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Convex Optimization — Boyd & Vandenberghe

3. Convex functions

basic properties and examples
operations that preserve convexity
the conjugate function

quasiconvex functions
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Definition
f:R"™ — R is convex if dom f is a convex set and

flz+ (1 —0)y) <0f(z)+(1-0)f(y)

forall z,y edom f, 0 <60 <1

(y, f(y))
(z, f(x))

e f is concave if —f is convex

e f is strictly convex if dom f is convex and

flO0z +(1=0)y) <O0f(x)+(1-0)f(y)

forxz,ycdomf, x#y, 0<6<1

Convex functions
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Examples on R

convex:
e affine: ax +bon R, forany a,b € R

e exponential: e**, for any a € R

e powers: z¥on Ry, fora>1ora <0

e powers of absolute value: |z|P on R, for p > 1

e negative entropy: zlogx on R,

concave:
e affine: ax + b on R, for any a,b € R
e powers: x*on R, for0 < a <1

e logarithm: logx on R,
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Examples on R" and R™*"

affine functions are convex and concave; all norms are convex

examples on R"

e affine function f(z) = alx + b

o norms: ||z, = (1, |?) /7 for p > 1;

T ||oo = maxy |z

examples on R™™" (m x n matrices)

e affine function

i=1 j=1

e spectral (maximum singular value) norm

f(X) — HXHQ = O‘maX(X) — ()\maX(XTX))l/Q
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Restriction of a convex function to a line

f:R™ — R is convex if and only if the function ¢ : R — R,
g(t) = f(z + tv), domg = {t|x+tv € dom f}

is convex (in t) for any x € dom f, v € R"

can check convexity of f by checking convexity of functions of one variable

example. f:S" — R with f(X) =logdet X, dom f = S" |
Note that: X+tV = XA% (I +t XA-% V XA-%2) XA%  then det(X+tV) = det(X) det(l + t XA-%: V XA-Y%)
g(t) =logdet(X +tV) = logdet X + logdet(I +tX Y2V X~1/2)

— logdet X + Z log(1 4 tA;)
i=1

where )\; are the eigenvalues of X ~1/2V X ~1/2 =upw’ then 1+tUDU = U(l +tD)U’

g is concave in t (for any choice of X = 0, V'); hence f is concave
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Extended-value extension

extended-value extension f of f is

~

f(x)=f(z), z€domf,  f(z)=o00, x¢domf

often simplifies notation; for example, the condition

~

0<0<1 = [fllz+(1-0)y) <0f(x)+(1-0)f(y)
(as an inequality in RU {oc0}), means the same as the two conditions

e dom f is convex

e for x,y € dom f,
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First-order condition

f is differentiable if dom f is open and the gradient

_(01@) 0f(x) S
Vi) = ( Or;  Oxy '~ Ox, )

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) > f(x) +Vflx)'(y—z) forall z,y € dom f

f(y)
fl@)+ V) (y— =)

(z, f(z))

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian V2f(z) € S”,

_ 9P f(x)

2 L. —
v f(x)w &zziﬁazj’

1,7=1...,n,

exists at each x € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V2f(z) =0 forall z € dom f

o if V2f(z) = 0 for all z € dom f, then f is strictly convex
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Examples

x) = (1/2)z" Px + ¢« + r (with P € S™)

(

f(z)

quadratic function: f

V3 f(z)

= Px + q,

V

convex if P >0

| Az — b||3

least-squares objective: f(x)

convex (for any A)

LZ 7

LZ7HLT
Yo

2]

vy,

quadratic-over-linear: f(z,y) = 22/y

WY

i,

i
It

)
]
7

-\\\

convex for y > 0
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log-sum-exp: f(z) =1log> ,_,expxy is convex

1 1

vzf(x> — 1—Tzdiag(z) o (].TZ)2

2zt (zi = exp xx)

to show V2f(x) = 0, we must verify that v VZf(x)v > 0 for all v:

(2 k Zk”/%)(z:k zk) — (2 Uk k) >0

UTVQf(gj)’U = (Zk Zk)Q -

since (3, vizk)® < (02, 2z1v3) (D2, k) (from Cauchy-Schwarz inequality)

More clearly: a_k = v_k sqrt(z_k), b_k = sqrt(z_k), then <a,b> <= |a|_2 |b|_2

geometric mean: f(z) = ([[,_; zx)!/™ on R"._is concave

(similar proof as for log-sum-exp)
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Epigraph and sublevel set

a-sublevel set of f : R" — R: '\'Qy/' .

Co ={z cdomf | f(z) < a}

sublevel sets of convex functions are convex (converse is false) \7(

epigraph of f : R"” — R:

epi f = {(z,t) e R"™ |z € dom f, f(z) <t}

epi f

(the norm cone is the epigraph

f is convex if and only if epi f is a convex set of the norm function)
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Jensen’s inequality

basic inequality: if f is convex, then for 0 < 6 <1,

flz+ (1 —0)y) <0f(z)+(1—-0)f(y)

extension: if f is convex, then

f(Ez) < Ef(2)
for any random variable z

basic inequality is special case with discrete distribution

prob(z =z) =0, prob(z=y)=1-10
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Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show VZf(x) = 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective

Convex functions
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Positive weighted sum & composition with affine function

nonnegative multiple: af is convex if f is convex, a > 0
sum: f1 + fo convex if f1, fo convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

e log barrier for linear inequalities

flx) = —Zlog(bi —a; 1), domf={z|alz<b,i=1,...,m}
i=1
e (any) norm of affine function: f(x) = ||Ax + b||
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Pointwise maximum “</

if f1, ..., fm are convex, then f(x) = max{fi(x),..., fm(x)} is convex

examples

e piecewise-linear function: f(r) = max;—1._ (alx + b;) is convex

9o

e sum of r largest components of x € R":
f(z) = @py + 2 + - 4 2y

is convex (xy; is ith largest component of x)
proof:

flx) =max{z; +zi,+ - +x;, |1 <i1 <ia < - <ip <n}
An index of a vector entry goes from 1 to n
There are n choose r sets of r different indices
We can define m = n choose r functions that sum r entries (See the first line of slide)

The example goes through all n choose r sets of indicesi_1...i r
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Pointwise supremum

f does not need to be convex iny
A does not need to be a convex set

if f(x,y) is convex in x for each y € A, then

g(x) = sup f(z,y)
yeA

IS convex

examples
e support function of a set C: S¢(z) =sup,ccy’ « is convex
e distance to farthest point in a set C"

y
f() = sup |l — y| @

yel ~

e maximum eigenvalue of symmetric matrix: for X € S”,

)\maX(X): Sup yTXy
lyll2=1

(Example: definition of dual norm)

Convex functions 3-16


spongebob
f does not need to be convex in y
A does not need to be a convex set

spongebob

spongebob

spongebob

spongebob
x

spongebob
y

spongebob
C

spongebob

spongebob
(Example: definition of dual norm)


Composition with scalar functions

composition of g : R — R and h : R — R:

: .. |g convex, h convex  nondecreasing \_/ _/
f is convex if

g concave, h convex  nonincreasing 9 h

e proof (for n = 1, differentiable g, h)

f"(x) = h"(g(x))g'(@)” +HM (9(2))g"(2)  nondecreasing: h'>= 0

examples

e expg(x) is convex if g is convex

e 1/g(x) is convex if g is concave and positive
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Vector composition

composition of g : R" — R* and h: R* = R: (generalizes previous slide)

f(il?) — h(g(x)) — h(gl(x)ag2(x)7 T 7gk(x))

. .. g; convex, h convex  nondecreasing in each argument
f is convex if

g; concave, h convex  nonincreasing in each argument

proof (for n = 1, differentiable g, h)

" (@) = g'(2)" Vh(g(2))g'(x) + Vh(g(x))" " (x)

examples
e > " loggi(x) is concave if g; are concave and positive

e log> " expg;(x) is convex if g; are convex
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Minimization
if f(x,y) is convex in (x,y) and C'is a convex set, then

g(z) = yiggf(:v, Y)

IS convex
examples
o f(z,y) =2l Ax + 22T By + y! Cy with

[AB

BT C]zo, C >0

minimizing over y gives g(z) = inf, f(x,y) = 21 (A — BC~ Bz
g is convex, hence Schur complement A — BC~1BT =0 (iff [AB;B*TC]>=0)

e distance to a set: dist(x,S) = inf,cs ||z — y|| is convex if S is convex

(Example: Lagrange dual, we will see it next week)
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Perspective

the perspective of a function f : R™ — R is the function ¢ : R” x R — R,
g(a,t) = tf(xft),  domg={(z,t)| 2/t € dom, t >0}

g is convex if f is convex

examples
o f(z) =ax'xis convex; hence g(z,t) = 21z /t is convex for t > 0

e negative logarithm f(z) = —log x is convex; hence relative entropy
g(x,t) =tlogt — tlogx is convex on R?Hr

e if f is convex, then
g(x) = (chz+ d)f ((Az +b)/(c' z + d))

is convex on {x | ¢’z +d >0, (Az+b)/(c!'z +d) € dom f}

Convex functions 3-20



The COﬂjugate function (very useful in Chapter 5)

the conjugate of a function f is

fy)= sup (y'z— f(z))

rxedom f

Properties:
f* is convex (even if f is not):

y x - f(x) is convex iny
conjugate is pointwise supremum

f**=1f, iffis convex and epifis a closed set

for differentiable f, f* is also called Fenchel conjugate or Legendre transform
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f* is convex (even if f is not):

                  y x - f(x) is convex in y
                  conjugate is pointwise supremum

f** = f,   if f is convex and epi f is a closed set

for differentiable f, f* is also called Fenchel conjugate or Legendre transform
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examples

e negative logarithm f(z) = —logx
f*(y) = sup(zy+logw)
x>0
_ —1—log(~y) y <0
- 00 otherwise

e strictly convex quadratic f(z) = (1/2)z' Qz with Q € ST},

() Slip(nyc — (1/2)2" Qx)

1T—1
= 2yQ Y
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Quasiconvex functions

f:R™ — R is quasiconvex if dom f is convex and the sublevel sets
So={x €domf | f(x) < a}

are convex for all «

e f is quasiconcave if —f is quasiconvex

e f is quasilinear if it is quasiconvex and quasiconcave
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Examples

o \/|97| Is quasiconvex on R

o ceil(x) =inf{z € Z| z > x} is quasilinear
e logx is quasilinear on R,

e f(x1,x2) = x5 IS quasiconcave on R?H

e linear-fractional function

T b
f@):%, dom f = {z | Tz +d > 0}
is quasilinear
e distance ratio
|z — a2
f) =g dom = {alllw—al> <l —bl)
x — b2

IS quasiconvex
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Properties

modified Jensen inequality: for quasiconvex f

0<0<1 = f(Oz+(1-0)y) <max{f(z), f(y)}

first-order condition: differentiable f with cvx domain is quasiconvex iff

fy) < flz) = Vi) (y—2z)<0

values smaller than f(x)
level sets for different alpha

Vf(x)

normal vector defines a
supporting hyperplane to the
sublevel set {y | f(y) <= f(x)} at x

sums of quasiconvex functions are not necessarily quasiconvex
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