11. Equality constrained minimization

- equality constrained minimization
- eliminating equality constraints
- Newton's method with equality constraints
- infeasible start Newton method
- implementation

Equality constrained minimization

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- f convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with rank $A=p<\mathrm{n} \quad$ (fewer constraints than unknowns)
- we assume p^{\star} is finite and attained
optimality conditions: x^{\star} is optimal iff there exists a ν^{\star} such that

$$
\nabla f\left(x^{\star}\right)+A^{T} \nu^{\star}=0, \quad A x^{\star}=b
$$

equality constrained quadratic minimization (with $P \in \mathbf{S}_{+}^{n}$)

optimality condition:

- coefficient matrix is called KKT matrix, if non-singular => unique primal-dual pair ($\mathrm{x}^{*}, \mathrm{v}^{*}$)
- KKT matrix is nonsingular if and only if
P is pos.def. in the nullspace of A : $x=F z$, where $z<>0$, rank $F=n-p$
($\mathrm{A}=\mathrm{U}$ D V', columns of V for which $\mathrm{d}_{\mathrm{i}} \mathrm{i}=0$ are the "axes" of the nullspace)

$$
A x=0, \quad x \neq 0 \quad \Longrightarrow \quad x^{T} P x>0
$$

Assume $A x=0, x<>0, P x=0$, then $\left[P A^{\prime}\right][x]=[0]$ and thus, the KKT matrix is singular
[A 0] [0] [0]
Assume KKT is singular, there exists x in $R^{\wedge} n, z$ in $R^{\wedge} p$ such that $\left[P A^{\prime}\right][x]=[0]$
[A O] [z] [0]
thus, $A x=0$ and $P x+A^{\prime} z=0=>0=x^{\prime}\left(P x+A^{\prime} z\right)=x^{\prime} P x+(A x)^{\prime} z=x^{\prime} P x=>P x=0$ (which contradicts P pos.semidef. unless $x=0$)
Then we must have $z<>0$, but then $0=P x+A^{\prime} z=A^{\prime} z$ (which contradicts rank $A=p$)

Newton step

Newton step $\Delta x_{\text {nt }}$ of f at feasible x is given by solution v of

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=\left[\begin{array}{c}
-\nabla f(x) \\
0
\end{array}\right] \begin{aligned}
& \text { equivalent to: } \\
& d^{\wedge} \wedge f(x) v+A^{\prime} w+\operatorname{df}(x)=0 \\
& A v=0
\end{aligned}
$$

interpretations

- Δx_{nt} solves second order approximation (with variable v) $\begin{gathered}\text { assume } \mathrm{x} \text { is feasible: } \mathrm{Ax}=\mathrm{b} \\ \text { we want } \mathrm{Av}=0\end{gathered}$

$$
\begin{array}{ll}
\operatorname{minimize} & \widehat{f}(x+v)=f(x)+\nabla f(x)^{T} v+(1 / 2) v^{T} \nabla^{2} f(x) v \\
\text { subject to } & A(x+v)=b
\end{array}
$$

- Δx_{nt} equations follow from linearizing optimality conditions

$$
\nabla f(x+v)+A^{T} w \approx \nabla f(x)+\nabla^{2} f(x) v+A^{T} w=0, \quad A(x+v)=b
$$

Newton decrement

$$
\lambda(x)=\left(\Delta x_{\mathrm{nt}}^{T} \nabla^{2} f(x) \Delta x_{\mathrm{nt}}\right)^{1 / 2}=\left(-\nabla f(x)^{T} \Delta x_{\mathrm{nt}}\right)^{1 / 2}
$$

properties

- gives an estimate of $f(x)-p^{\star}$ using quadratic approximation \widehat{f} :

$$
f(x)-\inf _{A y=b} \widehat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

```
Let \(H=d^{\wedge} 2 f(x)\)
    \(d=d f(x)\)
    \(\lambda=\lambda(x)\)
    \(\Delta x=\Delta x \_n t=v\) in previous slide
```

$\left[\mathrm{H}^{\prime}\right][\Delta \mathrm{x}]=[-\mathrm{d}]$
[A 0] [w] [0]
then: $\mathrm{A} \Delta \mathrm{x}=0$
$f^{\wedge}(x+\Delta x)=f(x)+d^{\prime} \Delta x+1 / 2 \Delta x^{\prime} H \Delta x$
$L(\Delta x, w)=d^{\prime} \Delta x+1 / 2 \Delta x^{\prime} H \Delta x+w(A \Delta x)$
$0=d L / d \Delta x=d+H \Delta x+A^{\prime} w$

Then $d=-H \Delta x-A^{\prime} w$
$H \Delta x=-d-A^{\prime} w$

Let $\mathrm{y}=\mathrm{x}+\Delta \mathrm{x}$
inf_\{Ay=b\} $f^{\wedge}(y)=f^{\wedge}(x+\Delta x)$

$$
\begin{aligned}
& =f(x)+d^{\prime} \Delta x+1 / 2 \Delta x^{\prime} H \Delta x \\
& =f(x)-\Delta x^{\prime} H \Delta x-w^{\prime} A \Delta x+1 / 2 \Delta x^{\prime} H \Delta x \ldots \text { since } d=-H \Delta x-A^{\prime} w \\
& =f(x)-1 / 2 \Delta x^{\prime} H \Delta x
\end{aligned}
$$

$$
f(x)-\text { inf } _y f^{\wedge}(y)=1 / 2 \Delta x^{\prime} H \Delta x=1 / 2 \lambda^{\wedge} 2
$$

$$
\text { Thus } \lambda=\operatorname{sqrt}\left(\Delta x^{\prime} H \Delta x\right)
$$

Similarly:

$$
\begin{aligned}
\text { inf_\{Ay=b\} } f^{\wedge}(y) & =f^{\wedge}(x+\Delta x) \\
& =f(x)+d^{\prime} \Delta x+1 / 2 \Delta x^{\prime} H \Delta x \\
& =f(x)+d^{\prime} \Delta x-1 / 2 d^{\prime} \Delta x-1 / 2 w^{\prime} A \Delta x \\
& =f(x)+1 / 2 d^{\prime} \Delta x
\end{aligned}
$$

$f(x)-\inf _y f^{\wedge}(y)=-1 / 2 d^{\prime} \Delta x=1 / 2 \lambda^{\wedge} 2$
Thus $\lambda=\operatorname{sqrt}\left(-d^{\prime} \Delta x\right.$)

Newton's method with equality constraints

given starting point $x \in \operatorname{dom} f$ with $A x=b$, tolerance $\epsilon>0$. repeat

1. Compute the Newton step and decrement $\Delta x_{\mathrm{nt}}, \lambda(x)$.
2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x:=x+t \Delta x_{\mathrm{nt}}$.

- a feasible descent method: $x^{(k)}$ feasible and $f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)$
- affine invariant $\begin{aligned} & \min f \sim(y)=f(T y) \\ & \text { s.t. } \mathrm{T}^{2} y=b\end{aligned}$ then $\Delta y=T^{\wedge}-1 \Delta x, \quad y^{\wedge}(k)=y+\Delta y=T^{\wedge}-1(x+\Delta x)=T^{\wedge}-1 x^{\wedge}(k)$

Newton step at infeasible points

2nd interpretation of page 11-6 extends to infeasible x (i.e., $A x \neq b$) linearizing optimality conditions at infeasible x (with $x \in \operatorname{dom} f$) gives

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \\
A & 0
\end{array}\right] \underset{\text { Although } A \mathrm{x}<>\mathrm{b} \text {, we want } \mathrm{A}(\mathrm{x}+\Delta \mathrm{x})=\mathrm{b} \text {, thus } \mathrm{A} \Delta \mathrm{x}=-(\mathrm{Ax}-\mathrm{b})}{\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
w
\end{array}\right]}=-\left[\begin{array}{c}
\nabla f(x) \\
A x-b
\end{array}\right]
$$

primal-dual interpretation

- write optimality condition as $r(y)=0$, where $\min f(x) \quad L(x, v)=f(x)+v(A x-b)$
- write optimality condition as $r(y)=0$, where s.t. $A x=b \quad d L / d x=\operatorname{df}(x)+A^{\prime} v=0$

$$
y=(x, \nu), \quad r(y)=\left(\nabla f(x)+A^{T} \nu, A x-b\right)
$$

- linearizing $r(y)=0$ gives $r(y+\Delta y) \approx r(y)+\operatorname{Dr}(y) \Delta y=0$: (1st order Taylor)

$$
\text { Since } \operatorname{Dr}(\mathrm{y}) \Delta \mathrm{y}=-\mathrm{r}(\mathrm{y}) \text { we have: }
$$

$\operatorname{Dr}(\mathrm{y}) _\{11\}=\mathrm{d}\left(\mathrm{r}(\mathrm{y}) _1\right) / \mathrm{dx}=\mathrm{d}\left(\mathrm{df}(\mathrm{x})+\mathrm{A}^{\prime} \mathrm{v}\right) / \mathrm{dx}=\mathrm{d}^{\wedge} 2 \mathrm{f}(\mathrm{x})$
$\operatorname{Dr}(\mathrm{y}) _\{11\}=\mathrm{d}\left(\mathrm{r}(\mathrm{y}) _1\right) / \mathrm{dx}=\mathrm{d}\left(\mathrm{df}(\mathrm{x})+\mathrm{A}^{\prime} \mathrm{v}\right) / \mathrm{dx}=\mathrm{d}^{\wedge} 2 \mathrm{f}(\mathrm{x})$
$\operatorname{Dr}(\mathrm{y}) _\{12\}=\mathrm{d}\left(\mathrm{r}(\mathrm{y}) _1\right) / \mathrm{dv}=\mathrm{d}\left(\mathrm{df}(\mathrm{x})+\mathrm{A}^{\prime} \mathrm{v}\right) / \mathrm{dv}=\mathrm{A}^{\prime}$
$\operatorname{Dr}(\mathrm{y}) _\{12\}=\mathrm{d}\left(\mathrm{r}(\mathrm{y}) _1\right) / \mathrm{dv}=\mathrm{d}\left(\mathrm{df}(\mathrm{x})+\mathrm{A}^{\prime} \mathrm{v}\right) / \mathrm{dv}=\mathrm{A}^{\prime}$
$\operatorname{Dr}(\mathrm{y}) _\{21\}=\mathrm{d}\left(\mathrm{r}(\mathrm{y}) _2\right) / \mathrm{dx}=\mathrm{d}(\mathrm{Ax}-\mathrm{b}) / \mathrm{dx}=\mathrm{A}$
$\operatorname{Dr}(\mathrm{y}) _\{21\}=\mathrm{d}\left(\mathrm{r}(\mathrm{y}) _2\right) / \mathrm{dx}=\mathrm{d}(\mathrm{Ax}-\mathrm{b}) / \mathrm{dx}=\mathrm{A}$
Dr(y)_\{22\} = d(r(y)_2)/dv = d(Ax-b)/dv = 0
Dr(y)_\{22\} = d(r(y)_2)/dv = d(Ax-b)/dv = 0

Infeasible start Newton method

Since we want $r(y)=0$, it is natural to try to decrease the norm of $r(y)$
given starting point $x \in \operatorname{dom} f, \nu$, tolerance $\epsilon>0, \alpha \in(0,1 / 2), \beta \in(0,1)$. repeat

1. Compute primal and dual Newton steps $\Delta x_{\mathrm{nt}}, \Delta \nu_{\mathrm{nt}}$.
2. Backtracking line search on $\|r\|_{2}$.
$t:=1$.
while $\left\|r\left(x+t \Delta x_{\mathrm{nt}}, \nu+t \Delta \nu_{\mathrm{nt}}\right)\right\|_{2}>(1-\alpha t)\|r(x, \nu)\|_{2}, \quad t:=\beta t$.
3. Update. $x:=x+t \Delta x_{\mathrm{nt}}, \nu:=\nu+t \Delta \nu_{\mathrm{nt}}$.
until $A x=b$ and $\|r(x, \nu)\|_{2} \leq \epsilon$.

- not a descent method: $f\left(x^{(k+1)}\right)>f\left(x^{(k)}\right)$ is possible
- directional derivative of $\|r(y)\|_{2}$ in direction $\Delta y=\left(\Delta x_{\mathrm{nt}}, \Delta \nu_{\mathrm{nt}}\right)$ is

$$
\left.\frac{d}{d t}\|r(y+t \Delta y)\|_{2}\right|_{t=0}=-\|r(y)\|_{2} \quad \begin{aligned}
& \text { Thus, the norm of } r \\
& \text { decreases in the Newton } \\
& \text { direction }
\end{aligned}
$$

Solving KKT systems

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=-\left[\begin{array}{l}
g \\
h
\end{array}\right]
$$

solution methods

$$
\begin{aligned}
H v+A^{\prime} w=-g \quad & =>=-H^{\wedge}-1\left(g+A^{\prime} w\right) \\
A v=-h & = \\
& \\
& =A H^{\wedge}-1 g-A H^{\wedge}-1 A^{\prime} w=-h \\
& w=\left(A H^{\wedge}-1 A^{\prime}\right)^{\wedge}-1\left(h-A H^{\wedge}-1 g\right)
\end{aligned}
$$

- $\operatorname{LDL}^{\top}$ factorization
- elimination (if H nonsingular)

$$
A H^{-1} A^{T} w=h-A H^{-1} g, \quad H v=-\left(g+A^{T} w\right)
$$

- elimination with singular H : write as

Originally: $\quad H v+A^{\prime} w=-g, \quad A v=-h$
Now: $\quad\left(H+A^{\prime} Q A\right) v+A^{\prime} w=-q-A^{\prime} Q h, \quad A v=-h$
Equivalent if: $A^{\prime} Q A v=-A^{\prime} Q h \quad \ldots$ true since $A v=-h$

$$
\left[\begin{array}{cc}
H+A^{T} Q A & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=-\left[\begin{array}{c}
g+A^{T} Q h \\
h
\end{array}\right]
$$

with $Q \succeq 0$ for which $H+A^{T} Q A \succ 0$, and apply elimination

$$
\begin{aligned}
& \text { Recall: } A x=0, x<>0=>x P x>0 \\
& \text { Therefore } x\left(P+A^{\prime} Q A\right) x=x P x+\left|Q^{\wedge 1} 1 / 2 A x\right| _2^{\wedge} 2>0
\end{aligned}
$$

