Convex Optimization — Boyd & Vandenberghe

4. Convex optimization problems

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization
- geometric programming
- generalized inequality constraints
- semidefinite programming

Optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0 : \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i : \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

optimal value:

$$p^{\star} = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^{\star} = \infty$ if problem is infeasible (no x satisfies the constraints) $\frac{\min x^2}{st. x \le 2}$
- $p^{\star} = -\infty$ if problem is unbounded below min x st. x <= 5

Optimal and locally optimal points

- x is **feasible** if $x \in \operatorname{dom} f_0$ and it satisfies the constraints
- a feasible x is **optimal** if $f_0(x) = p^*$; X_{opt} is the set of optimal points
- x is **locally optimal** if there is an R > 0 such that x is optimal for

$$\begin{array}{ll} \text{minimize (over } z) & f_0(z) \\ \text{subject to} & f_i(z) \leq 0, \quad i = 1, \dots, m, \quad h_i(z) = 0, \quad i = 1, \dots, p \\ & \|z - x\|_2 \leq R \end{array}$$

examples (with n = 1, m = p = 0)

- $f_0(x) = 1/x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point for $f_0(x) \to 0$ as $x \to +inf$
- $f_0(x) = -\log x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -\infty$ f0(x) -> -inf as x-> +inf

•
$$f_0(x) = x \log x$$
, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, $x = 1/e$ is optimal See f0(x) in [0,2]

• $f_0(x) = x^3 - 3x$, $p^* = -\infty$, local optimum at x = 1 See f0(x) in [-3,+3]

Convex optimization problems

Implicit constraints

the standard form optimization problem has an **implicit constraint**

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- $\bullet\,$ we call ${\mathcal D}$ the domain of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$ iff b_i - a_i x > 0

Feasibility problem

find
$$x$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize 0
subject to
$$f_i(x) \le 0$$
, $i = 1, \dots, m$
 $h_i(x) = 0$, $i = 1, \dots, p$

- $p^{\star} = 0$ if constraints are feasible; any feasible x is optimal
- $p^{\star} = \infty$ if constraints are infeasible

Convex optimization problem

standard form convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $a_i^T x = b_i$, $i = 1, ..., p$

- f_0 , f_1 , . . . , f_m are convex; equality constraints are affine
- problem is quasiconvex if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

often written as

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

important property: feasible set of a convex optimization problem is convex

example

$$\begin{array}{ll} \mbox{minimize} & f_0(x) = x_1^2 + x_2^2 \\ \mbox{subject to} & f_1(x) = x_1/(1+x_2^2) \leq 0 \\ & h_1(x) = (x_1+x_2)^2 = 0 \end{array}$$

- f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$ is convex
- not a convex problem (according to our definition): f_1 is not convex, h_1 is not affine
- equivalent to the convex problem

$$\begin{array}{ll} \text{minimize} & x_1^2 + x_2^2 \\ \text{subject to} & x_1 \leq 0 \\ & x_1 + x_2 = 0 \end{array}$$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal, but there exists a feasible y with $f_0(y) < f_0(x)$ (i.e., x not globally optimal)

x locally optimal means there is an R>0 such that

z feasible, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

consider $z = \theta y + (1 - \theta)x$ with $\theta = R/(2||y - x||_2)$ not in the

local region

• $||y - x||_2 > R$, so $0 < \theta < 1/2$ • z is a convex combination of two feasible points, hence also feasible • $||z - x||_2 = R/2$ and by convexity fo(z) = fo(θ y+(1- θ)x) <= θ fo(y) + (1- θ) fo(x)

which contradicts our assumption that x is locally optimal since we found that fo(z) < fo(x)

Optimality criterion for differentiable f_0

if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

(all examples here follow from previous slide. More depth in Chapter 5)

• **unconstrained problem**: x is optimal if and only if

$$x \in \operatorname{\mathbf{dom}} f_0, \qquad \nabla f_0(x) = 0$$

• equality constrained problem

minimize $f_0(x)$ subject to Ax = b

x is optimal if and only if there exists a ν such that

 $x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$

• minimization over nonnegative orthant

minimize $f_0(x)$ subject to $x \succeq 0$

x is optimal if and only if

$$x \in \operatorname{dom} f_0, \qquad x \succeq 0, \qquad \left\{ \begin{array}{ll} \nabla f_0(x)_i \ge 0 & x_i = 0\\ \nabla f_0(x)_i = 0 & x_i > 0 \end{array} \right.$$

Convex optimization problems

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

is equivalent to

minimize (over z)
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0, \quad i = 1, \dots, m$

where F and x_0 are such that

$$Ax = b \iff x = Fz + x_0$$
 for some z

• introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \le 0$, $i = 1, ..., m$

is equivalent to

$$\begin{array}{ll} \text{minimize (over } x, \ y_i) & f_0(y_0) \\ \text{subject to} & f_i(y_i) \leq 0, \quad i = 1, \dots, m \\ & y_i = A_i x + b_i, \quad i = 0, 1, \dots, m \end{array}$$

• introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

is equivalent to

$$\begin{array}{ll} \text{minimize (over } x, \, s) & f_0(x) \\ \text{subject to} & a_i^T x + s_i = b_i, \quad i = 1, \dots, m \\ & s_i \geq 0, \quad i = 1, \dots m \end{array}$$

• epigraph form: standard form convex problem is equivalent to

minimize (over
$$x, t$$
) t
subject to
 $f_0(x) - t \le 0$
 $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

• minimizing over some variables

$$\begin{array}{ll} \text{minimize} & f_0(x_1,x_2) \\ \text{subject to} & f_i(x_1) \leq 0, \quad i=1,\ldots,m \end{array} \\ \end{array}$$

is equivalent to

$$\begin{array}{ll} \mbox{minimize} & \tilde{f}_0(x_1) \\ \mbox{subject to} & f_i(x_1) \leq 0, \quad i=1,\ldots,m \end{array}$$

where
$$\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \leq h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Examples

diet problem: choose quantities x_1, \ldots, x_n of n foods

- one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

 $\begin{array}{lll} \text{minimize} & c^T x\\ \text{subject to} & Ax \succeq b, \quad x \succeq 0 \end{array}$

piecewise-linear minimization

minimize
$$\max_{i=1,\dots,m}(a_i^T x + b_i)$$

equivalent to an LP

$$\begin{array}{ll} \mbox{minimize} & t \\ \mbox{subject to} & a_i^T x + b_i \leq t, \quad i = 1, \dots, m \end{array}$$

Convex optimization problems

Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \{ x \mid a_i^T x \le b_i, \ i = 1, \dots, m \}$$

is center of largest inscribed ball

$$\mathcal{B} = \{x_c + u \mid ||u||_2 \le r\}$$

•
$$a_i^T x \leq b_i$$
 for all $x \in \mathcal{B}$ if and only if

$$\sup_{\mathbf{u}} \{a_i^T(x_c + u) \mid ||u||_2 \le r\} = a_i^T x_c + r ||a_i||_2 \le b_i$$

since sup_u (a_i u) = |a_i|_2 by norm duality

• hence, x_c , r can be determined by solving the LP

maximize
$$r$$

subject to $a_i^T x_c + r ||a_i||_2 \le b_i, \quad i = 1, \dots, m$

Quadratic program (QP)

minimize
$$(1/2)x^TPx + q^Tx + r$$

subject to $Gx \leq h$
 $Ax = b$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples

least-squares

minimize 1/2 $||Ax - b||_2^2$

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g., $l \preceq x \preceq u$

linear program with random cost

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} c^T x + \gamma \operatorname{var}(c^T x)$$

subject to $Gx \leq h$, $Ax = b$

- c is random vector with mean \bar{c} and covariance Σ
- hence, $c^T x$ is random variable with mean $\overline{c}^T x$ and variance $x^T \Sigma x$
- $\gamma > 0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Making gradient = 0 A' A x* - b A = 0 x* = (A' A)^-1 A b

Quasiconvex optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

with $f_0: \mathbf{R}^n \to \mathbf{R}$ quasiconvex, f_1, \ldots, f_m convex

can have locally optimal points that are not (globally) optimal

 $(x, f_0(x))$

convex representation of sublevel sets of f_0

if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $\phi_t(x)$ is convex in x for fixed t
- *t*-sublevel set of f_0 is 0-sublevel set of ϕ_t , *i.e.*,

$$f_0(x) \le t \quad \Longleftrightarrow \quad \phi_t(x) \le 0$$

example

$$f_0(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on $\operatorname{dom} f_0$

can take $\phi_t(x) = p(x) - tq(x)$:

• for $t \ge 0$, ϕ_t convex in x

•
$$p(x)/q(x) \le t$$
 if and only if $\phi_t(x) \le 0$
p(x) <= t q(x)
p(x) - t q(x) <= 0

Convex optimization problems

quasiconvex optimization via convex feasibility problems

$$\phi_t(x) \le 0, \qquad f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (1)

- for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that $t \ge p^*$; if infeasible, $t \le p^*$

Bisection method for quasiconvex optimization

```
given l \leq p^*, u \geq p^*, tolerance \epsilon > 0.

repeat

1. t := (l + u)/2.

2. Solve the convex feasibility problem (1).

3. if (1) is feasible, u := t; else l := t.

until u - l \leq \epsilon.
```

requires exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations (where u, l are initial values)

Linear-fractional program

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & Gx \preceq h \\ & Ax = b \end{array}$$

linear-fractional program

$$f_0(x) = \frac{c^T x + d}{e^T x + f}, \qquad \text{dom} f_0(x) = \{x \mid e^T x + f > 0\}$$

• a quasiconvex optimization problem; can be solved by bisection

Second-order cone programming

$$\begin{array}{ll} \mbox{minimize} & f^T x \\ \mbox{subject to} & \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \quad i = 1, \dots, m \\ & F x = g \end{array}$$

 $(A_i \in \mathbf{R}^{n_i imes n}, F \in \mathbf{R}^{p imes n})$

• inequalities are called second-order cone (SOC) constraints:

 $(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i+1}$

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m,$

there can be uncertainty in c, a_i , b_i

two common approaches to handling uncertainty (in a_i , for simplicity)

• deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, \dots, m_i$

- stochastic model: a_i is random variable; constraints must hold with probability η

minimize
$$c^T x$$

subject to $\operatorname{prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, m$

deterministic approach via SOCP

• choose an ellipsoid as \mathcal{E}_i :

$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \} \qquad (\bar{a}_i \in \mathbf{R}^n, \quad P_i \in \mathbf{R}^{n \times n})$$

center is \bar{a}_i , semi-axes determined by singular values/vectors of P_i

• robust LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

is equivalent to the SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \le b_i, \quad i = 1, \dots, m$

(follows from $\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2)$ a_i'x is constant wrt u, only analyze (P_i u)'x $\sup_{\|u\|_2 \le 1} u' P_i' x = |P_i' x|_2$ by norm duality

Convex optimization problems

stochastic approach via SOCP

- assume a_i is Gaussian with mean \bar{a}_i , covariance Σ_i $(a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i))$
- $a_i^T x$ is Gaussian r.v. with mean $\bar{a}_i^T x$, variance $x^T \Sigma_i x$; hence

$$\operatorname{prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

where $\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^x e^{-t^2/2} \, dt$ is CDF of $\mathcal{N}(0,1)$

• robust LP

minimize
$$c^T x$$

subject to $\operatorname{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m,$

with $\eta \geq 1/2$, is equivalent to the SOCP

minimize
$$c^T x$$

subject to $ar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le b_i, \quad i=1,\ldots,m$

Geometric programming

monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \text{dom } f = \mathbf{R}_{++}^n$$

with c > 0; exponent a_i can be any real number

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \text{dom } f = \mathbf{R}_{++}^n$$

geometric program (GP)

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 1, \quad i=1,\ldots,m \\ & h_i(x)=1, \quad i=1,\ldots,p \end{array}$$

with f_i posynomial, h_i monomial

Geometric program in convex form

change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

• monomial
$$f(x) = cx_1^{a_1} \cdots x_n^{a_n}$$
 transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)$$

• posynomial
$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$$
 transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k}\right) \qquad (b_k = \log c_k)$$

• geometric program transforms to convex problem

minimize
$$\log \left(\sum_{k=1}^{K} \exp(a_{0k}^T y + b_{0k}) \right)$$

subject to $\log \left(\sum_{k=1}^{K} \exp(a_{ik}^T y + b_{ik}) \right) \le 0, \quad i = 1, \dots, m$
 $Gy + d = 0$

Generalized inequality constraints

convex problem with generalized inequality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \preceq_{K_i} 0$, $i = 1, \dots, m$
 $Ax = b$

- $f_0: \mathbf{R}^n \to \mathbf{R}$ convex; $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$ K_i -convex w.r.t. proper cone K_i
- same properties as standard convex problem (convex feasible set, local optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize
$$c^T x$$

subject to $Fx + g \preceq_K 0$
 $Ax = b$

extends linear programming $(K = \mathbf{R}^m_+)$ to nonpolyhedral cones

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1F_1 + x_2F_2 + \dots + x_nF_n + G \leq 0$
 $Ax = b$

with F_i , $G \in \mathbf{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \preceq 0$$

Eigenvalue minimization

minimize $\lambda_{\max}(A(x))$

where $A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$ (with given $A_i \in \mathbf{S}^k$)

equivalent SDP

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & A(x) \preceq tI \end{array}$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- follows from

$$\lambda_{\max}(A) \le t \quad \Longleftrightarrow \quad A \preceq tI$$

Matrix norm minimization

minimize
$$||A(x)||_2 = (\lambda_{\max}(A(x)^T A(x)))^{1/2}$$

where $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$ (with given $A_i \in \mathbb{R}^{p \times q}$)
equivalent SDP

minimize
$$t$$

subject to $\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- constraint follows from

Let X = [W B; B'C] Schur complement: D = C - B' W^-1 B If W in S_++ then X in S_+ if and only if D in S_+ Assume this is X and you will see Convex optimization problems