12. Interior-point methods

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods
- generalized inequalities

Inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$ (1)
 $Ax = b$

- f_i convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A = p$
- we assume p^* is finite and attained
- ullet we assume problem is strictly feasible: there exists \tilde{x} with

$$\tilde{x} \in \operatorname{dom} f_0, \qquad f_i(\tilde{x}) < 0, \quad i = 1, \dots, m, \qquad A\tilde{x} = b$$
(Slater's condition)

hence, strong duality holds and dual optimum is attained

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints

- differentiability may require reformulating the problem, e.g., piecewise-linear minimization or ℓ_{∞} -norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities (see later)

Logarithmic barrier

reformulation of (1) via indicator function:

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$
 subject to $Ax = b$

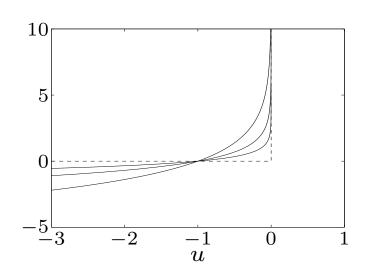
min fo(x) $f_i(x) \le 0$, i=1...m Ax=b

where $I_{-}(u) = 0$ if $u \leq 0$, $I_{-}(u) = \infty$ otherwise (indicator function of \mathbf{R}_{-})

approximation via logarithmic barrier

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$
 subject to $Ax = b$

- an equality constrained problem
- for t > 0, $-(1/t) \log(-u)$ is a smooth approximation of I_-
- ullet approximation improves as $t o \infty$



logarithmic barrier function

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \operatorname{dom} \phi = \{x \mid \underline{f_1(x) < 0, \dots, f_m(x) < 0}\}$$
(Slater's condition)

- min fo(x) + $1/t \varphi(x)$ s.t. Ax=b
 - convex (follows from composition rules)
 - twice continuously differentiable, with derivatives

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

(Useful for KKT analysis and Newton's method)

Central path

• for t > 0, define $x^*(t)$ as the solution of

min fo(x) + 1/t φ(x) s.t. Ax=b

(for now, assume $x^*(t)$ exists and is unique for each t > 0)

ullet central path is $\{x^\star(t) \mid t>0\}$

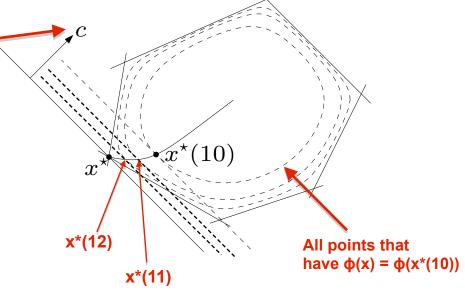
Also, as t increases, we obtain $x^*(t)$ approaches the optimal of the original problem

example: central path for an LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, 6$

hyperplane $c^Tx=c^Tx^\star(t)$ is tangent to level curve of ϕ through $x^\star(t)$



Dual points on central path

 $x = x^{\star}(t)$ if there exists a w such that

min t fo(x) +
$$\phi$$
(x)
s.t. Ax-b=0

$$L(x,w) = t \text{ fo}(x) + \phi(x) + w'(Ax-b)$$
Stationarity:

$$dL/dx = t \text{ dfo}(x) + d\phi(x) + A'w = 0$$

$$t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0,$$

Ax=b (Primal feasibility)

therefore, $x^*(t)$ minimizes the Lagrangian

min fo(x)s.t. $f_i(x) \le 0$, i=1...mAx-b=0 $L(x,\lambda,v) = fo(x) + \sum_{i} \lambda_{i} f_{i}(x) + v'(Ax-b)$

$$L(x, \lambda^{*}(t), \nu^{*}(t)) = f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*}(t) f_{i}(x) + \nu^{*}(t)^{T} (Ax - b)$$

where we define $\lambda_i^\star(t)=1/(-tf_i(x^\star(t)))$ and $\nu^\star(t)=w/t$ > 0 since t>0 and f_i(x*(t)) < 0

• this confirms the intuitive idea that $f_0(x^*(t)) \to p^*$ if $t \to \infty$:

$$p^{\star} \geq g(\lambda^{\star}(t), \nu^{\star}(t)) \text{ ... for any (λ,v) so we can plug ($\lambda^{\star}(t),v^{\star}(t)$)}$$

$$= L(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t))$$

$$= fo(x^{\star}(t)) + \sum_{i} \lambda^{\star}_{i}(t) f_{i}(x^{\star}(t)) + v^{\star}(t)(A x^{\star}(t)-b)$$

$$= fo(x^{\star}(t)) + \sum_{i} f_{i}(x^{\star}(t)) / (-t f_{i}(x^{\star}(t))) \text{ ... since A } x^{\star}(t)=b$$

$$= fo(x^{\star}(t)) - m/t \text{ ... m terms}$$

$$\downarrow \bullet$$
As $t \to \infty$, $m/t \to 0$ and then $p^{\star} = fo(x^{\star}(t))$

Make dL/dx=0and get same as above

Interpretation via KKT conditions

$$x=x^\star(t)$$
, $\lambda=\lambda^\star(t)$, $\nu=\nu^\star(t)$ satisfy

- 1. primal constraints: $f_i(x) \leq 0$, i = 1, ..., m, Ax = b
- 2. dual constraints: $\lambda \succeq 0$
- 3. approximate complementary slackness: $-\lambda_i f_i(x) = 1/t$, $i = 1, \ldots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

difference with KKT is that condition 3 replaces $\lambda_i f_i(x) = 0$

Recall original problem: min fo(x) s.t. f_i(x) ≤ 0, i=1...m Ax=b

We said before: $\lambda_i(t) = 1/(-t f_i(x))$

Barrier method

given strictly feasible x, $t:=t^{(0)}>0$, $\mu>1$, tolerance $\epsilon>0$. repeat

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. *Update.* $x := x^*(t)$.
- 3. Stopping criterion. quit if $m/t < \epsilon$.
- 4. Increase $t. \ t := \mu t.$

- terminates with $f_0(x) p^* \le \epsilon$ (stopping criterion follows from $f_0(x^*(t)) p^* \le m/t$)
- ullet centering usually done using Newton's method, starting at current x

The gradient at the current x is $d = t dfo(x) + d\phi(x)$ The Hessian at the current x is $H = t d^2fo(x) + d^2\phi(x)$ $[H A'] [\Delta x] = [-d]$ [A 0] [v] [0]

Feasibility and phase I methods

feasibility problem: find x such that

$$f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b \tag{2}$$

phase I: computes strictly feasible starting point for barrier method
basic phase I method

minimize (over
$$x$$
, s) s subject to
$$f_i(x) \leq s, \quad i = 1, \dots, m$$
 (3)
$$Ax = b$$

- if x, s feasible, with s < 0, then x is strictly feasible for (2)
- if optimal value \bar{p}^* of (3) is positive, then problem (2) is infeasible (s>0)
- if $\bar{p}^{\star} = 0$ and attained, then problem (2) is feasible (but not strictly); if $\bar{p}^{\star} = 0$ and not attained, then problem (2) is infeasible

Generalized inequalities

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \preceq_{K_i} 0, \quad i=1,\ldots,m \\ & Ax = b \end{array}$$

- fo : R^n -> R
 - f_0 convex, $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$, $i=1,\ldots,m$, convex with respect to proper cones $K_i \in \mathbf{R}^{k_i}$
 - f_i twice continuously differentiable
 - $A \in \mathbb{R}^{p \times n}$ with $\operatorname{rank} A = p$
 - ullet we assume p^{\star} is finite and attained
 - we assume problem is strictly feasible; hence strong duality holds and dual optimum is attained

examples of greatest interest: SOCP, SDP

Generalized logarithm for proper cone

 $\psi: \mathbf{R}^q \to \mathbf{R}$ is generalized logarithm for proper cone $K \subseteq \mathbf{R}^q$ if:

- $\operatorname{dom} \psi = \operatorname{int} K$ and $\nabla^2 \psi(y) \prec 0$ for $y \succ_K 0$
- Example: for positive semidefinite cone: behaves like strictly concave when matrix is positive definite
- $\psi(sy) = \psi(y) + \theta \log s$ for $y \succ_K 0$, s > 0 (0>0 is the degree of ψ)

```
Take K = \{z \text{ in R } | z \ge 0\}: \psi(z) = \log z
For y > 0, s > 0: \psi(s y) = \psi(y) + \theta \log s, where \theta=1
```

examples

- nonnegative orthant $K = \mathbf{R}^n_+$: $\psi(y) = \sum_{i=1}^n \log y_i$, with degree $\theta = n$
- positive semidefinite cone $K = \mathbf{S}^n_+$:

```
\begin{split} \psi(s \; y) &= \sum_{i=1...n} \log(s \; y_i) \\ &= \sum_{i=1...n} \{ \log y_i + \log s \} \\ &= \sum_{i=1...n} \log y_i + n \log s \\ &= \psi(y) + n \log s \end{split}
```

$$\psi(Y) = \log \det Y \qquad (\theta = n)$$

• second-order cone $K = \{ y \in \mathbf{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1} \}$:

$$\psi(y) = \log(y_{n+1}^2 - y_1^2 - \dots - y_n^2) \qquad (\theta = 2)$$

$$\psi(s \ y) = \log(s^2 \ (y_{n+1}^2 - y_1^2 \dots - y_n^2))$$

$$= \log(y_{n+1}^2 - y_1^2 \dots - y_n^2) + 2 \log s$$

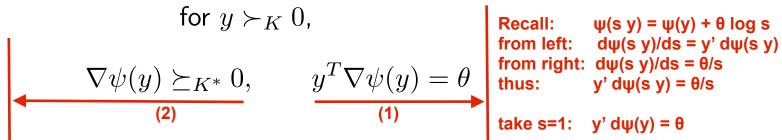
$$= \psi(y) + 2 \log s$$

Interior-point methods

Recall proper cones (2-21): $z \ge K^* 0$ if and only if $y'z \ge 0$ for all $y \ge K 0$ properties

Make $z = d\psi(v)$: $d\psi(y) \ge K^* 0$ if and only if $y' d\psi(y) \ge 0$ for all $y \ge K 0$

Indeed y' $d\psi(y) = \theta > 0$



• nonnegative orthant \mathbf{R}^n_+ : $\psi(y) = \sum_{i=1}^n \log y_i$

$$\nabla \psi(y) = (1/y_1, \dots, 1/y_n), \qquad y^T \nabla \psi(y) = n \qquad \text{y' d}\psi(y) = 1 + \dots + 1$$

• positive semidefinite cone \mathbf{S}_{+}^{n} : $\psi(Y) = \log \det Y$

$$abla\psi(Y)=Y^{-1}, \qquad \mathbf{tr}(Y
abla\psi(Y))=n \qquad \qquad \mathbf{tr}(\mathbf{Y}')=\mathbf{I}'$$

• second-order cone $K = \{ y \in \mathbb{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1} \}$:

$$\nabla \psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \dots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \quad y^T \nabla \psi(y) = 2$$

Logarithmic barrier and central path

logarithmic barrier for $f_1(x) \leq_{K_1} 0$, ..., $f_m(x) \leq_{K_m} 0$:

$$\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)), \quad \mathbf{dom} \, \phi = \{x \mid f_i(x) \prec_{K_i} 0, \ i = 1, \dots, m\}$$

- ullet ψ_i is generalized logarithm for K_i , with degree $heta_i$
- ullet ϕ is convex, twice continuously differentiable

central path: $\{x^*(t) \mid t > 0\}$ where $x^*(t)$ solves

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

Dual points on central path

min $t fo(x) + \phi(x)$ s.t. Ax-b=0 $L(x,w) = t fo(x) + \phi(x) + w'(Ax-b)$

 $dL/dx = t dfo(x) + d\phi(x) + A'w = 0$

Stationarity:

 $x = x^{\star}(t)$ if there exists $w \in \mathbf{R}^p$,

Interior-point methods

$$t\nabla f_0(x) + \sum_{i=1}^m Df_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0$$

 $Df_i(x) \in \mathbf{R}^{k_i \times n}$ is derivative matrix of $f_i : \mathbf{R^n} \to \mathbf{R^k}_i$

Make dL/dx=0 and get same as

above

• therefore, $x^*(t)$ minimizes Lagrangian $L(x, \lambda^*(t), \nu^*(t))$, where

$$\lambda_i^*(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^*(t))), \qquad \nu^*(t) = \frac{w}{t}$$

• from properties of ψ_i : $\lambda_i^{\star}(t) \succ_{K_i^{\star}} 0$, with duality gap

= $fo(x^*(t)) - 1/t \Sigma i \theta i$

As $t \to \infty$, 1/t $\Sigma_i \theta_i \to 0$ and then $p^* = fo(x^*(t))$ $f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = (1/t) \sum_{i=1}^m \theta_i$ $p^* \ge g(\lambda^*(t), \nu^*(t)) \quad \dots \text{ for any } (\lambda, \nu) \text{ so we can plug } (\lambda^*(t), \nu^*(t))$ $= L(x^*(t), \lambda^*(t), \nu^*(t))$ $= fo(x^*(t)) + \Sigma_i \lambda^*_i(t)' f_i(x^*(t)) + \nu^*(t)(A x^*(t) - b)$ $= fo(x^*(t)) - 1/t \Sigma_i y_i' d\psi_i(y_i) \dots \text{ since } A x^*(t) = b, \text{ and letting } y_i = -f_i(x^*(t))$

... since v i' dw i(v i) = θ i

Barrier method

given strictly feasible x, $t:=t^{(0)}>0$, $\overline{\mu>1}$, tolerance $\epsilon>0$. repeat

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. *Update.* $x := x^*(t)$.
- 3. Stopping criterion. quit if $(\sum_i \theta_i)/t < \epsilon$.
- 4. Increase $t. t := \mu t$.

ullet only difference is duality gap m/t on central path is replaced by $\sum_i heta_i/t$

Interior-point methods 12–29