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ABSTRACT

Whitlock, David Michael. M.S., Purdue University, May 2000. Persistence-Enabled Opti-
mization of Java Programs. Major Professor: Antony Hosking.

Programs contained within a persistent store provide a unique opportunity for whole-
program analysis and optimization. In particular, several constraints on optimization can be
relaxed in a persistent setting, allowing aggressive off-line optimizations to be performed.
This work explores interprocedural optimizations of Java programs residing within a per-
sistent store. Call site customization and method inlining are safely performed on Java
methods without the need to adjust methods while they execute. A feedback mechanism
between the Java virtual machine and the optimizer allows new classes to be added to the
system while maintaining correctly optimized code. Our results show a significant decrease
in the number of method invocations and a noticeable increase in performance in certain

execution environments.



1 INTRODUCTION

Because of its dynamicism, object-orientation, and platform independence tA¥ Java
programming language has become a popular language choice for application program-
ming. However, the same features that make the Java language popular also make it diffi-
cult to optimize. Unlike traditional procedural programming languages, complete whole-
program analysis cannot be performed on Java programs. The object-oriented program-
ming style encourages the use of small methods that cannot be extensively optimized.
Additionally, the Java execution model places constraints on the types of program opti-

mizations that can be performed.

1.1 Interprocedural Analysis

Much work has been done in the area of interprocedural analysis and optimizations
for object-oriented programming languages. Method inlining is a popular and effective
optimization that not only removes the overhead of method invocation, but also provides the
optimizer with a larger code context in which to optimize. Unfortunately, interprocedural
analyses are often expensive and complex and require that certain assumptions about the
program be made. However, at runtime additional information that is not available during
the analysis may enter the system and invalidate certain optimizations. The invalidation and
subsequent “deoptimization” of the optimized code is essential to the correct execution of

a program.



1.2 Orthogonal Persistence

This work presents a novel approach to whole-program optimization that performs ex-
tensive off-line analysis and optimization of Java programs. The analysis and optimization
data, as well as the program being optimized, are maintained in a persistent store. At run-
time, operations that invalidate the optimizations can be detected. The data in the store
is then consulted and the optimized code is corrected. By coupling the optimizer and the
runtime system, significant off-line analysis can occur while guaranteeing safe, correct

program execution.

1.3 Measurements

We applied our interprocedural optimizations to a number of Java programs. Static
and dynamic measurements such as number and kind of bytecodes executed, elapsed time,
and hardware cache behavior were taken. The results demonstrate the ability of our op-
timizations to reduce significantly the number of methods that are invoked and to reduce
the overhead of many of the invocations that remain. Our results also demonstrate that
intraprocedural optimizations do indeed take advantage of the larger context provided by

interprocedural optimizations and impact performance further.

1.4 Overview

The rest of this thesis is organized as follows. In Chapter 2 we discuss the interpro-
cedural analysis and optimizations we perform on Java programs. Chapter 3 describes the
implementation of these optimizations using the Bytecode-Level Optimizations and Anal-
ysis Tools [Nystrom 1998] optimization framework. Chapter 4 outlines the experimental
methodology used to measure the performance of optimized programs and presents the re-
sults of those experiments. We conclude with a discussion of related work and directions

for future work.



2 BACKGROUND

2.1 The Java Object Model

The object-oriented programming paradigm aims to provide modular and reusable pro-
grams and libraries through data and code encapsulation. The object model for the Java
programming language is described in Gosling et al. [1996}p&is associated with pro-
gram entities such as variables and expressions. A type limits the values an entity may hold
and defines the operations the entity must providela&sdefines a new type and describes
how it is implemented. Ambjectis a class instance or an array. At compile-time, we say
that an object “has a type” where at run-time we say that it “belongs to a class”. Classes
that are declared to labstract cannot be instantiated. Anterfacedeclaration specifies a
type consisting of constants and abstract methods.

With the exception of thgava.lang.Object class, all classes havedaect superclass
A class is said to be direct subclas®f its direct superclass. A direct subclagsrives
its implementation from its direct superclass. Classes that are manktanay not have
subclasses. The derivation relationship among classes foctassahierarchy

A type S is assignment compatiblgith a typeT according to the following rules:
e If Sis aclass type

— If Tis aclass type, thed andT must be the same class®must be a subclass

of T

— If Tis ainterface type, the® must implement

e If Sis an interface type



— If Tis aclass type, it must hava.lang.Object

— If Tis an interface type, thed andT must be the same interface ®must be

a subinterface of
e If Sis an array typ&C[] whose components are of tyfe€

— If Tis a class type, theh must bgava.lang.Object
— If Tis aninterface type, thehmust bgava.lang.Cloneable orjava.io.Serializable

— If T is an array typd C[] whose components are of typ€, thenTC must be

assignment compatible 8C

A methods executable code that can be invoked and is associated with a clelsssA
methods invoked relative to a class type, while @stance methot invoked with respect
to a class instance. Methods are invokededlasite The method containing the call site is
referred to as thealler and the method that is invoked is referred to asctileee Methods
have a fixed number of formal parameters, each of which has a type, and may return a value
to the caller. A method’s signature consists of the name of the method and the number and
types of the method’s formal parametersc@nstructoris executable code that initializes
class instances. Unlike methods, constructors cannot be invoked difgatlye methods
are implemented in platform-dependent code.

A class thadirectly implementsn interface has an implementation of all the abstract
methods specified by the interface. It is possible that a class may declare a method with
the same signature as a method in its superclass. If the method is an instance method, we
say that the methoolverridesthe method of its superclass. If the method is a class method,
we say that the methdddesthe method of the superclass. A classeritsthe methods of
its direct superclass and direct superinterfaces that are neither overridden nor hidden by a

declaration in the class.



2.2 Methods

2.2.1 Call Site Binding

When a Java program is compiled, several steps determine the compile-time declaration
of a call site. First, the callee method’s signature along with a class or interface in which to
search for a declaration matching the signature are computed. If in the source program the
call simply consists of a method name, then the declaring class of the caller is searched. If
the call consists of the name of a class type and a method name, then that class is searched.
If the call consists of an expression and a method name, then the compile-time type of the
expression is searched. If the call consists of the keywop@r and a method name, then
the superclass of the caller’s declaring class is searched.

A method declaration isipplicableto a call site if and only if the declaration and
method specified at the call site have the same number of parameters and the type of each
actual argument are assignment compatible with the declared type of the corresponding
formal parameter. More than one method declaration may be applicable to an invocation.
In this case, the mosipecificmethod is chosen. A methogh, declared in clas$ is more
specific than a methody, declared ifJ if and only if T is assignment compatible with
and each parameter type Tnis assignment compatible with its corresponding parameter
type in U. The most specific applicable method declaration for a call site is called the
compile-time declarationThe second step searches the class produced by the first step to
locate method declarations applicable to the call site.

If a call site’s compile-time declaration is an instance method, then the call sie is
namically bound Dynamically bound call sites require a run-time lookup to compute the
method that is invoked. The target class instance on which a dynamically bound virtual
invocation is performed in called theceiverof the invocation. If the method specified at
the call site is a class method, then we say that the call stati€ally bound The method

specified at a call site is the method that will be invoked at run time.



2.2.2 Method Invocation

The run-time invocation of a call to methad involves several steps. First, the tar-
get class instance of the invocation is computed, if the method invocation is dynamically
bound. Then, the actual arguments of the invocation are evaluated. Next, the method to in-
voke is located. Statically bound invocations have no receiver and overriding is forbidden.
So, the method invoked run-time is always the method to which the call site is statically
bound. If the invocation is dynamically boundjgnamic method lookugetermines which
method is invoked. The dynamic method lookup starts with the run-time §jpef the
receiver.S is searched for a method declaration that matche$wo method declarations
match if they have the name number and types of parameters and they have the same return
type. If no method declared B matchesn, then the superclass 8fis searched. This pro-
cess is applied recursively up the class hierarchy until a match is found. Finally, program

control is transferred to the method being invoked.

2.3 Type Analysis

Type analysis computes information about the types of various program entities. The
analyses discussed here determine the possible types of the receiver of a dynamically bound
call site and thus the set of possible methods that could be invoked. Type analysis creates a
call graph for a program that is consulted when performing certain optimizations. Various
aspects of the type analyses presented in this thesis will be demonstrated using the classes

in Figure 2.1.

2.3.1 Class Hierarchy Analysis

Class hierarchy analysis [Dean et al. 1995; Bed€z 1995; Diwan et al. 1996] uses
the class inheritance hierarchy in conjunction with static type information about a call site

to compute the possible methods that may be invoked. ConsidgetAeea method in

INote that most implementations of dynamic method lookup use caching techniques such as virtual tables

to increase efficiency.
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abstract class Shape {
abstract float area();
float getPl() { return(3.14579F); }
static float square(float f) { return(f*f); }

}

class Triangle extends Shape {
float b, h;
Triangle(float b, float h) { this.o = b; this.h = h; }
float area() { return(b*h/2); }

}

class Circle extends Shape {
float r;
Circle(float r) { this.r = r; }
float area() { return(getPl() * Shape.square(r)); }

}

class Rectangle extends Shape {
float s1, s2;
Rectangle(float s1, float s2) { this.sl = sl; this.s2 = s2; }
float area() { return(sl*s2); }

}

class Square extends Rectangle {
Square(float s) { super(s, s); }

}

Figure 2.1: Example class hierarchy



float getArea(boolean b) {

Shape s;
if(b)

s = new Circle(2);
else

s = new Square(3);
float area = s.area();
return(area);

Figure 2.2: Calling methodrea

Figure 2.2 which contains a call to the instance methe. Depending on the runtime
type of the receiver of the method, the call could resolve to the implementation of the
area method in any of thdriangle, Circle, or Rectangle classes. Observe that if the
compile-time type of the receiver of the invocationaséa is Rectangle or its subclass
Square, the only method that could possible be invoked is dhea implementation in
Rectangle because no subclassiRéctangle overridesarea. This observation is key to
class hierarchy analysis.

Class hierarchy analysis creates a program'’s call gragallgraphis a directed graph
that models the calling relationships among a program’s methods. Each node in a call graph
represents a method containing a set of call sites. The roots of the call graph correspond to
the entry points of the program (e.g. tiain method). Each edge represents one method
(potentially) calling another. If methddo calls or may call methodar, there is a directed
edge from the node representiiog to the node representifgar.

The call graph contains several important pieces of information. First, it demonstrates
which methods may be invoked during the execution of the program. Such methods are
referred to as beingve. Only methods that have nodes in the call graph are interesting
and need to be considered for further analysis. The call graph reveals which methods could
potentially be invoked at a call site. If only one method can be invoked at a call site, then
the site is said to bemonomorphic Otherwise, it is said to bpolymorphic Call sites that

are monomorphic do not require a dynamic method lookup at run-time.



2.3.2 Rapid Type Analysis

Rapid type analysis (RTA) [Bacon and Sweeney 1996] extends class hierarchy analysis
by using class instantiation information to reduce the set of potential receiver types at a call
site. Consider the program in Figure 2.2. Class hierarchy analysis stated that the call to
area could invoke thearea method ofTriangle, Circle, or Rectangle. However, a quick
glance at the program reveals that it is impossible foratea method implemented in
Triangle to be invoked because neith&iangle nor any of its subclasses is instantiated.
Classes that are instantiated is considered tovbe

RTA must be careful in the way that it marks a class as being instantiated. Invoking
a class’s constructor does not necessarily mean that the class is instantiated. Consider an
invocation of the one-argument constructorSafuare. Calling this constructor indicates
that classSquare is instantiated. Howevegquare’s constructor invokes the constructor
of its superclasdkectangle. This invocation oRectangle’s constructor does not indicate
thatRectangle is instantiated.

Rapid type analysis traverses a program’s call graph starting at its root methods. One

following operations occurs at an invocation of metmod

e If the call site is statically bound, them is marked as being live and is examined

further.

e If the call site is dynamically bound, then the set of potential receiver types is cal-
culated using class hierarchy analysis. For each potential receiver type that has been
instantiatedT, the implementation afn that would be invoked with receiver tyge
is made live and is examined further. The implementatioms of the uninstantiated

classes are “blocked” on each uninstantiated flype

e If mis a constructor of clask and the caller is not a constructor of a subclass,of
the classT is instantiated andh becomes live and is examined. Additionally, any

methods that were blocked dnare unblocked and examined.

In our running example, class&rcle and Square are live. The constructors for

Circle andSquare, thearea methods ofCircle andRectangle, and thegetPl andsquare
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Shape.getP Math.square()

Figure 2.3: The call graph fagetArea

methods are all live. Tharea method ofTriangle is blocked orilriangle. The call graph

compute by using rapid type analysis fggtArea is given in Figure 2.3.

2.4 Call Site Customization

The compiler for the BLF language introduced the notion of call stestomizatiofiCham-
bers et al. 1989]. Customization optimizes a dynamically bound call site based on the type
of the receiver. If the type of the receiver can be precisely determined during the compila-
tion phase, then the call site can be statically bound.

The call toarea can be customized in the following manner. Rapid type analysis
concluded that the tharea method of eitheCircle or Rectangle will be invoked. Cus-
tomization replaces the virtual invocations with two type tests and corresponding statically
bound invocations (in the form of a call to a class method) as show in Figure 2.4. If the call
site is monomorphic, no type test is necessary. Two class metfiads in Circle and
$area in Rectangle have been created containing the same code as the virtual versions of
area. In the case that the receiver type is none of the expected types, the virtual method is
executed.

Once a call to an instance method has been converted into a call to a class method, the
call may beinlined. Inlining consists of copying the code from the callee method into the
caller method. Thus, inlining completely eliminates any overhead associated with invoking
the method.
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float getArea(boolean b) {

Shape s;

if(b)
s = new Circle(2);

else

s = new Square(3);

float area;

if(s instanceof Circle) {
Circle ¢ = (Circle) s;
area = Circle.$area(c);

} else if(s instanceof Rectangle) {
Rectangle r = (Rectangle) s;
area = Rectangle.$area(r);

} else {

area = s.area();
}
return(area);

Figure 2.4: Customized call tarea
2.5 Preexistence

When customizing call sites certain assumptions are made about the classes in the pro-
gram. For instance, the analysis may determine that a call site is monomorphic and inlines
the invocation. However, additional classes may enter the system that invalidate assump-
tions made during the analysis. In this case the optimized code must be reoptimized.

This situation is further exacerbated by the fact that optimized code may need to be
reoptimized while it is executing. Consider the program in Figure 2.5a. The mg#ted
SomeShape may potentially load a subclass 8hape that is unknown at analysis time.
getSomeShape could be a native method or, in the worst case, could ask the user for
the name of a class to load. In any case, the cafirem cannot be inlined without the
possibility of later adjustment.

The SELF system [Hblzle et al. 1992] solved this problem by using a run-time mech-
anism calledon-stack replacemend modify executing code. &&F maintains a signifi-
cant amount of debugging information that allows for quick deoptimization of optimized

code. When an optimization is invalidated; $ recovers the original source code and
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float getSomeArea() { float getSomeArea(Shape s) {
Shape s = getSomeShape(); float area = s.area();
float area = s.area(); return(area);
return(area); }
} : : . :
(a) Receiver does not preexist (b) Receiver preexists

Figure 2.5: Preexistence of receiver objects

re-optimizes it taking the invalidating information into account. Maintaining the amount of
information necessary to perform these kinds of optimizations requires a noticable space
and time overhead, increases the complexity of the optimizer, and places certain constraints
on the kinds of optimizations that can be performed.

Detlefs and Agesen [1999] introduced the concemreéxistencéo eliminate the need
for on-stack replacement. Consider a metfmal containing a invocation of methdshr
with receiver objecb. o is said topreexistif it is created befordoo is called. The type
of any preexistent object must have been introduced before the mieth@lcalled. Any
invalidation of assumptions made about the type tis introduction may cause will not
effect the methodoo. Therefore, on-stack replacement on metfaal will never occur
and it is safe to inline the call toar.

Consider the version afetSomeArea presented in Figure 2.5b. In this method the re-
ceiver of the virtual method invocation is one of the method’s arguments. If any previously
unknown subclass ddhape were to enter the system, it would have to do so before the
call togetSomeArea. At the time that the new class enters the system, the as-yet-uncalled
getSomeArea method would be appropriately re-optimized to account for the new class.

An object may be proven to be preexistent using two techniques. Obviously, a method’s
arguments and receiver are created before the method is invokedant argument anal-
ysisuses this fact and traces the usage of the arguments throughout the method. If an
argument is used as the receiver of a method invocation, that call may safely be optimized
without worrying about on-stack replacement.

Immutable field analysisonsiders private instance fields whose values are assigned to
only in constructors. Constructors are called before the object being initialized can be used.

If the value of the field is used as a receiver of a method invocation and it is known that
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the field has not be modified since its object’s construction, then we can state the receiver

object preexists.

2.6 Orthogonal Persistence

Large applications tend to have data that outlives a single program execution. Thus, the
need for data management software arises. The object-oriented programming paradigm
takes a data-centric view of software. It seems natural for object-oriented data to persist
between program executions.

Orthogonal persistence [Atkinson et al. 1983; Atkinson and Morrison 1995] allows for
automatic storage of program data by integrating a program’s runtime environment with a
stable data store. There are two driving principles behind persistéraeesparencyand
orthogonality Transparency states that programs that operate on persistent data cannot be
distinguished from programs that operate on transient data. Transparency is especially im-
portant in that it allows software developed for transient data to be reused with persistent
data. Orthogonality ensures that any data may persist regardless of its type. Orthogonal-
ity ensures that programmers are not required to identify persistent data at the time it is
created. Most persistent systems implement persistence by reachability: if an object has
been designated@ersistence rooor is referenced by another persistent object, it itself is
persistent.

This thesis uses an orthogonally persistent Java virtual machine to analyse and optimize
Java programs. Various kinds of analysis and optimization information are maintained as
persistent Java objects. This information can be consulted at runtime to determine whether

any changes to the type system have been made that invalidate the optimizations.

2.7 Related Work

Much work has been done in the area of type analysis of object-oriented programming

languages, particularly in type prediction and type inferencing. Palsberg and Schwartzbach



14

[1991] presents a constraint-based algorithm for interprocedural type inferencing that op-
erates inO(n) time wheren is the size of the program. Ageson [Agesen 1994] presents

a survey of various improvements to t¢n®) algorithm. Several the strategies discussed
create copies of methods called “templates” whose type information is specialized with
respect to the type of the parameters. Ageson also describes the “Cartesian Product Algo-
rithm” [Agesen 1995] that creates a template for every receiver and argument tuple on a
per-call site basis. Several of the above algorithms were considered for our type analysis.
However, as implementation began it became obvious that none of them is practical using
our modeling framework for the numerous classes in JDK1.2.

Diwan et al. [1996] uses class hierarchy analysis and an intraprocedural algorithm in ad-
dition to a context-insensitive type propagation algorithm to optimize Modula-3 programs.
Budimlic and Kennedy present interprocedural analyses and method inlining of Java pro-
grams [Budimlic and Kennedy 1998]. They implemeatle specializatiom which virtual
methods contain a run-time type test to determine whether or not inlined code should be
executed. In order to preserve Java’s encapsulation mechanism, their analyses must operate
on one class at a time. Thus, no method’s from other classes may be inlined.

The Soot optimization framework [Sundaresan et al. 1999] performs similar analysis to
ours. While they describe type analyses that are more aggressive than rapid type analysis,
it is unclear as to the practicality of these analyses under JDK1.2.

The Jax application extractor [Tip et al. 1999] uses rapid type analysis to determine the
essential portions of a Java program with the goal of reducing the overall size of the appli-
cation. Jax performs several simple optimizations such as inlining certain accessor methods
and marking non-overridden methods as bdingl and respects Java’s data encapsulation
rules. Unlike the other tools described above, Jax accounts for dynamic changes in the type
system via a specification provided by the user.

Several studies [Grove et al. 1995; Fandez 1995] examine the effects of using run-
time profiling data to optimize object-oriented programs. Profiling data can be used to
identify sections of code that are executed frequently where optimizations may have greater

impact as well as the true types of the receivers of method calls.
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More recently, the Jalepe™Java Virtual machine [Alpern et al. 1999] has taken a
unique approach to optimizing Java program. Jalepgewritten almost entirely in Java
and yet it executes without a bytecode interpreter. It employs several compilers that trans-
late bytecode into native machine instructions. The compilers use both static techniques

and profiling data, but differ in the number and kinds of optimizations they perform.
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3 IMPLEMENTATION

3.1 The Java Virtual Machine

The Java virtual machine [Lindholm and Yellin 1996] is an abstract machine that exe-
cutes programs specified by the binalgss file format. Theclass file format and the Java
virtual machine’s instruction set, calléytecodessupport all of the operations necessary
to execute programs written in the Java programming language. The Java virtual machine
contains a dynamic allocation heap, method area, run-time constant pool, and certain per-
thread data structures. Theapis a memory area, shared among all threads, in which
objects and arrays are allocated. It is the responsibility of an automatic memory manager
to deallocate the memory in the heap. Thethod areaontains per-class data structures
such as the run-time constant pool and the code for methods and constructorsinThe
time constant podholds constants representing program elements ranging from numeric
literals to symbols representing fields and methods.

During execution, drameis created whenever a method is invoked. Each frame has a
list of local variables, an operand stack, and a reference to the run-time constant pool of the
class containing the method being invokeédhcal variableshold values accessed during
method execution. Specifically, thearguments of the method are stored in the filstcal
variables of the method’s frame. For instance methods, the receiver object is always stored
in the first local variable. Theperand stacks used to hold partial results and for passing
parameters to methods.

The Java virtual machine’s instruction set operates primarily on values residing in lo-

cal variables or on the operand stack. There are instructions to perform basic arithmetic
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operations such as addition, multiplication, bitwise AND, and numerical comparison; ob-
ject creation, operand stack manipulation, control transfer, method invocation, and thread
synchronization.

Of particular interest to this work are the Java virtual machine’s instructions for invok-
ing methods. Each method invocation instruction has operands that index an entry in the
constant pool describing the method being invoked. This method description includes the
name, number and type of arguments, and the return type of the method. Prior to a method
invocation the arguments to the method are pushed onto the operand stack. The Java virtual
machine’s method invocation mechanism pops the arguments off of the caller’s stack and
stores them into into the callee’s firstocal variables whera in the number of arguments
to the method.

There are four instructions that invoke methodszokestatic, invokeinterface, in-
vokevirtual, andinvokespecial. invokestatic invokes static methods and transfers pro-
gram control to the method being invoked provided that it exists and is statokeinter-
face andinvokevirtual invoke an instance method declared in an interface or class, respec-
tively. Both of them perform a “dynamic dispatch” and select the method to be invoked as
follows. A classC is searched for a method matching the one being invoked. Initi2ily,
the run-time class of the receiver object of the method invocatio@.dbntains a method
with the same name, argument types, and return type as the argument to the invocation
instruction, then program control is transferred to that method. Otherwise, the above step
is repeated for the superclass®©funtil a matching method is foundnvokespecial is
used to invoke instance initialization methods (constructaasyl special methods, such
as superclass and private methods. If the method being invoket/a&e or protected,
invokespecial ensures that the class of the receiver object is the same or a superclass of
the class containing the method being invoked. Neitheokespecial nor invokestatic

performs a dynamic dispatch, thus they are said todrevirtualmethod invocations.

1The Java programming language syntexw Foo() is compiled into an object allocation instruction,

new Foo, and a invocation of the constructor methopkespecial Foo.<init>.
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3.2 Modeling Java Programs

We used the Bytecode-Level Optimizer and Analysis Tool [Nystrom 1998], BLOAT, to
model Java class files. BLOAT contains a mechanism for reading class files from within
a persistent store and modeling them as Java objects. BLOAT models classes, methods,
and fields, resolves constants from the class file’s constant pool, and represents a method’s
code as a series of instructions with optional arguments and labels that are the targets of
jump instructions.

BLOAT also maintains a data structure for modeling the class hierarchy for the classes
on which it operates. The class hierarchy represents both the inheritance relationships
among classes and the implementation relationships between interfaces and classes.

Unlike traditional programming languages, whole-program analysis of a Java program
is difficult. The Java programming language allows classes to be dynamically loaded at any
time during execution. As such, performing static analyses on all of the classes required by
a Java program is not always possible. Descriptions of the types of the objects, methods,
and fields accessed by a Java class reside in the class’s constant pool. BLOAT uses these
constants to determine the names of classes that may be accessed by a Java program. Un-
fortunately, this analysis cannot account for classes referenced by native methods nor for

classes loaded via the class reflection mechanism.

3.3 Call Graph Construction

The standard class library for the Java 2 platform consists of over 4600 classes. In order
to handle so many classes in a practical manner, rapid type analysis is incorporated into the
construction of the call graph. The call graph construction algorithm operates on a worklist
of methods that initially contains the entry point of the Java program. In addition to the
expected “who calls who” information, the call graph maintains a set of methods and a set
of classes that are considered to be “live”. The hybrid algorithm for call graph construction

given in Figure 3.1 proceeds as follows. First, the call sites in each method are examined.
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If the call site is non-virtual, then there is no dynamic dispatch and the callee method is
made live and added to the worklist.

If the call site is virtual, the class hierarchy is consulted to determine the set of methods
that could be invoked. The description of the virtual call®enot only contains its name
and signature, but also contains the name of the dadbe declared class of the receiver.
The RTA algorithm examineS and all of its subclasses and looks for classes that override
m. Any of these overriding methods could be invoked. It is at this point that rapid type
analysis is applied. Each of the possible calleasjs examined. If the class in whiah
is declared (or any of its subclasses in whinhs not overridden) has been instantiated,
thenm; is considered to be live and is added to the worklist. If neither the class in which
my is declared nor any of its non-overriding subclasses has been instantiatedj tisen
“blocked” on each of those classes.

The rapid type analysis algorithm described in Section 2.3.2 relied on constructor invo-
cations to determine which classes were live. Examining constructors in that manner is not
necessary in our implementation. The Java Virtual Machines instruction instantiates
an object of given class and thus makes that class live. When a class becomes live, any
method that was blocked on that class is added to the worklist.

There are several Java-specific issues that must be dealt with during call graph con-
struction. The Java virtual machine instantiates a number of classes internally. Consider
a program that contains nothing Haystem.out.printin(*Hello World”). Since no class
IS instantiated in the program itself, the call graph would state that no method would be
invoked by the call tgorintin.  Clearly, this is incorrect. To remedy this problem, our
optimizer designates a number of classes tpredive

Classes may have static initializer methods that are invoked implicitly by the virtual
machine the first time a class is referenced. Call graph construction considers a class’s
static initializer method to be live when the class is instantiated, one of its methods is

invoked, or when one of its static fields is referenced.



input:
A set of root methodspots
output:
The call graphcallGraph representing the invocation relationship among methods.

do
callGraph«+ 0
liveClasses— 0
worklist < roots

while (worklist # 0) do
Remove a methodnethod from the worklist
for eachinstructioninstin methoddo
if (instinstantiates a clayshen
type< class being instantiated
makeLivétype)
else if (instinvokes a virtual methgathen
callee <« virtual method being called
doVirtuallmethod calleg
else if (instinvokes a nonr- virtual method then
callee< method being called
callGraph(method < callGraphmethod U callee
worklist < worklistu {callee}
with
procedure makeLivétype) begin
liveClasses— liveClasses) type
for each methodblocked orntypedo
worklist < worklistU type

procedure doVirtual(caller, calleg begin
for each methodthe callee may resolve o
isLive «+ false
for each possible receiver typeType of methoddo
if (rTypec liveClassegthen
isLive«+ true
worklist < worklistu method
callGraphmethod « callGraph/method U callee
break
if (not(live)) then
for each possible receiver typeType of methoddo
block methodonrType

Figure 3.1: Call graph construction using rapid type analysis
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0 aload 1
1 iconst 2
2 iload_2
3 ifeq 10
6 iconst 3 i const_5
7 goto 11
10 iconst_4 iconst_3 iconst_4
11 iconst_5 _
12 invokevirtual A.g(ll) I const_2
15 return al oad_1
(a) Compiled bytecode (b) The instruction stack

Figure 3.2: Instruction stack fa.g(2, (b?3:4), 5)
3.4 Call Site Customization

Customization examines each virtual method invocation and uses information obtained
from the call graph to determine which methods could be invoked. It then adds code to the
caller that performs a “case switch” on the receiver object and replaces the virtual method
call with a non-virtual method call, thus eliding the run-time overhead of the dynamic
dispatch.

Customization must locate the instructions that pushes the receiver object onto the
operand stack. Finding these instructions is more difficult that it may appear. Because
of language constructs such as the conditional operatprtliere may be arbitrary control
flow between the invocation instruction and the instructions that push its receiver on the
stack. Thus, the contents of the stack must be simulated as the method is examined. Each
element in the simulated stack is a set of instructions that are responsible for pushing val-
ues at that stack height. Such a stack is demonstrated in Figure 3.2. For an invocation of a
method withn parameters, the instructions that push the receiver onto the stack are located
depthn in the instruction stack.

Maintaining the stack of instructions is essential to implementing preexistence. Recall
that only call sites whose receiver objects preexist may safely be inlined and, thus, are
worthwhile to customize. Before a call site is customized the instructions that push the

receiver on the operand stack object are examined. If those instructions load preexistent
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local variables or create objects, then the receiver preexists and may be safely customized.
However, a receiver that results from a load of an object’s field or a method call do not
preexists and cannot safely be customized. While preexistence restricts the number of call
sites that may be customized, it does have a benefit. If all of the instructions that push the
receiver on the stack are object creation instructions, then the possible run-time types of
the receiver object are known. These types are used to reduce the set of methods that may
be invoked at the call site. Thus, as a byproduct of prexistence the implementation of rapid
type analysis performs a limited dataflow analysis on the type of the receiver object.

The following steps are taken to customize a virtual invocation of a methadd are
illustrated for thearea method in Figure 3.3. The instructions that push the receiver of the
call are located. Instructions are added to the caller that duplicate the receiver object and
store it in a local variable. Then at the call site, the receiver object is loaded from the local
variable. If the call site is polymorphic, code is added that tests the type of the receiver. If
the type of the receiver matches a cl&@s non-virtual invocation of the implementation
of the m method in clas<€ is performed using thavokespecial instruction. Note that
the order in which the type checks occur is important. iliséanceof instruction does not
test type equality — any subtype of the request type is also an instance of the desired type.
Thus, the more “refined” types must be tested for first.

The implementation of customization differs from the description given in Section 2.4
in that no static version of the virtual method is generated. Making a static versions of
methods not only increases the size of the optimized class files, but also has a negative
impact on the instruction and data caches at runtime. However, in order to usedke-
special instruction, the virtual machine was modified so that any method, nopjiste

andprotected methods, could be invoked non-virtually.

3.5 Method Inlining

The final phase of the interprocedural optimizations is to inline calls to non-virtual

methods. Calling non-virtual methods involves no dynamic dispatch, so it is known what



23

aload_2 aload_2

invokevirtual Shape.area()F dup

fstore_3 astore_4

fload_3 aload_4

freturn instanceof Circle
ifeq NEXT1
invokespecial Circle.area()F
goto END

NEXT1: aload 4
instanceof Rectangle
ifeq DEFAULT
invokespecial Rectangle.area()F
goto END
DEFAULT: invokevirtual Shape.area()F
goto END
END: fstore 3
fload_3
freturn

(a) A virtual call (b) Customized call site

Figure 3.3: Customizing a virtual call site

code will be executed by the call. Provided that certain conditions are met, this code may
be copied into the caller method and the overhead of calling the method is removed.

The process of inlining is relatively straightforward. Each non-virtual call site is exam-
ined. If it meets the criteria outlined below, then call is inlined. Inlining involves copying
the callee’s code into the caller method and changing the names of local variables and la-
bels in the callee so that they do not conflict with those of the caller. First, instructions are
added to store the arguments from the stack into local variables. Then the callee’s code
is copied into the caller. Local variables and labels in the callee method are mapped to
non-conflicting local variables and labels in the caller method. An example of an inlined
method call is given in Figure 3.4.

There are several situations in which a call to a non-virtual method is not inlined. Re-
cursive calls and calls to native methods are not inlined. Because invoking a synchronized
method involves obtaining a lock, synchronized methods are not inlined. Additionally,
some methods that may catch exceptions cannot be inlined. When an exception is caught,

the operand stack is cleared [Lindholm and Yellin 1996]. For an inlined method, clearing
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the stack effects the execution of the caller method as well. Thus, when the inlined method
“returns”, the stack state is not as expected. The only circumstance in which a call to a
method that may catch an exception may safely be inlined occurs the only values on the
operand stack at the time of the call are the callee’s arguments.

It is also possible to inline certain constructor invocations. The first call made by a
constructor is a call to its superclass’s constructor. There is no dynamic dispatch that
occurs here and no object is created. Thus, the code of the superclass’s constructor can be
inlined.

Inlining methods that access non-public data invalidates the encapsulation assertions
made about Java methods during compilation. Additionally, other optimizations may result
in code that does not verify. We argue that once a class has become resident in a persistent
store, we need not worry about encapsulation and verification. As classes are loaded into
the system, they are verified to be well-behaved. As such, our Java virtual machine does

not perform data access checks.

3.6 Intraprocedural Optimizations

BLOAT performs several intraprocedural optimizations on Java methods [Nystrom 1998].
For each method a control flow graph in static single assignment form is constructed. Op-
timizations such as expression propagation, dead code elimination, and partial redundancy
elimination [Chow et al. 1997] of access expressions are performed on the control flow
graph. After the control flow graph has been destructed, register allocation with graph col-
oring is applied to make efficient use of the Java virtual machine’s local variables. Special
analyses are performed to make better use of the Java virtual machine’s stack manipulation
instructions [VanDrunen 2000]. Finally, several peephole optimizations are applied to the
generated instructions. Invoking methods restricts some optimizations because intraproce-
dural analyses do not analyze the behavior of the callee. Inlining gives BLOAT a larger

context upon which to perform its intraprocedural optimizations.
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3.7 Persistence-Enabled Optimization

The Java Language Specification [Gosling et al. 1996] requires that changes made to
Java classes at@nary compatiblevith preexisting class binaries. However our optimiza-
tions break Java’s data encapsulation model by allowing caller methods to access the private
data of inlined methods. Thus, our optimizations must be performed on classes in a safe
environment in which the restrictions of binary compatibility can be lifted. Code could
be optimized at runtime when the virtual machine has complete control over the classes.
However, our optimizations require extensive program analysis whose runtime cost would
most likely outweigh any benefit gained by optimization.

Some implementations of orthogonally persistent Java virtual machines maintain a rep-
resentation of classes, as well as instantiated objects, in the persistent store. Such a store
would give a good approximation of a closed-world scenario in which a Java program may
be run. Additionally, the classes in the persistent store are verified to be binary compatible
upon their entry to the virtual machine. A program executing within a persistent store has
an unusual concept of “runtime”. Because data persists between executions in its runtime
format, the execution of the program can be thought of in terms of the lifetime of its data.
The program runs, then pauses (no code executes, but the runtime data persists), then re-
sumes. When the program is “paused” classes within the store may be modified without
regard to binary compatibility. Thus, we can safely perform our optimizations on classes

residing within the persistent store.

3.7.1 Deoptimization

Class hierarchy analysis and call site customization make certain assumptions about the
classes present in the virtual machine. For instance, it is assumed that certain methods are
not overridden by subclasses. However, it is possible that native methods or class reflection
may bring classes into the system that break the assumptions. Thus, optimized code may

need to be deoptimized in the face of such changes to the type system.
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Consider a caller methddo that contains a call to trerea method. Suppose that rapid
type analysis has determined that the call site will only invoketiea method ofTriangle
and that its receiver object preexists because it is a method parameter. Customization will
transform this call into a non-virtual call to tle@ea method ofTriangle. Suppose further
that at runtime the program loads tBquilateralTriangle class, a subclass dfiangle that
overrides thearea method, using Java’s reflection mechanism. During customization we
assumed that no subclasslofngle overrode thearea method. However, the introduction
of the EquilateralTriangel invalidates this assumption and the customized invocation of
the area method ofTriangle is incorrect because the receiver object may be an instance
of EquilateralTriangle. Thus, we must deoptimizZeo at runtime by undoing the effects
of customization. In an attempt to make deoptimization as fast as podsiblis, simply
reverted to its unoptimized form.

In the above example, we say that metlioo dependon thearea method ofTrian-
gle because if tharea method ofTriangle is overridden, thefioo must be deoptimized.

The optimizer maintains a series of dependencies [Chambers et al. 1995] among methods
resulting from call site customization. Note that if our analysis can precisely determine the
type(s) of a receiver object (e.g., the instructions that push the receiver onto the stack are
all object creation instructions), then no dependence is necessary. The dependencies are
represented as Java objects and reside in the persistent store.

The persistent Java virtual machine was modified to communicate with the optimizer
at runtime to determine when methods should be deoptimized. When a class is loaded into
the virtual machine, the optimizer is notified. If the newly-loaded class invalidates any as-
sumptions made about the class hierarchy during optimization, the optimizer consults the
method dependencies and deoptimizes the appropriate methods. To account for any degra-
dation in performance that deoptimization may produce, it may be desirable to optimize a
Java program multiple times during its lifetime. Subsequent optimizations will account for

classes that are introduced by reflection.
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A persistent store provides a closed-world model of a Java program, allows us to dis-
regard the restriction of binary compatibility, and provides a repository in which the opti-
mizer can store data necessary for deoptimization to ensure correct program behavior when
classes are introduced into the system at runtime. Thus, persistence enables us to safely

perform our interprocedural optimizations on Java programs.



NEXT1:

DEFAULT:

END:

aload_2

dup

astore 4

aload 4

instanceof Circle

ifeq NEXT1

astore_5 /I Store parameter
aload 5

invokevirtual Shape.getPI()F
aload 5

getfield Circle.r F
invokestatic Shape.square(F)F
fmul /I Return value on stack
goto END

aload 4

instanceof Rectangle

ifeq DEFAULT

astore 6

aload 6

getfield Rectangle.sl F
aload 6

getfield Rectangle.s2 F

fmul

goto END

invokevirtual Shape.area()F
goto END

fstore 3

fload_3

freturn

Figure 3.4: Inlining customized code
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4 EXPERIMENTS

To evaluate the impact of interprocedural optimizations on Java programs, we opti-
mized several Java benchmark applications and compared their performance using static

and dynamic performance metrics.

4.1 Platform

The experiments were performed on a Sun Ultra 5 Model 333 with a 333 MHz UI-
traSPARC-Ili processor with a 2MB external (L2) cache and 128MB of primary RAM.
The UltraSPARC-IIi has a 16-KB write-through, non-allocating, direct mapped data cache
that is virtually-indexed and virtually-tagged. The 16-KB instruction cache is two-way set
associative, physically indexed and tagged, and performs in-cache 2-bit branch prediction

with single cycle branch following.

4.2 Benchmarks

We used eleven benchmarks programs as described in Table 4.1 to measure the im-
pact of interprocedural optimizations. Several of the benchmarks were taken from the
SpecJVM [SPEC 1998] suite of benchmarks. Table 4.2 gives some static statistics about
the benchmarks: the number of live classes and methods, the number of virtual call sites,
the percentage of those calls sites that preexist, and the percentage of preexistent call sites
that are monomorphic and duomorphic (only two methods could be invoked). Itis interest-
ing to note that for most benchmarks the majority of virtual call sites are precluded from

inlining because they do not preexist. Note also that nearly all (89.8—-95.7%) of preexistent



30

Table 4.1: Benchmarks

| Name | Description
crypt Java implementation of the Unix crypt utility
db Operations on memory-resident database
huffman Huffman encoding
idea File encryption tool
jack Parser generator
jess Expert system
jlex Scanner generator
jtb Abstract syntax tree builder
lzw Lempel-Ziv-Welch file compression utility
mpegaudio| MPEG Layer-3 decoder
neural Neural network simulation

Table 4.2: Inlining statistics (static)

Benchmark] live classes| live methods| virtual calls | % preexist] % mono| % duo |

crypt 134 853 1005 38.9 87.0 3.1
db 151 1010 1373 36.7 87.7 4.2
huffman 141 875 1071 38.6 87.7 2.9
jack 184 1170 2305 31.5 86.1 8.3
jess 245 1430 2563 35.0 92.2 3.0
jlex 154 1008 1315 35.4 88.8 2.6
jtb 273 2111 3965 32.8 87.7 8.0
lzw 142 905 1031 38.3 86.8 3.0
mpegaudio 173 1146 1594 31.6 87.1 5.2
neural 139 883 1024 39.1 87.2 3.0

call sites are monomorphic or duomorphic. Thus, from a static point of view, extensive
customization of polymorphic call sites seems unnecessary.

Each benchmark was optimized in five configurations: no optimizatiog)( only
intraprocedural optimizationgntra), call site customizatiorc{st), inlining of non-virtual
calls (nline), and intraprocedural optimizations on top of inlinitgpth). Through analysis
of empirical data, several conditions on the interprocedural optimizations were arrived at:
only monomorphic call sites were customized, no callee method that is larger than 50
instructions is inlined and no caller method is allowed to exceed 1000 instructions because

of inlining.



31

4.3 [Execution environments

The benchmarks were executed in three different execution environments: the Sun Java
2 SDK SolarigM Production Release Virtual Machine with and without a Just-In-Time
compiler (labelled JIT and noJIT, respectively), and the Toba bytecode-to-C compiler ver-
sion 1.1 [Proebsting et al. 1997; Toba 1998].

4.4 Metrics

Several dynamic metrics were used to measure the impact of our optimizations. We
measure the number of cycles, instructions executed, data cache read misses, and instruc-
tion cache misses for each benchmark using software [Enbody 1998] that allows user-level
access to the UltraSPARC’s execution counters. Each benchmark was run twice inside a
single activation of the execution environment (JIT, noJIT, Toba). The first iteration primes
the execution environment: class files are loaded, bytecodes are JIT compiled, and the
caches are warmed. The measurements reported here were taken during the second itera-
tion of the benchmark.

The instruction cache on the UltraSPARC is physically addressed and, therefore, pro-
gram behavior with respect to the instruction and data caches may vary noticeably across
executions. To account for this deviation the dynamic measurements reported are the aver-

age over 3 runs of the benchmark and 90% confidence intervals are shown in the graphs.

4.5 Results

The results for each benchmark are summarized in Tables 4.3-4.12. When reporting the
counts of the executed bytecode raw data is reporteddpronly. We give the totals for
the other optimization levels as a portionrmafp’s total. The count of individual bytecodes
are reported as a portion of the total number for the given optimization level. Similarly,
we give the raw data for the hardware execution countemsdpr while the other data are

reported as a ratio relative tmp.
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Figure 4.1: Total bytecodes executed

4.5.1 Bytecode counts

Examining the number of bytecodes executed provides insight into the effectiveness of
our interprocedural optimizations. Figures 4.1, 4.2, and 4.3 summarize bytecode counts for
the five optimization levelsiop, intra, cust, inline, andboth. As Figure 4.1 demonstrates
the interprocedural optimizationsust andinline, do not have a signifcant effect on the
total number of bytecodes executed. However, combining interprocedural and intraproce-
dural optimizationsifoth) results in up to 8% fewer bytecodes being executed than with
the intraprocedural optimizations alonet(a).

The effects of call site customization and method inlining can be seen by examining the
number and kind of methods executed. Figure 4.2 reports the numbemékspecial,
invokevirtual!, andinvokestatic instructions. Call site customizatiosust) results in
an often drastic reduction in the numberio¥okevirtual instructions. Likewise, method
inlining removes as many as 52% of method invocations. For several benchmarks (crypt,
idea, and neural) very few static method invocations are inlined. This is most likely due to
the fact that the bodies of these methods exceed the 50 instruction limit placed on inlinable
methods.

Recall that when a method call is inlined, the callee’s parameters must be popped from

the operand stack into local variables. This results in a noticeable increase in the number of

1There were a negligable numberinfokeinterface instructions executed.
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Figure 4.3: Store bytecodes

store instructions as shown in Figure 4.3. While there is a performance penality for execut-
ing these additional stores, we argue that this penalty is overshadowed by the performance

gains brought about by inlining.

452 nodIT

We saw our greatest performance improvement when executing optimized code under
the bytecode interpreter (noJIT). As Figure 4.4 demonstrates, all benchmarks show some
improvement when methods are inlined. Our optimizations cause a 3—23% decrease in
the number of machine instructions executed. In general the decrease in the number of
cycles is not as drastic. For several benchmarks, our optimizations cause an increase in the

number of instruction fetch stalls and data read misses.
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For most benchmarks customizing monomorphic call sites has little effect on the num-
ber of cycles executed. This leads us to believe that the interprieteplsevirtual instruc-
tion has been optimized for maximum efficiency since it appears to have the same cost
as the non-virtuainvokespecial instruction. However, the increase in speed provided by
method inlining demonstrates that the method invocation sequence is still costly. In most

cases inlining enabled the intraprocedural optimizations to increase performance further.

453 JIT

A Just-In-Time (JIT) compiler compiles Java bytecode instructions into native machine
instructions which are then executed on bare hardware. The JIT we used to measure our
benchmarks performs a number of optimizations including call site inlining [Detlefs and
Agesen 1999] on the code it compiles. Provably monomorphic call sites are inlined directly.
The inlined code for call sites that are almost monomorphic are guarded by a run-time
“method guard” that compares the method about to be executed to the method that was
inlined.

Itis not surprising, then, that our optimizations conflict with those performed by the JIT
compiler. Our method inlining may increase the size of a method beyond a point where the
JIT compiler can generate efficient code. As Figure 4.5 demonsttaemethod inlining
performed by our optimizationg{ine) offers little advantage over the unoptimized code.
However, performing intraprocedural optimizations over the inlined cbdéj does re-
duce the number of instructions executed in most cases.

Inlining degrades the number of cycles executed by most benchmarks from 2—-26%.
This is primarily due to an increase in the number of misses in the data and instruction
caces. The intraprocedural optimizations fare much better than the interprocedural opti-

mizations in the JIT environment.

2Two benchmarks, jess and jtb, when optimized with the intraprocednted) optimizations cause the
JIT to generate code that results in an address alignment error at run-time. As this error does not occur with

the interpreter, we believe this behavior to stem from a bug in the JIT.
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Figure 4.5: Execution time for JIT
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454 Toba

Toba applies an optimizing C compiler to a Java program. We used Sun’s WorkShop C
Compiler version 5.0 which performs local and global optimizations such as induction vari-
able elimination, algebraic simplification, copy propagation, constant propagation, loop-
invariant optimization, register allocation, basic block merging, tail recursion elimination,
dead code elimination, tail call elimination and complex expression expansion. We hy-
pothesize that the C compiler would take advantage of the larger code context provided by
our interprocedural optimizations. The version of Toba that we used runs with Java 1.1
and does not fully support the entire Java class library, in particular the abstract windowing
toolkit. As a result, the SpecJVM benchmarks could not be run under Toba.

The results for toba are difficult to characterize. The number of instructions and cycles
are summarized in Figure 4.6. For some benchmarks our optimizations had no impact
on the number of instructions performed. In others we saw a decrease of 5-11% in the
number of instructions executed. Once again the decrease in the number of instruction did

not always cause a corresponding decrease in the number of cycles due to caching behavior.
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Table 4.3: Results for crypt

| Platform | Metric | nop | intra | cust | inline | both |
Bytecodes| TOTAL 260853720, 0.98| 1.00| 1.00| 0.98
invokevirtual 0.18| 0.18| 0.02| 0.02| 0.02
invokespecial 0.03| 0.03| 0.19| 0.13| 0.13
invokestatic 0.68| 0.69| 0.68| 0.64| 0.65

dup 0.02| 4.67| 0.02| 0.02| 4.76

if 0.49| 0.50| 0.49| 0.49| 0.50

ifcmp 0.75| 0.70| 0.75| 0.75| 0.70

load 15.25| 4.15| 15.25| 15.62| 4.14

loadh 10.34| 20.72| 10.34| 9.95| 20.56

store 468| 151| 468| 4.91| 1.49

storen 1.21| 3.19| 1.21| 1.15| 3.26

JIT Cycles 328642884 0.89| 0.99| 1.05| 0.89
SPARC instructions 337054347 0.92| 1.00| 1.00| 0.91

Instruction fetch stalls 1819446 0.99| 0.45| 1.11| 0.95

Data read misses 1345925| 0.97| 1.04| 3.49| 1.31

noJIT Cycles 5926082142 0.96| 1.03| 0.98| 0.91
SPARC instructions || 4601475214 0.90| 1.00| 1.00| 0.89

Instruction fetch stallg 7430311| 4.79| 1.03| 0.94| 4.89

Data read misses 27265184 1.24| 1.75| 0.67| 0.73

Toba Cycles 465352567 0.87| 1.02| 0.96| 0.86
SPARC instructions 471584726 0.89| 1.00| 1.00| 0.89

Instruction fetch stalls 8623059 0.97| 1.08| 1.25| 1.20

Data read misses 1169225| 1.14| 1.11| 1.04| 1.72
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Table 4.4: Results for db

| Platform | Metric I nop | intra | cust | inline | both ]
Bytecodes| TOTAL 3747617527 1.23| 1.00| 1.00| 1.00
invokevirtual 244 198 244 | 2.44| 2.44
invokespecial 0.17| 0.14, 0.17| 0.08| 0.08
invokestatic 0.60| 0.49| 0.60| 0.00| 0.00

dup 0.53| 2.55| 0.53| 0.53| 3.49

if 3.49| 2.83| 3.49| 3.48| 3.48

ifcmp 454 | 3.69| 454| 453| 4.53

load 17.18| 11.69| 17.18| 19.29| 10.43

loach 23.32| 26.87| 23.32| 21.13| 27.62

store 8.07| 7.39| 8.07| 9.27| 5.13

storen 264| 9.42| 264| 272| 7.81

JIT Cycles 16589918832 1.05| 1.02| 1.05| 1.03
SPARC instructions 8201809757 1.05| 1.00| 0.99| 1.01

Instruction fetch stalls 30612773 1.98| 1.02| 1.02| 1.86

Data read misses 529016289 0.99| 1.01| 1.00| 1.00

noJIT Cycles 136721160801 1.07| 0.96| 0.96| 0.98
SPARC instructions 93443093886 1.09| 1.00| 0.97| 0.94

Instruction fetch stalls 3668078414 0.76| 0.66| 0.67| 1.17

Data read misses 2025594158 0.90| 0.84| 1.00| 1.04
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Table 4.5: Results for huffman

| Platform | Metric | nop | intra | cust | inline | both |
Bytecodes| TOTAL 28209276/ 1.05| 1.00| 1.00| 0.97
invokevirtual 435| 4.15| 212| 2.12| 2.19
invokespecial 1.70| 1.62| 3.93| 1.80| 1.86
invokestatic 0.78| 0.74| 0.78| 0.47| 0.48

dup 150| 5.38| 150 1.50| 6.37

if 3.28| 3.14| 3.28| 3.28| 3.40

ifcmp 598| 5.68| 5.98| 5.98| 6.16

load 493 | 3.39| 4.93| 10.27| 4.50

loadh 30.33| 34.77 | 30.33| 24.98| 33.06

store 0.51| 2.86| 0.51| 260 2.94

storen 1.83| 342| 1.83| 2.20| 3.15

JIT Cycles 108113898, 0.94| 0.95| 1.04| 1.02
SPARC instructions 71083483 1.00| 0.98| 1.03| 0.98

Instruction fetch stalls 8296524 0.51| 0.36| 0.88| 1.38

Data read misses 1654630 1.02| 1.13| 0.96| 1.01

noJIT Cycles 1259474121 0.98| 1.03| 0.91| 0.86
SPARC instructions 928308022 0.96| 1.02| 0.90| 0.83

Instruction fetch stallg 39012174 1.03| 1.02| 1.28| 1.20

Data read misses 17953533 1.00| 1.04| 0.65| 0.78

Toba Cycles 335528931 0.94| 1.03| 1.05| 0.99
SPARC instructions 182798226 0.97| 1.00| 1.00| 0.94

Instruction fetch stalls 32595924/ 0.67| 1.14| 1.20| 1.27

Data read misses 2049671| 1.07| 0.82| 1.15| 0.73
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Table 4.6: Results for idea

| Platform | Metric I nop | intra | cust | inline | both |
Bytecodes| TOTAL 16389364 1.10| 1.00| 1.00| 0.96
invokevirtual 0.63| 0.57| 0.00| 0.00| 0.00
invokespecial 0.40| 0.36| 1.03| 0.78| 0.82
invokestatic 1.34| 1.21| 1.34| 1.33| 1.40

dup 0.32| 3.04| 0.32| 0.32]| 2.60

if 284| 2.61| 284| 282| 3.01

ifcmp 3.16| 2.76| 3.16| 3.14| 3.22

load 15.66| 8.65| 15.66| 17.36| 9.60

loach 23.13| 27.46| 23.13| 21.25]| 26.01

store 5.11| 3.00| 5.11| 5.76| 3.87

storen 7.04| 12.04| 7.04| 7.01| 7.54

JIT Cycles 83054534 0.95| 1.01| 0.92| 0.97
SPARC instructions 36752141 0.96| 0.99| 0.99| 0.98

Instruction fetch stall§| 18531557 0.98| 1.03| 0.91| 1.04

Data read misses 696192| 0.83| 0.82| 0.45| 0.46

noJIT Cycles 497895342 1.00| 0.99| 0.97| 0.95
SPARC instructions || 328071065/ 1.04| 1.01| 0.99| 0.95

Instruction fetch stall§| 32445160, 1.11| 1.09| 1.13| 1.11

Data read misses 5402604| 0.48| 0.87| 0.56| 0.64

Toba Cycles 39381466/ 0.88| 1.06| 0.88| 0.99
SPARC instructions 19982196| 0.98| 1.00| 0.97| 0.95

Instruction fetch stallg 8874997 0.70| 1.10| 0.69| 0.84

Data read misses 57096| 2.34| 2.78| 1.76| 2.05
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Table 4.7: Results for jack

| Platform | Metric | nop | intra | cust | inline | both |
Bytecodes| TOTAL 2117399842 1.01| 1.00| 1.00| 1.00
invokevirtual 1.66| 1.64| 1.46| 1.46| 1.46
invokespecial 0.71| 0.70| 0.91| 0.41| 0.42
invokestatic 0.36| 0.35| 0.36| 0.21| 0.21

dup 1.09| 1.69| 1.09| 1.09| 1.72

if 13.31| 13.23| 13.31| 13.28| 13.38

ifcmp 221 2.11| 2.21| 2.20| 2.14

load 3.26| 2.93| 3.26| 4.02| 3.42

loadh 37.10| 37.31| 37.10| 36.26| 36.88

store 143 150| 1.43| 2.22| 1.89

storen 7.20| 8.08| 7.20| 7.23| 8.24

JIT Cycles 5341660760 1.03| 1.00| 1.03| 1.03
SPARC instructions 3785866048 1.00| 1.00| 1.00| 1.00

Instruction fetch stalls 300976350, 1.31| 1.09| 1.23| 1.39

Data read misses 91920188 0.98| 0.96| 0.97| 0.95

noJIT Cycles 68265734731 1.02| 1.03| 0.95| 1.02
SPARC instructions || 47436823706 1.00| 1.00| 0.96| 0.95

Instruction fetch stallg)] 1471555600 1.30| 1.65| 1.13| 0.95

Data read misses 1081027154 1.01| 0.98| 0.80| 1.49

Table 4.8: Results for jess

| Platform | Metric | nop | intra | cust | inline | both ]
Bytecodes| TOTAL 1870816906 1.02| 1.00| 1.02| 1.00
invokevirtual 531| 5.19| 2.83| 2.78| 2.84
invokespecial 0.68| 0.67| 3.17| 1.16| 1.19
invokestatic 0.30| 0.29| 0.30| 0.21| 0.22

dup 0.53| 3.06| 0.53| 052| 3.28

if 3.80| 4.09| 3.80| 3.73| 4.20

ifcmp 6.67| 6.15| 6.67| 6.56| 6.31

load 786| 4.93| 7.86| 14.95| 7.87

loach 29.60| 29.83| 29.60| 21.86| 26.46

store 3.21| 257| 3.21| 7.08| 4.13

storen 2.83| 5.21| 2.83| 250| 6.25

JIT Cycles 5794754361 0.00| 1.04| 1.07| 0.98
SPARC instructions 3778754420 0.00| 0.98| 1.02| 0.97

Instruction fetch stalls 122195315 0.00| 1.65| 1.43| 1.83

Data read misses 113649546 0.00| 1.02| 1.08| 0.96

noJIT Cycles 72984475270 1.00| 1.04| 0.98| 0.91
SPARC instructions || 55609627990 1.00| 1.03| 0.92| 0.89

Instruction fetch stalls)] 1572800729 0.97| 1.03| 1.02| 0.99

Data read misses 920519682 1.03| 1.10| 1.25| 0.88
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Table 4.9: Results for jlex

| Platform | Metric | nop | intra | cust | inline | both |
Bytecodes| TOTAL 68770643 1.08| 1.00| 1.00| 1.00
invokevirtual 481| 444| 166| 1.65| 1.66
invokespecial 0.47| 0.44| 3.63| 254| 256
invokestatic 0.26| 0.24| 0.26| 0.01| o0.01

dup 1.18| 4.99| 1.18 1.18| 6.52

if 246| 2.63| 2.46| 2.45| 3.09

ifcmp 8.29| 7.28| 8.29| 8.25| 7.69

load 8.44| 4.87| 8.44| 10.61| 6.49

loadh 29.65| 31.33| 29.65| 27.32| 28.37

store 241 190| 2.41| 4.17| 2.74

storen 250| 7.58| 2.50| 2.53| 6.07

JIT Cycles 246734828, 1.03| 1.09| 1.04| 1.02
SPARC instructions 179993623| 1.02| 0.96| 1.01| 1.00

Instruction fetch stalls 5347549 1.68| 1.07| 1.56| 1.41

Data read misses 4002602| 1.05| 1.69| 1.04| 1.00

noJIT Cycles 2773572957, 0.97| 0.97| 0.97| 0.91
SPARC instructions || 2018604126 1.03| 1.04| 0.96| 0.95

Instruction fetch stallg 77551372 0.64| 0.61| 0.60| 0.69

Data read misses 36500397 0.76| 0.77| 1.13| 0.77

Toba Cycles 814004370, 1.05| 1.11| 1.03| 1.13
SPARC instructions 569819698 1.00| 1.01| 1.00| 1.00

Instruction fetch stalls 19797472 2.18| 1.41| 1.09| 4.13

Data read misses 1154929| 1.20| 5.91| 1.08| 1.09
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Table 4.10: Results for lzw

| Platform | Metric | nop | intra | cust | inline | both |
Bytecodes| TOTAL 28239091 1.00| 1.00| 1.00| 0.99
invokevirtual 6.84| 6.85| 6.47| 6.46| 6.52
invokespecial 0.19| 0.19| 0.56| 0.17| 0.17
invokestatic 0.00| 0.00| 0.00| 0.00| 0.00

dup 0.11| 1.29( 0.11| 0.11] 1.92

if 5.22| 6.21| 5.22| 5.21| 6.24

ifcmp 235| 1.37| 2.35| 2.34| 1.38

load 10.94| 1.27| 10.94| 12.04| 0.76

loadh 19.81| 28.70| 19.81| 18.67 | 28.40

store 589| 0.89| 5.89| 6.60| 0.85

storen 0.88| 6.42| 0.88| 0.71| 6.73

JIT Cycles 131940268 1.02| 1.00| 1.26| 1.12
SPARC instructions 64727474 1.00| 1.00| 0.99| 0.99

Instruction fetch stalls 19722185/ 1.13| 0.86| 1.06| 1.21

Data read misses 2895969| 0.98| 0.94| 0.99| 0.95

noJIT Cycles 1230814848 1.02| 1.02| 0.96| 0.95
SPARC instructions 865390494 0.98| 1.00| 0.98| 0.97

Instruction fetch stallg 55818107 1.07| 1.05| 0.99| 1.10

Data read misses 20331187 1.15| 1.20| 0.72| 0.81

Toba Cycles 146124730, 0.92| 0.91| 0.92| 0.88
SPARC instructions 67600608 0.92| 1.00| 0.99| 0.91

Instruction fetch stalls 20392287 0.86| 0.68| 0.31| 0.34

Data read misses 2268787 0.98| 1.03| 1.04| 1.10
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Table 4.11: Results for mpegaudio

| Platform | Metric I nop | intra | cust | inline | both ]
Bytecodes| TOTAL 11490419458 0.95| 1.00| 1.00| 0.91
invokevirtual 0.69| 0.73| 0.56| 0.56| 0.62
invokespecial 0.25| 0.27| 0.38| 0.14| 0.16
invokestatic 0.01| 0.01| 0.01| 0.01| 0.01

dup 1.07| 6.41| 1.07| 1.07| 6.87

if 1.26| 1.32| 1.26| 1.25| 1.39

ifcmp 2.05| 2.10| 2.05| 2.05| 2.20

load 13.76| 9.21| 13.76| 14.82| 10.18

loadh 14.07| 15.25| 14.07| 12.94| 13.31

store 207| 272| 2.07| 2.38| 251

storen 0.56| 2.74| 056| 0.55| 1.54

JIT Cycles 14451934821 0.93| 1.02| 1.02| 0.91
SPARC instructions 12796410118 0.93| 1.00| 1.01| 0.93

Instruction fetch stalls 95426652| 0.91| 1.47| 1.17| 0.92

Data read misses 106884266 0.88| 2.76| 1.75| 0.98

noJIT Cycles 302332129721 0.85| 0.98| 0.97| 0.78
SPARC instructions || 220150524918 0.85| 1.00| 0.98| 0.81

Instruction fetch stally| 10502891108 0.94| 0.36| 0.52| 0.29

Data read misses 2368059043 0.64| 0.76| 1.08| 0.59
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Table 4.12: Results for neural

| Platform | Metric I nop | intra | cust | inline | both |
Bytecodes| TOTAL 17493501 0.95| 1.00| 1.02| 0.87
invokevirtual 246| 259| 0.31| 0.31]| 0.36
invokespecial 0.15| 0.16| 2.29| 0.56| 0.66
invokestatic 0.74| 0.78| 0.74| 0.69| 0.81

dup 1.03| 2.33| 1.03| 1.01| 4.42

if 0.25| 0.69| 0.25| 0.24| 0.75

ifcmp 405| 3.83| 4.05| 3.96| 4.20

load 9.10| 5.61| 9.10| 13.78| 7.45

loach 26.81| 29.65| 26.81| 21.33| 26.00

store 0.51| 0.55| 0.51| 4.48| 0.92

storen 1.39| 2.68| 1.39| 1.34| 4.72

JIT Cycles 87766406 0.97| 1.01| 1.07| 0.97
SPARC instructions 66501513 0.97| 1.00| 1.06| 0.95

Instruction fetch stalls 1495605 1.10| 0.99| 0.92| 0.80

Data read misses 1282288 1.01| 1.01| 1.09| 1.10

noJIT Cycles 617569082 0.93| 1.03| 0.92| 0.79
SPARC instructions || 462051681 0.91| 1.03| 0.92| 0.77

Instruction fetch stally| 19187351 1.01| 1.00| 1.03| 1.04

Data read misses 7198401 0.94| 1.08| 0.63| 0.64

Toba Cycles 188353979 1.01| 0.98| 0.96| 0.99
SPARC instructions || 117678568 0.94| 0.99| 0.96| 0.89

Instruction fetch stallg 6328249| 1.49| 0.95| 0.93| 2.26

Data read misses 1379597 0.89| 0.92| 0.92| 0.87
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5 CONCLUSIONS AND FUTURE WORK

Our results show that whole-program interprocedural optimizations can yield notice-
able benefits on Java programs even in the face of hindrances like preexistence. Specifi-
cally, we were able to remove a significant number of methods calls and reduce the cost of
those method calls that remain. What makes our optimization scheme unique is that it ac-
counts for information introduced into the system at run-time by performing optimizations
in the context of a persistent store.

We believe that a tighter coupling of the run-time system, persistent store, and optimizer
will lead to greater performance enhancements. Optimization data such as method profile
information, exact call site resolution, object creation information, and hardware behavior
could be maintained as objects in a persistent store. As the persistent application executes
and evolves the optimizer could make adjustments to the optimized code to reflect the state

of the application.



BIBLIOGRAPHY



49

BIBLIOGRAPHY

AGESEN O. 1994. Constraint-based type inference and parametric polymorphem.
ture Notes in Computer Science 868-100.

AGESEN O. 1995. The cartesian product algorithm: Simple and precise typing of para-
metric polymorphism. Number 952 in Lecture Notes in Computer Science. Springer-
Verlag, New York, NY, 2—26. ECOOP '95 — Object-Oriented Programming 9th Euro-
pean Conference, Aarhus, Denmark.

ALPERN, B., ATTAaNASIO, C. R., BARTON, J. J., ®cCCHI, A., HUMMEL, S. F.,
LIEBER, D., NGO, T., MERGEN, M., SHEPHERD, J. C.,AND SMITH, S. 1999.
Implementing Jalapes in Java. IfProceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applicatidhd—324.

ATKINSON, M. P., BAILEY, P. J., GiiISHOLM, K. J., GOCKSHOTT, P. W.,AND MORRI-
SON, R. 1983. An approach to persistent programmihige Computer Journal 2@,
(Nov.), 360-365. Also published in/as: In “Readings in Object-Oriented Database
Systems” edited by S. Zdonik and D. Maier, Morgan Kaufman, 1990.

ATKINSON, M. P. AND MORRISON R. 1995. Orthogonally persistent object systems.
The VLDB Journal 43 (July), 319-401.

BACON, D. F. AND SWEENEY, P. F. 1996. Fast static analysis of C++ virtual function
calls. InConference on Object-Oriented Programming Systems, Languages & Appli-
cations (OOPSLA '96)324—-341.

BubpiMLIC, Z. AND KENNEDY, K. 1998. Static interprocedural optimizations in java.
Tech. Rep. CRPC-TR98746, Rice University.

CHAMBERS, C., DEAN, J.,AND GROVE, D. 1995. A Framework for Selective Recom-
pilation in the Presence of Complex Intermodule Dependencid#oeceedings of the
17th International Conference on Software Engineer2jl—230.

CHAMBERS, C., UNGAR, D., AND LEE, E. 1989. An efficient implementation of SELF
a dynamically-typed object-oriented language based on prototypes. In Proceedings of
the Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA), N. Meyrowitz, EGSIGPLAN Notices 24,0 (Oct.), 49-70.



50

CHow, F., CHAN, S., KENNEDY, R., Liu, S.-M., Lo, R., AND Tu, P. 1997. A new
algorithm for partial redundancy elimination based on SSA form. In Proceedings of
the ACM Conference on Programming Language Design and Implementation (Las
Vegas, Nevada, Juney2,5 (May), 273-286.

DEAN, J., QROVE, D., AND CHAMBERS, C. 1995. Optimization of object-oriented
programs using static class hierarchy analysiE@OOP’95—O0bject-Oriented Pro-
gramming, 9th European Conferend#. G. Olthoff, Ed. Lecture Notes in Computer
Science, vol. 952. Springer, Aarhus, Denmark, 77-101.

DETLEFS D. AND AGESEN O. 1999. Inlining of virtual methods. IRroceedings
ECOOP’99 R. Guerraoui, Ed. LCNS 1628. Springer-Verlag, Lisbon, Portugal, 258—
278.

DIWAN, A., Moss J. E. B.,AND MCKINLEY, K. S. 1996. Simple and effective analysis
of statically-typed object-oriented program&8CM SIGPLAN Notices 31,0 (Oct.),
292-305.

EnBODY, R. 1998. Perfmon User's Guide  Michigan State University.
http://web.cps.msu.eduénbody/perfmon/index.html.

FERNANDEZ, M. F. 1995. Simple and effective link-time optimization of Modula-3
programs ACM SIGPLAN Notices 3®, (June), 103—-115.

GOSLING, J., Dby, B., AND STEELE, G. 1996. The Java Language Specification
Addison-Wesley.

GROVE, D., DEAN, J., ®RRETT, C., AND CHAMBERS, C. 1995. Profile-guided re-
ceiver class predictiomPACM SIGPLAN Notices 300 (Oct.), 108-123.

HOLzLE, U., CHAMBERS, C.,AND UNGAR, D. 1992. Debugging optimized code with
dynamic deoptimization. II8IGPLAN '92 Conference on Programming Language
Design and ImplementatioB2—43.

LINDHOLM, T.AND YELLIN, F. 1996.The Java Virtual Machine Specificatiohddison-
Wesley.

NYsTROM, N. 1998. Bytecode level analysis and optimization of java classes. M.S.
thesis, Purdue University.

PALSBERG, J. AND SCHWARTZBACH, M. |. 1991. Object-oriented type inference. In
Proceedings OOPSLA '91, ACM SIGPLAN Noticb$6-161. Published as Proceed-
ings OOPSLA '91, ACM SIGPLAN Notices, volume 26, number 11.

PROEBSTING, T. A., TOWNSEND, G., BRIDGES, P., HARTMAN, J. H., NEwWSHAM, T.,
AND WATTERSON, S. A. 1997. Toba: Java for applications — A way ahead of time
(WAT) compiler. InProceedings of the Third USENIX Conference on Object-Oriented
Technologies and Systeiff®ortland, Oregon, June). USENIX.



51

SPEC. 1998. Specjvm98 benchmarks. http://www.spec.org/osg/jvm98.

SUNDARESAN, V., RAZAFIMAHEFA, C., VALLE-RAI, R., AND HENDREN, L. 1999.
Practical virtual method call resolution for java. Trusted objects, Centre Universitaire
d’'Informatique, University of Geneva. July.

Tip, F., LAFFRA, C., SNEENEY, P. F.,AND STREETER D. 1999. Practical experience
with an application extractor for java. IRroceeings of the 1999 ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA'99) L. Meissner, Ed. ACM Sigplan Notices, vol. 34.10. ACM Press, N. Y.,
292-305.

ToBA. 1998. Toba: A Java-to-C translator. http://www.cs.arizona.edu/sumatra/toba.

VANDRUNEN, T. J. 2000. A local optimization for stack-based architectures. Department
of Computer Science, Purdue University.



