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ABSTRACT

Whitlock, David Michael. M.S., Purdue University, May 2000. Persistence-Enabled Opti-
mization of Java Programs. Major Professor: Antony Hosking.

Programs contained within a persistent store provide a unique opportunity for whole-

program analysis and optimization. In particular, several constraints on optimization can be

relaxed in a persistent setting, allowing aggressive off-line optimizations to be performed.

This work explores interprocedural optimizations of Java programs residing within a per-

sistent store. Call site customization and method inlining are safely performed on Java

methods without the need to adjust methods while they execute. A feedback mechanism

between the Java virtual machine and the optimizer allows new classes to be added to the

system while maintaining correctly optimized code. Our results show a significant decrease

in the number of method invocations and a noticeable increase in performance in certain

execution environments.
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1 INTRODUCTION

Because of its dynamicism, object-orientation, and platform independence the JavaTM

programming language has become a popular language choice for application program-

ming. However, the same features that make the Java language popular also make it diffi-

cult to optimize. Unlike traditional procedural programming languages, complete whole-

program analysis cannot be performed on Java programs. The object-oriented program-

ming style encourages the use of small methods that cannot be extensively optimized.

Additionally, the Java execution model places constraints on the types of program opti-

mizations that can be performed.

1.1 Interprocedural Analysis

Much work has been done in the area of interprocedural analysis and optimizations

for object-oriented programming languages. Method inlining is a popular and effective

optimization that not only removes the overhead of method invocation, but also provides the

optimizer with a larger code context in which to optimize. Unfortunately, interprocedural

analyses are often expensive and complex and require that certain assumptions about the

program be made. However, at runtime additional information that is not available during

the analysis may enter the system and invalidate certain optimizations. The invalidation and

subsequent “deoptimization” of the optimized code is essential to the correct execution of

a program.
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1.2 Orthogonal Persistence

This work presents a novel approach to whole-program optimization that performs ex-

tensive off-line analysis and optimization of Java programs. The analysis and optimization

data, as well as the program being optimized, are maintained in a persistent store. At run-

time, operations that invalidate the optimizations can be detected. The data in the store

is then consulted and the optimized code is corrected. By coupling the optimizer and the

runtime system, significant off-line analysis can occur while guaranteeing safe, correct

program execution.

1.3 Measurements

We applied our interprocedural optimizations to a number of Java programs. Static

and dynamic measurements such as number and kind of bytecodes executed, elapsed time,

and hardware cache behavior were taken. The results demonstrate the ability of our op-

timizations to reduce significantly the number of methods that are invoked and to reduce

the overhead of many of the invocations that remain. Our results also demonstrate that

intraprocedural optimizations do indeed take advantage of the larger context provided by

interprocedural optimizations and impact performance further.

1.4 Overview

The rest of this thesis is organized as follows. In Chapter 2 we discuss the interpro-

cedural analysis and optimizations we perform on Java programs. Chapter 3 describes the

implementation of these optimizations using the Bytecode-Level Optimizations and Anal-

ysis Tools [Nystrom 1998] optimization framework. Chapter 4 outlines the experimental

methodology used to measure the performance of optimized programs and presents the re-

sults of those experiments. We conclude with a discussion of related work and directions

for future work.
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2 BACKGROUND

2.1 The Java Object Model

The object-oriented programming paradigm aims to provide modular and reusable pro-

grams and libraries through data and code encapsulation. The object model for the Java

programming language is described in Gosling et al. [1996]. Atypeis associated with pro-

gram entities such as variables and expressions. A type limits the values an entity may hold

and defines the operations the entity must provide. Aclassdefines a new type and describes

how it is implemented. Anobjectis a class instance or an array. At compile-time, we say

that an object “has a type” where at run-time we say that it “belongs to a class”. Classes

that are declared to beabstract cannot be instantiated. Aninterfacedeclaration specifies a

type consisting of constants and abstract methods.

With the exception of thejava.lang.Object class, all classes have adirect superclass.

A class is said to be adirect subclassof its direct superclass. A direct subclassderives

its implementation from its direct superclass. Classes that are markedfinal may not have

subclasses. The derivation relationship among classes forms aclass hierarchy.

A typeS is assignment compatiblewith a typeT according to the following rules:

� If S is a class type

– If T is a class type, thenS andT must be the same class orS must be a subclass

of T

– If T is a interface type, thenS must implementT

� If S is an interface type
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– If T is a class type, it must bejava.lang.Object

– If T is an interface type, thenS andT must be the same interface orS must be

a subinterface ofT

� If S is an array typeSC[] whose components are of typeSC

– If T is a class type, thenT must bejava.lang.Object

– If T is an interface type, thenT must bejava.lang.Cloneable or java.io.Serializable

– If T is an array typeTC[] whose components are of typeTC, thenTC must be

assignment compatible toSC

A methodis executable code that can be invoked and is associated with a class. Aclass

methodis invoked relative to a class type, while aninstance methodis invoked with respect

to a class instance. Methods are invoked at acall site. The method containing the call site is

referred to as thecaller and the method that is invoked is referred to as thecallee. Methods

have a fixed number of formal parameters, each of which has a type, and may return a value

to the caller. A method’s signature consists of the name of the method and the number and

types of the method’s formal parameters. Aconstructoris executable code that initializes

class instances. Unlike methods, constructors cannot be invoked directly.Nativemethods

are implemented in platform-dependent code.

A class thatdirectly implementsan interface has an implementation of all the abstract

methods specified by the interface. It is possible that a class may declare a method with

the same signature as a method in its superclass. If the method is an instance method, we

say that the methodoverridesthe method of its superclass. If the method is a class method,

we say that the methodhidesthe method of the superclass. A classinheritsthe methods of

its direct superclass and direct superinterfaces that are neither overridden nor hidden by a

declaration in the class.
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2.2 Methods

2.2.1 Call Site Binding

When a Java program is compiled, several steps determine the compile-time declaration

of a call site. First, the callee method’s signature along with a class or interface in which to

search for a declaration matching the signature are computed. If in the source program the

call simply consists of a method name, then the declaring class of the caller is searched. If

the call consists of the name of a class type and a method name, then that class is searched.

If the call consists of an expression and a method name, then the compile-time type of the

expression is searched. If the call consists of the keywordsuper and a method name, then

the superclass of the caller’s declaring class is searched.

A method declaration isapplicable to a call site if and only if the declaration and

method specified at the call site have the same number of parameters and the type of each

actual argument are assignment compatible with the declared type of the corresponding

formal parameter. More than one method declaration may be applicable to an invocation.

In this case, the mostspecificmethod is chosen. A method,m, declared in classT is more

specific than a method,m, declared inU if and only if T is assignment compatible withU

and each parameter type inT is assignment compatible with its corresponding parameter

type in U. The most specific applicable method declaration for a call site is called the

compile-time declaration. The second step searches the class produced by the first step to

locate method declarations applicable to the call site.

If a call site’s compile-time declaration is an instance method, then the call site isdy-

namically bound. Dynamically bound call sites require a run-time lookup to compute the

method that is invoked. The target class instance on which a dynamically bound virtual

invocation is performed in called thereceiverof the invocation. If the method specified at

the call site is a class method, then we say that the call site isstatically bound. The method

specified at a call site is the method that will be invoked at run time.
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2.2.2 Method Invocation

The run-time invocation of a call to methodm involves several steps. First, the tar-

get class instance of the invocation is computed, if the method invocation is dynamically

bound. Then, the actual arguments of the invocation are evaluated. Next, the method to in-

voke is located. Statically bound invocations have no receiver and overriding is forbidden.

So, the method invoked run-time is always the method to which the call site is statically

bound. If the invocation is dynamically bound, adynamic method lookupdetermines which

method is invoked. The dynamic method lookup starts with the run-time type,S, of the

receiver.S is searched for a method declaration that matchesm. Two method declarations

match if they have the name number and types of parameters and they have the same return

type. If no method declared inS matchesm, then the superclass ofS is searched. This pro-

cess is applied recursively up the class hierarchy until a match is found. Finally, program

control is transferred to the method being invoked.1

2.3 Type Analysis

Type analysis computes information about the types of various program entities. The

analyses discussed here determine the possible types of the receiver of a dynamically bound

call site and thus the set of possible methods that could be invoked. Type analysis creates a

call graph for a program that is consulted when performing certain optimizations. Various

aspects of the type analyses presented in this thesis will be demonstrated using the classes

in Figure 2.1.

2.3.1 Class Hierarchy Analysis

Class hierarchy analysis [Dean et al. 1995; Fern´andez 1995; Diwan et al. 1996] uses

the class inheritance hierarchy in conjunction with static type information about a call site

to compute the possible methods that may be invoked. Consider thegetArea method in

1Note that most implementations of dynamic method lookup use caching techniques such as virtual tables

to increase efficiency.
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Triangle Circle Rectangle

Shape

Square

abstract class Shape {
abstract float area();
float getPI() { return(3.14579F); }
static float square(float f) { return(f*f); }

}

class Triangle extends Shape {
float b, h;
Triangle(float b, float h) { this.b = b; this.h = h; }
float area() { return(b*h/2); }

}

class Circle extends Shape {
float r;
Circle(float r) { this.r = r; }
float area() { return(getPI() * Shape.square(r)); }

}

class Rectangle extends Shape {
float s1, s2;
Rectangle(float s1, float s2) { this.s1 = s1; this.s2 = s2; }
float area() { return(s1*s2); }

}

class Square extends Rectangle {
Square(float s) { super(s, s); }

}

Figure 2.1: Example class hierarchy
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float getArea(boolean b) {
Shape s;
if(b)

s = new Circle(2);
else

s = new Square(3);
float area = s.area();
return(area);

}

Figure 2.2: Calling methodarea

Figure 2.2 which contains a call to the instance methodarea. Depending on the runtime

type of the receiver of the method, the call could resolve to the implementation of the

area method in any of theTriangle, Circle, or Rectangle classes. Observe that if the

compile-time type of the receiver of the invocation ofarea is Rectangle or its subclass

Square, the only method that could possible be invoked is thearea implementation in

Rectangle because no subclass ofRectangle overridesarea. This observation is key to

class hierarchy analysis.

Class hierarchy analysis creates a program’s call graph. Acall graphis a directed graph

that models the calling relationships among a program’s methods. Each node in a call graph

represents a method containing a set of call sites. The roots of the call graph correspond to

the entry points of the program (e.g. themain method). Each edge represents one method

(potentially) calling another. If methodfoo calls or may call methodbar, there is a directed

edge from the node representingfoo to the node representingbar.

The call graph contains several important pieces of information. First, it demonstrates

which methods may be invoked during the execution of the program. Such methods are

referred to as beinglive. Only methods that have nodes in the call graph are interesting

and need to be considered for further analysis. The call graph reveals which methods could

potentially be invoked at a call site. If only one method can be invoked at a call site, then

the site is said to bemonomorphic. Otherwise, it is said to bepolymorphic. Call sites that

are monomorphic do not require a dynamic method lookup at run-time.
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2.3.2 Rapid Type Analysis

Rapid type analysis (RTA) [Bacon and Sweeney 1996] extends class hierarchy analysis

by using class instantiation information to reduce the set of potential receiver types at a call

site. Consider the program in Figure 2.2. Class hierarchy analysis stated that the call to

area could invoke thearea method ofTriangle, Circle, or Rectangle. However, a quick

glance at the program reveals that it is impossible for thearea method implemented in

Triangle to be invoked because neitherTriangle nor any of its subclasses is instantiated.

Classes that are instantiated is considered to belive.

RTA must be careful in the way that it marks a class as being instantiated. Invoking

a class’s constructor does not necessarily mean that the class is instantiated. Consider an

invocation of the one-argument constructor ofSquare. Calling this constructor indicates

that classSquare is instantiated. However,Square’s constructor invokes the constructor

of its superclass,Rectangle. This invocation ofRectangle’s constructor does not indicate

thatRectangle is instantiated.

Rapid type analysis traverses a program’s call graph starting at its root methods. One

following operations occurs at an invocation of methodm.

� If the call site is statically bound, thenm is marked as being live and is examined

further.

� If the call site is dynamically bound, then the set of potential receiver types is cal-

culated using class hierarchy analysis. For each potential receiver type that has been

instantiated,T, the implementation ofm that would be invoked with receiver typeT

is made live and is examined further. The implementations ofm in the uninstantiated

classes are “blocked” on each uninstantiated typeT.

� If m is a constructor of classT and the caller is not a constructor of a subclass ofT,

the classT is instantiated andm becomes live and is examined. Additionally, any

methods that were blocked onT are unblocked and examined.

In our running example, classesCircle and Square are live. The constructors for

Circle andSquare, thearea methods ofCircle andRectangle, and thegetPI andsquare
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Circle()

getArea()

Square() Rectangle.area()

Math.square()Shape.getPI()

Circle.area()

Figure 2.3: The call graph forgetArea

methods are all live. Thearea method ofTriangle is blocked onTriangle. The call graph

compute by using rapid type analysis forgetArea is given in Figure 2.3.

2.4 Call Site Customization

The compiler for the SELF language introduced the notion of call sitecustomization[Cham-

bers et al. 1989]. Customization optimizes a dynamically bound call site based on the type

of the receiver. If the type of the receiver can be precisely determined during the compila-

tion phase, then the call site can be statically bound.

The call toarea can be customized in the following manner. Rapid type analysis

concluded that the thearea method of eitherCircle or Rectangle will be invoked. Cus-

tomization replaces the virtual invocations with two type tests and corresponding statically

bound invocations (in the form of a call to a class method) as show in Figure 2.4. If the call

site is monomorphic, no type test is necessary. Two class methods,$area in Circle and

$area in Rectangle have been created containing the same code as the virtual versions of

area. In the case that the receiver type is none of the expected types, the virtual method is

executed.

Once a call to an instance method has been converted into a call to a class method, the

call may beinlined. Inlining consists of copying the code from the callee method into the

caller method. Thus, inlining completely eliminates any overhead associated with invoking

the method.
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float getArea(boolean b) {
Shape s;
if(b)

s = new Circle(2);
else

s = new Square(3);
float area;
if(s instanceof Circle) {

Circle c = (Circle) s;
area = Circle.$area(c);

} else if(s instanceof Rectangle) {
Rectangle r = (Rectangle) s;
area = Rectangle.$area(r);

} else {
area = s.area();

}
return(area);

}

Figure 2.4: Customized call toarea

2.5 Preexistence

When customizing call sites certain assumptions are made about the classes in the pro-

gram. For instance, the analysis may determine that a call site is monomorphic and inlines

the invocation. However, additional classes may enter the system that invalidate assump-

tions made during the analysis. In this case the optimized code must be reoptimized.

This situation is further exacerbated by the fact that optimized code may need to be

reoptimized while it is executing. Consider the program in Figure 2.5a. The methodget-

SomeShape may potentially load a subclass ofShape that is unknown at analysis time.

getSomeShape could be a native method or, in the worst case, could ask the user for

the name of a class to load. In any case, the call toarea cannot be inlined without the

possibility of later adjustment.

The SELF system [Hölzle et al. 1992] solved this problem by using a run-time mech-

anism calledon-stack replacementto modify executing code. SELF maintains a signifi-

cant amount of debugging information that allows for quick deoptimization of optimized

code. When an optimization is invalidated, SELF recovers the original source code and
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float getSomeArea() {
Shape s = getSomeShape();
float area = s.area();
return(area);

}

float getSomeArea(Shape s) {
float area = s.area();
return(area);

}

(a) Receiver does not preexist (b) Receiver preexists

Figure 2.5: Preexistence of receiver objects

re-optimizes it taking the invalidating information into account. Maintaining the amount of

information necessary to perform these kinds of optimizations requires a noticable space

and time overhead, increases the complexity of the optimizer, and places certain constraints

on the kinds of optimizations that can be performed.

Detlefs and Agesen [1999] introduced the concept ofpreexistenceto eliminate the need

for on-stack replacement. Consider a methodfoo containing a invocation of methodbar

with receiver objecto. o is said topreexistif it is created beforefoo is called. The type

of any preexistent object must have been introduced before the methodfoo is called. Any

invalidation of assumptions made about the type ofo this introduction may cause will not

effect the methodfoo. Therefore, on-stack replacement on methodfoo will never occur

and it is safe to inline the call tobar.

Consider the version ofgetSomeArea presented in Figure 2.5b. In this method the re-

ceiver of the virtual method invocation is one of the method’s arguments. If any previously

unknown subclass ofShape were to enter the system, it would have to do so before the

call togetSomeArea. At the time that the new class enters the system, the as-yet-uncalled

getSomeArea method would be appropriately re-optimized to account for the new class.

An object may be proven to be preexistent using two techniques. Obviously, a method’s

arguments and receiver are created before the method is invoked.Invariant argument anal-

ysis uses this fact and traces the usage of the arguments throughout the method. If an

argument is used as the receiver of a method invocation, that call may safely be optimized

without worrying about on-stack replacement.

Immutable field analysisconsiders private instance fields whose values are assigned to

only in constructors. Constructors are called before the object being initialized can be used.

If the value of the field is used as a receiver of a method invocation and it is known that
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the field has not be modified since its object’s construction, then we can state the receiver

object preexists.

2.6 Orthogonal Persistence

Large applications tend to have data that outlives a single program execution. Thus, the

need for data management software arises. The object-oriented programming paradigm

takes a data-centric view of software. It seems natural for object-oriented data to persist

between program executions.

Orthogonal persistence [Atkinson et al. 1983; Atkinson and Morrison 1995] allows for

automatic storage of program data by integrating a program’s runtime environment with a

stable data store. There are two driving principles behind persistence:transparencyand

orthogonality. Transparency states that programs that operate on persistent data cannot be

distinguished from programs that operate on transient data. Transparency is especially im-

portant in that it allows software developed for transient data to be reused with persistent

data. Orthogonality ensures that any data may persist regardless of its type. Orthogonal-

ity ensures that programmers are not required to identify persistent data at the time it is

created. Most persistent systems implement persistence by reachability: if an object has

been designated apersistence rootor is referenced by another persistent object, it itself is

persistent.

This thesis uses an orthogonally persistent Java virtual machine to analyse and optimize

Java programs. Various kinds of analysis and optimization information are maintained as

persistent Java objects. This information can be consulted at runtime to determine whether

any changes to the type system have been made that invalidate the optimizations.

2.7 Related Work

Much work has been done in the area of type analysis of object-oriented programming

languages, particularly in type prediction and type inferencing. Palsberg and Schwartzbach



14

[1991] presents a constraint-based algorithm for interprocedural type inferencing that op-

erates inO(n3) time wheren is the size of the program. Ageson [Agesen 1994] presents

a survey of various improvements to theO(n3) algorithm. Several the strategies discussed

create copies of methods called “templates” whose type information is specialized with

respect to the type of the parameters. Ageson also describes the “Cartesian Product Algo-

rithm” [Agesen 1995] that creates a template for every receiver and argument tuple on a

per-call site basis. Several of the above algorithms were considered for our type analysis.

However, as implementation began it became obvious that none of them is practical using

our modeling framework for the numerous classes in JDK1.2.

Diwan et al. [1996] uses class hierarchy analysis and an intraprocedural algorithm in ad-

dition to a context-insensitive type propagation algorithm to optimize Modula-3 programs.

Budimlic and Kennedy present interprocedural analyses and method inlining of Java pro-

grams [Budimlic and Kennedy 1998]. They implementcode specializationin which virtual

methods contain a run-time type test to determine whether or not inlined code should be

executed. In order to preserve Java’s encapsulation mechanism, their analyses must operate

on one class at a time. Thus, no method’s from other classes may be inlined.

The Soot optimization framework [Sundaresan et al. 1999] performs similar analysis to

ours. While they describe type analyses that are more aggressive than rapid type analysis,

it is unclear as to the practicality of these analyses under JDK1.2.

The Jax application extractor [Tip et al. 1999] uses rapid type analysis to determine the

essential portions of a Java program with the goal of reducing the overall size of the appli-

cation. Jax performs several simple optimizations such as inlining certain accessor methods

and marking non-overridden methods as beingfinal and respects Java’s data encapsulation

rules. Unlike the other tools described above, Jax accounts for dynamic changes in the type

system via a specification provided by the user.

Several studies [Grove et al. 1995; Fern´andez 1995] examine the effects of using run-

time profiling data to optimize object-oriented programs. Profiling data can be used to

identify sections of code that are executed frequently where optimizations may have greater

impact as well as the true types of the receivers of method calls.
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More recently, the Jalepe˜no Java Virtual machine [Alpern et al. 1999] has taken a

unique approach to optimizing Java program. Jalepe˜no is written almost entirely in Java

and yet it executes without a bytecode interpreter. It employs several compilers that trans-

late bytecode into native machine instructions. The compilers use both static techniques

and profiling data, but differ in the number and kinds of optimizations they perform.
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3 IMPLEMENTATION

3.1 The Java Virtual Machine

The Java virtual machine [Lindholm and Yellin 1996] is an abstract machine that exe-

cutes programs specified by the binaryclass file format. Theclass file format and the Java

virtual machine’s instruction set, calledbytecodes, support all of the operations necessary

to execute programs written in the Java programming language. The Java virtual machine

contains a dynamic allocation heap, method area, run-time constant pool, and certain per-

thread data structures. Theheap is a memory area, shared among all threads, in which

objects and arrays are allocated. It is the responsibility of an automatic memory manager

to deallocate the memory in the heap. Themethod areacontains per-class data structures

such as the run-time constant pool and the code for methods and constructors. Therun-

time constant poolholds constants representing program elements ranging from numeric

literals to symbols representing fields and methods.

During execution, aframeis created whenever a method is invoked. Each frame has a

list of local variables, an operand stack, and a reference to the run-time constant pool of the

class containing the method being invoked.Local variableshold values accessed during

method execution. Specifically, then arguments of the method are stored in the firstn local

variables of the method’s frame. For instance methods, the receiver object is always stored

in the first local variable. Theoperand stackis used to hold partial results and for passing

parameters to methods.

The Java virtual machine’s instruction set operates primarily on values residing in lo-

cal variables or on the operand stack. There are instructions to perform basic arithmetic
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operations such as addition, multiplication, bitwise AND, and numerical comparison; ob-

ject creation, operand stack manipulation, control transfer, method invocation, and thread

synchronization.

Of particular interest to this work are the Java virtual machine’s instructions for invok-

ing methods. Each method invocation instruction has operands that index an entry in the

constant pool describing the method being invoked. This method description includes the

name, number and type of arguments, and the return type of the method. Prior to a method

invocation the arguments to the method are pushed onto the operand stack. The Java virtual

machine’s method invocation mechanism pops the arguments off of the caller’s stack and

stores them into into the callee’s firstn local variables wheren in the number of arguments

to the method.

There are four instructions that invoke methods:invokestatic, invokeinterface, in-

vokevirtual, and invokespecial. invokestatic invokes static methods and transfers pro-

gram control to the method being invoked provided that it exists and is static.invokeinter-

face andinvokevirtual invoke an instance method declared in an interface or class, respec-

tively. Both of them perform a “dynamic dispatch” and select the method to be invoked as

follows. A classC is searched for a method matching the one being invoked. Initially,C is

the run-time class of the receiver object of the method invocation. IfC contains a method

with the same name, argument types, and return type as the argument to the invocation

instruction, then program control is transferred to that method. Otherwise, the above step

is repeated for the superclass ofC until a matching method is found.invokespecial is

used to invoke instance initialization methods (constructors)1 and special methods, such

as superclass and private methods. If the method being invoked isprivate or protected,

invokespecial ensures that the class of the receiver object is the same or a superclass of

the class containing the method being invoked. Neitherinvokespecial nor invokestatic

performs a dynamic dispatch, thus they are said to benon-virtualmethod invocations.

1The Java programming language syntaxnew Foo() is compiled into an object allocation instruction,

new Foo, and a invocation of the constructor method,invokespecial Foo.<init>.
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3.2 Modeling Java Programs

We used the Bytecode-Level Optimizer and Analysis Tool [Nystrom 1998], BLOAT, to

model Java class files. BLOAT contains a mechanism for reading class files from within

a persistent store and modeling them as Java objects. BLOAT models classes, methods,

and fields, resolves constants from the class file’s constant pool, and represents a method’s

code as a series of instructions with optional arguments and labels that are the targets of

jump instructions.

BLOAT also maintains a data structure for modeling the class hierarchy for the classes

on which it operates. The class hierarchy represents both the inheritance relationships

among classes and the implementation relationships between interfaces and classes.

Unlike traditional programming languages, whole-program analysis of a Java program

is difficult. The Java programming language allows classes to be dynamically loaded at any

time during execution. As such, performing static analyses on all of the classes required by

a Java program is not always possible. Descriptions of the types of the objects, methods,

and fields accessed by a Java class reside in the class’s constant pool. BLOAT uses these

constants to determine the names of classes that may be accessed by a Java program. Un-

fortunately, this analysis cannot account for classes referenced by native methods nor for

classes loaded via the class reflection mechanism.

3.3 Call Graph Construction

The standard class library for the Java 2 platform consists of over 4600 classes. In order

to handle so many classes in a practical manner, rapid type analysis is incorporated into the

construction of the call graph. The call graph construction algorithm operates on a worklist

of methods that initially contains the entry point of the Java program. In addition to the

expected “who calls who” information, the call graph maintains a set of methods and a set

of classes that are considered to be “live”. The hybrid algorithm for call graph construction

given in Figure 3.1 proceeds as follows. First, the call sites in each method are examined.
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If the call site is non-virtual, then there is no dynamic dispatch and the callee method is

made live and added to the worklist.

If the call site is virtual, the class hierarchy is consulted to determine the set of methods

that could be invoked. The description of the virtual callee,m, not only contains its name

and signature, but also contains the name of the class,C, the declared class of the receiver.

The RTA algorithm examinesC and all of its subclasses and looks for classes that override

m. Any of these overriding methods could be invoked. It is at this point that rapid type

analysis is applied. Each of the possible callees,mi , is examined. If the class in whichmi

is declared (or any of its subclasses in whichm is not overridden) has been instantiated,

thenmi is considered to be live and is added to the worklist. If neither the class in which

mi is declared nor any of its non-overriding subclasses has been instantiated, thenmi is

“blocked” on each of those classes.

The rapid type analysis algorithm described in Section 2.3.2 relied on constructor invo-

cations to determine which classes were live. Examining constructors in that manner is not

necessary in our implementation. The Java Virtual Machine’snew instruction instantiates

an object of given class and thus makes that class live. When a class becomes live, any

method that was blocked on that class is added to the worklist.

There are several Java-specific issues that must be dealt with during call graph con-

struction. The Java virtual machine instantiates a number of classes internally. Consider

a program that contains nothing butSystem.out.println(“Hello World”). Since no class

is instantiated in the program itself, the call graph would state that no method would be

invoked by the call toprintln. Clearly, this is incorrect. To remedy this problem, our

optimizer designates a number of classes to bepre-live.

Classes may have static initializer methods that are invoked implicitly by the virtual

machine the first time a class is referenced. Call graph construction considers a class’s

static initializer method to be live when the class is instantiated, one of its methods is

invoked, or when one of its static fields is referenced.
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input:
A set of root methods,roots

output:
The call graph,callGraph, representing the invocation relationship among methods.

do
callGraph /0
liveClasses /0
worklist roots

while (worklist 6= /0) do
Remove a method,method, from the worklist
for each instructioninst in methoddo

if (inst instantiates a class) then
type class being instantiated
makeLive(type)

else if(inst invokes a virtual method) then
callee virtual method being called
doVirtual(method; callee)

else if(inst invokes a non�virtual method) then
callee method being called
callGraph(method) callGraph(method)[callee
worklist worklist[fcalleeg

with
proceduremakeLive(type) begin

liveClasses liveClasses[ type
for eachmethodblocked ontypedo

worklist worklist[ type

proceduredoVirtual(caller; callee) begin
for eachmethodthe callee may resolve todo

isLive false
for eachpossible receiver type; rType; of methoddo

if (rType2 liveClasses) then
isLive true
worklist worklist[method
callGraph(method) callGraph(method)[callee
break

if (not(live)) then
for eachpossible receiver type; rType; of methoddo

blockmethodon rType

Figure 3.1: Call graph construction using rapid type analysis
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0 aload_1
1 iconst_2
2 iload_2
3 ifeq 10
6 iconst_3
7 goto 11

10 iconst_4
11 iconst_5
12 invokevirtual A.g(III)
15 return aload_1

iconst_5

iconst_2

iconst_3  iconst_4

(a) Compiled bytecode (b) The instruction stack

Figure 3.2: Instruction stack fora.g(2, (b?3:4), 5)

3.4 Call Site Customization

Customization examines each virtual method invocation and uses information obtained

from the call graph to determine which methods could be invoked. It then adds code to the

caller that performs a “case switch” on the receiver object and replaces the virtual method

call with a non-virtual method call, thus eliding the run-time overhead of the dynamic

dispatch.

Customization must locate the instructions that pushes the receiver object onto the

operand stack. Finding these instructions is more difficult that it may appear. Because

of language constructs such as the conditional operator (?:), there may be arbitrary control

flow between the invocation instruction and the instructions that push its receiver on the

stack. Thus, the contents of the stack must be simulated as the method is examined. Each

element in the simulated stack is a set of instructions that are responsible for pushing val-

ues at that stack height. Such a stack is demonstrated in Figure 3.2. For an invocation of a

method withn parameters, the instructions that push the receiver onto the stack are located

depthn in the instruction stack.

Maintaining the stack of instructions is essential to implementing preexistence. Recall

that only call sites whose receiver objects preexist may safely be inlined and, thus, are

worthwhile to customize. Before a call site is customized the instructions that push the

receiver on the operand stack object are examined. If those instructions load preexistent
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local variables or create objects, then the receiver preexists and may be safely customized.

However, a receiver that results from a load of an object’s field or a method call do not

preexists and cannot safely be customized. While preexistence restricts the number of call

sites that may be customized, it does have a benefit. If all of the instructions that push the

receiver on the stack are object creation instructions, then the possible run-time types of

the receiver object are known. These types are used to reduce the set of methods that may

be invoked at the call site. Thus, as a byproduct of prexistence the implementation of rapid

type analysis performs a limited dataflow analysis on the type of the receiver object.

The following steps are taken to customize a virtual invocation of a methodm and are

illustrated for thearea method in Figure 3.3. The instructions that push the receiver of the

call are located. Instructions are added to the caller that duplicate the receiver object and

store it in a local variable. Then at the call site, the receiver object is loaded from the local

variable. If the call site is polymorphic, code is added that tests the type of the receiver. If

the type of the receiver matches a classC, a non-virtual invocation of the implementation

of the m method in classC is performed using theinvokespecial instruction. Note that

the order in which the type checks occur is important. Theinstanceof instruction does not

test type equality – any subtype of the request type is also an instance of the desired type.

Thus, the more “refined” types must be tested for first.

The implementation of customization differs from the description given in Section 2.4

in that no static version of the virtual method is generated. Making a static versions of

methods not only increases the size of the optimized class files, but also has a negative

impact on the instruction and data caches at runtime. However, in order to use theinvoke-

special instruction, the virtual machine was modified so that any method, not justprivate

andprotected methods, could be invoked non-virtually.

3.5 Method Inlining

The final phase of the interprocedural optimizations is to inline calls to non-virtual

methods. Calling non-virtual methods involves no dynamic dispatch, so it is known what
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...
aload_2
invokevirtual Shape.area()F
fstore_3
fload_3
freturn

...
aload_2
dup
astore_4
aload_4
instanceof Circle
ifeq NEXT1
invokespecial Circle.area()F
goto END

NEXT1: aload_4
instanceof Rectangle
ifeq DEFAULT
invokespecial Rectangle.area()F
goto END

DEFAULT: invokevirtual Shape.area()F
goto END

END: fstore_3
fload_3
freturn

(a) A virtual call (b) Customized call site

Figure 3.3: Customizing a virtual call site

code will be executed by the call. Provided that certain conditions are met, this code may

be copied into the caller method and the overhead of calling the method is removed.

The process of inlining is relatively straightforward. Each non-virtual call site is exam-

ined. If it meets the criteria outlined below, then call is inlined. Inlining involves copying

the callee’s code into the caller method and changing the names of local variables and la-

bels in the callee so that they do not conflict with those of the caller. First, instructions are

added to store the arguments from the stack into local variables. Then the callee’s code

is copied into the caller. Local variables and labels in the callee method are mapped to

non-conflicting local variables and labels in the caller method. An example of an inlined

method call is given in Figure 3.4.

There are several situations in which a call to a non-virtual method is not inlined. Re-

cursive calls and calls to native methods are not inlined. Because invoking a synchronized

method involves obtaining a lock, synchronized methods are not inlined. Additionally,

some methods that may catch exceptions cannot be inlined. When an exception is caught,

the operand stack is cleared [Lindholm and Yellin 1996]. For an inlined method, clearing
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the stack effects the execution of the caller method as well. Thus, when the inlined method

“returns”, the stack state is not as expected. The only circumstance in which a call to a

method that may catch an exception may safely be inlined occurs the only values on the

operand stack at the time of the call are the callee’s arguments.

It is also possible to inline certain constructor invocations. The first call made by a

constructor is a call to its superclass’s constructor. There is no dynamic dispatch that

occurs here and no object is created. Thus, the code of the superclass’s constructor can be

inlined.

Inlining methods that access non-public data invalidates the encapsulation assertions

made about Java methods during compilation. Additionally, other optimizations may result

in code that does not verify. We argue that once a class has become resident in a persistent

store, we need not worry about encapsulation and verification. As classes are loaded into

the system, they are verified to be well-behaved. As such, our Java virtual machine does

not perform data access checks.

3.6 Intraprocedural Optimizations

BLOAT performs several intraprocedural optimizations on Java methods [Nystrom 1998].

For each method a control flow graph in static single assignment form is constructed. Op-

timizations such as expression propagation, dead code elimination, and partial redundancy

elimination [Chow et al. 1997] of access expressions are performed on the control flow

graph. After the control flow graph has been destructed, register allocation with graph col-

oring is applied to make efficient use of the Java virtual machine’s local variables. Special

analyses are performed to make better use of the Java virtual machine’s stack manipulation

instructions [VanDrunen 2000]. Finally, several peephole optimizations are applied to the

generated instructions. Invoking methods restricts some optimizations because intraproce-

dural analyses do not analyze the behavior of the callee. Inlining gives BLOAT a larger

context upon which to perform its intraprocedural optimizations.
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3.7 Persistence-Enabled Optimization

The Java Language Specification [Gosling et al. 1996] requires that changes made to

Java classes arebinary compatiblewith preexisting class binaries. However our optimiza-

tions break Java’s data encapsulation model by allowing caller methods to access the private

data of inlined methods. Thus, our optimizations must be performed on classes in a safe

environment in which the restrictions of binary compatibility can be lifted. Code could

be optimized at runtime when the virtual machine has complete control over the classes.

However, our optimizations require extensive program analysis whose runtime cost would

most likely outweigh any benefit gained by optimization.

Some implementations of orthogonally persistent Java virtual machines maintain a rep-

resentation of classes, as well as instantiated objects, in the persistent store. Such a store

would give a good approximation of a closed-world scenario in which a Java program may

be run. Additionally, the classes in the persistent store are verified to be binary compatible

upon their entry to the virtual machine. A program executing within a persistent store has

an unusual concept of “runtime”. Because data persists between executions in its runtime

format, the execution of the program can be thought of in terms of the lifetime of its data.

The program runs, then pauses (no code executes, but the runtime data persists), then re-

sumes. When the program is “paused” classes within the store may be modified without

regard to binary compatibility. Thus, we can safely perform our optimizations on classes

residing within the persistent store.

3.7.1 Deoptimization

Class hierarchy analysis and call site customization make certain assumptions about the

classes present in the virtual machine. For instance, it is assumed that certain methods are

not overridden by subclasses. However, it is possible that native methods or class reflection

may bring classes into the system that break the assumptions. Thus, optimized code may

need to be deoptimized in the face of such changes to the type system.
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Consider a caller methodfoo that contains a call to thearea method. Suppose that rapid

type analysis has determined that the call site will only invoke thearea method ofTriangle

and that its receiver object preexists because it is a method parameter. Customization will

transform this call into a non-virtual call to thearea method ofTriangle. Suppose further

that at runtime the program loads theEquilateralTriangle class, a subclass ofTriangle that

overrides thearea method, using Java’s reflection mechanism. During customization we

assumed that no subclass ofTriangle overrode thearea method. However, the introduction

of the EquilateralTriangel invalidates this assumption and the customized invocation of

thearea method ofTriangle is incorrect because the receiver object may be an instance

of EquilateralTriangle. Thus, we must deoptimizefoo at runtime by undoing the effects

of customization. In an attempt to make deoptimization as fast as possible,foo is simply

reverted to its unoptimized form.

In the above example, we say that methodfoo dependson thearea method ofTrian-

gle because if thearea method ofTriangle is overridden, thenfoo must be deoptimized.

The optimizer maintains a series of dependencies [Chambers et al. 1995] among methods

resulting from call site customization. Note that if our analysis can precisely determine the

type(s) of a receiver object (e.g., the instructions that push the receiver onto the stack are

all object creation instructions), then no dependence is necessary. The dependencies are

represented as Java objects and reside in the persistent store.

The persistent Java virtual machine was modified to communicate with the optimizer

at runtime to determine when methods should be deoptimized. When a class is loaded into

the virtual machine, the optimizer is notified. If the newly-loaded class invalidates any as-

sumptions made about the class hierarchy during optimization, the optimizer consults the

method dependencies and deoptimizes the appropriate methods. To account for any degra-

dation in performance that deoptimization may produce, it may be desirable to optimize a

Java program multiple times during its lifetime. Subsequent optimizations will account for

classes that are introduced by reflection.
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A persistent store provides a closed-world model of a Java program, allows us to dis-

regard the restriction of binary compatibility, and provides a repository in which the opti-

mizer can store data necessary for deoptimization to ensure correct program behavior when

classes are introduced into the system at runtime. Thus, persistence enables us to safely

perform our interprocedural optimizations on Java programs.
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...
aload_2
dup
astore_4
aload_4
instanceof Circle
ifeq NEXT1
astore_5 // Store parameter
aload_5
invokevirtual Shape.getPI()F
aload_5
getfield Circle.r F
invokestatic Shape.square(F)F
fmul // Return value on stack
goto END

NEXT1: aload_4
instanceof Rectangle
ifeq DEFAULT
astore_6
aload_6
getfield Rectangle.s1 F
aload_6
getfield Rectangle.s2 F
fmul
goto END

DEFAULT: invokevirtual Shape.area()F
goto END

END: fstore_3
fload_3
freturn

Figure 3.4: Inlining customized code
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4 EXPERIMENTS

To evaluate the impact of interprocedural optimizations on Java programs, we opti-

mized several Java benchmark applications and compared their performance using static

and dynamic performance metrics.

4.1 Platform

The experiments were performed on a Sun Ultra 5 Model 333 with a 333 MHz Ul-

traSPARC-IIi processor with a 2MB external (L2) cache and 128MB of primary RAM.

The UltraSPARC-IIi has a 16-KB write-through, non-allocating, direct mapped data cache

that is virtually-indexed and virtually-tagged. The 16-KB instruction cache is two-way set

associative, physically indexed and tagged, and performs in-cache 2-bit branch prediction

with single cycle branch following.

4.2 Benchmarks

We used eleven benchmarks programs as described in Table 4.1 to measure the im-

pact of interprocedural optimizations. Several of the benchmarks were taken from the

SpecJVM [SPEC 1998] suite of benchmarks. Table 4.2 gives some static statistics about

the benchmarks: the number of live classes and methods, the number of virtual call sites,

the percentage of those calls sites that preexist, and the percentage of preexistent call sites

that are monomorphic and duomorphic (only two methods could be invoked). It is interest-

ing to note that for most benchmarks the majority of virtual call sites are precluded from

inlining because they do not preexist. Note also that nearly all (89.8–95.7%) of preexistent
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Table 4.1: Benchmarks

Name Description

crypt Java implementation of the Unix crypt utility
db Operations on memory-resident database
huffman Huffman encoding
idea File encryption tool
jack Parser generator
jess Expert system
jlex Scanner generator
jtb Abstract syntax tree builder
lzw Lempel-Ziv-Welch file compression utility
mpegaudio MPEG Layer-3 decoder
neural Neural network simulation

Table 4.2: Inlining statistics (static)

Benchmark live classes live methods virtual calls % preexist % mono % duo

crypt 134 853 1005 38.9 87.0 3.1
db 151 1010 1373 36.7 87.7 4.2
huffman 141 875 1071 38.6 87.7 2.9
jack 184 1170 2305 31.5 86.1 8.3
jess 245 1430 2563 35.0 92.2 3.0
jlex 154 1008 1315 35.4 88.8 2.6
jtb 273 2111 3965 32.8 87.7 8.0
lzw 142 905 1031 38.3 86.8 3.0
mpegaudio 173 1146 1594 31.6 87.1 5.2
neural 139 883 1024 39.1 87.2 3.0

call sites are monomorphic or duomorphic. Thus, from a static point of view, extensive

customization of polymorphic call sites seems unnecessary.

Each benchmark was optimized in five configurations: no optimizations, (nop), only

intraprocedural optimizations (intra), call site customization (cust), inlining of non-virtual

calls (inline), and intraprocedural optimizations on top of inlining (both). Through analysis

of empirical data, several conditions on the interprocedural optimizations were arrived at:

only monomorphic call sites were customized, no callee method that is larger than 50

instructions is inlined and no caller method is allowed to exceed 1000 instructions because

of inlining.
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4.3 Execution environments

The benchmarks were executed in three different execution environments: the Sun Java

2 SDK SolarisTM Production Release Virtual Machine with and without a Just-In-Time

compiler (labelled JIT and noJIT, respectively), and the Toba bytecode-to-C compiler ver-

sion 1.1 [Proebsting et al. 1997; Toba 1998].

4.4 Metrics

Several dynamic metrics were used to measure the impact of our optimizations. We

measure the number of cycles, instructions executed, data cache read misses, and instruc-

tion cache misses for each benchmark using software [Enbody 1998] that allows user-level

access to the UltraSPARC’s execution counters. Each benchmark was run twice inside a

single activation of the execution environment (JIT, noJIT, Toba). The first iteration primes

the execution environment: class files are loaded, bytecodes are JIT compiled, and the

caches are warmed. The measurements reported here were taken during the second itera-

tion of the benchmark.

The instruction cache on the UltraSPARC is physically addressed and, therefore, pro-

gram behavior with respect to the instruction and data caches may vary noticeably across

executions. To account for this deviation the dynamic measurements reported are the aver-

age over 3 runs of the benchmark and 90% confidence intervals are shown in the graphs.

4.5 Results

The results for each benchmark are summarized in Tables 4.3-4.12. When reporting the

counts of the executed bytecode raw data is reported fornop only. We give the totals for

the other optimization levels as a portion ofnop’s total. The count of individual bytecodes

are reported as a portion of the total number for the given optimization level. Similarly,

we give the raw data for the hardware execution counters fornop; while the other data are

reported as a ratio relative tonop.
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Figure 4.1: Total bytecodes executed

4.5.1 Bytecode counts

Examining the number of bytecodes executed provides insight into the effectiveness of

our interprocedural optimizations. Figures 4.1, 4.2, and 4.3 summarize bytecode counts for

the five optimization levels:nop, intra, cust, inline, andboth. As Figure 4.1 demonstrates

the interprocedural optimizations,cust and inline, do not have a signifcant effect on the

total number of bytecodes executed. However, combining interprocedural and intraproce-

dural optimizations (both) results in up to 8% fewer bytecodes being executed than with

the intraprocedural optimizations alone (intra).

The effects of call site customization and method inlining can be seen by examining the

number and kind of methods executed. Figure 4.2 reports the number ofinvokespecial,

invokevirtual1, and invokestatic instructions. Call site customization (cust) results in

an often drastic reduction in the number ofinvokevirtual instructions. Likewise, method

inlining removes as many as 52% of method invocations. For several benchmarks (crypt,

idea, and neural) very few static method invocations are inlined. This is most likely due to

the fact that the bodies of these methods exceed the 50 instruction limit placed on inlinable

methods.

Recall that when a method call is inlined, the callee’s parameters must be popped from

the operand stack into local variables. This results in a noticeable increase in the number of

1There were a negligable number ofinvokeinterface instructions executed.
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Figure 4.3: Store bytecodes

store instructions as shown in Figure 4.3. While there is a performance penality for execut-

ing these additional stores, we argue that this penalty is overshadowed by the performance

gains brought about by inlining.

4.5.2 noJIT

We saw our greatest performance improvement when executing optimized code under

the bytecode interpreter (noJIT). As Figure 4.4 demonstrates, all benchmarks show some

improvement when methods are inlined. Our optimizations cause a 3–23% decrease in

the number of machine instructions executed. In general the decrease in the number of

cycles is not as drastic. For several benchmarks, our optimizations cause an increase in the

number of instruction fetch stalls and data read misses.
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For most benchmarks customizing monomorphic call sites has little effect on the num-

ber of cycles executed. This leads us to believe that the interpreter’sinvokevirtual instruc-

tion has been optimized for maximum efficiency since it appears to have the same cost

as the non-virtualinvokespecial instruction. However, the increase in speed provided by

method inlining demonstrates that the method invocation sequence is still costly. In most

cases inlining enabled the intraprocedural optimizations to increase performance further.

4.5.3 JIT

A Just-In-Time (JIT) compiler compiles Java bytecode instructions into native machine

instructions which are then executed on bare hardware. The JIT we used to measure our

benchmarks performs a number of optimizations including call site inlining [Detlefs and

Agesen 1999] on the code it compiles. Provably monomorphic call sites are inlined directly.

The inlined code for call sites that are almost monomorphic are guarded by a run-time

“method guard” that compares the method about to be executed to the method that was

inlined.

It is not surprising, then, that our optimizations conflict with those performed by the JIT

compiler. Our method inlining may increase the size of a method beyond a point where the

JIT compiler can generate efficient code. As Figure 4.5 demonstrates2 the method inlining

performed by our optimizations (inline) offers little advantage over the unoptimized code.

However, performing intraprocedural optimizations over the inlined code (both) does re-

duce the number of instructions executed in most cases.

Inlining degrades the number of cycles executed by most benchmarks from 2–26%.

This is primarily due to an increase in the number of misses in the data and instruction

caces. The intraprocedural optimizations fare much better than the interprocedural opti-

mizations in the JIT environment.
2Two benchmarks, jess and jtb, when optimized with the intraprocedural (intra) optimizations cause the

JIT to generate code that results in an address alignment error at run-time. As this error does not occur with

the interpreter, we believe this behavior to stem from a bug in the JIT.
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Figure 4.4: Execution time for noJIT
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Figure 4.5: Execution time for JIT
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4.5.4 Toba

Toba applies an optimizing C compiler to a Java program. We used Sun’s WorkShop C

Compiler version 5.0 which performs local and global optimizations such as induction vari-

able elimination, algebraic simplification, copy propagation, constant propagation, loop-

invariant optimization, register allocation, basic block merging, tail recursion elimination,

dead code elimination, tail call elimination and complex expression expansion. We hy-

pothesize that the C compiler would take advantage of the larger code context provided by

our interprocedural optimizations. The version of Toba that we used runs with Java 1.1

and does not fully support the entire Java class library, in particular the abstract windowing

toolkit. As a result, the SpecJVM benchmarks could not be run under Toba.

The results for toba are difficult to characterize. The number of instructions and cycles

are summarized in Figure 4.6. For some benchmarks our optimizations had no impact

on the number of instructions performed. In others we saw a decrease of 5–11% in the

number of instructions executed. Once again the decrease in the number of instruction did

not always cause a corresponding decrease in the number of cycles due to caching behavior.
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Figure 4.6: Execution time for Toba
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Table 4.3: Results for crypt

Platform Metric nop intra cust inline both

Bytecodes TOTAL 260853720 0.98 1.00 1.00 0.98
invokevirtual 0.18 0.18 0.02 0.02 0.02
invokespecial 0.03 0.03 0.19 0.13 0.13
invokestatic 0.68 0.69 0.68 0.64 0.65
dup 0.02 4.67 0.02 0.02 4.76
if 0.49 0.50 0.49 0.49 0.50
ifcmp 0.75 0.70 0.75 0.75 0.70
load 15.25 4.15 15.25 15.62 4.14
loadn 10.34 20.72 10.34 9.95 20.56
store 4.68 1.51 4.68 4.91 1.49
storen 1.21 3.19 1.21 1.15 3.26

JIT Cycles 328642884 0.89 0.99 1.05 0.89
SPARC instructions 337054347 0.92 1.00 1.00 0.91
Instruction fetch stalls 1819446 0.99 0.45 1.11 0.95
Data read misses 1345925 0.97 1.04 3.49 1.31

noJIT Cycles 5926082142 0.96 1.03 0.98 0.91
SPARC instructions 4601475214 0.90 1.00 1.00 0.89
Instruction fetch stalls 7430311 4.79 1.03 0.94 4.89
Data read misses 27265184 1.24 1.75 0.67 0.73

Toba Cycles 465352567 0.87 1.02 0.96 0.86
SPARC instructions 471584726 0.89 1.00 1.00 0.89
Instruction fetch stalls 8623059 0.97 1.08 1.25 1.20
Data read misses 1169225 1.14 1.11 1.04 1.72
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Table 4.4: Results for db

Platform Metric nop intra cust inline both

Bytecodes TOTAL 3747617527 1.23 1.00 1.00 1.00
invokevirtual 2.44 1.98 2.44 2.44 2.44
invokespecial 0.17 0.14 0.17 0.08 0.08
invokestatic 0.60 0.49 0.60 0.00 0.00
dup 0.53 2.55 0.53 0.53 3.49
if 3.49 2.83 3.49 3.48 3.48
ifcmp 4.54 3.69 4.54 4.53 4.53
load 17.18 11.69 17.18 19.29 10.43
loadn 23.32 26.87 23.32 21.13 27.62
store 8.07 7.39 8.07 9.27 5.13
storen 2.64 9.42 2.64 2.72 7.81

JIT Cycles 16589918832 1.05 1.02 1.05 1.03
SPARC instructions 8201809757 1.05 1.00 0.99 1.01
Instruction fetch stalls 30612773 1.98 1.02 1.02 1.86
Data read misses 529016289 0.99 1.01 1.00 1.00

noJIT Cycles 136721160807 1.07 0.96 0.96 0.98
SPARC instructions 93443093886 1.09 1.00 0.97 0.94
Instruction fetch stalls 3668078414 0.76 0.66 0.67 1.17
Data read misses 2025594158 0.90 0.84 1.00 1.04
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Table 4.5: Results for huffman

Platform Metric nop intra cust inline both

Bytecodes TOTAL 28209276 1.05 1.00 1.00 0.97
invokevirtual 4.35 4.15 2.12 2.12 2.19
invokespecial 1.70 1.62 3.93 1.80 1.86
invokestatic 0.78 0.74 0.78 0.47 0.48
dup 1.50 5.38 1.50 1.50 6.37
if 3.28 3.14 3.28 3.28 3.40
ifcmp 5.98 5.68 5.98 5.98 6.16
load 4.93 3.39 4.93 10.27 4.50
loadn 30.33 34.77 30.33 24.98 33.06
store 0.51 2.86 0.51 2.60 2.94
storen 1.83 3.42 1.83 2.20 3.15

JIT Cycles 108113898 0.94 0.95 1.04 1.02
SPARC instructions 71083483 1.00 0.98 1.03 0.98
Instruction fetch stalls 8296524 0.51 0.36 0.88 1.38
Data read misses 1654630 1.02 1.13 0.96 1.01

noJIT Cycles 1259474121 0.98 1.03 0.91 0.86
SPARC instructions 928308022 0.96 1.02 0.90 0.83
Instruction fetch stalls 39012174 1.03 1.02 1.28 1.20
Data read misses 17953533 1.00 1.04 0.65 0.78

Toba Cycles 335528931 0.94 1.03 1.05 0.99
SPARC instructions 182798226 0.97 1.00 1.00 0.94
Instruction fetch stalls 32595924 0.67 1.14 1.20 1.27
Data read misses 2049671 1.07 0.82 1.15 0.73
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Table 4.6: Results for idea

Platform Metric nop intra cust inline both

Bytecodes TOTAL 16389364 1.10 1.00 1.00 0.96
invokevirtual 0.63 0.57 0.00 0.00 0.00
invokespecial 0.40 0.36 1.03 0.78 0.82
invokestatic 1.34 1.21 1.34 1.33 1.40
dup 0.32 3.04 0.32 0.32 2.60
if 2.84 2.61 2.84 2.82 3.01
ifcmp 3.16 2.76 3.16 3.14 3.22
load 15.66 8.65 15.66 17.36 9.60
loadn 23.13 27.46 23.13 21.25 26.01
store 5.11 3.00 5.11 5.76 3.87
storen 7.04 12.04 7.04 7.01 7.54

JIT Cycles 83054534 0.95 1.01 0.92 0.97
SPARC instructions 36752141 0.96 0.99 0.99 0.98
Instruction fetch stalls 18531557 0.98 1.03 0.91 1.04
Data read misses 696192 0.83 0.82 0.45 0.46

noJIT Cycles 497895342 1.00 0.99 0.97 0.95
SPARC instructions 328071065 1.04 1.01 0.99 0.95
Instruction fetch stalls 32445160 1.11 1.09 1.13 1.11
Data read misses 5402604 0.48 0.87 0.56 0.64

Toba Cycles 39381466 0.88 1.06 0.88 0.99
SPARC instructions 19982196 0.98 1.00 0.97 0.95
Instruction fetch stalls 8874997 0.70 1.10 0.69 0.84
Data read misses 57096 2.34 2.78 1.76 2.05
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Table 4.7: Results for jack

Platform Metric nop intra cust inline both

Bytecodes TOTAL 2117399842 1.01 1.00 1.00 1.00
invokevirtual 1.66 1.64 1.46 1.46 1.46
invokespecial 0.71 0.70 0.91 0.41 0.42
invokestatic 0.36 0.35 0.36 0.21 0.21
dup 1.09 1.69 1.09 1.09 1.72
if 13.31 13.23 13.31 13.28 13.38
ifcmp 2.21 2.11 2.21 2.20 2.14
load 3.26 2.93 3.26 4.02 3.42
loadn 37.10 37.31 37.10 36.26 36.88
store 1.43 1.50 1.43 2.22 1.89
storen 7.20 8.08 7.20 7.23 8.24

JIT Cycles 5341660760 1.03 1.00 1.03 1.03
SPARC instructions 3785866048 1.00 1.00 1.00 1.00
Instruction fetch stalls 300976350 1.31 1.09 1.23 1.39
Data read misses 91920188 0.98 0.96 0.97 0.95

noJIT Cycles 68265734731 1.02 1.03 0.95 1.02
SPARC instructions 47436823706 1.00 1.00 0.96 0.95
Instruction fetch stalls 1471555600 1.30 1.65 1.13 0.95
Data read misses 1081027154 1.01 0.98 0.80 1.49

Table 4.8: Results for jess

Platform Metric nop intra cust inline both

Bytecodes TOTAL 1870816906 1.02 1.00 1.02 1.00
invokevirtual 5.31 5.19 2.83 2.78 2.84
invokespecial 0.68 0.67 3.17 1.16 1.19
invokestatic 0.30 0.29 0.30 0.21 0.22
dup 0.53 3.06 0.53 0.52 3.28
if 3.80 4.09 3.80 3.73 4.20
ifcmp 6.67 6.15 6.67 6.56 6.31
load 7.86 4.93 7.86 14.95 7.87
loadn 29.60 29.83 29.60 21.86 26.46
store 3.21 2.57 3.21 7.08 4.13
storen 2.83 5.21 2.83 2.50 6.25

JIT Cycles 5794754361 0.00 1.04 1.07 0.98
SPARC instructions 3778754420 0.00 0.98 1.02 0.97
Instruction fetch stalls 122195315 0.00 1.65 1.43 1.83
Data read misses 113649546 0.00 1.02 1.08 0.96

noJIT Cycles 72984475270 1.00 1.04 0.98 0.91
SPARC instructions 55609627990 1.00 1.03 0.92 0.89
Instruction fetch stalls 1572800729 0.97 1.03 1.02 0.99
Data read misses 920519682 1.03 1.10 1.25 0.88
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Table 4.9: Results for jlex

Platform Metric nop intra cust inline both

Bytecodes TOTAL 68770643 1.08 1.00 1.00 1.00
invokevirtual 4.81 4.44 1.66 1.65 1.66
invokespecial 0.47 0.44 3.63 2.54 2.56
invokestatic 0.26 0.24 0.26 0.01 0.01
dup 1.18 4.99 1.18 1.18 6.52
if 2.46 2.63 2.46 2.45 3.09
ifcmp 8.29 7.28 8.29 8.25 7.69
load 8.44 4.87 8.44 10.61 6.49
loadn 29.65 31.33 29.65 27.32 28.37
store 2.41 1.90 2.41 4.17 2.74
storen 2.50 7.58 2.50 2.53 6.07

JIT Cycles 246734828 1.03 1.09 1.04 1.02
SPARC instructions 179993623 1.02 0.96 1.01 1.00
Instruction fetch stalls 5347549 1.68 1.07 1.56 1.41
Data read misses 4002602 1.05 1.69 1.04 1.00

noJIT Cycles 2773572957 0.97 0.97 0.97 0.91
SPARC instructions 2018604126 1.03 1.04 0.96 0.95
Instruction fetch stalls 77551372 0.64 0.61 0.60 0.69
Data read misses 36500397 0.76 0.77 1.13 0.77

Toba Cycles 814004370 1.05 1.11 1.03 1.13
SPARC instructions 569819698 1.00 1.01 1.00 1.00
Instruction fetch stalls 19797472 2.18 1.41 1.09 4.13
Data read misses 1154929 1.20 5.91 1.08 1.09



45

Table 4.10: Results for lzw

Platform Metric nop intra cust inline both

Bytecodes TOTAL 28239091 1.00 1.00 1.00 0.99
invokevirtual 6.84 6.85 6.47 6.46 6.52
invokespecial 0.19 0.19 0.56 0.17 0.17
invokestatic 0.00 0.00 0.00 0.00 0.00
dup 0.11 1.29 0.11 0.11 1.92
if 5.22 6.21 5.22 5.21 6.24
ifcmp 2.35 1.37 2.35 2.34 1.38
load 10.94 1.27 10.94 12.04 0.76
loadn 19.81 28.70 19.81 18.67 28.40
store 5.89 0.89 5.89 6.60 0.85
storen 0.88 6.42 0.88 0.71 6.73

JIT Cycles 131940268 1.02 1.00 1.26 1.12
SPARC instructions 64727474 1.00 1.00 0.99 0.99
Instruction fetch stalls 19722185 1.13 0.86 1.06 1.21
Data read misses 2895969 0.98 0.94 0.99 0.95

noJIT Cycles 1230814848 1.02 1.02 0.96 0.95
SPARC instructions 865390494 0.98 1.00 0.98 0.97
Instruction fetch stalls 55818107 1.07 1.05 0.99 1.10
Data read misses 20331187 1.15 1.20 0.72 0.81

Toba Cycles 146124730 0.92 0.91 0.92 0.88
SPARC instructions 67600608 0.92 1.00 0.99 0.91
Instruction fetch stalls 20392287 0.86 0.68 0.31 0.34
Data read misses 2268787 0.98 1.03 1.04 1.10
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Table 4.11: Results for mpegaudio

Platform Metric nop intra cust inline both

Bytecodes TOTAL 11490419455 0.95 1.00 1.00 0.91
invokevirtual 0.69 0.73 0.56 0.56 0.62
invokespecial 0.25 0.27 0.38 0.14 0.16
invokestatic 0.01 0.01 0.01 0.01 0.01
dup 1.07 6.41 1.07 1.07 6.87
if 1.26 1.32 1.26 1.25 1.39
ifcmp 2.05 2.10 2.05 2.05 2.20
load 13.76 9.21 13.76 14.82 10.18
loadn 14.07 15.25 14.07 12.94 13.31
store 2.07 2.72 2.07 2.38 2.51
storen 0.56 2.74 0.56 0.55 1.54

JIT Cycles 14451934821 0.93 1.02 1.02 0.91
SPARC instructions 12796410118 0.93 1.00 1.01 0.93
Instruction fetch stalls 95426652 0.91 1.47 1.17 0.92
Data read misses 106884266 0.88 2.76 1.75 0.98

noJIT Cycles 302332129721 0.85 0.98 0.97 0.78
SPARC instructions 220150524918 0.85 1.00 0.98 0.81
Instruction fetch stalls 10502891108 0.94 0.36 0.52 0.29
Data read misses 2368059043 0.64 0.76 1.08 0.59
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Table 4.12: Results for neural

Platform Metric nop intra cust inline both

Bytecodes TOTAL 17493501 0.95 1.00 1.02 0.87
invokevirtual 2.46 2.59 0.31 0.31 0.36
invokespecial 0.15 0.16 2.29 0.56 0.66
invokestatic 0.74 0.78 0.74 0.69 0.81
dup 1.03 2.33 1.03 1.01 4.42
if 0.25 0.69 0.25 0.24 0.75
ifcmp 4.05 3.83 4.05 3.96 4.20
load 9.10 5.61 9.10 13.78 7.45
loadn 26.81 29.65 26.81 21.33 26.00
store 0.51 0.55 0.51 4.48 0.92
storen 1.39 2.68 1.39 1.34 4.72

JIT Cycles 87766406 0.97 1.01 1.07 0.97
SPARC instructions 66501513 0.97 1.00 1.06 0.95
Instruction fetch stalls 1495605 1.10 0.99 0.92 0.80
Data read misses 1282288 1.01 1.01 1.09 1.10

noJIT Cycles 617569082 0.93 1.03 0.92 0.79
SPARC instructions 462051681 0.91 1.03 0.92 0.77
Instruction fetch stalls 19187351 1.01 1.00 1.03 1.04
Data read misses 7198401 0.94 1.08 0.63 0.64

Toba Cycles 188353979 1.01 0.98 0.96 0.99
SPARC instructions 117678568 0.94 0.99 0.96 0.89
Instruction fetch stalls 6328249 1.49 0.95 0.93 2.26
Data read misses 1379597 0.89 0.92 0.92 0.87
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5 CONCLUSIONS AND FUTURE WORK

Our results show that whole-program interprocedural optimizations can yield notice-

able benefits on Java programs even in the face of hindrances like preexistence. Specifi-

cally, we were able to remove a significant number of methods calls and reduce the cost of

those method calls that remain. What makes our optimization scheme unique is that it ac-

counts for information introduced into the system at run-time by performing optimizations

in the context of a persistent store.

We believe that a tighter coupling of the run-time system, persistent store, and optimizer

will lead to greater performance enhancements. Optimization data such as method profile

information, exact call site resolution, object creation information, and hardware behavior

could be maintained as objects in a persistent store. As the persistent application executes

and evolves the optimizer could make adjustments to the optimized code to reflect the state

of the application.
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