=d_{i} i i+\lambda \\
\text { Then }(A+\lambda I)^{\wedge}-1=U S^{\wedge}-1(\lambda) U^{\prime}, \text { where } s_{-} i^{\wedge}-1(\lambda)=1 /\left(d_{-} \mathrm{ii}+\lambda\right)
\end{array}
$$

$$
\text { Then }(A+\lambda I)^{\wedge}-1=U S^{\wedge}-1(\lambda) U^{\prime}, \text { where } s_{-} \mathrm{ii}^{\wedge}-1(\lambda)=1 /\left(d_{-} \mathrm{ii}+\lambda\right)
$$

Let $\mathrm{U}=\left[\mathrm{u}_{-} 1 \ldots \mathrm{u} . \mathrm{n}\right]$, where $\mathrm{u}_{\mathrm{i}} \mathrm{i}$ are column eigenvectors
$g(\lambda)=-b^{\prime} \bar{U} S^{\wedge}-1(\bar{\lambda}) U^{\prime} b-\lambda=-\bar{\Sigma} _i b^{\prime} u _i s_{-} i{ }^{\wedge}-1(\lambda) u^{\prime} _i b-\lambda$
$=-\Sigma$ i $s_{-} i i^{\wedge}-1(\lambda)\left(b^{\prime} u _i\right)^{\wedge} 2-\lambda$
$d g / d \lambda=\Sigma_{-} i\left(b^{\prime} u_{-}\right)^{\wedge} 2 /\left(d _i i+\lambda\right)^{\wedge} 2-1$
It is easy to use a ONE-DIMENSIONAL gradient ascent or Newton method!

Lagrange dual and conjugate function

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & A x \preceq b, \quad C x=d
\end{array}
$$

dual function

$$
\begin{aligned}
& g(\lambda, \nu)=\inf _{x \in \operatorname{dom} f_{0}}\left(f_{0}(x)+\left(A^{T} \lambda+C^{T} \nu\right)^{T} x-b^{T} \lambda-d^{T} \nu\right) \\
& =\inf _x\left\{f o(x)+\left(A^{\prime} \lambda+C^{\prime} v\right)^{\prime} x\right\}-b^{\prime} \lambda-d^{\prime} v \\
& =-\sup \quad x\left\{\left(-A^{\prime} \lambda-C^{\prime} v\right)^{\prime} x-f o(x)\right\}-b^{\prime} \lambda-d^{\prime} v \\
& =-\mathrm{fo}^{*}\left(-A^{\prime} \lambda-C^{\prime} v\right)-b^{\prime} \lambda-d^{\prime} v
\end{aligned}
$$

- recall definition of conjugate $f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)$
- simplifies derivation of dual if conjugate of f_{0} is known
example: entropy maximization

$$
f_{0}(x)=\sum_{i=1}^{n} x_{i} \log x_{i}, \quad f_{0}^{*}(y)=\sum_{i=1}^{n} e^{y_{i}-1}
$$

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star} \quad \begin{aligned} & \text { Remember the lower bound property: if } \lambda \geq 0 \text { then } g(\lambda, v) \leq p^{\wedge *}\end{aligned}$ By taking the optimal $\lambda^{\wedge *}$ and $\mathrm{v}^{\wedge *}, \mathrm{~d}^{\wedge *}=\mathrm{g}\left(\lambda^{\left.\Lambda^{*}, \mathrm{v}^{\wedge *}\right) \leq \mathrm{p}^{\wedge *}}\right.$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

$$
\begin{array}{ll}
\operatorname{maximize} & -\mathbf{1}^{T} \nu \\
\text { subject to } & W+\operatorname{diag}(\nu) \succeq 0
\end{array}
$$

gives a lower bound for the two-way partitioning problem on page 5-7
strong duality: $d^{\star}=p^{\star}$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

if it is strictly feasible, i.e., $\exists x$

- also guarantees that the dual optimum is attained (if $p^{\star}>-\infty$)
- can be sharpened:

Assume $f _1(x) \ldots f _k(x)$ are affine and dom(fo) open, then the REFINED Slater's condition is there is an $x, \quad f_{-} i(x) \leq 0$ for $i=1 \ldots k \quad f_{-} i(x)<0$ for $i=k+1 \ldots m \quad A x=b$

Thus, if all inequalities are affine $(k=m)$ then strict inequality is not necessary!

- there exist many other types of constraint qualifications

Inequality form LP

primal problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left(\left(c+A^{T} \lambda\right)^{T} x-b^{T} \lambda\right)= \begin{cases}-b^{T} \lambda & A^{T} \lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{T} \lambda \\
\text { subject to } & A^{T} \lambda+c=0, \quad \lambda \succeq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star}=d^{\star}$ except when primal and dual are infeasible (refined Slater's)

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P x \\
\text { subject to } & A x \preceq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left(x^{T} P x+\lambda^{T}(A x-b)\right)=-\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda
$$

dual problem

$$
\begin{array}{ll}
\text { maximize } & -(1 / 4) \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star}=d^{\star}$ always (refined Slater's)

Geometric interpretation

for simplicity, consider problem with one constraint $f_{1}(x) \leq 0 \quad \operatorname{minfor}_{\substack{\text { s.t. } f(x) \\ \text { six }}}$

interpretation of dual function:

$$
\begin{aligned}
& g(\lambda)=\inf _\{x \text { in } \mathbb{D}\}(f o(x)+\lambda f 1(x)) \quad \text { equivalent to: } \quad \mathcal{G} \quad(\lambda)=\left\{\left(\overline{f_{1}(x)}, \overline{f_{0}(x)}\right) \mid x \in \mathcal{D}\right\}
\end{aligned}
$$

- $\lambda u+t=g(\lambda)$ is (non-vertical) supporting hyperplane to \mathcal{G}
- hyperplane intersects t-axis at $t=g(\lambda)$

Dual: $\lambda^{\wedge *}=\operatorname{argmax}\{\lambda \geq 0\} g(\lambda)$
$d^{\wedge *}=g\left(\lambda^{\wedge *}\right)$ is the "tightest" supporting hyperplane (you cannot go up without violating the definition of supporting hyperplane)
epigraph variation: same interpretation if \mathcal{G} is replaced with

$$
\mathcal{A}=\left\{(u, t) \mid f_{1}(x) \leq u, f_{0}(x) \leq t \text { for some } x \in \mathcal{D}\right\}
$$

strong duality

- holds if there is a non-vertical supporting hyperplane to \mathcal{A} at $\left(0, p^{\star}\right)$
- for convex problem, \mathcal{A} is convex, hence has supp. hyperplane at $\left(0, p^{\star}\right)$
- Slater's condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u}<0$, then supporting hyperplanes at $\left(0, p^{\star}\right)$ must be non-vertical

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_{i}, h_{i}):

1. primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p \quad$ (Primal
2. dual constraints: $\lambda \succeq 0$ (Dual feasiblity)
3. complementary slackness: $\lambda_{i} f_{i}(x)=0, i=1, \ldots, m \quad \begin{gathered}\text { if } f \lambda_{-} i>0 \text { then } f_{-} i(x)=0 \\ \text { if } f_{-}(x)<0 \text { then } \lambda_{-} i=0\end{gathered}$
4. gradient of Lagrangian with respect to x vanishes: (Stationarity)

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}(x)=0
$$

from page $5-17$: if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions
General idea, for general possibly nonconvex primal problem: OPTIMAL => KKT satisfied.
(subject to some technical conditions)
Duality

Complementary slackness

assume strong duality holds, x^{\star} is primal optimal, $\left(\lambda^{\star}, \nu^{\star}\right)$ is dual optimal

$$
\mathrm{fo}\left(\mathrm{x}^{\wedge *}\right)=\mathrm{g}\left(\lambda^{\wedge *}, \mathrm{v}^{\wedge *}\right)=\inf _\mathrm{x} L\left(\mathrm{x}, \lambda^{\wedge *}, \mathrm{v}^{\wedge *}\right)
$$

$$
=\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}(x)\right)
$$

$$
\leq f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}\left(x^{\star}\right)
$$

hence, the two inequalities hold with equality

$$
\begin{aligned}
& \text { since } h_{-} i\left(x^{\wedge *}\right)=0 \text { given that } x^{\wedge *} \text { is feasible: } \\
& \Sigma_{_} i \lambda_{-} i^{\wedge *} f_{-} i\left(x^{\wedge *}\right)=0 \\
& \text { but each term in sum is nonpositive (none } \\
& \text { of the terms can be negative because there } \\
& \text { will not be a positive to make sum }=0 \text {) }
\end{aligned}
$$

- $\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0$ for $i=1, \ldots, m$ (known as complementary slackness):

$$
\lambda_{i}^{\star}>0 \Longrightarrow f_{i}\left(x^{\star}\right)=0, \quad f_{i}\left(x^{\star}\right)<0 \Longrightarrow \lambda_{i}^{\star}=0
$$

KKT conditions for convex problem

General idea, for convex primal problem: KKT satisfied => OPTIMAL and thus KKT satisfied <=> OPTIMAL (subject to some technical conditions)
if $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
hence, $f_{0}(\tilde{x})=g(\tilde{\lambda}, \tilde{\nu})$
zero duality gap since $x \sim=x^{\wedge *}, \lambda \sim=\lambda^{\wedge *}, v \sim=v^{\wedge}$

$$
\begin{aligned}
& \text { Stationarity: gradient of } L(x, \lambda \sim, v \sim) \text { w.r.t. } x \text { vanishes, } \\
& =>x \sim \text { minimizes } L \ldots(\text { (this is why we assumed convexity } \\
& \text { otherwise stationarity does not } \\
& \quad \text { imply that } x \sim \text { is the minimizer of } L) \\
& =>L(x \sim, \lambda \sim, v \sim)= \\
& = \\
& =g(\lambda \sim, v \sim)
\end{aligned}
$$ $\mathrm{fo}\left(\mathrm{x}^{\wedge *}\right)=\mathrm{p}^{\wedge *}=\mathrm{d}^{\wedge *}=\mathrm{g}\left(\lambda^{\wedge *}, \mathrm{v}^{\wedge *}\right)$

if Slater's condition is satisfied:
x is optimal if and only if there exist λ, ν that satisfy KKT conditions

```
Slide 5-11: Slater => strong duality
Slide 5-18: Strong duality + OPTIMAL => KKT satisfied
Here so far: KKT satisfied => OPTIMAL
Therefore assume Slater: KKT satistied <=> OPTIMAL
```

Then:
$d L / d x _i=-1 /\left(x _i+a_{-} i\right)-\lambda_{-} i+v=0$

$$
\begin{array}{cl}
\text { minimize } & -\sum_{i=1}^{n} \log \left(x_{i}+\alpha_{i}\right) \\
\text { subject to } & x \succeq 0, \quad 1^{T} x=1 \\
-x \leq 0 & 1^{\prime} x-1=0
\end{array}
$$

Primal feasibility
x is optimal iff $x \succeq 0, \mathbf{1}^{T} x=1$, and there exist $\lambda \in \mathbf{R}^{n}, \nu \in \mathbf{R}$ such that

Dual
feasibility
$\lambda \succeq 0$,

Complementary Stationarity
slackness 1
$\lambda_{i} x_{i}=0, \quad \frac{1}{x_{i}+\alpha_{i}}+\lambda_{i}=\nu$

- if $\nu<1 / \alpha_{i}: \lambda_{i}=0$ and $x_{i}=1 / \nu-\alpha_{i} \quad$ (because λ_{1} i cannot be negative)
- if $\nu \geq 1 / \alpha_{i}: \lambda_{i}=\nu-1 / \alpha_{i}$ and $x_{i}=0 \quad$ (because λ_{-}i __i $^{\prime}=0$)
- determine ν from $1^{T} x=\sum_{i=1}^{n} \max \left\{0,1 / \nu-\alpha_{i}\right\}=1$

interpretation

- n patches; level of patch i is at height α_{i}

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions
e.g., replace $f_{0}(x)$ by $\phi\left(f_{0}(x)\right)$ with ϕ convex, increasing

Introducing new variables and equality constraints

$$
\operatorname{minimize} \quad f_{0}(A x+b)
$$

- dual function is constant: $g=\inf _{x} L(x)=\inf _{x} f_{0}(A x+b)=p^{\star}$
- we have strong duality, but dual is quite useless
reformulated problem and its dual

$$
\begin{array}{lll}
\operatorname{minimize} & f_{0}(y) & \text { maximize } \\
b^{T} \nu-f_{0}^{*}(\nu) \\
\text { subject to } & A x+b-y=0 & \text { subject to } \\
A^{T} \nu=0
\end{array}
$$

dual function follows from

$$
\begin{aligned}
& g(\nu)=\inf _{x, y}\left(f_{0}(y)-\nu^{T} y+\nu^{T} A x+b^{T} \nu\right) \\
& =\inf _y\left\{f o(y)-v^{\prime} y\right\}+i n f _x\left\{v^{\prime} A x\right\}+b^{\prime} v \\
& =-\sup _y\left\{\text {-fo(y) + v'y\} + inf_x }\left\{v^{\prime} A x\right\}+b^{\prime} v\right. \\
& =\mid-f 0^{*}(v)+b^{\prime} v \text { if } A^{\prime} v=0 \\
& \text { |-infinity otherwise }
\end{aligned}
$$

Note: if $A^{\prime} v \neq 0$, we can pick x so that $v^{\prime} A x$ is arbitrarily small
norm approximation problem: minimize $\|A x-b\|$

$$
\begin{array}{ll}
\operatorname{minimize} & \|y\| \\
\text { subject to } & y=A x-b
\end{array}
$$

can look up conjugate of $\|\cdot\|$, or derive dual directly

$$
\begin{aligned}
g(\nu) & =\inf _{x, y}\left(\|y\|+\nu^{T} y-\nu^{T} A x+b^{T} \nu\right) \\
& = \begin{cases}b^{T} \nu+\inf _{y}\left(\|y\|+\nu^{T} y\right) & A^{T} \nu=0 \\
-\infty & \text { otherwise }\end{cases} \\
& = \begin{cases}b^{T} \nu & A^{T} \nu=0, \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

(see page 5-4)
dual of norm approximation problem

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} \nu \\
\text { subject to } & A^{T} \nu=0, \quad\|\nu\|_{*} \leq 1
\end{array}
$$

Implicit constraints

LP with box constraints: primal and dual problem

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & -b^{T} \nu-\mathbf{1}^{T} \lambda_{1}-\mathbf{1}^{T} \lambda_{2} \\
\text { subject to } & A x=b & \text { subject to } & c+A^{T} \nu+\lambda_{1}-\lambda_{2}=0 \\
& -\mathbf{1} \preceq x \preceq \mathbf{1} & & \lambda_{1} \succeq 0, \quad \lambda_{2} \succeq 0
\end{array}
$$

reformulation with box constraints made implicit

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)= \begin{cases}c^{T} x & -\mathbf{1} \preceq x \preceq \mathbf{1} \\
\infty & \text { otherwise }\end{cases} \\
\text { subject to } & A x=b
\end{array}
$$

dual function

$$
\begin{aligned}
g(\nu) & =\operatorname{inff}_{-1 \preceq x \preceq \mathbf{1}}\left(c^{T} x+\nu^{T}(A x-b)\right) \\
& =\text { inf_\{|x|_infty} \leq 1\}\left\{\left(A^{\prime} v+c\right)^{\prime} \times \mathbf{x}\right\}-b^{\prime} v \\
& =- \text { sup_\{|x|_infty} \leq 1\}\left\{\left(-A^{\prime} v-c\right)^{\prime} \times\right\}-b^{\prime} v \\
& =-\left|A^{\prime} v+c\right| _1-b^{\prime} v \quad \ldots \text { by norm duality }
\end{aligned}
$$

dual problem: maximize $-b^{T} \nu-\left\|A^{T} \nu+c\right\|_{1}$

Problems with generalized inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \preceq K_{i} 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

$\preceq_{K_{i}}$ is generalized inequality on $\mathbf{R}^{k_{i}}$
definitions are parallel to scalar case:

- Lagrange multiplier for $f_{i}(x) \preceq_{K_{i}} 0$ is vector $\lambda_{i} \in \mathbf{R}^{k_{i}}$
- Lagrangian $L: \mathbf{R}^{n} \times \mathbf{R}^{k_{1}} \times \cdots \times \mathbf{R}^{k_{m}} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$, is defined as

$$
L\left(x, \lambda_{1}, \cdots, \lambda_{m}, \nu\right)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{T} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

- dual function $g: \mathbf{R}^{k_{1}} \times \cdots \times \mathbf{R}^{k_{m}} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$, is defined as

$$
g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)=\inf _{x \in \mathcal{D}} L\left(x, \lambda_{1}, \cdots, \lambda_{m}, \nu\right)
$$

lower bound property: if $\lambda_{i} \succeq_{K_{i}^{*}} 0$, then $g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right) \leq p^{\star}$ proof: if \tilde{x} is feasible and $\lambda_{i} \succeq_{K_{i}^{*}} 0$, then

$$
\begin{aligned}
f_{0}(\tilde{x}) & \geq f_{0}(\tilde{x})+\sum_{i=1}^{m} \lambda_{i}^{T} f_{i}(\tilde{x})+\sum_{i=1}^{p} \nu_{i} h_{i}(\tilde{x}) \\
& \geq \inf _{x \in \mathcal{D}} L\left(x, \lambda_{1}, \ldots, \lambda_{m}, \nu\right) \\
& =g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)
\end{aligned}
$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)$

dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right) \\
\text { subject to } & \lambda_{i} \succeq_{K_{i}^{*}} 0, \quad i=1, \ldots, m
\end{array}
$$

- weak duality: $p^{\star} \geq d^{\star}$ always
- strong duality: $p^{\star}=d^{\star}$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

primal SDP $\left(F_{i}, G \in \mathbf{S}^{k}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} F_{1}+\cdots+x_{n} F_{n} \preceq G
\end{array}
$$

- Lagrange multiplier is matrix $Z \in \mathbf{S}^{k}$
- Lagrangian $L(x, Z)=c^{T} x+\operatorname{tr}\left(Z\left(x_{1} F_{1}+\cdots+x_{n} F_{n}-G\right)\right)$

$$
g(Z)=\inf _{x} L(x, Z)= \begin{cases}-\operatorname{tr}(G Z) & \operatorname{tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n \\ -\infty & \text { otherwise }\end{cases}
$$

dual SDP

$$
\begin{array}{ll}
\underset{\operatorname{maximize}}{\max } & -\operatorname{tr}(G Z) \\
\text { subject to } & Z \succeq 0, \quad \operatorname{tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n
\end{array}
$$

$p^{\star}=d^{\star}$ if primal SDP is strictly feasible ($\exists x$ with $\left.x_{1} F_{1}+\cdots+x_{n} F_{n} \prec G\right)$

