Convex Optimization — Boyd & Vandenberghe

3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions

Definition

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\mathbf{dom} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

- f is concave if -f is convex
- f is strictly convex if $\operatorname{dom} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{\mathbf{dom}} f$, $x \neq y$, $0 < \theta < 1$

Examples on R

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbb{R}^n and \mathbb{R}^{m \times n}

affine functions are convex and concave; all norms are convex

examples on R^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

• affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Restriction of a convex function to a line

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \to \mathbf{R}$,

$$g(t) = f(x + tv), \qquad \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$$

is convex (in t) for any $x \in \operatorname{\mathbf{dom}} f$, $v \in \mathbf{R}^n$

can check convexity of f by checking convexity of functions of one variable

example.
$$f : \mathbf{S}^n \to \mathbf{R}$$
 with $f(X) = \log \det X$, $\operatorname{dom} f = \mathbf{S}_{++}^n$
Note that: $X+tV = X^{1/2} (I + t X^{-1/2} V X^{-1/2}) X^{1/2}$ then $\det(X+tV) = \det(X) \det(I + t X^{-1/2} V X^{-1/2})$
 $g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$
 $= \log \det X + \sum_{i=1}^n \log(1 + t\lambda_i)$

where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2} = UDU'$ then I + t UDU' = U(I + t D)U'g is concave in t (for any choice of $X \succ 0$, V); hence f is concave

Extended-value extension

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \operatorname{dom} f, \qquad \tilde{f}(x) = \infty, \quad x \not\in \operatorname{dom} f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \quad \Longrightarrow \quad \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbf{R} \cup \{\infty\}$), means the same as the two conditions

- $\mathbf{dom} f$ is convex
- for $x, y \in \operatorname{\mathbf{dom}} f$,

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

First-order condition

f is differentiable if $\operatorname{\mathbf{dom}} f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{\mathbf{dom}} f$

Second-order conditions

f is twice differentiable if dom f is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \operatorname{\mathbf{dom}} f$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{\mathbf{dom}} f$, then f is strictly convex

Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if $P \succeq 0$

least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T (Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y > 0

Convex functions

log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \qquad (z_k = \exp x_k)$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \ge 0$ for all v:

$$v^T \nabla^2 f(x) v = \frac{(\sum_k z_k v_k^2) (\sum_k z_k) - (\sum_k v_k z_k)^2}{(\sum_k z_k)^2} \ge 0$$

since $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2) (\sum_k z_k)$ (from Cauchy-Schwarz inequality)

More clearly: a_k = v_k sqrt(z_k), b_k = sqrt(z_k), then <a,b> <= |a|_2 |b|_2

geometric mean: $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$ on \mathbb{R}^n_{++} is concave (similar proof as for log-sum-exp)

Epigraph and sublevel set

 α -sublevel set of $f : \mathbf{R}^n \to \mathbf{R}$:

 $C_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$

sublevel sets of convex functions are convex (converse is false) epigraph of $f : \mathbb{R}^n \to \mathbb{R}$:

$$epi f = \{(x,t) \in \mathbb{R}^{n+1} \mid x \in dom f, f(x) \le t\}$$

f is convex if and only if epi f is a convex set

(the norm cone is the epigraph of the norm function)

Jensen's inequality

basic inequality: if f is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

 $f(\mathbf{E}\,z) \le \mathbf{E}\,f(z)$

for any random variable z

basic inequality is special case with discrete distribution

$$\operatorname{prob}(z=x) = \theta, \quad \operatorname{prob}(z=y) = 1 - \theta$$

Operations that preserve convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals) composition with affine function: f(Ax + b) is convex if f is convex

examples

• log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m}(a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]} \text{ is } i \text{th largest component of } x)$

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$
An index of a vector entry goes from 1 to n
There are n choose r sets of r different indices
We can define m = n choose r functions that sum r entries (See the first line of slide)
The example goes through all n choose r sets of indices i_1...i_r 3-15

Pointwise supremum

if f(x,y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

f does not need to be convex in y A does not need to be a convex set

is convex

examples

- support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} \|x - y\|$$

• maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2=1} y^T X y$$

(Example: definition of dual norm)

Convex functions

Composition with scalar functions

composition of $g : \mathbf{R}^n \to \mathbf{R}$ and $h : \mathbf{R} \to \mathbf{R}$:

$$f(x) = h(g(x))$$

f is convex if	g convex, h convex	nondecreasing		
	g concave, h convex	nonincreasing	g	h

• proof (for
$$n = 1$$
, differentiable g, h)

$$f^{\prime\prime}(x) = h^{\prime\prime}(g(x))g^{\prime}(x)^2 + h^{\underline{\prime}}(g(x))g^{\prime\prime}(x) \qquad \text{nondecreasing: h' >= 0}$$

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition

composition of $g : \mathbf{R}^n \to \mathbf{R}^k$ and $h : \mathbf{R}^k \to \mathbf{R}$: (generalizes previous slide)

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if $\begin{array}{c} g_i \text{ convex, } h \text{ convex} \\ g_i \text{ concave, } h \text{ convex} \end{array}$ nondecreasing in each argument

proof (for n = 1, differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Minimization

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

•
$$f(x,y) = x^T A x + 2x^T B y + y^T C y$$
 with

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0, \qquad C \succ 0$$

minimizing over y gives $g(x) = \inf_y f(x,y) = x^T (A - BC^{-1}B^T) x$

g is convex, hence Schur complement $A-BC^{-1}B^T\succeq 0$ – (iff [A B; B^T C] >= 0)

• distance to a set: $\operatorname{dist}(x, S) = \inf_{y \in S} ||x - y||$ is convex if S is convex

(Example: Lagrange dual, we will see it next week)

Convex functions

Perspective

the **perspective** of a function $f : \mathbf{R}^n \to \mathbf{R}$ is the function $g : \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$,

$$g(x,t) = tf(x/t), \quad \text{dom } g = \{(x,t) \mid x/t \in \text{dom } f, t > 0\}$$

g is convex if f is convex

examples

- $f(x) = x^T x$ is convex; hence $g(x,t) = x^T x/t$ is convex for t > 0
- negative logarithm $f(x) = -\log x$ is convex; hence relative entropy $g(x,t) = t\log t t\log x$ is convex on \mathbf{R}^2_{++}
- if f is convex, then

$$g(x) = (c^T x + d) f\left((Ax + b)/(c^T x + d)\right)$$

is convex on $\{x \mid c^T x + d > 0, \ (Ax + b)/(c^T x + d) \in \operatorname{\mathbf{dom}} f\}$

The conjugate function (very useful in Chapter 5)

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \operatorname{dom} f} (y^T x - f(x))$$

Properties:

f* is convex (even if f is not):

y x - f(x) is convex in y conjugate is pointwise supremum

f** = f, if f is convex and epi f is a closed set

for differentiable f, f* is also called Fenchel conjugate or Legendre transform

examples

• negative logarithm $f(x) = -\log x$

$$f^*(y) = \sup_{x>0} (xy + \log x)$$
$$= \begin{cases} -1 - \log(-y) & y < 0\\ \infty & \text{otherwise} \end{cases}$$

• strictly convex quadratic $f(x) = (1/2) x^T Q x$ with $Q \in \mathbf{S}_{++}^n$

$$f^{*}(y) = \sup_{x} (y^{T}x - (1/2)x^{T}Qx)$$
$$= \frac{1}{2}y^{T}Q^{-1}y$$

Quasiconvex functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is quasiconvex if $\operatorname{\mathbf{dom}} f$ is convex and the sublevel sets

$$S_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

are convex for all $\boldsymbol{\alpha}$

- f is quasiconcave if -f is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on **R**
- $\operatorname{ceil}(x) = \inf\{z \in \mathbf{Z} \mid z \ge x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbf{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \qquad \text{dom} f = \{x \mid c^T x + d > 0\}$$

is quasilinear

• distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \qquad \mathbf{dom} \ f = \{x \mid \|x - a\|_2 \le \|x - b\|_2\}$$

is quasiconvex

Properties

modified Jensen inequality: for quasiconvex f

$$0 \le \theta \le 1 \quad \Longrightarrow \quad f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

sums of quasiconvex functions are not necessarily quasiconvex