10. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton's method

implementation

Unconstrained minimization

minimize
$$f(x)$$

- f convex, twice continuously differentiable (hence $\operatorname{dom} f$ open)
- we assume optimal value $p^\star = \inf_x f(x)$ is attained (and finite)

 We will assume that $\mathbf{x}^{\star\star} = \operatorname{argmin}_{\mathbf{x}} \mathbf{x}$ (x) exists and is unique

 Recall $\mathbf{p}^{\star\star} = \mathbf{f}(\mathbf{x}^{\star\star})$

unconstrained minimization methods

• produce sequence of points $x^{(k)} \in \operatorname{dom} f$, $k = 0, 1, \ldots$ with

$$f(x^{(k)}) o p^\star \quad \text{as k -> infinity}$$

 $x^{(0)}$, $x^{(1)}$, ... is a minimizing sequence to the problem Algorithm stops when $f(x^{(k)})$ - p^{*} <= epsilon, for some tolerance epsilon > 0

can be interpreted as iterative methods for solving optimality condition

$$\nabla f(x^{\star}) = 0$$

Strong convexity and implications

f is strongly convex on S if there exists an m>0 such that

$$\nabla^2 f(x) \succeq mI$$
 for all $x \in S$

implications

• for $x, y \in S$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||x - y||_2^2$$

hence, S is bounded

Assume f is twice differentiable

By Taylor's theorem, there exists a z in the line segment from x to y such that $f(y) = f(x) + df(x)'(y-x) + \frac{1}{2}(y-x)' d^2 f(z) (y-x)$ >= $f(x) + df(x)'(y-x) + \frac{1}{2}(y-x)' (m l) (y-x)$... since f is strongly convex = $f(x) + df(x)'(y-x) + \frac{1}{2}m |y-x| = 2^2$

(Taylor's theorem is a generalization of the mean value theorem, and is very related to, but is not exactly the same as Taylor series)

Descent methods

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$$
 with $f(x^{(k+1)}) < f(x^{(k)})$

- other notations: $x^+ = x + t\Delta x$, $x := x + t\Delta x$
- Δx is the step, or search direction; t is the step size, or step length
- from convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$ (i.e., Δx is a descent direction)

From convexity (slide 3-7): $f(x^+) >= f(x) + df(x)'(x^+ - x)$ $= f(x) + t df(x)'\Delta x$ Thus: $f(x^+) - f(x) >= t df(x)'\Delta x$

If $f(x^+) < f(x)$ then: $0 > f(x^+) - f(x) >= t df(x)'\Delta x$ Thus: $df(x)'\Delta x < 0$

General descent method.

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. Determine a descent direction Δx . (Each algorithm has its own way for choosing Δx)
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Line search types

exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0,1/2)$, $\beta \in (0,1)$) (one of the many inexact methods)

• starting at t = 1, repeat $t := \beta t$ until

since $\beta < 1$, $t := \beta t$ reduces t

$$f(x+t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$$
 (Armijo–Goldstein condition)

Since Δx is a descent direction (see previous slide) then $df(x)'\Delta x < 0$ For small t, we have:

$$f(x + t \Delta x) \approx f(x) + t df(x)'\Delta x < f(x) + \alpha t df(x)'\Delta x$$

Thus, the procedure will eventually terminate.

Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. $\Delta x := -\nabla f(x)$.
- 2. Line search. Choose step size t via exact or backtracking line search.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

- stopping criterion usually of the form $\|\nabla f(x)\|_2 \le \epsilon$
- convergence result: for strongly convex f,

$$f(x^{(k)}) - p^{\star} \le c^k (f(x^{(0)}) - p^{\star}) \qquad \text{(linear convergence)}$$

 $c \in (0,1)$ depends on m, $x^{(0)}$, line search type

very simple, but often very slow; rarely used in practice

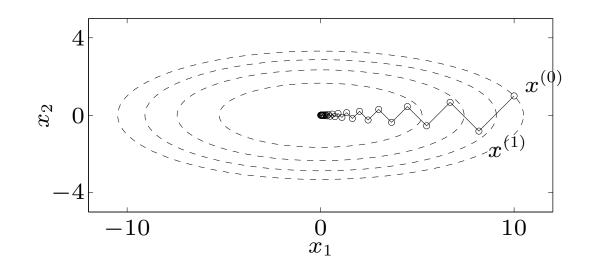
quadratic problem in R²

$$f(x) = (1/2)(x_1^2 + \gamma x_2^2) \qquad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

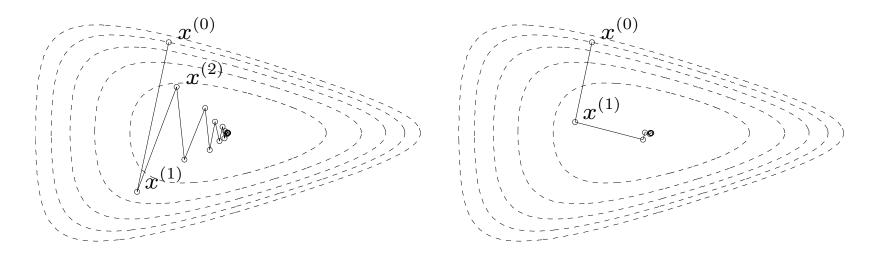
$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- ullet very slow if $\gamma\gg 1$ or $\gamma\ll 1$
- example for $\gamma = 10$:



nonquadratic example

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

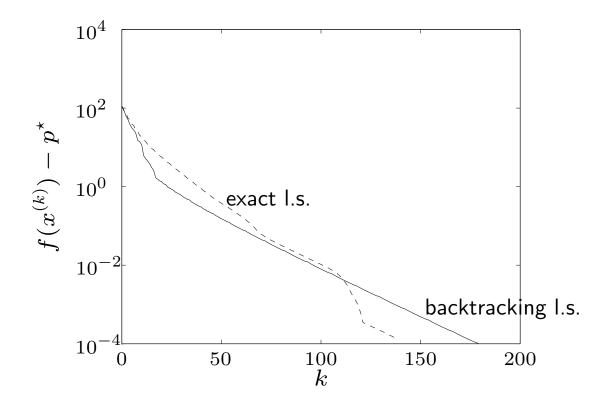


backtracking line search

exact line search

a problem in $\ensuremath{\mathrm{R}}^{100}$

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$



'linear' convergence, i.e., a straight line on a semilog plot

Steepest descent method

normalized steepest descent direction (at x, for norm $\|\cdot\|$):

$$\Delta x_{\text{nsd}} = \operatorname{argmin} \{ \nabla f(x)^T v \mid ||v|| = 1 \}$$

interpretation: for small v, $f(x+v) \approx f(x) + \nabla f(x)^T v$; direction $\Delta x_{\rm nsd}$ is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

$$\Delta x_{\rm sd} = \|\nabla f(x)\|_* \Delta x_{\rm nsd}$$

steepest descent method

- ullet general descent method with $\Delta x = \Delta x_{
 m sd}$
- convergence properties similar to gradient descent

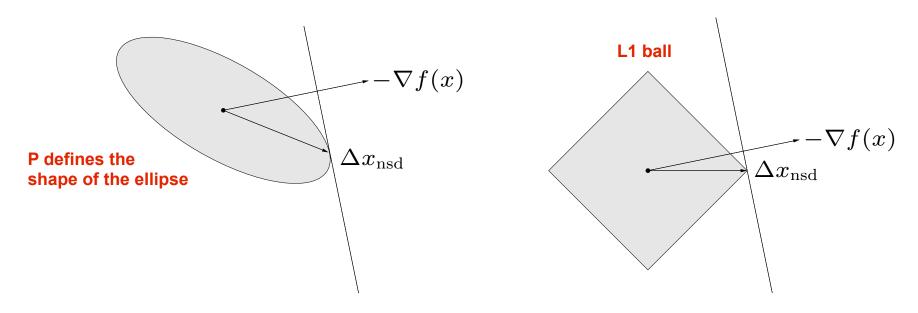
examples

• Euclidean norm: $\Delta x_{\rm sd} = -\nabla f(x)$

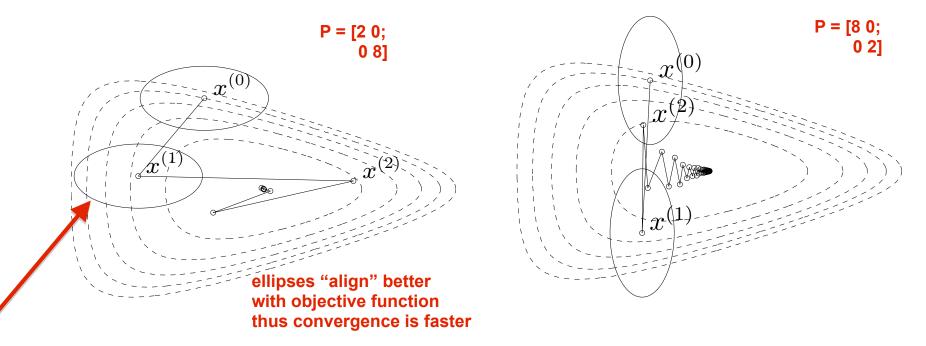
• quadratic norm $||x||_P = (x^T P x)^{1/2} \ (P \in \mathbf{S}_{++}^n)$: $\Delta x_{\rm sd} = -P^{-1} \nabla f(x)$

• ℓ_1 -norm: $\Delta x_{\rm sd} = -(\partial f(x)/\partial x_i)e_i$, where $|\partial f(x)/\partial x_i| = \|\nabla f(x)\|_{\infty}$

unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_1 -norm:



choice of norm for steepest descent



- steepest descent with backtracking line search for two quadratic norms (two different P's)
- ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$

See Figure 9.13

• equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_P$: gradient descent after change of variables $\bar{x}=P^{1/2}x$

See Figures 9.14, 9.15

shows choice of P has strong effect on speed of convergence

Newton step

(Uses the Hessian as a good ellipse, see previous slide)

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

interpretations

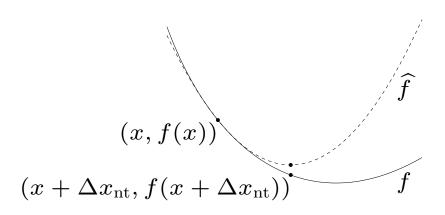
• $x + \Delta x_{\rm nt}$ minimizes second order approximation

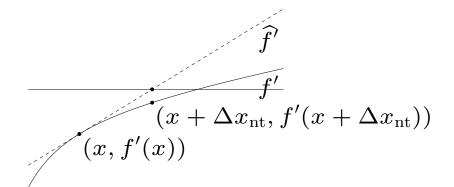
$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

Second order
Taylor series
approximation
(we are discarding
the remainder term)

• $x + \Delta x_{\rm nt}$ solves linearized optimality condition

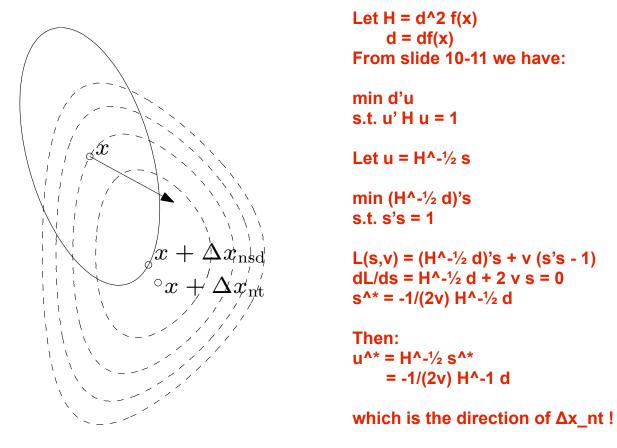
$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$





ullet $\Delta x_{
m nt}$ is steepest descent direction at x in local Hessian norm

$$||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x)u)^{1/2}$$



dashed lines are contour lines of f; ellipse is $\{x+v\mid v^T\nabla^2f(x)v=1\}$ arrow shows $-\nabla f(x)$

Newton decrement

$$\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

a measure of the proximity of x to x^*

properties

Remember $p^* = \inf_y f(y)$

ullet gives an estimate of $f(x)-p^\star$, using quadratic approximation \widehat{f} :

$$f(x) - \inf_{y} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2$$

Let
$$H = d^2 f(x)$$

 $d = df(x)$
 $\lambda = \lambda(x)$
 $\Delta x = \Delta x_n t = -H^-1 d$

inf_y f^(y) = f^ (x +
$$\Delta$$
x)
= f(x) + d' Δ x + $\frac{1}{2}$ Δ x' H Δ x
= f(x) - $\frac{1}{2}$ d' H^-1 d

$$f(x) - \inf_{y} f^{(y)} = \frac{1}{2} d' H^{-1} d = \frac{1}{2} \lambda^{2}$$

Thus $\lambda = \operatorname{sqrt}(d' H^{-1} d)$

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon > 0$. repeat

1. Compute the Newton step and decrement.

$$\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$$

- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{\rm nt}$.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are

$$y^{(k)} = T^{-1}x^{(k)}$$

$$x = T y \qquad y = T^{-1} x$$
 Let $Hf^{(y)} = d^2 f^{(y)} \qquad \Delta y = -Hf^{(y)} - 1 df(y) = -(T' Hf(x) T)^{-1} T' df(x)$
$$df^{(y)} = T' df(T y) = T' df(x) \qquad = -T^{-1} Hf(x)^{-1} df(x) = T^{-1} \Delta x$$

$$Hf^{(y)} = T' Hf(T y) T = T' Hf(x) T \qquad y^{(k)} = y + \Delta y = T^{-1} (x + \Delta x) = T^{-1} x^{(k)}$$

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$H\Delta x = -g$$

where
$$H = \nabla^2 f(x)$$
, $g = \nabla f(x)$

via Cholesky factorization

$$H = LL^{T}, \qquad \Delta x_{\rm nt} = -L^{-T}L^{-1}g, \qquad \lambda(x) = ||L^{-1}g||_{2}$$

- \bullet cost $(1/3)n^3$ flops for unstructured system
- $\cos t \ll (1/3)n^3$ if H sparse, banded

example of dense Newton system with structure

$$f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \qquad H = D + A^T H_0 A$$

- assume $A \in \mathbf{R}^{p \times n}$, dense, with $p \ll n$
- D diagonal with diagonal elements $\psi_i''(x_i)$; $H_0 = \nabla^2 \psi_0(Ax + b)$

method 1: form H, solve via dense Cholesky factorization: (cost $(1/3)n^3$) **method 2** (page 9–15): factor $H_0 = L_0L_0^T$; write Newton system as

$$D\Delta x + A^T L_0 w = -g, \qquad L_0^T A \Delta x - w = 0$$

eliminate Δx from first equation; compute w and Δx from

$$(I + L_0^T A D^{-1} A^T L_0) w = -L_0^T A D^{-1} g, \qquad D\Delta x = -g - A^T L_0 w$$

cost: $2p^2n$ (dominated by computation of $L_0^TAD^{-1}A^TL_0$)