5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^*

Lagrangian: $L: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$, with $\operatorname{\mathbf{dom}} L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some λ , ν

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$

proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

 $x\sim$ feasible when $f_i(x\sim) \le 0$ and $h_i(x\sim) = 0$, also $\lambda_i \ge 0$ then $\Sigma_i \lambda_i f_i(x\sim) + \Sigma_i v_i h_i(x\sim) \le 0$

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$

Least-norm solution of linear equations

minimize
$$x^T x$$

subject to $Ax = b$
 $Ax - b = 0$

dual function

- Lagrangian is $L(x,\nu) = x^T x + \nu^T (Ax b)$
- ullet to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \quad \Longrightarrow \quad x = -(1/2)A^T \nu$$

• plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T\nu - b^T\nu$$

a concave function of ν

lower bound property: $p^{\star} \geq -(1/4)\nu^T A A^T \nu - b^T \nu$ for all ν

Standard form LP

minimize
$$c^Tx$$
 subject to $Ax = b$, $x \succeq 0$

dual function

• Lagrangian is

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

 \bullet L is affine in x, hence

$$g(\lambda,\nu) = \inf_x L(x,\lambda,\nu) = \left\{ \begin{array}{ll} -b^T\nu & A^T\nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \quad \text{for any nonzero vector y, we can make y'x arbitrarily small} \end{array} \right.$$

g is linear on affine domain $\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\}$, hence concave

lower bound property:
$$p^* \ge -b^T \nu$$
 if $A^T \nu + c \succeq 0$

Recall A'v - λ + c = 0 Then A'v + c = λ But $\lambda \ge 0$ Then A'v + c ≥ 0

Equality constrained norm minimization

minimize
$$||x||$$
 subject to $Ax = b$

dual function

$$g(\nu) = \inf_{\substack{x \\ = \text{b'v} + \inf_{\mathbf{x}(|\mathbf{x}| - \text{v'Ax})}}} (|\mathbf{x}| - \nu^T A x + b^T \nu) = \begin{cases} b^T \nu & ||A^T \nu||_* \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

where $||v||_* = \sup_{\|u\| \le 1} u^T v$ is dual norm of $\|\cdot\|$

Let y = A'v, proof: follows from $\inf_x(\|x\|-y^Tx)=0$ if $\|y\|_*\leq 1$, $-\infty$ otherwise

- if $||y||_* \le 1$, then $||x|| y^T x \ge 0$ for all x, with equality if x = 0 cauchy-Schwarz: $y'x \le |y|_* |x| \le |x|$
- if $||y||_* > 1$, choose x = tu where $||u|| \le 1$, $u^T y = ||y||_* > 1$: $||y||_* = \sup_{|y| \le 1} u^y > 1$

$$|\mathbf{x}| \cdot \mathbf{y}'\mathbf{x} = \mathbf{t} |\mathbf{u}| \cdot \mathbf{t} \mathbf{y}'\mathbf{u} = \mathbf{t} |\mathbf{u}| \cdot \mathbf{t} |\mathbf{y}|_*$$

$$= t(||u|| - ||y||_*) \to -\infty \quad \text{as } t \to \infty$$

lower bound property: $p^* \geq b^T \nu$ if $||A^T \nu||_* \leq 1$

Two-way partitioning

minimize
$$x^T W x$$
 subject to $x_i^2 = 1, \quad i = 1, \dots, n$

- \bullet a nonconvex problem; feasible set contains 2^n discrete points
- interpretation: partition $\{1,\ldots,n\}$ in two sets; W_{ij} is cost of assigning i,j to the same set; $-W_{ij}$ is cost of assigning to different sets (one set is all i's where $x_i = -1$, the second set is all i's where $x_i = +1$)

dual function

$$g(\nu) = \inf_{x} (x^{T}Wx + \sum_{i} \nu_{i}(x_{i}^{2} - 1)) = \inf_{x} x^{T}(W + \operatorname{diag}(\nu))x - \mathbf{1}^{T}\nu$$

$$= \begin{cases} -\mathbf{1}^{T}\nu & W + \operatorname{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{cases}$$

lower bound property: $p^* \geq -\mathbf{1}^T \nu$ if $W + \mathbf{diag}(\nu) \succeq 0$

if W+diag(v) has at least one negative eigenvalue we can make x'(W+diag(v))x arbitrarily small

The dual problem

Lagrange dual problem

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succeq 0$

- ullet finds best lower bound on p^{\star} , obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d^*
- λ , ν are dual feasible if $\lambda \succeq 0$, $(\lambda, \nu) \in \operatorname{dom} g$
- ullet often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit

example: standard form LP and its dual (page 5–5)

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{maximize} & -b^T\nu \\ \text{subject to} & Ax = b & \text{subject to} & A^T\nu + c \succeq 0 \\ & x \succ 0 & \end{array}$$

A nice example of why we care about dual problems

A nonconvex problem with strong duality

minimize
$$x^TAx + 2b^Tx$$
 subject to $x^Tx \le 1$

 $A \not\succeq 0$, hence nonconvex

dual function:
$$g(\lambda) = \inf_x (x^T (A + \lambda I)x + 2b^T x - \lambda)$$

Range of a matrix A in R^{m*n}: $R(A) = \{Ax \mid x \text{ in } R^n \}$

- * The span of columns of A
- * The set of vectors v for which Ax = y has a solution

- unbounded below if $A + \lambda I \not\succeq 0$ or if $A + \lambda I \succeq 0$ and $b \not\in \mathcal{R}(A + \lambda I)$
- minimized by $x = -(A + \lambda I)^{\dagger}b$ otherwise: $g(\lambda) = -b^T(A + \lambda I)^{\dagger}b \lambda$

For simplicity assume $(A+\lambda I) > 0$

Lagrange dual: max $q(\lambda)$ s.t. $\lambda \ge 0$

dual problem

$$L(x,\lambda) = x'Ax + 2 b'x + \lambda(x'x - 1) = x'(A+\lambda I)x + 2 b'x - \lambda$$

 $g(\lambda) = \inf_{x \in A} L(x,\lambda)$
 $dL/dx = 2(A+\lambda I)x + 2b = 0 \implies x^* = -(A+\lambda I)^* - 1 b$

maximize
$$-b^T(A+\lambda I)^\dagger b - \lambda \text{ Then g(λ) = L(x^*,λ) = -b' (A+\lambda I)^*-1 b - \lambda} \\ \text{subject to} \qquad A+\lambda I \succeq 0 \\ b \in \mathcal{R}(A+\lambda I) \qquad \text{Let A = UDU', then A+λI = U(D+λI)U' = U} \\ \text{Then (A+λI)^*-1 = U S^*-1(λ) U', where s_interpretations of the subject to a subject to be a subjec$$

Let A = UDU', then A+
$$\lambda$$
I = U(D+ λ I)U' = U S(λ) U', where s_ii(λ) = d_ii + λ
Then (A+ λ I)^-1 = U S^-1(λ) U', where s_ii^-1(λ) = 1/(d_ii + λ)

Let U = [u_1 ... u_n], where u_i are column eigenvectors
$$g(\lambda) = -b'$$
 U S^-1(λ) U' b - $\lambda = -\Sigma_i$ b' u_i s_ii^-1(λ) u'_i b - λ = - Σ_i s_ii^-1(λ) (b' u_i)^2 - λ dg/d λ = Σ_i (b' u_i)^2 / (d_ii + λ)^2 - 1 It is easy to use a ONE-DIMENSIONAL gradient ascent or Newton method!

Lagrange dual and conjugate function

minimize
$$f_0(x)$$

subject to $Ax \leq b$, $Cx = d$

dual function

$$g(\lambda, \nu) = \inf_{x \in \mathbf{dom} f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$

$$= \inf_{x \in \mathbf{dom} f_0} \left(f_0(x) + (A^{\lambda} + C^{\lambda} +$$

- recall definition of conjugate $f^*(y) = \sup_{x \in \mathbf{dom}\, f} (y^Tx f(x))$
- ullet simplifies derivation of dual if conjugate of f_0 is known

example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

Weak and strong duality

weak duality: $d^* \leq p^*$

Remember the lower bound property: if $\lambda \ge 0$ then $g(\lambda, v) \le p^*$ By taking the optimal λ^* and v^* , $d^* = g(\lambda^*, v^*) \le p^*$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems
 for example, solving the SDP

 Duality gap: p^* d^*

maximize
$$-\mathbf{1}^T \nu$$
 subject to $W + \mathbf{diag}(\nu) \succeq 0$

gives a lower bound for the two-way partitioning problem on page 5-7

strong duality: $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $Ax = b$

if it is strictly feasible, i.e.,

$$\exists x$$
 $f_i(x) < 0, \quad i = 1, \dots, m, \qquad Ax = b$ strict inequality

- ullet also guarantees that the dual optimum is attained (if $p^{\star} > -\infty$)
- can be sharpened:

Assume $f_1(x) \dots f_k(x)$ are affine and dom(fo) open, then the REFINED Slater's condition is there is an x, $f_i(x) \le 0$ for $i = 1 \dots k$ $f_i(x) < 0$ for $i = k+1 \dots m$ Ax = b

Thus, if all inequalities are affine (k=m) then strict inequality is not necessary!

there exist many other types of constraint qualifications

Inequality form LP

primal problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \preceq b \end{array}$$

dual function

$$g(\lambda) = \inf_{x} \left((c + A^T \lambda)^T x - b^T \lambda \right) = \begin{cases} -b^T \lambda & A^T \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

dual problem

$$\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0, \quad \lambda \succeq 0 \end{array}$$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^* = d^*$ except when primal and dual are infeasible (refined Slater's)

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^n$)

minimize
$$x^T P x$$
 subject to $Ax \leq b$

dual function

$$g(\lambda) = \inf_{x} \left(x^T P x + \lambda^T (Ax - b) \right) = -\frac{1}{4} \lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

dual problem

$$\begin{array}{ll} \text{maximize} & -(1/4)\lambda^TAP^{-1}A^T\lambda - b^T\lambda \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star} = d^{\star}$ always (refined Slater's)

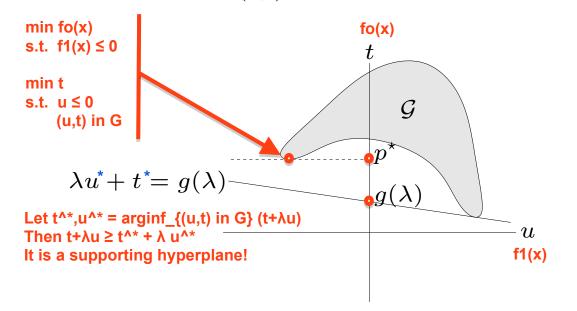
Geometric interpretation

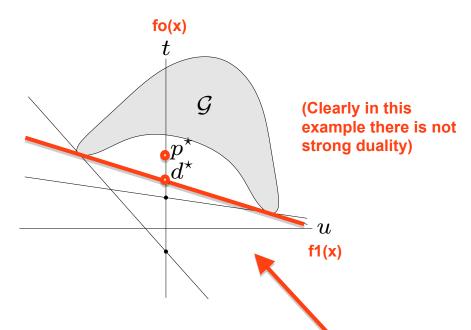
for simplicity, consider problem with one constraint $f_1(x) \leq 0$

min fo(x) s.t. $f1(x) \le 0$

interpretation of dual function:

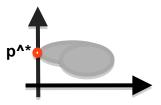
$$g(\lambda) = \inf_{\{x \text{ in D}\} \text{ (fo(x) + λ f1(x))}} \text{ equivalent to:} \\ g(\lambda) = \inf_{(u,t) \in \mathcal{G}} (t + \lambda u), \quad \text{where} \quad \mathcal{G} = \{(\overline{f_1(x)}, \overline{f_0(x)}) \mid x \in \mathcal{D}\}$$





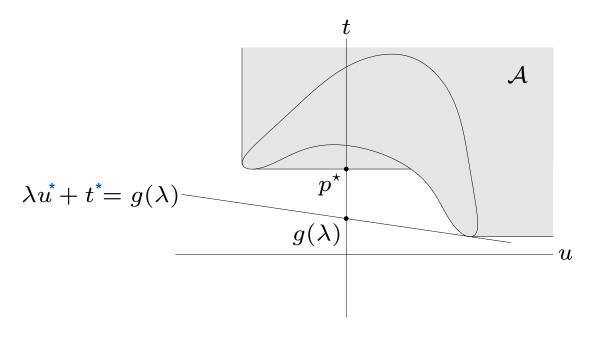
- $\lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to $\mathcal G$
- hyperplane intersects t-axis at $t = g(\lambda)$

what if all $u \ge 0$? (i.e. $f1(x) \ge 0$ for all x) Constraint is $f1(x) \le 0$ Then solution has f1(x) = 0VERTICAL supporting hyperplane $\lambda^* = infinity$



Dual: λ^{*} = argmax_{λ≥0} g(λ) d^{*} = g(λ^{*}) is the "tightest" supporting hyperplane (you cannot go up without violating the definition of supporting hyperplane) **epigraph variation:** same interpretation if \mathcal{G} is replaced with

$$\mathcal{A} = \{(u, t) \mid f_1(x) \le u, f_0(x) \le t \text{ for some } x \in \mathcal{D}\}$$



strong duality

- holds if there is a non-vertical supporting hyperplane to \mathcal{A} at $(0, p^*)$
- ullet for convex problem, ${\mathcal A}$ is convex, hence has supp. hyperplane at $(0,p^\star)$
- Slater's condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u} < 0$, then supporting hyperplanes at $(0, p^*)$ must be non-vertical

(explained in previous slide)

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, $h_i(x) = 0$, $i = 1, \ldots, p$ (Primal feasibility
- 2. dual constraints: $\lambda \succeq 0$ (Dual feasiblity)
- 3. complementary slackness: $\lambda_i f_i(x) = 0$, $i = 1, \ldots, m$ if $\lambda_i > 0$ then $f_i(x) = 0$ if $f_i(x) < 0$ then $\lambda_i = 0$
- 4. gradient of Lagrangian with respect to x vanishes: (Stationarity)

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

from page 5–17: if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions

General idea, for general possibly nonconvex primal problem: OPTIMAL => KKT satisfied. (subject to some technical conditions)

Complementary slackness

assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$fo(x^*) = g(\lambda^*, v^*) = \inf_x L(x, \lambda^*, v^*)$$

$$= \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i^* f_i(x) + \sum_{i=1}^{p} \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

$$\leq f_0(x^\star)$$

hence, the two inequalities hold with equality

 x^\star minimizes $L(x,\lambda^\star,\nu^\star)$

since h $i(x^*) = 0$ given that x^* is feasible: Σ i λ i^{*} f i(x^{*}) = 0

but each term in sum is nonpositive (none of the terms can be negative because there will not be a positive to make sum = 0)

• $\lambda_i^{\star} f_i(x^{\star}) = 0$ for $i = 1, \dots, m$ (known as complementary slackness):

$$\lambda_i^* > 0 \Longrightarrow f_i(x^*) = 0, \qquad f_i(x^*) < 0 \Longrightarrow \lambda_i^* = 0$$

KKT conditions for convex problem

General idea, for convex primal problem: KKT satisfied => OPTIMAL and thus KKT satisfied <=> OPTIMAL (subject to some technical conditions)

if \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ Since $\lambda \sim_i f_i(x \sim) = 0$, and also $h_i(x \sim) = 0$, then $\Sigma_i \lambda \sim_i f_i(x \sim) + \Sigma_i v \sim_i h_i(x \sim) = 0$
- ullet from 4th condition (and convexity): $g(ilde{\lambda}, ilde{
 u})=L(ilde{x}, ilde{\lambda}, ilde{
 u})$

```
hence, f_0(\tilde{x})=g(\tilde{\lambda},\tilde{\nu}) zero duality gap since x~ = x^*, \lambda~ = \lambda^*, v~ = v^* fo(x^*) = p^* = d^* = g(\lambda^*,v^*)
```

Stationarity: gradient of L(x, λ ~, v~) w.r.t. x vanishes, => x~ minimizes L ... (this is why we assumed convexity otherwise stationarity does not imply that x~ is the minimizer of L) => L(x~, λ ~,v~) = inf_x L(x, λ ~, v~) = g(λ ~, v~)

if **Slater's condition** is satisfied:

x is optimal if and only if there exist λ , ν that satisfy KKT conditions

```
Slide 5-11: Slater => strong duality
```

Slide 5-18: Strong duality + OPTIMAL => KKT satisfied

Here so far: KKT satisfied => OPTIMAL

Therefore assume Slater: KKT satisfied <=> OPTIMAL

$$L(x,\lambda,v) = \sum_{i} \{ -\log(x_i+a_i) \} - \lambda'x + v(1'x - 1)$$

= \Sum_{i} \{ -\log(x_i+a_i) - \lambda_i x_i + v x_i \} - v

Then:

$$dL/dx_i = -1/(x_i+a_i) - \lambda_i + v = 0$$

example: water-filling (assume $\alpha_i > 0$)

minimize
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$
 subject to
$$x \succeq 0, \quad \mathbf{1}^T x = 1$$

Primal feasibility

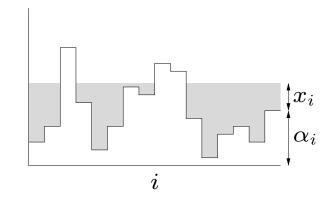
x is optimal iff $x \succeq 0$, $\mathbf{1}^T x = 1$, and there exist $\lambda \in \mathbf{R}^n$, $\nu \in \mathbf{R}$ such that

$$\begin{array}{ll} \text{Dual} & \text{Complementary} \\ \text{feasibility} & \text{slackness} \\ \lambda \succeq 0, & \lambda_i x_i = 0, & \frac{1}{x_i + \alpha_i} + \lambda_i = \nu \end{array} \blacktriangleleft$$

- if $u < 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/\nu \alpha_i$ (because λ_i cannot be negative)
- if $\nu \geq 1/\alpha_i$: $\lambda_i = \nu 1/\alpha_i$ and $x_i = 0$ (because $\lambda_i = 0$)
- determine ν from $\mathbf{1}^T x = \sum_{i=1}^n \max\{0, 1/\nu \alpha_i\} = 1$

interpretation

ullet n patches; level of patch i is at height α_i



Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions
 - e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing

Introducing new variables and equality constraints

minimize
$$f_0(Ax+b)$$

- dual function is constant: $g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize
$$f_0(y)$$
 maximize $b^T \nu - f_0^*(\nu)$ subject to $Ax + b - y = 0$ subject to $A^T \nu = 0$

dual function follows from

$$g(\nu) = \inf_{x,y} (f_0(y) - \nu^T y + \nu^T A x + b^T \nu)$$

$$= \inf_{x,y} \{ f_0(y) - v'y \} + \inf_{x} \{ v'Ax \} + b'v$$

$$= -\sup_{y} \{ f_0(y) + v'y \} + \inf_{x} \{ v'Ax \} + b'v$$

$$= |f_0^*(v) + b'v \text{ if } A'v = 0$$

$$|f_0^*(v) + b'v \text{ otherwise}$$

Note: if A'v \neq 0, we can pick x so that v'Ax is arbitrarily small

norm approximation problem: minimize ||Ax - b||

can look up conjugate of $\|\cdot\|$, or derive dual directly

$$g(\nu) = \inf_{x,y} (\|y\| + \nu^T y - \nu^T A x + b^T \nu)$$

$$= \begin{cases} b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0 \\ -\infty & \text{otherwise} \end{cases}$$

$$= \begin{cases} b^T \nu & A^T \nu = 0, & \|\nu\|_* \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

(see page 5-4)

dual of norm approximation problem

maximize
$$b^T \nu$$
 subject to $A^T \nu = 0, \quad \|\nu\|_* \leq 1$

Implicit constraints

LP with box constraints: primal and dual problem

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{maximize} & -b^T\nu - \mathbf{1}^T\lambda_1 - \mathbf{1}^T\lambda_2 \\ \text{subject to} & Ax = b & \text{subject to} & c + A^T\nu + \lambda_1 - \lambda_2 = 0 \\ & -\mathbf{1} \preceq x \preceq \mathbf{1} & \lambda_1 \succeq 0, \quad \lambda_2 \succeq 0 \end{array}$$

reformulation with box constraints made implicit

minimize
$$f_0(x) = \begin{cases} c^T x & -1 \leq x \leq 1 \\ \infty & \text{otherwise} \end{cases}$$
 subject to $Ax = b$

dual function

$$\begin{array}{ll} g(\nu) &= \inf_{-1 \preceq x \preceq 1} (c^T x + \nu^T (Ax - b)) \\ &= \inf_{\{|\mathbf{x}| = \mathsf{infty} \leq 1\} \text{ {(A'v+c)'x} - b'v} \\ &= -\sup_{\{|\mathbf{x}| = \mathsf{infty} \leq 1\} \text{ {(-A'v-c)'x} - b'v} \\ &= -|\mathbf{A'v+c}|_{1} - \mathsf{b'v} \quad \dots \text{ by norm duality} \end{array}$$

dual problem: maximize $-b^T \nu - \|A^T \nu + c\|_1$

Problems with generalized inequalities

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

 \preceq_{K_i} is generalized inequality on \mathbf{R}^{k_i}

definitions are parallel to scalar case:

- Lagrange multiplier for $f_i(x) \leq_{K_i} 0$ is vector $\lambda_i \in \mathbf{R}^{k_i}$
- Lagrangian $L: \mathbf{R}^n \times \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$L(x, \lambda_1, \dots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

• dual function $g: \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$g(\lambda_1, \dots, \lambda_m, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$$

lower bound property: if $\lambda_i \succeq_{K_i^*} 0$, then $g(\lambda_1, \ldots, \lambda_m, \nu) \leq p^*$

proof: if \tilde{x} is feasible and $\lambda_i \succeq_{K_i^*} 0$, then

Slide 2-21: If $\lambda_i \ge 0$ with respect to dual cone K_i* and f_i(x~) ≤ 0 with respect to cone K_i then λ_i 'f_i(x~) ≤ 0

$$f_0(\tilde{x}) \geq f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i^T f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x})$$

$$\geq \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$$

$$= g(\lambda_1, \dots, \lambda_m, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda_1, \dots, \lambda_m, \nu)$

dual problem

maximize
$$g(\lambda_1, \ldots, \lambda_m, \nu)$$

subject to $\lambda_i \succeq_{K_i^*} 0, \quad i = 1, \ldots, m$

- weak duality: $p^* \ge d^*$ always
- strong duality: $p^* = d^*$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

primal SDP $(F_i, G \in S^k)$

minimize
$$c^T x$$

subject to $x_1 F_1 + \cdots + x_n F_n \preceq G$

Remember tr(A'B) is the inner-product of matrices A and B

- Lagrange multiplier is matrix $Z \in \mathbf{S}^k$
- Lagrangian $L(x,Z) = c^T x + \mathbf{tr} \left(Z(x_1 F_1 + \dots + x_n F_n G) \right)$
- dual function

Note: if $c_i + tr(Z F_i) \neq 0$, we can pick x_i so that $x_i (c_i + tr(Z F_i))$ is arbitrarily small

$$g(Z) = \inf_{x} L(x, Z) = \begin{cases} -\mathbf{tr}(GZ) & \mathbf{tr}(F_i Z) + c_i = 0, & i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$$

dual SDP

maximize
$$-\mathbf{tr}(GZ)$$

subject to $Z \succeq 0$, $\mathbf{tr}(F_iZ) + c_i = 0$, $i = 1, \dots, n$

 $p^* = d^*$ if primal SDP is strictly feasible ($\exists x \text{ with } x_1F_1 + \cdots + x_nF_n \prec G$)