
Convex Optimization — Boyd & Vandenberghe

4. Convex optimization problems

• optimization problem in standard form

• convex optimization problems

• quasiconvex optimization

• linear optimization

• quadratic optimization

• geometric programming

• generalized inequality constraints

• semidefinite programming

• vector optimization
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Optimization problem in standard form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• x ∈ Rn is the optimization variable

• f0 : R
n → R is the objective or cost function

• fi : R
n → R, i = 1, . . . ,m, are the inequality constraint functions

• hi : R
n → R are the equality constraint functions

optimal value:

p⋆ = inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

• p⋆ = ∞ if problem is infeasible (no x satisfies the constraints)

• p⋆ = −∞ if problem is unbounded below
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Optimal and locally optimal points

x is feasible if x ∈ dom f0 and it satisfies the constraints

a feasible x is optimal if f0(x) = p⋆; Xopt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) f0(z)
subject to fi(z) ≤ 0, i = 1, . . . ,m, hi(z) = 0, i = 1, . . . , p

∥z − x∥2 ≤ R

examples (with n = 1, m = p = 0)

• f0(x) = 1/x, dom f0 = R++: p⋆ = 0, no optimal point

• f0(x) = − log x, dom f0 = R++: p⋆ = −∞

• f0(x) = x log x, dom f0 = R++: p⋆ = −1/e, x = 1/e is optimal

• f0(x) = x3 − 3x, p⋆ = −∞, local optimum at x = 1
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Implicit constraints

the standard form optimization problem has an implicit constraint

x ∈ D =
m
⋂

i=0

dom fi ∩
p
⋂

i=1

domhi,

• we call D the domain of the problem

• the constraints fi(x) ≤ 0, hi(x) = 0 are the explicit constraints

• a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize f0(x) = −

∑k
i=1 log(bi − aTi x)

is an unconstrained problem with implicit constraints aTi x < bi
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Feasibility problem

find x
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

can be considered a special case of the general problem with f0(x) = 0:

minimize 0
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• p⋆ = 0 if constraints are feasible; any feasible x is optimal

• p⋆ = ∞ if constraints are infeasible

Convex optimization problems 4–5



Convex optimization problem

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

• f0, f1, . . . , fm are convex; equality constraints are affine

• problem is quasiconvex if f0 is quasiconvex (and f1, . . . , fm convex)

often written as

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

important property: feasible set of a convex optimization problem is convex
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example

minimize f0(x) = x2
1 + x2

2

subject to f1(x) = x1/(1 + x2
2) ≤ 0

h1(x) = (x1 + x2)2 = 0

• f0 is convex; feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex

• not a convex problem (according to our definition): f1 is not convex, h1

is not affine

• equivalent (but not identical) to the convex problem

minimize x2
1 + x2

2

subject to x1 ≤ 0
x1 + x2 = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal, but there exists a feasible y with
f0(y) < f0(x)

x locally optimal means there is an R > 0 such that

z feasible, ∥z − x∥2 ≤ R =⇒ f0(z) ≥ f0(x)

consider z = θy + (1− θ)x with θ = R/(2∥y − x∥2)

• ∥y − x∥2 > R, so 0 < θ < 1/2
• z is a convex combination of two feasible points, hence also feasible
• ∥z − x∥2 = R/2 and

f0(z) ≤ θf0(y) + (1− θ)f0(x) < f0(x)

which contradicts our assumption that x is locally optimal
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         = fo(x)
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Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and

∇f0(x)
T (y − x) ≥ 0 for all feasible y

−∇f0(x)

X
x

if nonzero, ∇f0(x) defines a supporting hyperplane to feasible set X at x
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1st order condition for convexity
fo(y) >= fo(x) + grad fo(x)’ (y-x)

I. Assume grad fo(x)’ (y-x) >= 0
then fo(y) >= fo(x)
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II. Assume x optimal and grad fo(x)’ (y-x) < 0
Let z(t) = t y + (1-t) x, for t in [0,1]

As t->0 we arrive to a contradiction
d/dt fo(z(t)) = grad fo(t y + (1-t) x)’ (y-x)
d/dt fo(z(t)) (at t=0) = grad fo(x)’ (y-x) < 0

Thus, for t->0 by series expansion
fo(z(t)) = fo(x) + d/dt fo(z(t)) (at t=0) < fo(x)

Thus, x is not optimal



• unconstrained problem: x is optimal if and only if

x ∈ dom f0, ∇f0(x) = 0

• equality constrained problem

minimize f0(x) subject to Ax = b

x is optimal if and only if there exists a ν such that

x ∈ dom f0, Ax = b, ∇f0(x) +ATν = 0

• minimization over nonnegative orthant

minimize f0(x) subject to x ≽ 0

x is optimal if and only if

x ∈ dom f0, x ≽ 0,

{

∇f0(x)i ≥ 0 xi = 0
∇f0(x)i = 0 xi > 0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

is equivalent to

minimize (over z) f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some z
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• introducing equality constraints

minimize f0(A0x+ b0)
subject to fi(Aix+ bi) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize (over x, yi) f0(y0)
subject to fi(yi) ≤ 0, i = 1, . . . ,m

yi = Aix+ bi, i = 0, 1, . . . ,m

• introducing slack variables for linear inequalities

minimize f0(x)
subject to aTi x ≤ bi, i = 1, . . . ,m

is equivalent to

minimize (over x, s) f0(x)
subject to aTi x+ si = bi, i = 1, . . . ,m

si ≥ 0, i = 1, . . .m
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• epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

• minimizing over some variables

minimize f0(x1, x2)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize f̃0(x1)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

where f̃0(x1) = infx2 f0(x1, x2)

Convex optimization problems 4–13
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Linear program (LP)

minimize cTx+ d
subject to Gx ≼ h

Ax = b

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P x⋆

−c
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Examples

diet problem: choose quantities x1, . . . , xn of n foods

• one unit of food j costs cj, contains amount aij of nutrient i

• healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet,

minimize cTx
subject to Ax ≽ b, x ≽ 0

piecewise-linear minimization

minimize maxi=1,...,m(aTi x+ bi)

equivalent to an LP

minimize t
subject to aTi x+ bi ≤ t, i = 1, . . . ,m

Convex optimization problems 4–18



Chebyshev center of a polyhedron

Chebyshev center of

P = {x | aTi x ≤ bi, i = 1, . . . ,m}

is center of largest inscribed ball

B = {xc + u | ∥u∥2 ≤ r}

xchebxcheb

• aTi x ≤ bi for all x ∈ B if and only if

sup{aTi (xc + u) | ∥u∥2 ≤ r} = aTi xc + r∥ai∥2 ≤ bi

• hence, xc, r can be determined by solving the LP

maximize r
subject to aTi xc + r∥ai∥2 ≤ bi, i = 1, . . . ,m
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Quadratic program (QP)

minimize (1/2)xTPx+ qTx+ r
subject to Gx ≼ h

Ax = b

• P ∈ Sn
+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

P

x⋆

−∇f0(x
⋆)
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Examples

least-squares
minimize ∥Ax− b∥22

• analytical solution x⋆ = A†b (A† is pseudo-inverse)

• can add linear constraints, e.g., l ≼ x ≼ u

linear program with random cost

minimize c̄Tx+ γxTΣx = E cTx+ γ var(cTx)
subject to Gx ≼ h, Ax = b

• c is random vector with mean c̄ and covariance Σ

• hence, cTx is random variable with mean c̄Tx and variance xTΣx

• γ > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)
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Quasiconvex optimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

with f0 : R
n → R quasiconvex, f1, . . . , fm convex

can have locally optimal points that are not (globally) optimal

(x, f0(x))
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convex representation of sublevel sets of f0

if f0 is quasiconvex, there exists a family of functions φt such that:

• φt(x) is convex in x for fixed t

• t-sublevel set of f0 is 0-sublevel set of φt, i.e.,

f0(x) ≤ t ⇐⇒ φt(x) ≤ 0

example

f0(x) =
p(x)

q(x)

with p convex, q concave, and p(x) ≥ 0, q(x) > 0 on dom f0

can take φt(x) = p(x)− tq(x):

• for t ≥ 0, φt convex in x

• p(x)/q(x) ≤ t if and only if φt(x) ≤ 0

Convex optimization problems 4–15
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quasiconvex optimization via convex feasibility problems

φt(x) ≤ 0, fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (1)

• for fixed t, a convex feasibility problem in x

• if feasible, we can conclude that t ≥ p⋆; if infeasible, t ≤ p⋆

Bisection method for quasiconvex optimization

given l ≤ p⋆, u ≥ p⋆, tolerance ϵ > 0.

repeat
1. t := (l + u)/2.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, u := t; else l := t.

until u − l ≤ ϵ.

requires exactly ⌈log2((u− l)/ϵ)⌉ iterations (where u, l are initial values)

Convex optimization problems 4–16



Linear-fractional program

minimize f0(x)
subject to Gx ≼ h

Ax = b

linear-fractional program

f0(x) =
cTx+ d

eTx+ f
, dom f0(x) = {x | eTx+ f > 0}

• a quasiconvex optimization problem; can be solved by bisection

• also equivalent to the LP (variables y, z)

minimize cTy + dz
subject to Gy ≼ hz

Ay = bz
eTy + fz = 1
z ≥ 0

Convex optimization problems 4–20
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Second-order cone programming

minimize fTx
subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

(Ai ∈ Rni×n, F ∈ Rp×n)

• inequalities are called second-order cone (SOC) constraints:

(Aix+ bi, c
T
i x+ di) ∈ second-order cone in Rni+1

• for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP

• more general than QCQP and LP

Convex optimization problems 4–25

spongebob




Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m,

there can be uncertainty in c, ai, bi

two common approaches to handling uncertainty (in ai, for simplicity)

• deterministic model: constraints must hold for all ai ∈ Ei

minimize cTx
subject to aTi x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m,

• stochastic model: ai is random variable; constraints must hold with
probability η

minimize cTx
subject to prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m

Convex optimization problems 4–26
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deterministic approach via SOCP

• choose an ellipsoid as Ei:

Ei = {āi + Piu | ∥u∥2 ≤ 1} (āi ∈ Rn, Pi ∈ Rn×n)

center is āi, semi-axes determined by singular values/vectors of Pi

• robust LP

minimize cTx
subject to aTi x ≤ bi ∀ai ∈ Ei, i = 1, . . . ,m

is equivalent to the SOCP

minimize cTx
subject to āTi x+ ∥PT

i x∥2 ≤ bi, i = 1, . . . ,m

(follows from sup∥u∥2≤1(āi + Piu)Tx = āTi x+ ∥PT
i x∥2)

Convex optimization problems 4–27
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stochastic approach via SOCP

• assume ai is Gaussian with mean āi, covariance Σi (ai ∼ N (āi,Σi))

• aTi x is Gaussian r.v. with mean āTi x, variance xTΣix; hence

prob(aTi x ≤ bi) = Φ

(

bi − āTi x

∥Σ1/2
i x∥2

)

where Φ(x) = (1/
√
2π)

∫ x
−∞ e−t2/2 dt is CDF of N (0, 1)

• robust LP

minimize cTx
subject to prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m,

with η ≥ 1/2, is equivalent to the SOCP

minimize cTx

subject to āTi x+ Φ−1(η)∥Σ1/2
i x∥2 ≤ bi, i = 1, . . . ,m

Convex optimization problems 4–28
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Geometric programming

monomial function

f(x) = cxa1
1 xa2

2 · · ·xan
n , dom f = Rn

++

with c > 0; exponent ai can be any real number

posynomial function: sum of monomials

f(x) =
K
∑

k=1

ckx
a1k
1 xa2k

2 · · ·xank
n , dom f = Rn

++

geometric program (GP)

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p

with fi posynomial, hi monomial
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Geometric program in convex form

change variables to yi = log xi, and take logarithm of cost, constraints

• monomial f(x) = cxa1
1 · · ·xan

n transforms to

log f(ey1, . . . , eyn) = aTy + b (b = log c)

• posynomial f(x) =
∑K

k=1 ckx
a1k
1 xa2k

2 · · ·xank
n transforms to

log f(ey1, . . . , eyn) = log

(

K
∑

k=1

ea
T
k y+bk

)

(bk = log ck)

• geometric program transforms to convex problem

minimize log
(

∑K
k=1 exp(a

T
0ky + b0k)

)

subject to log
(

∑K
k=1 exp(a

T
iky + bik)

)

≤ 0, i = 1, . . . ,m

Gy + d = 0
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Generalized inequality constraints

convex problem with generalized inequality constraints

minimize f0(x)
subject to fi(x) ≼Ki 0, i = 1, . . . ,m

Ax = b

• f0 : R
n → R convex; fi : R

n → Rki Ki-convex w.r.t. proper cone Ki

• same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize cTx
subject to Fx+ g ≼K 0

Ax = b

extends linear programming (K = Rm
+ ) to nonpolyhedral cones
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Semidefinite program (SDP)

minimize cTx
subject to x1F1 + x2F2 + · · ·+ xnFn +G ≼ 0

Ax = b

with Fi, G ∈ Sk

• inequality constraint is called linear matrix inequality (LMI)

• includes problems with multiple LMI constraints: for example,

x1F̂1 + · · ·+ xnF̂n + Ĝ ≼ 0, x1F̃1 + · · ·+ xnF̃n + G̃ ≼ 0

is equivalent to single LMI

x1

[

F̂1 0
0 F̃1

]

+x2

[

F̂2 0
0 F̃2

]

+· · ·+xn

[

F̂n 0
0 F̃n

]

+

[

Ĝ 0
0 G̃

]

≼ 0
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Eigenvalue minimization

minimize λmax(A(x))

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Sk)

equivalent SDP
minimize t
subject to A(x) ≼ tI

• variables x ∈ Rn, t ∈ R

• follows from
λmax(A) ≤ t ⇐⇒ A ≼ tI

Convex optimization problems 4–38
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Matrix norm minimization

minimize ∥A(x)∥2 =
(

λmax(A(x)TA(x))
)1/2

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Rp×q)

equivalent SDP

minimize t

subject to

[

tI A(x)
A(x)T tI

]

≽ 0

• variables x ∈ Rn, t ∈ R

• constraint follows from

∥A∥2 ≤ t ⇐⇒ ATA ≼ t2I, t ≥ 0

⇐⇒
[

tI A
AT tI

]

≽ 0
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