
CONCURRENCY ABSTRACTIONS FOR PROGRAMMING LANGUAGES USING

OPTIMISTIC PROTOCOLS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Adam Welc

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2006

Purdue University

West Lafayette, Indiana

ii

To my parents.

iii

ACKNOWLEDGMENTS

I would like to start with expressing my gratitude towards both of my co-advisors, Tony

Hosking and Suresh Jagannathan. I really appreciate all the help, support and constant

encouragement I received from them throughout all the years we spent working together.

I would also like to thank Jan Vitek for serving on my committee and being very supportive

of the research directions I decided to pursue. I am also grateful to T.N. Vijaykumar for

agreeing to become a member of my committee.

During my years at Purdue I have made many friends who made the time I spent

in the graduate school a lot more pleasant. To name just a few, Dennis Brylow, Joanne

Lasrado, Piotr Osuch, Paul Ruth, Marta Zgagacz as well as both my labmates from the CS

department and people from the “Polish group” in general. My special thanks to Natalia

Nogiec and Phil McGachey for always being there for me both in good and bad times. I

am also grateful to Adam Chelminski, Przemek Kopka, Justyna Reiska, Piotr Swistun and

Krzysztof Waldowski who, despite staying in Poland while I moved to the US, remained

very good friends that I could always go back to.

I thank my parents for helping and supporting me not only during my graduate school

experience but also throughout all the years preceding it. Many thanks for all the encour-

agement also to my other family members, especially my grandparents.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . x

1 INTRODUCTION . 1

1.1 Concurrency Control for Programming Languages – Mutual Exclusion . . 1

1.2 Database Concurrency Control – Transactions 5

1.2.1 ACID Transactions . 6

1.2.2 Pessimistic Protocols . 7

1.2.3 Optimistic Protocols . 8

1.3 Motivation . 8

1.4 Thesis Statement . 10

1.5 Thesis Overview . 10

2 SUPPORT FOR OPTIMISTIC TRANSACTIONS 11

2.1 Design Goals . 11

2.2 Logging . 13

2.2.1 Volatility . 14

2.2.2 Versioning . 15

2.3 Dependency Tracking . 16

2.4 Access Barriers . 18

2.5 Revocation . 19

2.6 Transactions in Java . 21

3 RELATED WORK . 23

4 REVOCABLE MONITORS . 31

4.1 Design . 33

v

Page

4.1.1 Resolving Priority Inversion and Deadlock 34

4.1.2 The Java Memory Model (JMM) 37

4.1.3 Preserving JMM-consistency 39

4.2 Implementation . 42

4.2.1 Logging . 42

4.2.2 Revocation . 43

4.2.3 Priority Inversion Avoidance . 44

4.3 Experimental Evaluation . 45

4.3.1 Benchmark Program . 45

4.3.2 Results . 47

4.4 Related Work . 50

4.5 Conclusions . 52

5 SAFE FUTURES . 53

5.1 Semantics . 54

5.1.1 Safety . 58

5.2 Design . 61

5.2.1 API for Safe Futures . 62

5.2.2 Programming Model . 63

5.2.3 Logical Serial Order . 65

5.2.4 Preserving Serial Semantics . 67

5.3 Implementation . 68

5.3.1 Dependency Tracking . 69

5.3.2 Revocation . 71

5.3.3 Shared State Versioning . 72

5.4 Experimental Evaluation . 76

5.4.1 Experimental Platform . 76

5.4.2 Benchmarks . 77

5.4.3 Results . 80

vi

Page

5.5 Related Work . 85

5.6 Conclusions . 87

6 TRANSACTIONAL MONITORS . 89

6.1 Semantics . 91

6.1.1 Safety . 95

6.2 Design . 99

6.2.1 Nesting and Delegation . 100

6.2.2 Transactions to Mutual Exclusion Transition 103

6.3 Implementation . 104

6.3.1 Dependency Tracking . 104

6.3.2 Revocation . 105

6.3.3 Versioning . 106

6.3.4 Header Compression . 109

6.3.5 Code Duplication . 110

6.3.6 Triggering Transactional Execution 111

6.4 Experimental Evaluation . 111

6.4.1 Uncontended Execution . 113

6.4.2 Contended Execution . 114

6.5 Related Work . 117

6.6 Conclusions . 120

7 CONCLUSIONS AND FUTURE WORK . 122

7.1 Conclusions . 122

7.2 Future Work . 122

LIST OF REFERENCES . 124

VITA . 128

vii

LIST OF TABLES

Table Page

5.1 Component organization of the OO7 benchmark 79

6.1 Component organization of the OO7 benchmark 114

viii

LIST OF FIGURES

Figure Page

1.1 Bank account example . 3

1.2 Serial executions . 4

1.3 Interleaved executions . 4

4.1 Priority inversion . 31

4.2 Deadlock . 32

4.3 Resolving priority inversion . 34

4.4 Resolving deadlock . 36

4.5 Schedule-independent deadlock . 37

4.6 Revocation inconsistent with the JMM due to monitor nesting 38

4.7 Revocation inconsistent with the JMM due to volatile variable access . . . 39

4.8 Rescheduling thread execution in the presence of revocations may not al-
ways be correct . 40

4.9 Total time for high-priority threads, 100K iterations 48

4.10 Total time for high-priority threads, 500K iterations 48

4.11 Overall time, 100K iterations . 50

4.12 Overall time, 500K iterations . 50

5.1 Language syntax. 55

5.2 Program states and evaluation contexts. 56

5.3 Language semantics. 57

5.4 The existing java.util.concurrent futures API 61

5.5 Safe futures API . 62

5.6 Semantically equivalent code fragments 63

5.7 Using safe futures (with automatic boxing/unboxing of int/Integer sup-
ported by J2SE 5.0) . 64

ix

Figure Page

5.8 Transaction creation . 66

5.9 Dependency violations . 69

5.10 Handling of a forward dependency violation. 70

5.11 Top-level loop of the OO7 benchmark 80

5.12 Java Grande: elapsed time (normalized) 81

5.13 OO7 with 1 future: average elapsed time per iteration (normalized) 82

5.14 OO7 with 1 future: versions created per iteration 82

5.15 OO7 with four futures: average elapsed time per iteration (normalized) . . 84

5.16 OO7 with four futures: revocations per iteration 84

5.17 OO7 with four futures: versions created per iteration 84

6.1 Language syntax. 92

6.2 Program states and evaluation contexts. 94

6.3 Language semantics. 95

6.4 Delegation example . 101

6.5 A non-serializable schedule. 107

6.6 A non-serializable execution. 108

6.7 Uncontended execution . 112

6.8 Normalized execution times for the OO7 benchmark 115

6.9 Total number of aborts for the OO7 benchmark 116

x

ABSTRACT

Welc, Adam. Ph.D., Purdue University, May, 2006. Concurrency Abstractions for Pro-
gramming Languages Using Optimistic Protocols. Major Professors: Antony Hosking
and Suresh Jagannathan.

Concurrency control in modern programming languages is typically managed using

mechanisms based on mutual exclusion, such as mutexes or monitors. All such mecha-

nisms share similar properties that make construction of scalable and robust applications

a non-trivial task. Implementation of user-defined protocols synchronizing concurrent

shared data accesses requires programmers to make careful use of mutual-exclusion locks

in order to avoid safety-related problems, such as deadlock or priority inversion. On the

other hand, providing a required level of safety may lead to oversynchronization and, as a

result, negatively affect the level of achievable concurrency.

Transactions are a concurrency control mechanism developed in the context of da-

tabase systems. Transactions offer a higher level of abstraction than mutual exclusion

which simplifies implementation of synchronization protocols. Additionally, in order to

increase concurrency, transactions relax restrictions on the interleavings allowed between

concurrent data access operations, without compromising safety.

This dissertation presents a new approach to managing concurrency in programming

languages, drawing its inspiration from optimistic transactions. This alternative way of

looking at concurrency management issues is an attempt to improve the current state-of-

the-art both in terms of performance and with respect to software engineering benefits.

Three different approaches are presented here: revocable monitors are an attempt to

improve traditional mutual exclusion, safe futures propose a new way of thinking about

concurrency in a context of imperative programming languages and, finally, transactional

xi

monitors try to reconcile transactions and mutual exclusion within a single concurrency

abstraction.

1

1 INTRODUCTION

This thesis proposes a new way of looking at concurrency management in program-

ming languages to allow both software engineering and performance improvements. Our

approach draws its inspiration from optimistic transactions developed and used in the

database community and constitutes an alternative to the more traditional way of pro-

viding concurrency control, namely mutual exclusion.

In this chapter we describe the most popular methods currently used to manage con-

currency in both programming languages and databases. We also discuss the motivation

behind our attempt to apply solutions drawing on optimistic transactions to a program-

ming language context. At the end of the chapter we summarize our discussion in a thesis

statement.

1.1 Concurrency Control for Programming Languages – Mutual Exclusion

Most modern programming languages, such as Java or C#, provide mechanisms that

enable concurrent programming, where threads are the units of concurrent execution.

Concurrency control in these languages is typically managed using mechanisms based on

mutual exclusion to synchronize concurrent accesses of the shared resources (e.g., mem-

ory) between multiple threads. In most cases synchronization mechanisms are used to

protect regions of code designated by the programmer, containing operations accessing

shared resources.

A mutex is the simplest example of such a mechanism. A thread wishing to execute

the region of code protected by a mutex must first successfully lock the mutex. Only

one thread is allowed to lock a mutex at any given time – this way exclusive access to

the protected region of code is guaranteed. The mutex is unlocked when the thread exits

the protected region. In other words, a mutex is essentially a simple mutual-exclusion

2

lock. C# and Modula-3 are examples of languages using mutexes for synchronization. A

semaphore is a generalization of a mutex – it allows a fixed number of threads (determined

upon semaphore creation) to execute within the protected region of code at the same time.

Semaphores are most commonly used for synchronization at the operating system level.

Another popular synchronization mechanism is the monitor, originally proposed by

Brinch-Hansen [26] and further developed by Hoare [31]. In its original interpretation,

a monitor consists of the following elements: a set of routines implementing accesses to

shared resources, a mutual-exclusion lock and a monitor invariant that defines correctness

of the monitor’s execution. Inclusion of the notion of correctness makes monitors a higher

level mechanism compared to mutexes or semaphores. Monitors also support event signal-

ing through condition variables. A thread executing a monitor’s routine must acquire the

mutual-exclusion lock before entering the routine - only one thread is allowed to execute

within the same monitor at a given time. The lock is held until the thread exits the routine

or until it decides to wait for some condition to become true using a condition variable

(the waiting thread releases the lock). A thread causing the condition to become true can

use the condition variable to notify the waiting thread about the occurrence of this event.

The waiting thread can then re-acquire the monitor’s lock and proceed.

The existing monitor implementations for Java and C# are modified with respect to this

original interpretation. Each monitor is associated with an object and protects an arbitrary

region of code designated by the programmer, called a synchronized block. A monitor still

enforces mutually exclusive access to the code region but provides no additional guarantee

with respect to correctness of execution within the monitor. Before a thread is allowed to

execute the code region protected by a monitor, it must acquire the monitor. The monitor

is released when execution of the protected region completes. Limited support for event

signaling is supported – threads may wait on monitors and use them to notify other threads,

but support for condition variables is missing. Additionally, monitors can be nested – after

acquiring a monitor, a thread my acquire additional monitors without releasing the one it

already holds, as well as re-enter the monitors it does hold.

3

T T ′

void totalBalance() {

synchronized (mon) {

b1 = checking.getBalance();

b2 = savings.getBalance();

print(b1 + b2);

}

}

void transfer(int amount) {

synchronized (mon) {

checking.withdraw(amount);

savings.deposit(amount);

}

}

Figure 1.1. Bank account example

Synchronization mechanisms based on mutual exclusion and most commonly used in

programming languages, that is mutexes and monitors, share similar properties. They are

typically used to mediate concurrent accesses to data items residing in shared memory per-

formed within the code regions they protect. Because only one thread is allowed to enter

a protected region, it is guaranteed that accesses to shared data performed by this thread

are isolated from accesses performed by the others. Also, all updates to shared data per-

formed by a thread within a protected region become visible to other threads atomically,

once the executing thread exits the region.

Enforcing such a strong restriction on the interleaving of concurrent operations is,

however, not always necessary to guarantee isolation and atomicity. Consider the code

fragment in Figure 1.1, using mutual exclusion monitor for synchronization. Thread T

computes the total balance of both checking and savings accounts. Thread T ′ transfers

money between these accounts. Operations of both threads are protected by the same

monitor. The expected result of these two threads executing concurrently is that thread T ′

does not modify either account while thread T is computing the total balance – otherwise,

the computed total might be incorrect. In other words, thread T is expected to observe

the state of both accounts either before thread T ′ performs a transfer or after the transfer

is completed. Using a mutual exclusion monitor for synchronization certainly guarantees

exactly this behavior. Because only one thread is allowed to enter a region protected by the

monitor at any given time, execution of threads T and T ′ may result only in two different

4

T T ′

rd(checking)
rd(savings)

rd(checking)
wt(checking)
rd(savings)
wt(savings)

(a)

T T ′

rd(checking)
wt(checking)
rd(savings)
wt(savings)

rd(checking)
rd(savings)

(b)

Figure 1.2. Serial executions

(serial) executions illustrated in Figure 1.2 . Figure 1.2(a) illustrates a sequence of data

access operations when thread T executes all its operations before thread T ′ (withdrawal

and deposit operations involve both a read and an update of the account balance). Figure

1.2(b) illustrates the opposite situation – a sequence of operations when thread T ′ executes

all its operations before thread T .

We observe, however, that there exist other, more relaxed, interleavings of operations

performed by threads T and T ′ that would result in the exact same (safe) behavior. Con-

sider the execution illustrated in Figure 1.3. Its effects from the point of view of threads

T and T ′ as well as with respect to the final result of the deposit operation are equivalent

to the execution in Figure 1.2(a). Similar (safe) interleavings can be found under differ-

ent scenarios, even when interaction among multiple concurrent threads is much more

complicated, leading to a potentially significant increase in achievable concurrency.

T T ′

rd(checking)
rd(checking)

wt(checking)
rd(savings)

rd(savings)
wt(savings)

Figure 1.3. Interleaved executions

5

Unfortunately extracting additional available concurrency using mechanisms based on

mutual exclusion is difficult. This is a direct consequence of trying to use a low level

mechanism, such as mutual exclusion locks, to express higher level safety properties, such

as isolation and atomicity. An attempt to achieve the desired level of performance may

lead to under-synchronization, and consequently to violation of safety properties. Over-

synchronization, on the other hand, may easily cause reduction in realizable concurrency

and thus performance degradation.

Additionally, synchronization mechanisms based on mutual exclusion are not easily

composable, especially if nesting is prohibited – consider the case when library code is

synchronized, but details of the synchronization protocol are hidden from the library user.

Allowing for these mechanisms to be nested aids composability, but may lead to other

difficulties, such as deadlock. Deadlock occurs when threads waiting for other threads to

release their mutual-exclusion locks form a cycle. Also, in a priority scheduling environ-

ment, priority inversion may result if a high-priority thread is blocked by a lower priority

thread. These problems are exacerbated when building large-scale systems, where mul-

tiple programmers work on different parts of the system separately and yet are obliged

to reconcile the low-level details of the synchronization protocol across different system

modules.

These observations lead us to consider alternative concurrency control mechanisms,

such as transactions, that help in alleviating problems related to using mutual exclusion.

1.2 Database Concurrency Control – Transactions

Traditionally, transactions have been used as a concurrency control mechanism in

database systems [24]. A transaction is a fragment of an executing program that accesses a

shared (persistent) database concurrently with other transactions. Transactional execution

guarantees certain properties concerning these concurrent accesses, depending on a partic-

ular transaction model. We say that execution of a transaction is safe if it does not violate

any of the transactional guarantees. The behavior of a transaction is controlled by the

6

following actions: begin, commit and abort. The execution of a transaction starts with the

begin action followed by a sequence of data access operations. If it is determined that the

execution of these operations does not violate any transactional guarantees, the transaction

can execute the commit action (gets committed) and the effects of its execution become

permanent with respect to the state of the shared database. If the transactional guarantees

are violated, the transaction is aborted and all the effects of its execution (with respect to

the shared state) are discarded.

Many transaction models have been developed over the years, reflecting different no-

tions of safety. One of the most popular ones is the ACID model [24].

1.2.1 ACID Transactions

Execution of a transaction is safe according to the ACID model if it satisfies the fol-

lowing four properties:

• Atomicity – no partial results of a transaction become permanent with respect to the

state of the database (an all-or-nothing approach),

• Consistency – execution of a transaction brings the database from one consistent

state (with respect to internal database constraints) to another consistent state,

• Isolation – the operations of one transaction are isolated from the operations of all

other transactions (i.e., from a transaction’s point of view it appears as if it is the

only one executing in the system),

• Durability – the effects of a transaction must never be lost after it commits

The isolation property can be enforced by executing transactions serially. However,

this may restrict available concurrency. Fortunately, unlike mutual exclusion, transactions

do not enforce any particular interleaving between concurrently executing operations . It is

safe to allow interleaved execution so long as the operations of the concurrent transactions

are serializable. That is, it is sufficient if transactions produce the same results as if they

execute serially.

7

All the existing protocols that enforce ACID properties can be generally divided into

two major groups: pessimistic and optimistic.

1.2.2 Pessimistic Protocols

Pessimistic protocols assume that multiple concurrent transactions frequently compete

for access to shared state. In order to prevent concurrent modifications of the shared state

from violating serializability (and thus compromising isolation), pessimistic protocols typ-

ically lock the data elements they operate on. Because pessimistic protocols perform up-

dates in-place (as opposed to delaying their propagation to the shared space), they must log

enough information about the updates to be able to undo them in case of an abort. We call

transactions supported through the use of pessimistic protocols pessimistic transactions.

One of the most popular locking protocols is two-phase-locking (or 2PL) [24]. It

divides a transaction into two phases: the growing phase when locks are only acquired

and the shrinking phase when locks are only released. In its strictest, and most popular

form (the non-strict version may lead to cascading aborts1), 2PL defers release of any of

its locks until it terminates (commits or aborts). The 2PL protocol distinguishes two types

of locks: shared locks acquired before a data element is read, and exclusive locks acquired

before a data element is written. A data element may be locked by multiple transactions

in the shared mode (we say that shared locks are mutually compatible) but only by one

transaction in the exclusive mode (we say that an exclusive lock is in conflict with any

other lock). A transaction is blocked when trying to acquire a conflicting lock – it is

allowed to proceed only once the conflicting lock is released. Unfortunately, 2PL (and

most other locking protocols) can result in deadlock. A deadlock occurs when two (or

more) transactions wait for each other’s (conflicting) locks to be released forming a cycle

– it can be resolved by aborting one of the transactions involved. Some form of deadlock

detection (or prevention) protocol must therefore also be deployed in a system using 2PL.
1All transactions that have seen updates of a transaction being aborted must be aborted as well.

8

1.2.3 Optimistic Protocols

The assumption underlying optimistic protocols is that the amount of sharing with

respect to data elements accessed by concurrent transactions is low. Therefore transactions

are allowed to proceed with their updates until termination in the hope that no violations

of serializability ever occur. This optimistic assumption must however be validated upon

transaction completion – if it holds, the transaction is committed, otherwise it is aborted

and re-executed. We call transactions supported through the use of optimistic protocols

optimistic transactions.

Optimistic transactions have been originally proposed by Kung and Robinson [37].

The execution of a transaction is divided into three phases: a read phase, a validation

phase and a write phase. In the read phase transactional operations are redirected to a

local log instead of operating directly on shared data. This way premature exposure of the

transaction’s computational effects is avoided (allowing transactions to update shared data

in-place could lead to cascading aborts). The validation phase is responsible for detecting

potential serializability violations. If a transaction successfully passes the validation test,

all transactional updates are propagated to the shared space in the write phase and the

transaction commits. Otherwise all updates are discarded, the transaction aborts, and is

re-executed.

1.3 Motivation

Synchronization protocols based on mutual exclusion have several deficiencies as de-

scribed in Section 1.1. Recognition of this fact has prompted us to consider transactions

as an alternative way to manage concurrency in programming languages.

The application of transactions in the context of a programming language poses new

challenges that are quite different to that of using transactions in a database environment.

Issues related to management of database (persistent) state, such as durability and consis-

tency in the ACID model, become irrelevant. Instead, transactions manage concurrency

and preserve safety properties with respect to the volatile shared heap, whose contents do

9

not survive system’s shutdown or failure. Thus, the set of properties of the ACID model

that need to be preserved becomes limited to atomicity and isolation.

Since transactions are a much higher level construct, they have potential for mitigating

the mismatch currently existing between reasoning about properties of concurrent pro-

grams at a high level and implementing protocols enforcing these properties at a consider-

ably lower level. Thus, the software engineering benefits from using transactions may be

significant. Additionally, because transactions allow more relaxed interleavings of concur-

rent operations, and so potentially enable a higher degree of concurrency than solutions

based on mutual exclusion, they may also lead to improved performance of concurrent

applications.

At the same time, synchronization mechanisms based on mutual exclusion are unlikely

to disappear any time soon. One of their main advantages is that they can be very efficient

if contention on access to regions they protect is low. On the other hand, the effectiveness

of transactional mechanisms is proportional to the amount of data shared among concur-

rent transactions. In the case of pessimistic transactions, data items are locked to prevent

concurrent access. This way, if the amount of data sharing is significant, the achievable

concurrency may be significantly reduced. Additionally, deadlocks may occur more fre-

quently and yet the cost of maintaining transactional properties (e.g., related to locking

of data items) still needs to be paid. In the case of optimistic transactions, excessive data

sharing may result in the increased number of aborts, yielding a similarly negative effect.

Therefore, our intention is to use transactions to manage concurrency only when ben-

eficial, such as when the amount of data sharing is low, rather than uniformly replacing

mechanisms based on mutual exclusion. We still have to ensure that transactions are

extremely light-weight in order to remain competitive with existing solutions for manag-

ing concurrency. We believe that optimistic transactions fulfill these requirements better

than pessimistic ones. When using pessimistic transactions, additional mechanisms are

required to avoid cascading aborts or deadlocks in case a locking protocol is used, while

still preserving the requirement to support logging. Also, the cost of per-data-item locking,

required in this case, tends to be significant.

10

1.4 Thesis Statement

Optimistic transactions represent a feasible alternative to a traditional approach to

managing concurrency in programming languages based on mutual exclusion. Solutions

utilizing optimistic transactions can be not only beneficial from a software engineering

point of view but can also lead to significant performance improvements.

1.5 Thesis Overview

In Chapter 2 we discuss several mechanisms required to support optimistic transac-

tions. Chapter 3 contains discussion of the related work. In the subsequent three chapters

we describe our own approaches to solving problems related to writing concurrent ap-

plications in Java, using optimistic transactions as a foundation. In Chapter 4 we discuss

how traditional Java monitors can be augmented using transactional machinery to alleviate

problems related to priority inversion and deadlock. In Chapter 5 we examine how opti-

mistic transactions can be applied to support the futures abstraction in Java. In Chapter 6

we describe how mutual exclusion and optimistic transactions can co-exist within a single

framework. Finally, Chapter 7 contains conclusions and discussion of the future work.

11

2 SUPPORT FOR OPTIMISTIC TRANSACTIONS

The task of providing support for optimistic transactions is in our case set in the context of

an existing programming language environment, supporting its own set of programming

language related features (e.g., memory management, exceptions etc.). This makes the

design of the transactional support quite different from when it can be build from ground

up, which is the case in the database world. We may sometimes modify and re-use prior

mechanisms, but in general it is a non-trivial task to superimpose transactions over these

mechanisms and guarantee their seamless integration.

2.1 Design Goals

One of our main design goals for a system offering optimistic transactions as a concur-

rency control mechanism in a programming language context is programmer-friendliness.

A typical programmer already has some level of experience in using traditional approaches

of managing concurrency that are usually based on mutual exclusion (e.g., mutexes, mon-

itors or semaphores). It is unlikely that programmers will be willing to abandon all their

(potentially considerable) expertise in using these mechanisms in favor of a completely

new approach they must learn from scratch.

Therefore we opt for simplicity in our design. If new language abstractions need to be

introduced, they should be few and their properties easy to understand. Wherever possible

we strive for partial or full transparency – the exposure of transactional machinery to the

programmer should be minimal.

At the same time, our approach must be general enough to be usable in practice. Since

we introduce transactions in the context of an already existing language, a considerable

amount of legacy code is likely to exist. Our solution should therefore be at least partially

backward-compatible (e.g., to allow re-use of existing library code). Additionally, source

12

code may not always be available – its absence should not preclude using transactions for

managing concurrency within legacy code.

Some of these design goals, such as programmer-friendliness or simplicity, influence

high-level aspects of the system, such as the form in which transactions are exposed to

the programmer. We address these issues when discussing specific solutions in subse-

quent chapters. The other goals, such as transparency and generality, must be taken into

account at a much lower level, such as when considering design choices for foundational

mechanisms required to support optimistic transactions.

Several such mechanisms are required to enable use of optimistic transactions in a pro-

gramming language context. Their equivalents exist in the world of traditional database

system, but their adaptation to a programming language context requires careful consider-

ation of various design and implementation trade-offs. In particular, design choices proven

to be effective in the context of database systems may not necessarily be equally applicable

to a programming language environment.

We distinguish three types of such foundational mechanism:

• Logging – a mechanism used to record (in a log) transactional operations accessing

the elements of shared data. Depending on the specifics of the transaction semantics,

a log may serve two purposes. Transactional operations may be redirected to the log

and applied to the shared space upon commit of the transaction. Alternatively, if

transactional updates are performed in-place, information recorded in the log may

be used to revert their effects upon abort of the transaction.

• Dependency tracking – a mechanism used to detect violations of atomicity and iso-

lation. Multiple transactions executing concurrently may access the same data items

in the shared space, creating dependencies among data access operations. Depen-

dency tracking is responsible for detection of all dependencies that lead to violations

of transactional properties. All transactions violating these properties are aborted.

• Revocation – a mechanism supporting the abort operation. Conceptually, revoca-

tion consists of two parts: first, all the effects of transactional execution (both with

13

respect to shared and local state) must be reverted and, second, control must be

returned to the starting point of the aborted transaction (to enable re-execution).

Detailed descriptions of these mechanism are given below.

2.2 Logging

Traditionally [24], in the context of (persistent) database systems, logging is used for

transaction recovery. A log is an entity logically1 separate from the actual persistent store

and contains all the information necessary to bring the persistent store to a consistent

state in case of unexpected events. These include system failures or explicit (triggered

by the user) as well as implicit (e.g., initiated to resolve deadlock) transaction aborts.

It is assumed that the effects of updates performed by transactions do not have to be

immediately propagated to the persistent store, whether for performance reasons or to

satisfy requirements of a particular transaction model. It is sufficient that the log contains

all the information about the updates necessary to enforce the transactional (e.g., ACID)

properties and possesses the ability to survive system failures.

In case of failures, effects of operations performed by committed transactions should

not be lost, in order to satisfy the durability property. At the same time partial effects pro-

duced by transactions that have not yet committed should not become permanent because

of the atomicity requirement. Information about the transactional updates recorded in the

log can thus be used to undo the effects of uncommitted transactions and redo operations

of the committed ones. Similarly, effects of a transaction being aborted can be undone

using information from the log.

Two major groups of logging protocols exist: physical logging and logical logging.

Physical logging is typically realized by recording both a before image and after image

of a data element taken before and after performing an update, respectively. This greatly

simplifies implementation of undo and redo operations – the only action required is to

retrieve the value from the log and apply it to the appropriate data element. However,
1The log may itself reside in persistent storage, if not in the application store.

14

since database update requests tend to be declarative and may concern a large number of

data elements, physical logging may incur significant memory overhead when recording

all the requested updates. For example, a request to update a large table by incrementing

the value of each element stored in the table would most likely incur generation of a

large number of log records. When logical logging is used, the same request can be very

succinctly represented in the log by recording the request itself and the accompanying

parameters. Therefore, logical logging is considered to be a better solution for logging of

updates in traditional database systems [24].

2.2.1 Volatility

The application of transactions to a programming language context changes the way

logging is used. The notion of persistent store is no longer present. The updates performed

by transactions are reflected only in the volatile store (i.e., in the shared heap) and issues

related to maintaining persistent state become irrelevant. Thus, the log itself can be volatile

which greatly simplifies log management because there is no need for the log to survive

a system failure. Even though failure recovery is no longer present, logging must still

support redo or undo operations, depending on the transaction model. If a transaction

directly updates data in the shared store, the log is used to undo the effects of aborted

transactions. Otherwise, the log is used to redo updates of committing transactions to

propagate their effects to the shared store.

Logical logging loses its advantage over physical logging in a programming language

context, since shared heap operations only access one memory word at a time. We there-

fore choose to use physical logging, which in this context seems to be the simplest and

the least expensive solution. Two methods of realizing physical logging can be identified:

one using a sequential log to record all updates to shared data performed within a transac-

tion, and the other using per-transaction copies (so-called shadow copies) of shared data

elements to record updates to these elements. A sequential log records the effects of trans-

actional operations in the order they occur. When shadow copies are used, information

15

about all updates to a given element performed by a transaction is represented by a single

shadow copy.

In its purest form (described in Section 1.2.3), an optimistic transaction does not di-

rectly update shared data elements. This avoids premature exposure of updates in case of

an abort. As a result, after performing a write, every subsequent read of the same element

must consult the log for the most up-to-date value. If sequential logging is used, a read

operation might involve scanning of the sequential log, potentially to its very beginning.

Considering the pervasiveness of reads in modern programming languages, this could

incur considerable run-time overhead. We believe that shadow copying is a preferred so-

lution in this case. However, if premature exposure of updates is prevented (e.g., by some

separate mechanism) and a transaction is allowed to operate directly on the shared data,

no scanning of the log is required while the transaction is running. Using a sequential log

might be a better solution in this situation. We use sequential logs in our implementation

of revocable monitors described in Chapter 4, where mutual exclusion is used to prevent

premature exposure of updates.

Shadow copying is essentially a form of shared data versioning. Multiple versions of

the same data element, created by different transactions, may exist at the same time. We

use versioning to implement logging in the case of safe futures (described in Chapter 5)

and transactional monitors (described in Chapter 6). For the following discussion concern-

ing the versioning mechanism we assume that transactions operate on versions (instead of

operating directly on the shared data) and propagate updates to the shared heap at the time

of commit.

2.2.2 Versioning

A transaction needs to be able to access versions it has created. One obvious approach

is to keep versions created by a given transaction in some data structure maintained “on

the side” and accessible by this transaction. Since the association between a version and

the original data element must be maintained, a hash-table seems to be a natural choice for

16

such a structure. However, the cost of performing a hash-table operation at all transactional

reads and writes would be overwhelming (especially considering the unpredictability of

operations concerning hash-table maintenance, such as resizing, re-hashing, etc.). Also,

the size of the hash-table (and thus, when considering chaining in the hash-table, the time

to access a version) becomes directly proportional to the number of data elements accessed

by a transaction. It would seem that in the case of optimistic transactions a scheme where

time to access a version is proportional to the amount of data sharing between transactions

would be more desirable. Therefore we choose to keep versions on lists directly associated

with shared data elements. Accessing a version involves searching a list, which is expected

to be short when the amount of data sharing among different transactions is small (which

is one of the assumptions motivating use of optimistic transactions).

At the time of commit, a transaction must be able to propagate information about

updates from the versions it created to the data elements in the shared heap. Application

of updates may be done eagerly and simply involve copying the new values from a version

to the original data element. This, however, means that copying for every updated element

of shared data is performed twice, once when the version is created, and a second time

when updates are propagated to the shared store. Additionally, if an element of shared

data modified within the scope of a transaction is never accessed again, eager application

of updates becomes a source of unnecessary overhead. We adopt a different solution

and propagate updates lazily. The association between the original data element and its

version is maintained beyond the point of transaction commit. At the time of the commit,

the version created by the committing transaction is designated as the one containing most

up-to-date values and used for all subsequent accesses. As a result, all subsequent accesses

(including the non-transactional ones) must be redirected to access this version.

2.3 Dependency Tracking

In general, unless an external mechanism (e.g., mutual exclusion in the implementation

of revocable monitors described in Chapter 4) guarantees otherwise, the operations of

17

multiple concurrent transactions can be arbitrarily interleaved. However, in order to satisfy

the isolation requirement, the final effects of concurrent execution must be serializable,

Some form of a data dependency tracking mechanism is therefore required to validate

serializability of transactional operations.

One of the important trade-offs that should be considered when choosing the most

appropriate dependency tracking mechanism is that between precision and incurred run-

time overheads. Conservative (imprecise) solutions are typically less expensive at run-

time but may lead to detection of spurious (non-existing) dependencies, which might lead

to an increased number of serializability violations being detected. Precise solutions detect

serializability violations only in situations when they really occur, but their run-time cost

may be prohibitive.

Precise solutions typically rely on the ability to record information about all heap lo-

cations accessed by a transaction. In order to validate if operations of a transaction are

serializable, all the heap locations accessed by the transaction are inspected to verify if

they have been accessed by other concurrently executing transactions. The cost of the

validation procedure in this case is quite significant – additional information must be as-

sociated with every heap location and, as a result, the number of shared data accesses

performed by the transaction may be significantly increased. In the worst case the number

of accesses is doubled since every regular transactional access can be followed by another

access during the validation phase.

In a system using optimistic transactions, however, it is assumed that the number of

concurrent accesses to a given data element (and thus the number of dependencies that

might lead to serializability violations) is low. Therefore, detection of spurious depen-

dencies by the mechanism chosen for data dependency tracking should not dramatically

increase the number of serializability violations detected. We believe that the cost of

performing an unnecessary revocation, on the rare occasion a spurious dependency is de-

tected, is going to be outweighed by the low run-time costs associated with a conservative

approach.

18

We choose to record data accesses in a fixed-size table. The conservatism of the ap-

proach manifests itself in the fact that the same table entry may represent accesses to

different data items. Only one bit of information is used to record access to a given

shared data element – it is set after the first access to a given element. The table thus

becomes essentially a bit-map. We distinguish two types of maps, a read map (to record

reads) and write map (to record updates). Non-empty intersection of maps containing

accesses from different transactions indicates existence of dependencies between opera-

tions of these transactions. Mechanisms relying on the notion of read and write maps to

track data dependencies are used in the case of safe futures (described in Chapter 5) and

transactional monitors (described in Chapter 6).

2.4 Access Barriers

Our desire to preserve transparency dictates that the exposure of both logging and

dependency tracking mechanisms to the programmer should be minimal. Therefore we

discard solutions where the programmer is asked to designate specific elements of shared

data to be amenable for transactional concurrency control or is forced to explicitly distin-

guish transactional data accesses from the non-transactional ones. This would not only

violate our transparency requirement, but also hinder generality of our approach. A pro-

grammer wishing to use transactions to mediate shared data accesses within the system

libraries would have to gain access to their source code and modify it, which is often

difficult and sometimes even impossible.

Instead, we support logging and data dependency tracking mechanisms through trans-

parently (hidden from the programmer and independent of the type of shared data element)

augmented versions of all shared data access operations. These access barriers (or simply

barriers) originate in the area of automatic memory management, that is garbage collec-

tion [32]. In this context, the barriers are used to monitor operations performed by the

application (called a mutator) to access data items residing in a shared heap. Two types of

barriers exist: read barriers encapsulating actions to be executed when the mutator reads

19

a reference from the heap and write barriers encapsulating actions to be executed when it

writes a reference to the heap. Typically, only one type of barrier is used at a time, depend-

ing on the specific garbage collection algorithm. The barriers can be used to partition the

heap into regions that can be collected separately for improved performance or to reconcile

actions of the mutator and the garbage collector in case they execute concurrently.

We generalize the notion of garbage collection barriers in order to provide support

for transactional accesses to the shared heap. In order to support logging of shared data

accesses, we use barriers to augment all operations on the shared data items (including

reads and writes of primitive values, not not only reference loads and stores). In order

to correctly track dependencies between operations accessing the heap, both reads and

writes may have to be taken into account and thus read and write barriers can be used

simultaneously.

Barriers are usually provided as code snippets implementing the augmented data ac-

cess operations and are inserted by the compiler. Insertion of barriers at the source code

level is infeasible because source code may not always be available. We assume that an

optimizing compiler is going to be used at some stage of the compilation process and

advocate for barrier insertion by the optimizing compiler. This way existing compiler

optimizations, such as escape analysis, may be used to reduce barrier-related overheads.

2.5 Revocation

A transaction that has been determined to violate the transactional properties is abor-

ted. The effects of operations performed by the transaction must be undone and the trans-

action must be re-executed. The details of the revocation procedure should be kept hidden

from the programmer, because of our transparency requirement. Ideally, a programmer

should not even be aware that revocations take place in the system – the final effect of

executing a transaction that at some point gets aborted should be as if this transaction had

never started executing its operations in the first place.

20

The procedure for revoking a transaction consists of several steps. If a transaction

operates directly on shared data, all its updates must be undone (by using information

from the log – if a transaction does not modify shared data, no action is required here)

and the control must be returned to the point where the transaction started executing.

Additionally, all the local state modified by the transaction (e.g., local variables) must be

reverted to reflect the situation before the transaction began.

In the case of traditional database systems, the revocation procedure is an inherent

part of the database engine. A transaction is the smallest unit of concurrent execution

and fully encapsulates all the operations whose effects need to be undone. As a result,

a mechanism to revoke a transaction can be directly embedded in the database engine.

When transactions are used in a programming language, they are typically superimposed

over language-specific concurrency mechanisms (such as threads), which may complicate

the revocation procedure.

One of the challenges we have to face when reconciling transactions with threads is

transaction re-execution. If a transaction can be easily encapsulated into an executable unit

(e.g., function, method or procedure), returning control to the point where the transaction

started executing is trivial. The revocation procedure may simply re-execute the unit after

invoking a routine responsible for restoration of both the local state and the shared state

(if necessary). In general, however, this level of encapsulation may not be available – a

transaction may simply be designated as a sequence of operations performed by a thread

(which may not even be lexically scoped). In this case, a more complicated mechanism to

support revocation is required.

Fortunately, in most modern languages there already exists a mechanism to allow ad-

hoc modifications to the control-flow during the execution of a program – exceptions. We

take advantage of the existence of this mechanism. We wrap the block of code representing

a transaction within an exception scope that catches a special Revoke exception. Revo-

cation is triggered internally (at the level of the language’s run-time system) by throwing

the Revoke exception. The exception handler catching this exception is then responsible

for restoring the local state (and shared state if necessary) and returning control to the

21

beginning of the block of code representing the transaction. The local state from the point

before the transaction begins is recorded in a data structure associated with the transaction.

A routine responsible for recording local state and the exception handler may be inserted

at any point during program compilation, but below the level of source code because of our

design requirement for generality. Additionally, we must make sure that during the han-

dling of the Revoke exception, no default handlers are executed. If this was not prevented,

the transparency of the re-execution mechanism could be compromised. This style of re-

execution procedure is used for revocable monitors (described in Chapter 4), safe futures

(described in Chapter 5) and transactional monitors (described in Chapter 6).

Another difficulty in supporting revocations in a programming language is that the

effects of some operations executed by a transaction, such as I/O, cannot be undone. Also,

the behavior of some language-specific mechanisms, such as thread notification, may be

affected by revocations. The situation is additionally complicated by our requirement to

keep revocations hidden from the programmer. For example, multiple re-executions could

cause multiple unintended thread notifications. We defer discussion of how these issues

are handled to the subsequent chapters since the choice of specific techniques is dependent

on the functionality provided by the system.

2.6 Transactions in Java

We realize our support for optimistic transactions in the context of Java, currently one

of the most popular mainstream programming languages. We do not, however, see any ma-

jor obstacles preventing application of the techniques we describe to other programming

languages, such as C#. The choice of Java was driven mainly by its popularity and by

the availability of a high-quality implementation platform, namely IBM’s Jikes Research

Virtual Machine (RVM) [4]. The Jikes RVM is a state-of-the-art Java virtual machine with

performance comparable to many production virtual machines. It is itself written almost

entirely in Java and is self-hosted (i.e., it does not require another virtual machine to run).

Java bytecodes in the Jikes RVM are compiled directly to machine code. The Jikes RVM’s

22

distribution includes both a “baseline” and optimizing compiler. The “baseline” compiler

performs a straightforward expansion of each individual bytecode into a corresponding

sequence of assembly instructions. Our implementations target the Intel x86 architecture.

23

3 RELATED WORK

Difficulties in using mutual exclusion as a concurrency control mechanism have inspired

several research efforts aimed at exploring the applicability of transactions as a synchro-

nization mechanism for programming languages. The purpose of this chapter is to put our

own effort of developing transactions-based techniques for managing Java concurrency in

the context of other similar attempts. We describe a range of solutions centered around

the concept of software transactional memory (STM) – an abstract layer providing access

to transactional primitives (such as starting and committing transactions and performing

transactional data access) from the programming language level. Broadly speaking, our

own solutions fall into the same category. Our presentation covers solutions ranging from

the very first implementations of STM to more recent sophisticated high-performance sys-

tems.

Shavit and Touitou [53] describe the first implementation of software transactional

memory for multiprocessor machines – one transaction per processor can be executed at

a time. Their approach supports static transactions, that is transactions that access a pre-

specified (at the start of a transaction) set of locations. They implement an STM of a

fixed size (i.e., a fixed number of memory locations) using two main data structures: a

vector of cells containing values stored in the transactional memory and a vector describ-

ing the ownership of transactional memory cells. Additionally, every processor maintains

a transaction record used to store information about its currently executing transaction,

such as the set of all the cells its transaction is going to access. The execution of a trans-

action consists of three steps. First, a transaction attempts to acquire ownership of all the

cells specified in the transaction record. Then, if ownership acquisition is successful, it

computes the new values, stores the old values into the transaction record (to be returned

upon successful commit) and updates the appropriate cells with the new values. Finally,

24

it releases ownership of the cells and commits. Inability to acquire ownership of the cells

specified in the transaction record results in an abort.

Because of the requirement to acquire ownership of all the cells a transaction needs

to access, transactions in Shavit and Touitou’s system can be considered pessimistic. The

need to revoke the aborted transactions does not exist here since no transactional opera-

tions are performed before ownership of all the required cells is acquired. In other words,

if transactional operations are allowed to proceed, they will always complete successfully.

Shavit and Touitou present a performance evaluation of their system based on simulation.

Their conclusion is that concurrent lock-free data structures implemented using their STM

would perform better than the same data structures implemented through manual conver-

sion from their sequential counterparts.

A more general version of software transactional memory, dynamic STM, was devel-

oped by Herlihy et al. [30]. They built an implementation supporting both Java and C++.

In their system, the requirement to pre-specify the locations that are accessed by a trans-

action is lifted. Their programming model is based on the notion of explicit transactional

objects. Transactional objects are wrappers for regular Java or C++ objects and only ac-

cesses to transactional objects are controlled by the transactional machinery. Their system

uses a version of pessimistic transactions with explicit locking – before a transactional

object can be accessed within a transaction, it must be locked in the appropriate (read or

write) mode. A locking operation on the transactional object returns a version (i.e., a copy)

of the encapsulated regular Java or C++ object, which is used by the transaction for all sub-

sequent accesses. Every locking operation involves execution of the validation procedure

to verify that no other transaction locked the same object in a conflicting mode (a conflict

is understood in the same way as in the description of the 2PL protocol in Section 1.2.2). If

another transaction holds a lock in the conflicting mode, user-defined contention managers

are used to determine which of the two conflicting transactions should be aborted. As a

result, a transaction may be aborted at an arbitrary point (aborts are signaled by throwing

a run-time exception). Object versions created by an aborting transaction are automati-

cally discarded, but it is the programmer’s responsibility to decide whether the transaction

25

should be re-executed, and to implement this operation explicitly if needed. To validate

the usefulness of their approach, Herlihy et al. implement several transactional versions

of an integer set, varying the type of underlying data structure and experimenting with

different contention managers. They demonstrate that their transactional implementations

outperform an implementation of an integer set that uses coarse-grained mutual exclusion

locks for synchronization.

An even more general proposal for the design and implementation of an STM has been

recently1 proposed by Harris and Fraser [27]. Their approach does not require objects to

be specially designated to enable transactional access. Their solution is set in the context

of Java. They use STM support to provide programmers with a new language construct,

called atomic. The atomic keyword is used to designate a group of thread operations

(in the form of a code block or a method) that are supposed to execute in isolation from

operations of all other threads. The STM is responsible for dynamically enforcing that

the execution of an atomic block or an atomic method indeed satisfies this property. The

execution of general-purpose native methods (e.g., supporting I/O) as well as Java’s wait

and notify operations is forbidden within atomic methods and blocks. Such situations are

detected at run-time and signaled to the programmer by throwing an exception.

Harris and Fraser’s approach uses optimistic transactions. Several data structures sup-

port transactional accesses. Transaction descriptors maintain information about currently

executing transactions, such as transaction status and a list of heap accesses performed by

this transaction. A transactional heap access is recored in the form of a transaction entry,

and contains the old and the new value for the given location (updates are propagated to

main memory only upon commit) as well as version numbers for those values (every time

a new value is assigned to a location, the version number gets incremented). An own-

ership function maps heap locations to appropriate ownership records. Each ownership

record holds the version number or transaction descriptor for its location (describing the

ownership record’s current owner). A version number indicates that some transaction has

just committed and propagated its update to the heap; a transaction descriptor indicates a
1The first version of their STM was (independently) developed at about the same time as our own first
prototype implementation of the system supporting optimistic transactions.

26

transaction that is still in progress. Ownership records record the history of transactional

accesses and are used during commit to validate transactional properties and propagate

updates to the heap. At commit time, all the required ownership records are acquired

(locked), version numbers are used to verify the correctness of heap accesses (with re-

spect to transactional properties), updates performed by the transaction are propagated to

the heap and the ownership records are released (unlocked). If acquisition of ownership

records fails (i.e., one of the ownership records is already held by a different transaction)

or if transactional properties have been violated, the transaction is aborted. Because an

abort can only happen upon transaction completion, the revocation procedure is simple.

Bytecode rewriting is used to encapsulate every group of atomic actions into a method that

can simply be re-executed after all the information about updates performed by the abort-

ing transaction is discarded. Harris and Fraser evaluate the performance of their system

using several microbenchmarks, demonstrating the scalability of their STM implementa-

tion. The overall performance of the microbenchmarks implemented using their STM is

competitive with that of the same microbenchmarks implemented using mutual exclusion.

An implementation of STM can be further refined using revocable locks, a lower-level

optimistic concurrency mechanism introduced by Harris and Fraser [28]. Revocable locks

are a general-purpose mechanism for building non-blocking algorithms. They have been

designed to provide a middle-ground between using mutual exclusion and attempting to

build non-blocking algorithms without any forms of lock (e.g., using only atomic compare-

and-swap operations). A revocable lock is associated with a single heap location and

provides operations to access that location as well as operations to lock and unlock the

location. A revocable lock can be held by only one thread at any given time. However, any

thread attempting to acquire some lock already held by another thread always succeeds –

the holder’s ownership of the lock is revoked and its execution is displaced to the recovery

function supplied with its own lock acquisition operation. In other words, after acquisition

the lock is held until it is explicitly released by the holder or until its ownership is revoked

by another thread.

27

Revocable locks have been used, as one of the case studies, to streamline the commit

operation in Harris and Fraser’s STM described above. A committing transaction acquires

a revocable lock on its transaction descriptor. If a committing transaction tries to use an

ownership record already used by a different (committing) transaction, it revokes the lock

of the current ownership record’s user and attempts to complete the remaining operations

of the current user’s commit procedure (and then re-try its own commit). This guarantees

that only one thread at a time performs the operations of any given commit procedure

– transaction descriptors are then in effect used to represent pieces of computation that

different threads may wish to perform. As a result, a committing transaction attempting

to use an ownership record already used by a different transaction does not need to be

immediately aborted.

Harris et al. [29] explore the expressiveness and composability of software transactions

in a port of Harris and Fraser’s STM to Concurrent Haskell [33]. Concurrent Haskell is

a functional2 programming language which, compared to Java, opens new possibilities

and different trade-offs for higher-level design decision. However, the implementation

of the lower-level STM primitives for Concurrent Haskell is in principle similar to their

implementation for Java – both systems use a similar flavor of optimistic transactions.

The basic concurrency control construct provided to Concurrent Haskell programmers

is similar to the one available in the Java-based system – the atomic block. However, two

additional constructs have been added to improve the expressiveness and composability

of the transactions-based concurrency control machinery. The first one is a retry func-

tion, used within an atomic block to provide a way for the thread executing the block to

wait for events caused by other threads. This function is meant to be used in conjunction

with a conditional check of the value of some transactional variable. If the transactional

variable has the expected value, the thread is allowed to proceed, otherwise its transaction

is aborted and re-executed. The re-execution, however, does not start (i.e., the thread is

blocked) until at least one transactional variable previously used by the thread gets mod-

ified. Otherwise there would be no chance for the conditional check to yield a different
2Some operations may, however, produce side-effects.

28

result. The second construct is a orElse function whose role is similar to the select func-

tion used in operating systems. The orElse function takes two transactions as arguments.

The function starts with an attempt to execute the first transaction. If the first transaction

is retried then it is aborted and the orElse function attempts to execute the second trans-

action. If the second transaction is also retried then it is aborted as well and the execution

of the whole orElse function is retried. The re-execution is postponed until at least one

of the transactional variables used by either of the transactions passed as arguments is

modified.

The STM implementation for Concurrent Haskell relies on the notion of explicit trans-

actional variables. In other words, transactional guarantees are enforced only with respect

to variables of a special (transactional) type. As a result, it can be statically enforced that

transactional variables are manipulated only within atomic blocks. Another interesting

feature of Concurrent Haskell’s type system is that I/O operations can be distinguished

from regular operations based on the static types of values they manipulate. This allows

the implementation of STM to guarantee statically that no I/O operations are ever executed

within atomic blocks. A detailed performance evaluation of the STM implementation is

currently not available, since Concurrent Haskell is implemented only for uni-processors,

but the preliminary results seem to be encouraging.

The most recent, high-performance implementation of STM has been proposed by

Saha et al. [51]. Their focus is on exploration of different implementation trade-offs with

respect to their effect on STM’s performance. Their system provides both general-purpose

transactional memory primitives (starting and committing transactions, transactional data

accesses, etc.) and a transactional implementation of the multi-word atomic compare-

and-swap operation. Their implementation is built on top of an experimental multicore

run-time system (designed for future multicore architectures) supporting different pro-

gramming languages, such as Java or C++.

Saha et al. use pessimistic transactions with a sequential log to record transactional

updates. Their system supports two different levels of locking granularity: locking at the

object level and locking at the level of cache lines, which at the same time determines the

29

level at which conflicting data accesses are detected. Locking at the object level is used

only for small objects and locking at the level of cache lines in all other cases. Saha et

al. experiment with two different types of locking protocols. The first one is essentially

equivalent to the 2PL protocol described in Section 1.2.2, where data items are locked in

either read or write mode before being accessed. The second protocol locks data items

only before performing writes. The validity of reads is verified at commit time using ver-

sion numbers similarly to the technique used in Harris and Fraser’s STM described above.

They experimentally determine that the performance of the second protocol is significantly

better than that of the first one. Both locking protocols can lead to deadlock which is de-

tected using time-outs. They also explore two ways of handling transactional updates.

The first one buffers updates in a log and applies them to the shared heap at commit time.

The second one performs updates in-place – information in the log is used to undo the up-

dates in the case of abort. In their system the second approach yields better performance

which is the direct result of using the sequential log to buffer updates. A transactional

read following an update to the same location performed within the same transaction must

observe the effect of the update, and the operation of retrieving this value from the se-

quential log is expensive. The overall performance of their system, as demonstrated using

a set of microbenchmarks as well as a modified version of the real-life sendmail applica-

tion, is comparable to or better than when mutual exclusion is used as a synchronization

mechanism.

Daynès and Czajkowski [15] propose to use transactions in a slightly different context,

that is as protection domains for applications running within the same address space. In

their approach, every program executes as a transaction and every object is owned by a

single transaction, which is responsible for authorizing access to this object. Responsi-

bilities of transactions in their system, in addition to managing concurrency, include fault

containment (incorrect behavior of one application should not affect the behavior of the

others) and memory access control (access to certain regions of memory by an un-trusted

application may be restricted). The use of transactions also facilitates safe termination of

30

applications – since every program executes as a transaction, its execution may be aborted

at an arbitrary point and all its effects can be safely undone.

Their implementation, extending the Java HotSpot virtual machine version 1.3.1, is

based on a pessimistic transaction model (described in Section 1.2.2) – items of shared

state must be locked before they can be accessed. Transactions operate directly on the

shared memory and a physical log associated with each transaction is used for the undo

operation (upon abort of the transaction). The novelty of their approach is related to shar-

ing of the lock state. Traditionally, there exists a one-to-one mapping between a locked

resource (in this case – an object or an array in the main memory) and a data structure

representing the state (mode) of a lock protecting this resource. Lock state sharing, imple-

mented by by Daynès and Czajkowski, is inspired by an observation that the total number

of distinct lock values in the system is typically small with respect to the number of the

locked resources, that is many objects may be locked by two (or more) transactions in

the same mode at the same time. A data structure representing the lock state consists of

two bit-maps, one for read (shared) locks and one for write (exclusive) locks. This data

structure is pointed to by an object’s or array’s header. Every slot in a bitmap represents a

currently active transaction – if it is set, it indicates that a given transaction holds a lock on

a given object or array in the mode specified by the type of the bit-map . This way of im-

plementing data structures representing the lock state not only brings significant memory

savings, but also enables efficient implementation of lock manager’s operations, such as

lock ownership tests. The overheads related to using transactions as protections domains

reported by Daynès and Czajkowski are on the order of 25%.

31

4 REVOCABLE MONITORS

Difficulties arising in the use of mutual exclusion synchronization in languages like Java,

such as priority inversion, have been discussed in Section 1.1. Since Java supports priority

scheduling of threads, priority inversion may occur when a low-priority thread Tl holds a

monitor required by some high-priority thread Th, forcing Th to wait until Tl releases the

monitor. An example of a situation when priority inversion can occur is illustrated by

the fragment of a Java program in Figure 4.1. Thread Tl may be the first to enter a given

synchronized block (acquiring monitor mon) and block thread Th while executing some (ar-

bitrary) sequence of code in method bar(). The situation gets even worse when a medium

priority thread Tm preempts thread Tl already executing within the synchronized block to

execute its own method foo() (Figure 4.1). In general, the number of medium prior-

ity threads may be unbounded, making the time Tl remains preempted (and Th blocked)

unbounded as well, thus resulting in unbounded priority inversion. Such situations can

cause havoc in applications where high-priority threads demand some level of guaranteed

throughput.

Another problem related to using mutual exclusion, deadlock, has already been men-

tioned in one of the previous chapters. Deadlock results when two or more threads are

Tl Th Tm

synchronized(mon) {

o1.f++;

o2.f++;

bar();

}

foo();

Figure 4.1. Priority inversion

32

T T ′

synchronized(mon1) {

o1.f++;

synchronized(mon2) {

bar();

}

}

synchronized(mon2) {

o2.f++;

synchronized(mon1) {

foo();

}

}

Figure 4.2. Deadlock

unable to proceed because each is waiting to acquire a monitor held by another. Such

a situation is easily constructed for two threads, T and T ′, as illustrated in Figure 4.2.

Thread T acquires monitor mon1 while T ′ acquires monitor mon2, then T tries to acquire

mon2 while T ′ tries to acquire mon1, resulting in deadlock. Deadlocks may also result

from a far more complex interaction among multiple threads and may stay undetected un-

til and beyond application deployment. The ability to resolve deadlocks dynamically is

much more attractive than permanently stalling some subset of concurrent threads.

For real-world concurrent programs with complex module and dependency structures,

it is difficult to perform an exhaustive exploration of the space of possible interleavings

to determine statically when deadlocks or priority inversion may arise. When static tech-

niques are infeasible, dynamic techniques can be used both to identify these problems and

to remedy them whenever possible. Solutions to the unbounded priority inversion prob-

lem, such as the priority ceiling and priority inversion protocols [52] are examples of such

dynamic solutions.

The priority ceiling technique raises the priority of any thread trying to acquire a moni-

tor to the highest priority of any thread that ever uses that monitor (i.e., its priority ceiling).

This requires the programmer to supply the priority ceiling for each monitor used through-

out the execution of a program. In contrast, priority inheritance will raise the priority of a

thread only when holding a monitor causes it to block a higher priority thread. When this

happens, the low priority thread inherits the priority of the higher priority thread it is block-

33

ing. Both of these solutions prevent a medium priority thread from blocking the execution

of the low priority thread (and thus also the high priority thread) indefinitely. However,

even in the absence of a medium priority thread, the high priority thread is forced to wait

until the low priority thread releases its monitor. In the example presented in Figure 4.1,

since the time to execute method bar() is potentially unbounded, high priority thread Th

may still be delayed indefinitely until low priority thread Tl finishes executing bar() and

releases the monitor. Neither priority ceiling nor priority inheritance offer a solution to

this problem. We are also not aware of any existing solutions that would enable dynamic

resolution of deadlocks.

We use optimistic transactions as a foundation for a more general solution to resolv-

ing priority inversion and deadlock problems dynamically (and automatically, without

changes to the language semantics) : revocable monitors. We retain the traditional model

of managing concurrency control in Java, that is mutually exclusive monitors, and aug-

ment it with additional mechanisms originating in the realm of optimistic transactions.

4.1 Design

One of the main principles underlying the design of revocable monitors is complete

transparency: programmers must perceive all programs executing in our system to behave

exactly the same as on all other platforms implemented according to the Java Language

Specification [23]. In order to achieve this goal we must adhere to Java’s execution se-

mantics [23, 38] and follow the Java Memory Model [43] access rules.

In both of the scenarios illustrated by Figures 4.1 and 4.2, one can identify one of-

fending thread that is responsible for the occurrence of priority inversion or deadlock. For

priority inversion the offending thread is the low-priority thread currently executing the

monitor. For deadlock, it is either of the threads engaged in deadlock.

In a system using revocable monitors, every (outermost) synchronized block is exe-

cuted as an optimistic transaction. When priority inversion or deadlock are detected, the

transaction executed by the offending thread gets aborted and then subsequently re-started.

34

Tl

o2

o1

(a)

o1

Tl

o2

(b)

o1

Tl

Th o2

(c)

Tl

Th
o1

o2

(d)

o1

Tl

Th o2

(e)

o1

o2

Tl

Th

(f)

Figure 4.3. Resolving priority inversion

In other words, the monitor protecting the synchronized block and the transaction associ-

ated with the monitor get revoked – it appears as if the offending thread had never entered

this section of code.

4.1.1 Resolving Priority Inversion and Deadlock

The design of revocable monitors deviates slightly from the traditional understand-

ing of optimistic transactions, defined in terms of the three-phase approach, as described

in Section 1.2.3. Because Java monitors are mutually exclusive, they already guarantee

serializability during concurrent execution. Thus, instead of being re-directed to a log,

updates can be performed “in-place” (as described in Section 2.2 discussing support for

logging) and the validation phase can be omitted. Logging however is still required to

support the process of undoing modifications performed within a region protected by the

monitor being revoked.

35

The process of resolving priority inversion using revocable monitors is illustrated in

Figure 4.3, where wavy lines represent threads Tl and Th, circles represent objects o1

and o2, updated objects are marked grey, and the box represents the dynamic scope of a

common monitor guarding a synchronized block executed by the threads. This scenario is

based on the code from Figure 4.1 (data access operations performed within method bar()

have been omitted for brevity). In Figure 4.3(a), low-priority thread Tl is about to start a

transaction and enter the synchronized block protected by monitor mon, which it does

in Figure 4.3(b), modifying object o1. High-priority thread Th tries to acquire the same

monitor, but is blocked by Tl (Figure 4.3(c)). Here, a priority inheritance approach would

raise the priority of thread Tl to that of Th, but Th would still have to wait for Tl to release

the monitor. If a priority ceiling protocol was used, the priority of Tl would be raised to

the ceiling upon its entry to the synchronized block, but the problem of Th being forced

to wait for Tl to release the monitor would remain. Instead, our approach revokes Tl’s

monitor mon: all updates to o1 are undone, monitor mon is released, and Tl’s synchronized

block is re-executed. Thread Tl must then wait while Th starts its own transaction, enters

the synchronized block, updates objects o1 (Figure 4.3(e)) and o2 (Figure 4.3(f)), and

commits the transaction after leaving the synchronized block. At this point the monitor is

released and Tl will re-gain entry to the synchronized block. In the procedure described

above, revocation of Tl’s monitor logically re-schedules Tl to run after Th.

The process of resolving deadlock is illustrated in Figure 4.4. The wavy lines repre-

sent threads T and T ′, circles represent objects o1 and o2, updated objects are marked

grey, and the boxes represent the dynamic scopes of monitors mon1 and mon2. This sce-

nario is based on the code from Figure 4.2. In Figure 4.4(a) thread T is about to enter

the synchronized block protected by monitor mon1. In Figure 4.4(b) T acquires mon1,

starts a transaction, updates object o1 and attempts to acquire monitor mon2. In Fig-

ure 4.4(c) thread T2 is about to enter the synchronized block protected by monitor mon2.

In Figure 4.4(d) the same thread acquires mon2, starts a transaction, updates object o2 and

attempts to acquire monitor mon1. At this point both threads are deadlocked – both T and

T ′ are blocked because each is waiting to acquire a monitor held by the other. In order

36

T
o1

o2

(a)

T
o1

o2

(b)

T
o1

o2 T ′

(c)

T
o1

o2 T ′

(d)

T

T ′
o2

o1

(e)

T

T ′
o2

o1

(f)

Figure 4.4. Resolving deadlock

to support deadlock detection, the run-time system may use a dynamically built wait-for

graph [24] representing the waiting relationships between threads. Detection of any cycle

in the wait-for graph (which can be done periodically by the run-time system) indicates

existence of deadlock. Alternatively, time-outs may be used for the same purpose [24].

We assume that thread T ’s outermost monitor is selected for revocation: monitor mon1 is

released, all updates to o1 are undone and execution of the synchronized block is re-tried.

Thread T ′ may then acquire monitor mon1, proceed to execute method foo() (data access

operations performed within method foo() have been omitted for brevity), release both

monitor mon1 and monitor mon2 and commit its transaction (Figure 4.4(f)).

Some instances of deadlock cannot be resolved using revocable monitors. If deadlock

is guaranteed to arise due to the way the synchronization protocol has been programmed

(independently of scheduling) when using traditional non-revocable monitors, then the

deadlock also cannot be resolved by revocable monitors. Consider the code fragment in

Figure 4.5. Because of control-flow dependencies, all executions of this program under

traditional mutual exclusion will eventually lead to deadlock. When executing this pro-

gram using revocable monitors, the run-time system will attempt to resolve deadlock by

37

T T ′

synchronized(mon1) {

while (!o1.f) {

synchronized(mon2) {

bar();

}

}

o2.f = true;

}

synchronized(mon2) {

while (!o2.f) {

synchronized(mon1) {

foo();

}

}

o1.f = true;

}

Figure 4.5. Schedule-independent deadlock

revoking one of the threads’ outermost monitors. Let’s assume that thread T ’s outermost

monitor is selected for revocation. In order for thread T ′ to make progress it must be

able to observe updates performed by thread T which have not yet been executed. As

a result, T ′ is unable to proceed – it will maintain ownership of the monitors it has al-

ready acquired, which will eventually lead to another deadlock once execution of thread

T is resumed. Note however, that while revocable monitors are unable to assist in resolv-

ing schedule-independent deadlocks, the final observable effect of the resulting livelock

(i.e., repeated attempts to resolve the deadlock situation through aborts) is the same as for

deadlock – none of the threads will make progress.

The introduction of revocations into the system requires a careful consideration of their

interaction between with the Java Memory Model [43]. We elaborate on these issues in

the following sections.

4.1.2 The Java Memory Model (JMM)

The JMM [43] defines a happens-before relation (written hb
→) among the actions per-

formed by threads in a given execution of a program. For single-threaded execution

the happens-before relation is defined by program order. For multi-threaded execution

a happens-before relation is induced between a release and a subsequent acquire opera-

38

acq
wt
rel

acq(outer)
(inner)

(inner)

(v)

acq(inner)

rel (inner)
rd (v)

T ′

ABORT

T

Figure 4.6. Revocation inconsistent with the JMM due to monitor nesting

tion on a given monitor mon. The happens-before relation is transitive: OP
hb
→ OP′ and

OP′
hb
→ OP′′ imply OP

hb
→ OP′′. The JMM shared data visibility rule is defined using the

happens-before relation: a read rd(v) is allowed to observe a write wt(v) to a given vari-

able v if rd(v) does not happen before wt(v) and there is no intervening write wt′(v) such

that rd(v)
hb
→ wt′(v) hb

→ wt(v) (we say that a read becomes read-write dependent on any

write that it is allowed to see). In other words, for every pair of operations consisting of a

read and a write, a programmer can rely on the read to observe the value of the write only

if the read is read-write dependent. Considering these definitions we can conclude that

it is possible for partial results computed by some thread T executing the synchronized

block protected by monitor mon to become visible to (and to be used by) another thread T ′

even before thread T releases mon. This could happen if an operation executed by thread

T before releasing mon induced a happens-before relation with an operation of thread T ′.

However, subsequent revocation of T ’s monitor would undo the update and remove the

happens-before relation, making the value seen by T ′ appear “out of thin air” and thus

make the execution of T ′ inconsistent with the JMM.

An example of such an execution appears in Figure 4.6 (arrows depict the happens-

before relation), where execution of thread T ’s outermost monitor gets revoked at some

point. Initially, thread T starts a transaction, acquires monitor outer and subsequently

monitor inner, writes to a shared variable v and releases monitor inner. Then thread T ′

starts its own transaction, acquires monitor inner, reads variable v, commits the trans-

39

wt

ABORT

acq(mon)
(vol)

T T ′

(vol)rd

Figure 4.7. Revocation inconsistent with the JMM due to volatile variable access

action and releases monitor inner. The execution is JMM-consistent up to the point of

abort: the read performed by T ′ is allowed but aborting the transaction executed by T is

going to violate consistency with respect to the JMM.

A similar problem occurs when volatile variables are used. Volatile variables have

different access semantics then “regular” variables. According to the JMM, there exists

a happens-before relation between a volatile write and all subsequent volatile reads of

the same (volatile) variable. For the execution presented in Figure 4.7 vol is a volatile

variable and arrows depict the happens-before relation. As in the previous example, the

execution is JMM-consistent up to the abort point because the read performed by T ′ is

allowed, but the abort would violate consistency. We now discuss possible solutions to

these consistency-preservation problems.

4.1.3 Preserving JMM-consistency

Several solutions to the problem of preserving JMM-consistency can be considered.

We might trace read-write dependencies among all threads and upon revocation of a mon-

itor trigger a cascade of revocations if read-write dependencies are violated. An obvi-

ous disadvantage of this approach is the need to consider all operations (including those

performed outside of synchronized blocks) for potential revocation. In the execution of

Figure 4.7 the volatile read performed by T ′ would have to be undone even though it is

not guarded by any monitor. In general, the ability to undo an arbitrary part of a thread’s

computation could result in the execution of the entire thread to be transactional, which is

40

static boolean v=false;

T T ′

synchronized(outer) {

synchronized(inner) {

v=true;

}

// ABORT

}

while (true) {

synchronized(inner) {

if (v) break;

}

}

Figure 4.8. Rescheduling thread execution in the presence of revocations
may not always be correct

likely to incur considerable overhead. Furthermore, to apply this solution, the full execu-

tion context of each thread (i.e., its instruction pointer, registers, thread stack etc.) would

have to be available in the transaction’s log in addition to its shared data operations. Con-

sider a situation based on the same example (Figure 4.7) where thread T ′ returns (from the

current method) after reading vol (and potentially using it to perform additional computa-

tion) but before thread T is asked to revoke its monitor mon. Without the ability to restore

the full execution context of T ′, revocation of the effects of its own operation becomes

infeasible.

Another possible solution is to re-schedule the execution of threads in problematic

cases. In the examples of Figures 4.6 and 4.7, if thread T ′ executes fully before thread

T , then the execution will still be JMM-consistent. Revocation of T ’s outermost monitor

does not violate consistency since none of the updates performed by T are visible to T ′.

Besides the obvious question about the practicality of re-scheduling as a solution (some

knowledge about the future actions performed by threads would be required), there also

remains the issue of correctness. While re-scheduling may be correct in some cases, it is

not necessarily correct in others. Consider the Java program of Figure 4.8. Completion of

thread T ′ is dependent upon it seeing the effect of T executing the statement v=true. If

we choose to reschedule T ′ to run before T , knowing that T ’s outermost monitor might be

41

revoked, then the execution of T ′ will never complete. Of course, if we make the “right”

choice to reschedule T ′ after T , things will work. There are however, similar cases where

rescheduling never works.

The solution that does seem flexible enough to handle all possible problematic cases,

and simple enough to avoid using complex analyses and/or maintaining significant addi-

tional meta-data, is to disable the revocability of monitors whose revocation could create

inconsistencies with respect to the JMM. As a consequence, not all instances of priority

inversion or deadlock can be resolved. We mark a monitor, and thus a thread executing

the synchronized block protected by this monitor, non-revocable when a read-write de-

pendency is created between a write performed within the block1 and a read performed

by another thread. Detecting the possibility for this is relatively straightforward, without

needing to track every read, so long as we track monitor acquire/release dependencies, as

follows. When a thread holding an outer monitor acquires some inner monitor, it becomes

associated with the inner monitor. This association is cleared when the thread releases the

outer monitor, or when the thread is made non-revocable. Any other thread arriving at the

monitor will simply make non-revocable any thread associated with that monitor, clearing

the association. If the arriving thread itself holds an outer monitor then it now becomes

associated with the monitor. A monitor is also marked non-revocable if it contains a write

to a non-volatile variable. We believe this solution does not severely detract from the ef-

fectiveness of our technique. Intuitively, programmers protect accesses to the same subset

of shared data using the same set of monitors; in such cases, there is no need to force

non-revocability of any of the monitors (even if they are nested) since mutual exclusion

induced by monitor acquisition prevents generation of problematic dependencies among

these threads.

There exist other Java constructs that affect revocability of monitors. Calling a native

method within a synchronized block also forces non-revocability of the monitor protect-

ing the block (and all of the monitors protecting the enclosing synchronized blocks if it is

nested), since the effects of a native method cannot generally be undone (e.g., printing a
1The write may additionally be protected by other monitors nested within mon.

42

message to the console). The same applies to executions where a wait method is invoked

within a nested monitor.2 Revocation of the monitor protecting a wait call would result

in a situation where the matching notify call (that “woke up” the waiting thread) “dis-

appears” (i.e., does not get delivered to any thread) which would violate Java execution

semantics. A call to notify does not force irrevocability of enclosing monitors: Java per-

mits “spurious wake-ups” [43] and a notification performed within a revoked monitor can

be considered as such.

4.2 Implementation

When discussing the details of our implementation, we concentrate on describing com-

piler and run-time support necessary to support revocations. Because serializability is

guaranteed by the presence of mutual exclusion, tracking of shared data dependencies is

not required. For our case study we chose the priority inversion problem, rather than dead-

lock resolution, as an excellent vehicle to measure the trade-offs inherent in our approach.

4.2.1 Logging

Logging is realized through the use of read and write barriers, described in Section 2.4.

Both compilers provided with the distribution of our implementation platform, Jikes RVM,

have been modified to inject barriers for every store operation (represented by the follow-

ing bytecodes: putfield for object stores, Xastore for array stores and putstatic for

static variable stores. Once a thread starts a transaction and enters a synchronized block,

the barriers record in the log every modification performed throughout execution of the

entire transaction (until the transaction is either committed at the end of the synchronized

block or aborted). The information stored in the log can then be used to undo operations

on the shared data in case of the transaction’s abort.
2A monitor object associated with the receiver object is released upon a call to wait and re-acquired after
returning from the call. In the case of a non-nested monitor a potential revocation will therefore not reach
beyond the point when wait was called.

43

We implemented the log as a sequential buffer. For object and array stores three values

are recorded: the target object or array, the offset of the modified field or array slot, and the

previous (old) value in that field/slot. For stores to static variable two values are recorded:

the offset of the static variable in the global symbol table (i.e., the JTOC in Jikes RVM)

and the previous value of that variable.

4.2.2 Revocation

There exist two different synchronization constructs in Java: synchronized methods

and synchronized blocks. We treat them uniformly, by transforming synchronized meth-

ods into non-synchronized equivalents whose entire body is enclosed in a synchronized

block. For each synchronized method we create a non-synchronized wrapper with a sig-

nature identical to the original method. We fill the body of the wrapper method with a

synchronized block enclosing an invocation of the original (non-synchronized) method,

which has been appropriately renamed to avoid name clashes. We also instruct Jikes RVM

to inline the original method within the wrapper to avoid performance penalties related to

the delegation of method invocations. This approach greatly simplifies our implementa-

tion,3 is extremely simple and robust, and also efficient because of inlining.

As described in Section 2.5, we use a modified version of the exception handling

mechanism to support revocations. We use bytecode re-writing (supported by the Byte-

code Engineering Library from Apache) to wrap each synchronized block with the ap-

propriate exception handler and to inject code responsible for recording local state at the

point when the synchronized block (and its respective transaction) starts. Since revocation

may involve a nested synchronized block, each handler of the Revoke exception invokes

an internal (virtual machine level) method to check if it corresponds to the synchronized

block that needs to be re-executed. If it does, then the handler restores both shared and

local state, releases the monitor protecting the synchronized block and returns control to
3We need only handle explicit monitorenter and monitorexit bytecodes, without worrying about implicit
monitor operations for synchronized methods.

44

the beginning of this block. Otherwise, the handler re-throws the Revoke exception to the

enclosing synchronized block, after releasing the monitor protecting the inner block.

Java supports the notion of default exception handlers. Such default handlers include

both finally blocks, and catch blocks for exceptions of type Throwable, of which all

exceptions (including Revoke) are instances. We must therefore modify the exception

handling mechanism to prevent these handlers from being run while handling the Revoke

exception, in order to preserve the transparency requirement (as described in Section 2.5).

The default behavior still applies for all other exceptions, to preserve the standard seman-

tics.

4.2.3 Priority Inversion Avoidance

Detecting priority inversion is reasonably simple. A thread acquiring a monitor de-

posits its priority in the header of the monitor object. Before another thread can acquire

the monitor, the scheduler checks whether its priority is higher than the priority of the

thread currently executing within the synchronized block. If it is, then the scheduler trig-

gers revocation of the monitor held by the low priority thread, to allow its acquisition by

the high-priority thread. The revocation is triggered by setting a flag checked by the low-

priority thread at the subsequent yieldpoint4 (the Revoke exception is thrown if the flag is

set). If the incoming thread’s priority is lower, it blocks on the monitor and waits for the

other thread to complete execution of the synchronized block.

Jikes RVM does not include a priority scheduler; threads are scheduled in round-robin

order. This does not affect the generality of our solution nor does it invalidate the results

obtained, since the problems solved by our mechanisms cannot be solved simply by using

a priority scheduler. However, in order to make the measurements independent of the

random order in which threads arrive at a monitor, we augmented monitor queues to take

priority into account. A thread can have either high or low priority. When a thread releases

a monitor, another thread is scheduled from the queue. If it is a high-priority thread, it is
4Jikes RVM supports pseudo-preemptive thread scheduling. Thread switches are only possible at the explicit
yieldpoints inserted by the compiler into the code-stream at pre-specified points (e.g., loop back-edges).

45

allowed to acquire the monitor. If it is a low-priority thread, it is allowed to run only if

there are no other high-priority threads waiting in the queue.

4.3 Experimental Evaluation

We quantify the overhead of the revocable monitors mechanism using a detailed micro-

benchmark. We measure executions that exhibit priority inversion to verify if the increased

overheads induced by our implementation are mitigated by higher overall throughput of

high-priority threads. The experiments are performed for a uni-processor system. Since

revocable monitors do nothing to increase concurrency in applications, applications will

exhibit no more parallelism using revocable monitors on multi-processors than they would

using non-revocable monitors. In our results, it is to be expected that revocable monitors

used to address priority inversion will sacrifice throughput of low-priority threads to im-

prove throughput of high-priority threads. As a result, total throughput will suffer. Our

results quantify this sacrifice of total throughput to be approximately 30%, while through-

put for high-priority threads improves by 20% to 160%.

4.3.1 Benchmark Program

The micro-benchmark executes several low-priority and high-priority threads contend-

ing on entry to the same synchronized block. Regardless of their priority, all threads are

compiled identically, with write barriers inserted to log updates, and special exception

handlers injected to support revocations of monitors. Though our benchmark is struc-

tured so that only monitors of low-priority threads will actually be revoked, updates of

both low-priority and high-priority threads are logged for fairness, even though monitors

of high-priority threads are never revoked. Every thread executes the synchronized block

100 times. The synchronized block contains an inner loop containing an interleaved se-

quence of read and write operations. We emphasize that our micro-benchmark has been

constructed to gauge the overheads inherent in our techniques (the costs of re-execution,

logging, etc.) and not necessarily to simulate any particular real-life application. We do

46

not bias the benchmark structure in favor of our mechanisms by artificially extending the

execution time using benign (with respect to logging) operations (e.g., method calls). We

make the execution time of a synchronized block directly proportional to the number of

shared data operations performed within that block. We fixed the number of iterations of

the inner loop for low-priority threads at 500K, and varied it for the high-priority threads

(100K and 500K). The remaining parameters for our benchmark include:

• The ratio of high-priority threads to low-priority threads – we used three configura-

tions: 2+8, 5+5, and 8+2, high-priority plus low-priority threads, respectively.

• The ratio of write to read operations performed within the synchronized block – we

used six different configurations ranging from 0% writes (i.e., 100% reads) to 100%

writes (i.e., 0% reads).

Our benchmark also includes a short random pause time (on average approximately

a single thread quantum in Jikes RVM) right before entry to the synchronized block, to

ensure random arrival of threads at the monitor protecting the block.

Our thesis is that the total elapsed time of high-priority threads can be improved using

revocations, at the expense of longer elapsed time for low-priority threads. Improvement

is measured against an implementation that provides no remedy for priority inversion.

Thus, for every run of the micro-benchmark we compare the total time it takes for all

high-priority threads to complete their execution for the following two settings:

• An unmodified version of Jikes RVM that does not allow revocation of monitors:

when a high-priority thread wants to acquire the monitor already held by a low-

priority thread it waits until the low-priority thread exits the synchronized block.

• A modified version of Jikes RVM equipped with the compiler and run-time changes

to support revocation of monitors held by low-priority threads: when a high-priority

thread wants to acquire a monitor held by a low-priority thread it signals its intent,

resulting in the monitor held by the low-priority thread being revoked at the next

yield point.

47

To measure the total elapsed time of high-priority threads we take two time-stamps

for each high-priority thread: one when it begins its run() method and one at the end

of its run() method. We compute the total elapsed time for all high-priority threads

by subtracting the latest end time-stamp of all high-priority threads from the earliest begin

time-stamp of all the high-priority threads. We also record the impact that our solution has

on the overall elapsed time of the entire micro-benchmark, including low-priority elapsed

times: this is simply the difference between the end time-stamp of the last thread to finish

and the begin time-stamp of the first thread to start, regardless of priority.

The measurements were taken on an 800MHz Intel Pentium III (Coppermine) with

1GB of RAM running Linux kernel version 2.4.20-13.7 (RedHat 7.0). A benchmark run

consists of one invocation of the VM in which the benchmark is repeated six times. We

discard the results of the first iteration, in which the benchmark classes are loaded and

compiled, to eliminate the overheads of compilation. We report the average elapsed time

for the five subsequent iterations, and show 90% confidence intervals in our results. Our

system is based on Jikes RVM 2.2.1 and we use a configuration where both the VM (which

is itself implemented and bootstrapped in Java) and dynamically loaded classes are com-

piled using the optimizing compiler by default. Even in this configuration there remain

some methods (e.g., class initializers) that override this setting and are compiled without

optimization.

4.3.2 Results

Figures 4.9 and 4.10 plot elapsed times for high priority threads executed on both

the modified version of Jikes RVM (indicated by a solid line) and the unmodified one

(indicated by a dotted line), normalized with respect to the configuration executing 100%

reads on the unmodified version (using standard non-revocable monitors). We normalize

with respect to the 100% reads benchmark configuration so as to obtain a standard baseline

for illustrating performance trends as the read/write mix changes. In Figure 4.9 every

high priority thread executes 100K internal iterations; in Figure 4.10 the iteration count

48

0 20 40 60 80 100
Shared writes (%)

0

0.4

0.8

1.2

1.6

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

modified
unmodified

(a) 2 high-priority, 8 low-priority

0 20 40 60 80 100
Shared writes (%)

0

0.4

0.8

1.2

1.6

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

modified
unmodified

(b) 5 high-priority, 5 low-priority

0 20 40 60 80 100
Shared writes (%)

0

0.4

0.8

1.2

1.6

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

modified
unmodified

(c) 8 high-priority, 2 low-priority

Figure 4.9. Total time for high-priority threads, 100K iterations

0 20 40 60 80 100
Shared writes (%)

0

0.4

0.8

1.2

1.6

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

modified
unmodified

(a) 2 high-priority, 8 low-priority

0 20 40 60 80 100
Shared writes (%)

0

0.4

0.8

1.2

1.6

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)
modified
unmodified

(b) 5 high-priority, 5 low-priority

0 20 40 60 80 100
Shared writes (%)

0

0.4

0.8

1.2

1.6

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

modified
unmodified

(c) 8 high-priority, 2 low-priority

Figure 4.10. Total time for high-priority threads, 500K iterations

is 500K. In each figure: the graph labeled (a) reflects a workload consisting of two high-

priority threads, and eight low-priority threads; the graph labeled (b) reflects a workload

consisting of five high-priority and five low-priority threads; and, the graph labeled (c)

reflects a workload consisting of eight high-priority threads and two low-priority ones.

If the ratio of high-priority threads to low-priority threads is relatively low (Figures 4.9-

4.10 (a)(b)), the modified version of Jikes RVM improves throughput for high-priority

threads by 20% to 160% over the unmodified one. Average elapsed-time gain across all

the configurations, including those where the number of high-priority threads is greater

than the number of low-priority threads, is 78%. If we discard the configuration where

there are eight high-priority threads competing with only two low-priority ones, the aver-

age elapsed time of a high-priority thread is half that of the execution time for the reference

(unmodified) version.

49

Note that the influence of different read-write ratios on overall performance is small;

recall that all threads, regardless of their priority, log all updates within a synchronized

block. This implies that the cost of operations related to log maintenance and undoing of

partial results is also small, compared to the elapsed time of the entire benchmark. Indeed,

the actual “workload” (the contents of the synchronized block) in the benchmark consists

entirely of data access operations – no delays (method calls, empty loops, etc.) are inserted

in order to artificially extend its execution time. Since realistic programs are likely to have

a more diverse mix of operations, the overheads would be even smaller in practice.

As expected, if the number of write operations within the synchronized block is suf-

ficiently large, the overhead of logging and roll-backs may start outweighing potential

benefit. For example, in Figure 4.10(c), under a 100% write configuration, every high pri-

ority thread writes, and thus logs, approximately 500K words of data in every execution of

a synchronized block. We believe that synchronized blocks that consist entirely of write

operations of this magnitude are relatively rare.

As the ratio of high-priority threads to low-priority threads increases, the benefit of

our strategy diminishes (see Figures 4.9(c) and 4.10(c)). This is expected; since there

are relatively fewer low-priority threads in the system, there is less opportunity to “steal”

cycles from them to improve throughput of higher priority ones. We note, however, that

even when the version of Jikes RVM using revocations has weaker performance than the

unmodified implementation, the average difference in execution time is only a few percent.

Figures 4.11 and 4.12 plot overall elapsed times for the entire application executed

on both modified (solid line) and unmodified (dotted line) versions of Jikes RVM. These

graphs are also normalized with respect to a configuration executing 100% reads on the

unmodified VM. Note that the overall elapsed time for the modified version of Jikes RVM

must always be longer than for the unmodified one. If we disallowed revocability of

monitors, threads executing on both versions of the VM would need exactly the same

amount of time to execute their workloads (modulo costs related to the implementation of

our mechanisms for the modified VM such as barriers, log maintenance, etc.). However, if

the execution of monitors can be revoked, low-priority threads executing on the modified

50

0 20 40 60 80 100
Shared writes (%)

0

0.4

0.8

1.2

1.6

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

modified
unmodified

(a) 2 high-priority, 8 low-priority

0 20 40 60 80 100
Shared writes (%)

0

0.4

0.8

1.2

1.6

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

modified
unmodified

(b) 5 high-priority, 5 low-priority

0 20 40 60 80 100
Shared writes (%)

0

0.4

0.8

1.2

1.6

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

modified
unmodified

(c) 8 high-priority, 2 low-priority

Figure 4.11. Overall time, 100K iterations

0 20 40 60 80 100
Shared writes (%)

0

0.4

0.8

1.2

1.6

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

modified
unmodified

(a) 2 high-priority, 8 low-priority

0 20 40 60 80 100
Shared writes (%)

0

0.4

0.8

1.2

1.6

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)
modified
unmodified

(b) 5 high-priority, 5 low-priority

0 20 40 60 80 100
Shared writes (%)

0

0.4

0.8

1.2

1.6

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

modified
unmodified

(c) 8 high-priority, 2 low-priority

Figure 4.12. Overall time, 500K iterations

VM will re-execute parts of their synchronized blocks, thus lengthening overall elapsed

time. Since our focus is on lowering elapsed times for high priority threads, we consider

the impact on overall elapsed time (on average 30% higher on the modified VM) to be

acceptable. If our mechanism is used to resolve deadlocks then these overheads may be

an even more acceptable price to pay to obtain progress by breaking deadlocks.

4.4 Related Work

A solution close in spirit to revocable monitors has been subsequently proposed by

Manson et al. [42]. Their preemptible atomic regions (PARs) are an extension to the Real-

Time Specification for Java [11]. PARs address the problems of priority inversion and

deadlock in real-time concurrent programming, focusing on providing real-time guaran-

tees, such as the ability to compute worst-case execution time for all methods executing

51

in the system. Their implementation has been realized in the Ovm real-time Java virtual

machine [2] for a uni-processor setting. Similarly to our own solution, PARs are executed

as lightweight transactions. However, only one transaction can be present in the system at

any given time. A thread that is executing a PAR gets immediately aborted once another

thread attempts to start executing its own PAR. This guarantees the desired atomicity prop-

erty – there is no interference between operations of threads executing different PARs and

no thread executing a PAR can observe partial effects produced by another thread execut-

ing a different PAR. Updates performed by threads within PARs operate directly on shared

data – they can be undone using information recorded in the sequential log if a transaction

needs to be aborted. Aborted transactions are automatically re-executed (support for re-

execution is provided through bytecode re-writing). Because only one PAR can execute at

any given time, only a single instance of the log needs to be present in the system. In order

to satisfy the real-time requirements, the size of the log must be bounded. Programmers

are responsible for setting the size of the log a priori, in order to allow computation of the

worst-case execution time for methods containing PARs. PARs are backwards compatible

with the original formulation of the RTSJ – programs can use a mixture of PAR-based and

traditional synchronization. The experimental results demonstrate improvements in both

predictability of the response time and the overall throughput of the high-priority threads,

when compared to solutions based on mutual exclusion.

Earlier in this chapter, we have discussed other, more traditional, dynamic techniques

to handle priority inversion, such as the priority inheritance and the priority ceiling pro-

tocols. However, apart from the solution presented by Manson et al. and more general

transactional schemes presented in Chapter 3, very few dynamic solutions to handle dead-

lock exist.

Zeng [16] proposes to treat deadlock occurrences as run-time exceptions. In his sys-

tem, a broader than usual definition of deadlock is assumed, including situations when a

thread is blocked while waiting for a notification. Therefore, in addition to using a wait-

for graph (describing waiting relationships between threads), time-outs are used to detect

deadlock in his system. Detection of deadlock is signaled by throwing a run-time excep-

52

tion which encodes information that can subsequently be used by an application-specific

(provided by the programmer) deadlock resolution procedure. The proposed scheme has

been implemented in the Latte Java Virtual Machine [1] but no empirical evidence con-

cerning the related overheads has been provided.

Zeng and Martin [17] describe a technique to prevent occurrences of deadlocks in

Java dynamically. At run-time they construct a lock-order graph which records the order

in which mutual-exclusion locks are acquired globally by the application. Cycles in the

graph represent sets of locks that can potentially form a deadlock. In order to prevent

deadlock from happening, any thread trying to acquire a lock from the cyclic lock-set must

first (implicitly) acquire a phantom lock – a special lock designated by the run-time system

and associated with every cyclic lock-set. Acquisition of the phantom lock guarantees that

only one thread can hold any lock from the cyclic lock-set at any given time and thus no

deadlock involving any of these locks can occur. Their implementation of the deadlock

prevention scheme in the Latte Java Virtual Machine exhibits low run-time overheads (on

the order of 3%), but cannot prevent deadlocks that occur during construction of the lock-

order graph. The effects that the introduction of phantom locks may have on the JMM

visibility rules have not been discussed in their work.

4.5 Conclusions

In this chapter we have described how optimistic transactions can be adopted to solve

priority inversion and deadlock problems. We have demonstrated the effectiveness of

our approach in improving throughput of high-priority threads in a priority scheduling

environment. Our experiments indicate that throughput for high-priority threads can be

improved by 20% to 160% at a cost of approximately 30% total throughput loss.

53

5 SAFE FUTURES

A future is a simple and elegant concurrency abstraction, introduced for the first time

in MultiLisp [25]. The MultiLisp future keyword is used to annotate expressions to

have them evaluated concurrently (asynchronously) with the rest of the program. Such

an annotated expression (i.e., future) returns a placeholder that ultimately holds the value

yielded by the expression. The result of the future’s evaluation can be retrieved at a later

time from the placeholder by claiming the future. This operation serves to synchronize the

asynchronous evaluation of the future with the part of the program performing the claim.

Futures are an elegant alternative to programming with explicit threads because they

often allow concurrent programs to be created through a relatively small rewrite of its

sequential counterpart. Furthermore, in the absence of side-effects, futures satisfy a simple

safety property: if a sequential program P is annotated with futures to yield concurrent

program PF , then the observable behavior of P is equivalent to PF . Indeed, because futures

are provided as expression annotations, their effect is intended to be fully transparent,

visible only in the form of improved concurrency, without altering the meaning of the

original sequential program.

Recently, futures have been introduced to Java in the form of the new interface speci-

fied by the java.util.concurrent package [34] as part of the Java 2 Platform Standard

Edition 5.0 API. In Java, futures become specially designated method calls that can be

evaluated concurrently with the rest of the program. However, in the presence of muta-

tion, the safety property for futures no longer holds. A task spawned to evaluate a future

may perform updates of shared data concurrently accessed by other tasks, including the

task that spawned it. While this is not a serious issue in functional or mostly-functional

languages where updates to shared data occur infrequently (if at all), it is significantly

more problematic in Java where computation is typically structured in terms of modifica-

tion to shared objects.

54

Consider a future f that executes concurrently with the task C f that evaluates f ’s con-

tinuation. A continuation of a future is the computation that logically follows it. Safe

execution of f may be compromised if it observes the effects of operations performed by

C f ; for example, if C f updates an object that is subsequently read by f . Similarly, safe

execution of C f may be compromised if it accesses an object that is subsequently written

by f . Both these cases lead to different behavior than if the future and its continuation

were evaluated sequentially. We believe that many of the notable benefits from using Java

futures are significantly weakened by this lack of transparency with respect to access to

shared data. Currently, in order to achieve some measure of safety, programs using futures

must be further refined to provide explicit synchronization on potentially shared objects.

Our solution, safe futures, automatically preserves all the desired safety invariants.

We define semantics to formalize our notion of safety by imposing constraints on the

set of schedules that can be generated by a program in which concurrency is expressed

exclusively through the use of futures. We design and and implement safe futures using

the same mechanisms as those underlying optimistic transactions. We track shared data

dependencies to detect safety violations and revoke executions upon detection of such

violations. We now proceed to define semantics for safe futures and to formally argue

correctness of our solution.

5.1 Semantics

To examine notions of safety with respect to interleavings of actions that operate within

a future and its continuation, we define semantics for a call-by-value object calculus sim-

ilar to Classic Java [22] extended with threads and a future construct. The semantics

yield a schedule – a sequence of read and write operations performed during the execu-

tion of a program. A schedule is serial when all the operations of a program are executed

within a single (main) thread. A schedule is concurrent if fragments of a program are

executed concurrently by separate threads; in this case, the actions of these threads may

be interleaved with one another. We impose safety conditions on concurrent schedules to

55

P ::= (P | P) | t[e]l
L ::= class C{f M}
M ::= m (x){e}
e ::= x | l | this | e.f | e.f := e | e.m (e)

| 〈e〉e | new C () | future (e) | get (e)

Figure 5.1. Language syntax.

verify that operation interleavings do not violate safety invariants. Informally, a concur-

rent schedule is safe if it is equivalent, in terms of its actions on shared data, to some serial

schedule.

The syntax of the calculus is presented in Figure 5.1, its semantics in Figures 5.2– 5.3.

A program defines a collection of class definitions, and a collection of threads. Classes are

all uniquely named, and define a collection of instance fields and instance methods that

operate over these fields. Every method consists of an expression whose value is returned

as the result of a call to that method. An expression is either a variable, a location that

references an object, the pseudo-variable this, a field reference, an assignment, a method

invocation, a sequencing operation, an object creation operation, a future creation, or a

get expression that claims a future.

Every class has a unique (nullary) constructor to initialize object fields. The applica-

tion of a constructor returns a reference to an object instantiated from the class definition.

A value is either null, an object instantiated from a class containing locations for the

fields declared by the class, or a location that serves as a placeholder to hold the result of

evaluating a future. A thread is uniquely labeled with a thread identifier, and a placeholder

location.

We take metavariables L to range over class declarations, C to range over class names,

M to range over methods, m to range over method names, f and x to range over fields and

parameters, respectively, l to range over locations, and v to range over object values. We

also use P for process terms, and e for expressions. We use over-bar to represent a finite

ordered sequence, for instance, f represents f1 f2 . . . fn. The term αα denotes the exten-

56

Evaluation contexts:

E ::= •
| E[•].f := e

| l.f := E[•]
| E[•].m(e)
| l.m(l E[•] e)
| E[•] ; e
| get(E[•])

EtP[e]l ::= P | t[E[e]]l

Program states:

t ∈ Tid
P ∈ Process
x ∈ Var
l ∈ Loc
v ∈ Val = null | C(l) | l
Γ ∈ Store = Loc → Val

OPt l ∈ Ops = {rd,wt}×Tid×Loc
S ∈ Schedule= OPtl
Λ ∈ State = Process×Store×Schedule

Figure 5.2. Program states and evaluation contexts.

sion of the sequence α with a single element α, and αα′ denotes sequence concatenation,

S.OPt denotes the extension of schedule S with operation OPt.

Program evaluation and schedule construction are specified by a global reduction re-

lation, P,Γ,S =⇒ P′,Γ′,S′, that maps a program state to a new program state. A program

state consists of a collection of evaluating threads (P), a global store (Γ) to map loca-

tions to values, and schedules (S) to define a global interleaved sequence of actions per-

formed by threads. Local reductions within a thread are specified by an auxiliary relation,

e,Γ,S →t e′,Γ′,S′ that evaluates expression e within thread t to a new expression e′; in

doing so, a new store, and schedule may result. The only actions that are recorded by

a schedule are those that read and write locations. The interpretation of schedules with

respect to safety is the topic of the next section.

We use evaluation contexts to specify order of evaluation within a thread, and to pre-

vent premature evaluation of the expression encapsulated within a future annotation. We

define a process context EtP[e]l to denote an expression e available for execution by thread

t ∈ P in a program state; the label l denotes a placeholder location that holds the result of

e’s evaluation.

The sequential evaluation rules are standard: holes in evaluation contexts can be re-

placed by the value of the expression substituted for the hole, sequence operations evalu-

57

Sequential evaluation rules:

l′,l fresh
Γ′ = Γ[l′ 7→ C(l),l 7→ null]

S′ = S .wtt l1wttln .wttl′

l1, . . . ,ln ∈ l

new C (),Γ,S →t l′,Γ′,S′

Γ(l) = C(l′′) Γ(l′) = v

Γ′ = Γ[l′′i 7→ v]
S′ = S .rdtl′ .wttl′′i

l.fi := l′,Γ,S →t l′,Γ′,S′

〈l〉e,Γ,S →t e,Γ,S

class C{f M} ∈ L Γ(l) = C(l′)
S′ = S .rdt l′i

l.fi,Γ,S →t l′i,Γ,S′

Γ(l) = C(l′) = v Γ(l) = v′

class C{f M} ∈ L m (x){e} ∈ M

l.m (l),Γ,S →t [v/this,
v′/x]e,Γ,S

Global evaluation rules:

e,Γ,S →t e′,Γ′,S′

EtP[e]l,Γ,S =⇒ EtP[e′]l,Γ′,S′
P = P′ | t′[l′′]

l′

EtP[get (l′)]l,Γ,S =⇒ EtP[l′′]l,Γ,S

t′,t′′ fresh t≤ t′ ≤ t′′ l′ fresh

EtP[future (e)]l,Γ,S =⇒ P | t′[e]
l′ | t

′′[E[l′]]
l
,Γ,S

Figure 5.3. Language semantics.

ate left-to-right, method invocation evaluates the method body in the original environment

augmented by binding actuals to parameters in addition to binding the pseudo-variable

this to the current receiver object. Read and write operations augment the schedule in

the obvious way. A new expression extends the schedule with writes to all instance fields

(with null values).

An expression of the form future (e) causes e’s evaluation to take place in a new

thread t′. A fresh location l′ is created as a placeholder to hold the result of evaluating

58

this future. Thus, t′[e]
l′ denotes a thread with identifier t′ that evaluates expression e and

stores the result of this evaluation into l′.

In addition to the thread responsible for computing the value of the future, a new

thread t′′ is created to evaluate the future’s continuation. As a result, the parent thread

is no longer relevant. This specification simplifies the safety conditions discussed below.

The thread identifiers associated with threads created by a future expression are related

under a total ordering (≤). Informally, this ordering captures the logical (sequential) order

in which actions performed by the threads must be evaluated. Thus, if t′ ≤ t′′, then either

t′ = t′′, or all actions performed by t′ must logically take place before t′′. In particular,

effects induced by actions performed by t′′ must not be visible to operations in t′.

Synchronization takes place through the get expression, being the equivalent of the

claim operation in the original formulation of futures [25]. In the rule for get, the loca-

tion label l′ represents a placeholder or synchronization point that holds the value of a

task spawned by a future. The rule is satisfied precisely when the associated future (say,

future (e)) has completed. When this occurs, the process state will contain a thread with

shape t[l′′]l′ where l′′ is the location yielded by evaluation of e.

5.1.1 Safety

A schedule defines a sequence of possibly interleaved operations among threads. The

correctness of a schedule, therefore, must impose safety constraints on read and write

operations. These constraints guarantee that the injection of futures into an otherwise

sequential program does not alter the meaning of the program. Thus, these constraints

must ensure that interleavings are benign with respect to read and write operations. The

semantics does not permit reordering of operations within a thread.

There are two conditions (roughly equivalent to the Bernstein conditions [7]) that must

hold on schedules to guarantee this property: (1) an access to a location l (either a read

or a write) performed by a future should not witness a write to l performed earlier by its

continuation, and (2) a write operation to some location l performed by a future should be

59

visible to the first access (either a read or a write) made to l by its continuation. In other

words, no write to a location l by a future’s continuation can occur before any operations

on l by the future, and all writes to a location l by the future must occur before any

operation to l by the continuation. Note that these conditions do not prohibit interleaved

operations by a future and its continuation to distinct locations.

We summarize these constraints in terms of two safety rules, csafe and fsafe, resp. The

former captures the notion of when an operation performed by a continuation is safe with

respect to the actions performed by the future within a schedule, and the latter captures the

notion of when an operation performed by a future is safe with respect to its continuation

within a schedule.

wtt′ l,rdt′ l 6∈ S′, t′ ≤ t

csafe(S.wtt l.S′)

wtt′ l,rdt′ l 6∈ S, t≤ t′

fsafe(S.wttl.S′)

Definition 5.1.1 (Schedule Safety)

A schedule S is safe if csafe(S) and fsafe(S) hold.

To validate the safety of an interleaved schedule, we must ensure that its observable

behavior is equivalent to the behavior of a corresponding program in which futures have no

computational effect. In such a program, evaluation of the future’s continuation is delayed

until the future itself is fully evaluated. This trivially enforces sequential order between

all operations executed by the future and all operations executed by the continuation and

thus automatically yields a serial schedule.

We first introduce the notion of a schedule permutation that allows us to define an

equivalence relation on schedules:

Definition 5.1.2 (Permute) Schedule S is a permutation of schedule S′ (written S ↔ S′),

if len(S) = len(S′) and for every OPt li ∈ S, there exists a unique OPtl j ∈ S′.

A serial schedule is a schedule in which no interleaving among operations of different

threads occurs:

60

Definition 5.1.3 (Serial Schedule)

Schedule S = OPt1 l1.OPtn ln is serial if for all OPt j l j there does not exist OPtk l j,

k > j such that tk < t j.

We wish to show that any safe schedule can be permuted to a serial one since a serial

schedule reflects an execution in which operations executed by a future are not interleaved

with operations performed by its continuation. Effectively, a serial schedule reflects an

execution in which a spawned future runs to completion before any operations in its con-

tinuation are allowed to execute; in other words, a serial schedule corresponds to a program

execution in which futures have no computational effect.

We first appeal to a lemma that allows us to permute adjacent operations belonging to

different threads in a safe schedule:

Lemma 5.1.1 (Permutation)

Let schedule S = OPt1 l1.OPt2 l2 be safe. Then if S is safe, there exists a serial schedule

S′ such that S ↔ S′.

Proof If t1 ≤ t2, then the schedule is trivially serial. If t1 > t2, and because S is safe, it

must be the case that either (a) l1 6= l2, or (b) l1 = l2 = l, and OPt2 l = rdt2 l. In both

cases, we can choose S′ = OPt2 l2.OPt1 l1.

Our soundness result generalizes this lemma over schedules of arbitrary length:

Theorem 5.1.1 (Soundness)

If schedule S is safe, then there exists a serial schedule S′ such that S ↔ S′.

Proof The proof is by induction on schedule length. Lemma 1 satisfies the base case.

Suppose S = S1.OPt l where len(S1) > 2. By the induction hypothesis, there exists a

serial schedule S′1 such that S′1 ↔ S1. Suppose S′1 = OPt1 l1. · · · .OPtk lk. First, we need to

show that S′′ = S′1.OPtl is safe. Suppose otherwise. Then, it must be the case that either

(a) there exists some OPt′ l ∈ S′1 such that t < t′, and OPtl = wttl, or (b) there exists a

wtt′ l ∈ S′1 such that t′ > t. If either of these conditions hold, however, S would not be

61

public interface Future<V> {

V get()

throws InterruptedException,

ExecutionException;

}

public interface Callable<V> {

V call() throws Exception;

}

public class FutureTask<V>

implements Future<V>, Runnable {

FutureTask(Callable<V> callable)

throws NullPointerException

{ ... }

V get()

throws InterruptedException,

ExecutionException

{ ... }

void run() { ... }

}

Figure 5.4. The existing java.util.concurrent futures API

safe. Thus, by Lemma 1, we can permute OPtk lk with OPt l to yield a new safe schedule

Sp = S′′′.OPt j l j.OPtl.OPtk lk. We can apply Lemma 1 again to OPt j l j.OPt l, and so on,

repeatedly shifting OPtl until a serial schedule is constructed.

5.2 Design

Adding futures to Java raises several important design issues. Our foremost design

goal is to preserve the spirit of programming with futures that made it so appropriate

for functional programming: the expectation that a future, despite being executed asyn-

chronously, performs its computation as if it had been invoked as a synchronous method

call. We believe that strong notions of safety for futures is what makes them so power-

ful, where safety is ensured by the run-time system rather than left as a burden for the

programmer.

We now proceed to discussion of an API for safe futures, their associated programming

model, and their interaction with existing Java concurrency mechanisms. We will also

describe the design of mechanisms used to preserve safety.

62

public class SafeFuture<V>

implements Future<V>, Runnable {

SafeFuture(Callable<V> callable)

throws NullPointerException

{ ... }

V get()

throws InterruptedException,

ExecutionException

{ ... }

void run() { ... }

}

Figure 5.5. Safe futures API

5.2.1 API for Safe Futures

A major challenge in introducing any new language abstraction is to make it intuitive

and easy to use. To ground our design, we begin with the existing Java futures API [34]

that is now part of the Java 2 Platform Standard Edition 5.0 (J2SE 5.0). Snippets of this

existing API appear in Figure 5.4, which embodies futures in the interface Future. The

get operation (equivalent to the claim operation in the original formulation of futures) on

a Future simply waits if necessary for the computation it encapsulates to complete, and

then retrieves its result. We omit here those operations on futures that are not relevant to

our remaining discussion.

In J2SE 5.0, an implementation of the Future interface is provided by the class

FutureTask. Again, we omit details not relevant to our discussion. Here, the constructor

for FutureTask creates a future that will, upon invocation of the run method, execute

the given Callable by invoking its call method. If the call throws an exception, it is

delivered to the caller at the point where it invokes the get method, wrapped up in an

ExecutionException.

Our design calls for a new implementation of Future, namely SafeFuture, which is

presented in Figure 5.5. Our semantics for SafeFuture demand that the program frag-

ments appearing in Figure 5.6 be semantically equivalent, regardless of the computation

63

Callable<V> c = ...;

...

...

V v = c.call();

...

...

Future<V> f

= new SafeFuture<V>(c);

f.run();

...

V v = f.get();

Figure 5.6. Semantically equivalent code fragments

performed by the given Callable<V> c, and the code surrounding its invocation, being

performed as a simple call or as a future.

To preserve the transparency of future calls, any uncaught exception thrown by the

future call (i.e., from the call method of the Callable) will be delivered to the caller at

the point of invocation of the run method, and the effects of the code following the run

method will be revoked. The effects of the future call up to the point it threw the exception

will remain. These semantics preserve equivalence with the simple call.

A more detailed example program appears in Figure 5.7. A future defined in the sam-

ple code fragment computes the sum of the elements in the array of integers a concurrently

with a call to the static method bar on class Foo, which receives argument a. Note that

method bar may access (and modify) a concurrently with the future computation. Our se-

mantics require that the observable behavior of calls to methods serial and concurrent

be the same. Replacing uses of SafeFuture with the existing FutureTask from J2SE 5.0

provides no such guarantee.

5.2.2 Programming Model

The programming model enabled by use of safe futures permits straightforward ex-

ploitation of latent parallelism in programs. One can think of safe futures as transparent

annotations on method calls, which designate opportunities for concurrency. Serial pro-

64

public class Example implements Callable<Integer>

{

int[] a = new int[]{1,2,3};

public Integer call() {

int sum = 0;

for (int v : a) sum += v;

return sum;

}

int serial() {

Integer sum = call();

Foo.bar(a);

return sum;

}

int concurrent() {

Future<Integer> f

= new SafeFuture<Integer>(this);

f.run();

Foo.bar(a);

return f.get();

}

public static void main (String[] args) {

int serial = new Example().serial();

int concurrent = new Example().concurrent();

assert serial == concurrent;

}

}

Figure 5.7. Using safe futures (with automatic boxing/unboxing of
int/Integer supported by J2SE 5.0)

grams can be made concurrent simply by replacing standard method calls with future

invocations. This greatly eases the task of the programmer, since all reasoning about the

behavior of the program can be inferred from its original serial execution. Even though

some parts of the program are executed concurrently, the semblance of serial execution is

preserved. Of course, the cost of using futures may outweigh exploitable parallelism, so

placement of future invocations has performance implications.

Under our current programming model, safety does not extend to covering the interac-

tion between futures and Java threads. Threads which execute concurrently with futures

might observe the actions of concurrently executing futures and their continuations out-of-

order. Threads could be also incorrectly used to pass partial computation results between a

future and its continuation thus violating serial execution semantics. Similarly, execution

of operations with unpredictable side-effects, such as native method calls, is forbidden

65

when using futures. Before such an operation can be executed, all futures executing in the

system must be fully evaluated and claimed.

5.2.3 Logical Serial Order

Our safety requirement demands that the observable behavior of a program using fu-

tures must be independent of whether futures are evaluated synchronously (serially within

a single thread) or asynchronously (concurrently by multiple threads). The task of main-

taining this logical serial order of operations in the presence of concurrent updates to

shared state is non-trivial. Our solution is to encapsulate every fragment of computation

that is fully evaluated within a single thread into an optimistic transaction. A transaction

may thus encapsulate execution of either a future or its continuation. The serializability

requirement is however not sufficient in this case to ensure safety because it only guar-

antees that transactions appear to execute in some serial order. Therefore we define total

order over transactions (called transaction order) that represents the logical serial order

and use this order to identify harmful data dependencies between operations of different

transactions.

Conceptually, the execution of a program begins within a primordial transaction eval-

uated within the main thread of computation. Consider what happens when a future is

scheduled for evaluation – i.e., its run method is executed. Logically, the code fragment

encapsulated within a future executes before the code fragment following the call to the

run method up to the point where the future is claimed by the get operation (within the

future’s continuation). In order to preserve logical execution order, we create two more

transactions: one associated with a thread used to evaluate the future – a future transac-

tion executed within a freshly created thread; and one associated with the thread used to

execute the future’s continuation – a continuation transaction executed within the same

thread as the primordial transaction. At this point we establish an execution order over

these three transactions that reflects the logical serial order of execution in which the ef-

fects of the primordial transaction are visible to the future transaction whose effects are

66

Tmain
tp

(a)

run() get()
tp tc

t f
Tf

Tmain

(b)

get()run()Tmain
tp tc

t f
Tf

(c)

Figure 5.8. Transaction creation

in turn visible to the continuation transaction. Once evaluation of the future has success-

fully completed1 and its transaction has been committed, execution of the continuation

may also complete if it has already advanced to the point of the claim. If the execution

of the continuation did not violate logical serial order, the result of the future’s evaluation

can be claimed (its respective get method invoked) and the continuation transaction can

be committed. Then the execution can be returned to its original state (i.e., all operations

being performed within the main thread of computation). If the logical serial order has

been violated, the continuation transaction must be aborted and re-executed. If evalua-

tion of the continuation is completed (i.e., the point of claiming the result of the future’s

evaluation is reached) before completion of the future’s evaluation, termination of the con-

tinuation transaction is delayed until the future transaction is committed and the result of

the future’s evaluation is available to be claimed. Note that the future transaction and the

continuation transaction are obliged to commit in compliance with the transaction order.

Otherwise, if the continuation transaction was to be committed first, the remaining opera-

tions performed by the uncommitted future transaction might still be able to compromise

the logical serial order.
1Note that in this situation the future transaction will always commit successfully. No violation of logical
serial order between the future transaction and the primordial transaction can occur because the primordial
transaction executed fully before the future transaction was been started.

67

As an example, consider Figure 5.8 illustrating execution of the concurrent method

shown in Figure 5.7 (wavy lines represent threads and boxes represent transactions). Ini-

tially, only a primordial transaction (tp) exists – it is bound to Tmain, the thread evaluating

the main method (Figure 5.8(a)). When a future is scheduled for execution (i.e., its run

method is invoked), two more transactions are created (Figure 5.8(b)): transaction t f to

evaluate the future (t f is bound to Tf , a new thread used to execute the code encapsulated

within the future), and transaction tc to evaluate the continuation of the future (tc is bound

to the same thread as the primordial transaction tp, in this case Tmain). The execution of

the program proceeds concurrently until the get method is invoked (the result computed

by the future is then claimed) and then goes back to executing entirely within Tmain, the

main thread of computation. Note that at this point both the meta-data associated with

transactions t f and tc as well as thread Tf could be discarded (Figure 5.8(c)) and cached

for later re-use.

An ordering analogous to the one described above is created for all transactions cre-

ated throughout the execution of a program. Consider a scenario when another future is

scheduled for execution within an already existing continuation in Figure 5.8(b) (before

method get is executed). Two more transactions must then be created: transaction t ′f to

evaluate the new future and transaction t ′c to evaluate this future’s continuation. Transac-

tion t ′c will be executed by thread Tmain, but a new thread T ′
f will have to be created for the

execution of the future transaction t ′f . The transaction order in which these transactions

are allowed to attempt their commits (equivalent to the logical serial order they are obliged

to maintain) is: t f followed by tc followed by t ′f followed by t ′c.

5.2.4 Preserving Serial Semantics

When two or more transactions execute concurrently, their operations may be arbitrar-

ily interleaved and thus the semblance of serial execution may be violated. Consider two

transactions: future transaction t f and continuation transaction tc. Under the logical serial

68

order of execution, t f precedes tc. If t f and tc execute concurrently, this order may be

violated in one of two ways:

• tc does not observe the effect of an operation performed by t f (e.g., a read in tc

does not see modification of shared data by t f), even though it would have observed

this effect if t f and tc were executed serially. We call this a forward dependency

violation.2

• t f does observe the effect of an operation performed by tc that could never occur if

t f and tc were executed serially because t f would execute fully before tc. We call

this a backward dependency violation.

An example of schedules demonstrating both forward and backward dependency vio-

lations between transactions t f and tc, along with code snippets representing transactions,

appear in Figure 5.9. In Figure 5.9(a) the continuation transaction tc should see the result

of the write to o.foo performed by the future transaction t f . In Figure 5.9(b) the future

transaction t f should not see the result of the write to o.bar performed by the continuation

transaction tc. Note that the notion of a dependency violation captures the same proper-

ties as the schedule safety rules from Section 5.1.1 (forward dependency violations are

captured by the csafe rule and backward dependency violations are captured by the fsafe

rule).

The implementation of safe Java futures adapts our mechanisms used to support opti-

mistic transactions (described in Section 2.4) to detect forward and backward dependency

violations between transactions and to revoke transactions violating these dependencies in

order to maintain the logical serial order of transactional execution.

5.3 Implementation

Our implementation prevents forward dependency violations by tracking dependencies

between all transactional data accesses. Transactions violating forward data dependen-

cies are aborted and automatically revoked – their effects are undone and transactions are
2Forward in the sense that an operation from the “logical future” causes the violation.

69

t f

int i = o.bar;

o.foo = 0;

tc

o.bar = 0;

int j = o.foo;

t f tc
rd(o)

wt(o)
rd(o)

wt(o)
(a) Forward

t f tc
wt(o)

rd(o)
wt(o)

rd(o)
(b) Backward

Figure 5.9. Dependency violations

restarted. Backward data dependencies are prevented by versioning items of shared state

to ensure that each transaction updates only its private versions of shared items, preventing

other transactions in its logical future from seeing the updates. Support for dependency

tracking and versioning is provided using read and write barriers (as described in Sec-

tion 2.4), inserted by the compilers available with the distribution of our implementation

platform, Jikes RVM. A detailed description of these mechanisms is presented below.

5.3.1 Dependency Tracking

Dependencies among shared data accesses are tracked using access maps, as described

in Section 2.3. Two maps are associated with every transaction: a read map to record reads

and a write map to record updates. When transaction t is about to terminate, its read map

is checked against the write maps of all transactions from t’s logical past to determine if

updates performed by these transactions might have caused forward dependency violations

with respect to t’s read operations. If intersection of t’s read map with any of the write

maps in non empty, transaction t must abort and be revoked. Otherwise, transaction t is

allowed to commit.

We illustrate how our system handles forward dependency violations using the code

fragment and sample schedule from Figure 5.9(a). We assume that future transaction t f

70

RM

WM

RM

WM

t f
Tf

Tc

tc
(a)

RM

WM

RM

WM

t f

tc

Tc

Tf

(b)

RM

WM

RM

WM

t f
Tf

Tc

tc
(c)

RM

WM

WM

t f
Tf

Tc

tc
(d)

Figure 5.10. Handling of a forward dependency violation.

is executed by (and thus bound to) thread Tf and continuation transaction tc by thread Tc.

The entire scenario is illustrated in Figure 5.10, where wavy lines represent threads T f and

Tc, and a circle represents object o (it is marked gray when updated). Transactions are

linked together in order to allow transactions from the logical future to access the maps of

transactions from the logical past. There is a read map and write map associated with each

transaction (each map has three slots and we assume that object o hashes to the second

slot).

Execution starts with the future transaction reading a field of object o (Figure 5.10(a))

and tagging the appropriate slot in its read map. The continuation transaction then both

reads and updates the same object, tagging its read map and write map appropriately (Fig-

ure 5.10(b)). Subsequently, the future transaction writes to the field of object o and tags

its own write map (Figure 5.10(c)). At this point the future transaction gets committed

(no dependency violations that could cause its revocation are possible since there were no

other concurrent transactions executing in its logical past). However, before the continu-

ation transaction can be committed, a check for forward dependency violations must be

performed. This check fails since tc’s read map and t f ’s write map overlap. The contin-

uation transaction is revoked – its effects are undone and the transaction is re-executed

(Figure 5.10(d)). Note that after revocation, no transactions in its logical past exist (the

71

future transaction has been committed). As a consequence, re-execution is guaranteed to

succeed so maintaining its read map is unnecessary.

Since reads significantly outnumber writes in most Java programs, reducing the num-

ber of read barriers is critical to achieving reasonable performance. Our implementation

therefore trades off accuracy for efficiency in detecting dependency violations. Instead of

placing barriers on all read accesses to shared items (e.g., reading an integer field from an

object), we assume that once a reference is read from the heap, a transaction reading it

will eventually read from the object targeted by that reference. Thus, the read barrier is

placed only on loads of references from the heap (e.g., getfield or arrayload bytecodes

in which the type of the field or element is a reference). In other words, we “pre-read”

all objects to which a transaction holds references (when a transaction is started we must

apply the pre-read operation to all references in the current activation record). This op-

timization is applied only for objects and arrays to eliminate read barriers on them. All

other accesses, including reads from static variables, and all writes to shared items incur

the appropriate barrier.

Note that access maps are maintained only if there is more than one transaction exe-

cuting in the system (i.e., there is potential for concurrency and thus logical serial order

violations). That is, barriers are responsible only for fetching the most recent version of an

item if only the primordial transaction is active. Read and write map maintenance is in re-

ality optimized even further: the first of a series of transactions does not need to record its

reads because versioning ensures they cannot be compromised by any concurrent writes.

Thus, it does not need to maintain a read map.

5.3.2 Revocation

The implementation of revocation for future transactions is simple. Because a future

transaction is evaluated within a separate thread, we can simply terminate the thread and,

after restoring local state,3 re-start the execution of the future transaction. Revocation of
3No shared state is modified until transaction commit.

72

continuation transactions is implemented using a modified version of the exception han-

dling mechanism described in Section 2.5. The exception handler for the Revoke excep-

tion wraps the scope of every method containing invocation of a future. Similarly to the

implementation of revocable monitors (described in Section 4.2.2), we use BCEL frame-

work to insert the exception handler and the code responsible for recording local state

at the point when the continuation transaction starts. Another similarity with the imple-

mentation of revocable monitors is modification of the exception handling mechanism to

suppress execution of default handlers during processing of the Revoke exception.

Our current implementation is unable to preserve state beyond the scope of a method

containing invocation of a future (this would require the ability to preserve the full exe-

cution context of an arbitrary thread, including instruction pointer, registers, thread stack,

etc.). Therefore, futures that are invoked but not claimed by the end of the method are

implicitly claimed before the invoking method can return (i.e., we wait for all futures to

complete their execution), even though the matching get operation is still to be invoked.

5.3.3 Shared State Versioning

We use versioning of shared state to avoid backward data dependency violations and

prevent updates of shared data from being made prematurely visible to other threads in

case of revocations. The implementation of versioning is based on the general procedure

described in Section 2.2.2 and employs lazy propagation of updates. Versioning is only

used when more than one transaction is present in the system, since it is only then that

concurrent shared data accesses may occur. Whenever a transaction attempts to write to

an object, array, or static variable, the run-time system creates a private version of that item

on which to perform the write. When a transaction gets committed, all versions created by

this transaction become committed versions – they are designated to contain the most up-

to-date values and used for all subsequent accesses. We handle object and array updates

identically and use a similar procedure to handle updates to static variables. The code

implementing the versioning procedure resides in the read and write barriers.

73

Object and Array Versioning

Because objects and arrays are treated identically, we refer only to objects when de-

scribing the versioning procedure. We extend the header of every object with a forwarding

pointer. At object allocation time, this forwarding pointer is initialized to null. As the

program executes, subsequent versions are appended to a circular list rooted at the for-

warding pointer of the original object (i.e., the original object is the head and tail of its

version list). Each version is tagged with the unique identifier of the transaction that cre-

ated it. This enables each transaction to locate its version in the list. The versions are

sorted under the transaction order (described in Section 5.2.3).

We now describe the implementation of read and write operations on objects as per-

formed by transactions in the presence of versioning. If only one transaction is present

in the system (no concurrency), a read or write operation retrieves and accesses the most

recent (committed) version of the object (or the original object in case no versions of it

have been created). Otherwise, a more complicated access procedure is required.

Reads A reference to a shared object o referenced by transaction t must point to o’s most

recent (committed) version with respect to t; in particular, t must not access any version

of o that has been created by another transaction that occurs in t’s logical future. To

implement this invariant, we traverse the versions list (in transaction order) and either load

the reference for the version tagged by t, or the version corresponding to t’s most recent

predecessor (according to transaction order). If transaction t ′ that occurs in t’s logical past

has written to o, and t reads the version corresponding to this write, a forward dependency

violation exists and will be captured using the access maps, as described earlier. Indeed,

the only instance when a read by t to a version written by t ′ would be safe is precisely

when, at the point the read occurs, t ′ has already committed.

The implementation of read operations is additionally complicated by the fact that read

barriers are only executed at reference loads. Thus, in order for loads of primitive values

to proceed correctly, we maintain an invariant that no existing reference on the thread

stack belonging to transaction t can point to a version created by any other transaction

74

executing in t’s “logical” future. This invariant is relatively easy to maintain since the

run-time system monitors all reference loads within read barriers. However, we must

take special care to make sure that if a transaction creates a version, all references on the

stack of the thread executing the transaction are updated correctly to point to this version

(in other words, all reads performed by t must observe t’s writes). We implement the

invariant using a thread stack inspection mechanism described below.

Writes When multiple transactions are present in the system, all of them operate over

their own local versions of shared data. In order to reduce the number of copies created,

our implementation employs a copy-on-write strategy – a new version is created only

when transaction t updates an object for the first time; we guarantee that all subsequent

accesses by t will refer to that version.

All object update operations (including writes to primitive fields) are mediated by write

barriers. When t performs an initial write to an object o, no local version of o exists. A

new version is therefore created and inserted at the appropriate position in the version

list rooted at o to reflect transaction order. At this point, other references to the same

object may exist on t’s thread stack. For example, t might have previously read o, but

not yet written to it. All such references must then be forwarded to point to the freshly

created version of o in order to avoid accessing stale versions. All versions of o created

by transactions in t’s logical past are considered stale with respect to t if t creates a new

version of o.

Reference forwarding requires thread stack inspection as described below. Note that

once the new version is created and all the references on the stack are forwarded, all the

references on the stack throughout the entire execution of this transaction will always point

to the right version (because subsequent reference loads are forwarded to the appropriate

version). As a result, we avoid having to locate the correct version on the versions list

when executing writes so long as a private copy exists. We only have to traverse the

versions list upon version creation (when the object is first written). New versions are

inserted at the appropriate place in the version list to maintain it in order.

75

All transactions maintain a list of their versions and use this list on abort to purge the

revoked versions. Our implementation does not currently purge stale committed versions

from an object’s versions list. Instead, we defer such cleanup to the garbage collector.

Thread Stack Inspection We use a modified version of the thread stack inspection

mechanism used by the garbage collector to support both pre-reading and forwarding

of references on the stack. However, the essence of the mechanism remains the same.

One of the major differences between the original stack inspection mechanism used dur-

ing garbage collection and our modified version lies in the choice of the client using this

mechanism. Garbage collection assumes that the stacks of inactive threads are being in-

spected. As a result, the entire execution state (including registers) of the inspected thread

is available for inspection. In our system, the active thread inspects its own state. We

artificially create a “snapshot” of the current thread’s execution state, execute the stack in-

spection routine, and restore the execution state to the point before the inspection routine

was invoked. This snapshot procedure is implemented in assembly. The stack inspec-

tion routine either tags a read map for every reference encountered (when pre-reading

the stack) or forwards all references encountered to point to the correct version (when

forwarding references during copy-on-write).

Versioning of Static Variables

In Jikes RVM static variables are stored in a global symbol table called the JTOC.

Static variables are versioned similarly to objects. A copy-on-write strategy is used, with a

versions list holding per-transaction versions of static variables. Because we must version

static variables of both primitive and reference types, we introduce the notion of a version

container: a small object that boxes a value of the static variable into an object that can be

put on the versions list.

Upon initial write to a static variable by a transaction, a version container for the cor-

responding variable is created. The type of the slot in the JTOC representing this variable

is then modified to indicate that its value has been copied to the list of version contain-

76

ers. For subsequent writes, a container created by the transaction must be retrieved and

the value it contains updated. When reading the value of a static variable, the appropriate

version container on the containers list must be located (similarly to retrieving an object

version – it is either the container created by the current transaction or the one directly

preceding its position in the containers list).

Indirections in the JTOC are lazily collapsed after all futures have been successfully

evaluated and the program reverts to executing within a single (primordial) transaction.

From this point on, only the most recent value of each static variable can ever be used.

5.4 Experimental Evaluation

Our experiments with safe futures for Java explore their performance on both standard

benchmarks and a synthetic benchmark. In both cases, we use futures in a straightforward

rewrite of initially sequential benchmark programs. The standard benchmarks are drawn

from the Java Grande [54] benchmark suite. We choose a subset of naturally parallelizable

benchmarks, namely series, sparse, crypt and mc.

The synthetic benchmark is intended to expose the performance of our implementation

across a range of benchmark parameters, such as read/write ratio and degree of shared

access. The synthetic benchmark is based on the OO7 object database benchmark suite

[13], modified to use futures in a parallel traversal of the OO7 design database.

For all benchmarks, we also run their original sequential version on the unmodified

Jikes RVM, and use this as a baseline to which we normalize for comparison with their

future-enabled parallel versions.

5.4.1 Experimental Platform

Our implementation uses version 2.3.4+CVS (with 2005/06/23 13:35:22 UTC times-

tamp) of Jikes RVM for both the futures-enabled and the baseline (used for comparison)

configurations. Jikes RVM is configured with the defaults for the Intel x86 platform, using

the adaptive compiler framework.

77

We run each benchmark in its own invocation of Jikes RVM, repeating the benchmark

six times in each invocation, and discarding the results of the first iteration, in which the

benchmark classes are loaded and compiled, to elide the overheads of compilation. We

report mean execution times, with 90% confidence intervals, to illustrate the degree of

variation.

Our hardware platform is a 700MHz Intel Pentium III symmetric multi-processor

(SMP) with 2GB of RAM running Linux kernel version 2.4.20-20.9smp (RedHat 9.0).

Our parallel executions run four futures simultaneously on the SMP using four separate

processors, though we note that such runs create multiple sets of four futures for each

iteration of the benchmark, so a series of futures are created in each run.

5.4.2 Benchmarks

As mentioned earlier, we draw upon benchmarks from the Java Grande suite, as well

as the OO7 synthetic design database benchmark. The former are representative of ideal

candidate applications for parallelization using futures. The latter is less amenable to

parallelization due to the density of the benchmark data structures and degree of sharing

among them. Nevertheless, OO7 represents a benchmark in which meaningful parame-

ters can be varied easily to demonstrate their impact on the performance of our futures

implementation.

Java Grande

Each of the selected Java Grande benchmarks was chosen for being straightforwardly

parallelizable. They each perform substantial computations over elements stored in Java

arrays or in Java vectors, where access to the data structures is encoded into loops over the

respective elements. We parallelized these benchmarks by substituting futures for subsets

of the loop iterations similarly to the way these benchmarks have been parallelized for dis-

tributed execution via a Java message-passing interface (MPJ) [54]. For the benchmarks

that use arrays, this rewriting also includes partitioning arrays into subarrays in order to

78

capture locality (such transformations were also used with MPJ), and because the conflict

detection mechanisms described earlier function at per-array granularities, rather than for

fragments of arrays. The series benchmark performs Fourier coefficients computation,

sparse multiplies an unstructured sparse matrix stored in compressed-row format with a

prescribed sparsity structure, crypt performs IDEA (International Data Encryption Algo-

rithm) encryption and decryption and the mc benchmark is an implementation of Monte

Carlo Simulation.

We believe benchmarks like these are prime candidates for parallelization using fu-

tures. Note, however, that even though they could be rewritten to use futures with only

small changes to their source code, and straightforward partitioning of their data, rewriting

the OO7 benchmark was even simpler – no data partitioning was required – and involved

modifying only the top-level control loop (detailed below).

The OO7 Benchmark

The OO7 benchmark suite [13] provides a great deal of flexibility for benchmark pa-

rameters (e.g., database structure, fractions of reads/writes to shared/private data). The

multi-user OO7 benchmark [12] allows control over the amount of contention for access

to shared data. By varying these parameters we are able to characterize the performance

of safe futures over a mixed range of workloads.

Benchmark description The OO7 benchmark operates on a synthetic design database,

consisting of a set of composite parts. Each composite part comprises a graph of atomic

parts, and a document object containing a small amount of text. Each atomic part has

a set of attributes (i.e., fields), and is connected via a bi-directional association to several

other atomic parts. The connections are implemented by interposing a separate connection

object between each pair of connected atomic parts. Composite parts are arranged in an

assembly hierarchy; each assembly is either made up of composite parts (a base assembly)

or other assemblies (a complex assembly). Each assembly hierarchy is called a module,

and has an associated manual object consisting of a large body of text.

79

Table 5.1
Component organization of the OO7 benchmark

Component Number
Modules M +1, for M futures

Assembly levels 7
Subassemblies per complex assembly 3

Composite parts per assembly 3
Composite parts per module 5000

Atomic parts per composite part 20
Connections per atomic part 3

Document size (bytes) 2000
Manual size (bytes) 100000

Our implementation of OO7 conforms to the specification of the standard OO7 data-

base. Our traversals are a modified version of the multi-user OO7 traversals. A traversal

chooses a single path through the assembly hierarchy and at the composite part level ran-

domly chooses a fixed number of composite parts to visit (the number of composite parts

to be visited during a single traversal is a configurable parameter). When the traversal

reaches the composite part, it has two choices:

1. Do a read-only depth-first traversal of the atomic part subgraph associated with that

composite part; or

2. Do a read-write depth-first traversal of the associated atomic part subgraph, swap-

ping the x and y coordinates of each atomic part as it is visited.

Each traversal can be done beginning with either a private module or a shared module.

The parameters of the workload control the mix of these four basic operations: read/write

and private/shared. To foster some degree of interesting interleaving and contention in

the case of concurrent execution, our traversals also take a parameter that allows extra

overhead to be added to read operations to increase the time spent performing traversals.

Benchmark configuration Our results are all obtained with a OO7 database configured

as in Table 5.1. The top-level execution of our sequential OO7 benchmark operates as

80

shown in Figure 5.11(a). It performs I benchmark iterations, each benchmark iteration

comprises M sets of traversals in which the private module ranges from module 1 to mod-

ule M, module M + 1 is used as the shared module, and the parameter p controls the mix

of operations performed by the traversals.

The top-level execution of our futures-enabled OO7 benchmark operates as shown in

Figure 5.11(b). It performs I benchmark iterations, each benchmark iteration comprises M

futures, each of which performs a set of traversals operating on a distinct private module

m, module M + 1 is used as the shared module, and the parameter p controls the mix of

operations performed by the traversals.

We seed the traversals with the same random seed in both the sequential and futures-

enabled executions of the benchmark, such that both versions perform identical workloads.

5.4.3 Results

We present results for the Java Grande benchmarks first, to indicate the behavior of fu-

tures under ideal circumstances. OO7 is more demanding, but also more tunable, revealing

the underlying performance characteristics of our implementation.

Java Grande results

Figure 5.12 reports the elapsed time for execution of the future-enabled versions of the

Java Grande benchmarks, normalized against the average elapsed time for execution of

for (i = 1; i <= I; i++)

for (m = 1; m <= M; m++)

traversals(m,p);

(a) Sequential OO7 benchmark

for (i = 1; i <= I; i++) {
for (m = 1; m <= M; m++)

f[m] = future(traversals(m,p));

for (m = 1; m <= M; m++)

f[m].get();

}
(b) Parallel OO7 benchmark

Figure 5.11. Top-level loop of the OO7 benchmark

81

series
sparse crypt mc0

0.2

0.4

0.6

0.8

1

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

Figure 5.12. Java Grande: elapsed time (normalized)

the unmodified sequential benchmarks running on the unmodified Jikes RVM. Times are

arithmetic means of the 5 hot runs of each benchmark, plotted with 90% confidence inter-

vals. Recall that we parallelize the benchmarks using four futures running concurrently on

four CPUs. Thus, observe that speedups range from perfect (or even slightly super-linear

– 4× for series), to a little less than 2× speedup for crypt. We believe that the reason

for the super-linear speedup for series is due to improved locality as a result of the array

partitioning.

OO7 results

We report results for two basic versions of OO7, one for a database containing only

2 (M = 1) modules and one for a database comprising 5 (M = 4) modules. Again, we

compare the future-enabled parallel versions against the sequential version of the bench-

mark. We vary the ratio of writes to reads performed within each set of traversals as 4%,

8%, 16% and 32% writes (96%, 92%, 84%, and 68% reads, respectively), in an attempt

to model workloads with mutation rates ranging from low to moderate. We also vary the

ratio of shared/private accesses for each mix of reads/writes as 0%, 50% and 100%. Thus,

82

0 50 100
Shared reads (%)

0

1

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

0 % shared writes
50 % shared writes
100 % shared writes

(a) 4% writes, 96% reads

0 50 100
Shared reads (%)

0

1

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

0 % shared writes
50 % shared writes
100 % shared writes

(b) 8% writes, 92% reads

0 50 100
Shared reads (%)

0

1

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

0 % shared writes
50 % shared writes
100 % shared writes

(c) 16% writes, 84%
reads

0 50 100
Shared reads (%)

0

1

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

0 % shared writes
50 % shared writes
100 % shared writes

(d) 32% writes, 68%
reads

Figure 5.13. OO7 with 1 future: average elapsed time per iteration (normalized)

0 50 100
Shared reads (%)

0

4 k

8 k

12 k

16 k

20 k

24 k

V
er

sio
ns

 c
re

at
ed

0 % shared writes
50 % shared writes
100 % shared writes

(a) 4% writes, 96% reads

0 50 100
Shared reads (%)

0

4 k

8 k

12 k

16 k

20 k

24 k

V
er

sio
ns

 c
re

at
ed

0 % shared writes
50 % shared writes
100 % shared writes

(b) 8% writes, 92% reads

0 50 100
Shared reads (%)

0

4 k

8 k

12 k

16 k

20 k

24 k

V
er

sio
ns

 c
re

at
ed

0 % shared writes
50 % shared writes
100 % shared writes

(c) 16% writes, 84%
reads

0 50 100
Shared reads (%)

0

4 k

8 k

12 k

16 k

20 k

24 k

V
er

sio
ns

 c
re

at
ed

0 % shared writes
50 % shared writes
100 % shared writes

(d) 32% writes, 68%
reads

Figure 5.14. OO7 with 1 future: versions created per iteration

for 4% writes, 50% shared, a set of 100 traversals will on average perform 2 read-write

traversals to shared data, 2 read-write traversals to private data, 48 read-only traversals on

shared data, and 48 read-only traversals on private data.

With just 2 (M = 1) modules, both the original and future-enabled versions are inher-

ently sequential, since the degree of future-enabled parallelism is equal to M for a database

containing M + 1 modules. Moreover because only one future is ever active, revocation

cannot occur. Thus, the comparison for M = 1 yields a measure of the fundamental over-

heads in our system for creating and claiming futures (and indirectly the effectiveness of

our context-caching mechanisms), for the read and write barriers used to track accesses,

and for versioning. The elapsed time results, normalized against the sequential version

running on the unmodified Jikes RVM, are presented in Figure 5.13. These reveal a per-

83

future performance hit of 8-12% for 4% writes. As write ratios increase, we see overheads

of 15-20% for the 32% write ratio. Figure 5.14 graphs the number of versions created per

benchmark iteration, showing that the number of versions created increases with sharing

and the write ratio.

Of course, for more futures, this performance hit may come to dominate. Some of the

overhead results from the lack of efficient support in Jikes RVM for caching of thread state

(e.g., stacks) from one thread activation to another. Thus, spawning a future is relatively

expensive. Still, our overheads are low enough to justify the use of safe futures for a range

of applications, as the Java Grande results illustrate.

Adding concurrency yields opportunity for parallelism, as illustrated in the results for

OO7 using four futures, shown in Figure 5.15. With four futures executing in parallel on

four CPUs there is the possibility of revocation, which we graph in Figure 5.16. Without

sharing there are no revocations. Thus for the unshared executions we see uniform gains

of 52-56% across the range of write ratios, as expected. The performance gains vary de-

pending on the configuration; even at 32% write ratio with 100% sharing we still observe

a performance benefit of about 25% (Figure 5.15(d)). In all configurations, the revocations

seem to impact performance significantly, since their rise is correlated with increased shar-

ing, as well as write ratio (see Figure 5.16). The increase in versions created (Figure 5.17)

also affects execution times – as write ratios increase, elapsed times in Figure 5.15 also

increase slightly even for configurations where no revocations are observed.

The cost of creating versions constitutes part of the “base” overhead common across

all configurations, though clearly non-existent in the sequential version of the benchmark.

Another large base overhead results from executing large numbers of read barriers. We

observe on average 63 million read barriers (30 million for objects, 18 million for arrays

and 15 million for static variables) per benchmark iteration (these numbers remain much

the same across all configurations). This indicates that our initial decision to minimize the

number of barriers by inserting them only at reference loads was prescient. We also ob-

serve a large number of write barriers – 16 million on average per benchmark iteration (6.5

million for objects, 9.5 million for arrays, and a negligible number for static variables).

84

0 50 100
Shared reads (%)

0

1

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

0 % shared writes
50 % shared writes
100 % shared writes

(a) 4% writes, 96% reads

0 50 100
Shared reads (%)

0

1

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

0 % shared writes
50 % shared writes
100 % shared writes

(b) 8% writes, 92% reads

0 50 100
Shared reads (%)

0

1

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

0 % shared writes
50 % shared writes
100 % shared writes

(c) 16% writes, 84%
reads

0 50 100
Shared reads (%)

0

1

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

)

0 % shared writes
50 % shared writes
100 % shared writes

(d) 32% writes, 68%
reads

Figure 5.15. OO7 with four futures: average elapsed time per iteration (normalized)

0 50 100
Shared reads (%)

0

0.1

0.2

Re
vo

ca
tio

ns
 p

er
 tr

an
sa

ct
io

n

0 % shared writes
50 % shared writes
100 % shared writes

(a) 4% writes, 96% reads

0 50 100
Shared reads (%)

0

0.1

0.2

Re
vo

ca
tio

ns
 p

er
 tr

an
sa

ct
io

n

0 % shared writes
50 % shared writes
100 % shared writes

(b) 8% writes, 92% reads

0 50 100
Shared reads (%)

0

0.1

0.2

Re
vo

ca
tio

ns
 p

er
 tr

an
sa

ct
io

n

0 % shared writes
50 % shared writes
100 % shared writes

(c) 16% writes, 84%
reads

0 50 100
Shared reads (%)

0

0.1

0.2

Re
vo

ca
tio

ns
 p

er
 tr

an
sa

ct
io

n

0 % shared writes
50 % shared writes
100 % shared writes

(d) 32% writes, 68%
reads

Figure 5.16. OO7 with four futures: revocations per iteration

0 50 100
Shared reads (%)

0

4 k

8 k

12 k

16 k

20 k

24 k

V
er

sio
ns

 c
re

at
ed

0 % shared writes
50 % shared writes
100 % shared writes

(a) 4% writes, 96% reads

0 50 100
Shared reads (%)

0

4 k

8 k

12 k

16 k

20 k

24 k

V
er

sio
ns

 c
re

at
ed

0 % shared writes
50 % shared writes
100 % shared writes

(b) 8% writes, 92% reads

0 50 100
Shared reads (%)

0

4 k

8 k

12 k

16 k

20 k

24 k

V
er

sio
ns

 c
re

at
ed

0 % shared writes
50 % shared writes
100 % shared writes

(c) 16% writes, 84%
reads

0 50 100
Shared reads (%)

0

4 k

8 k

12 k

16 k

20 k

24 k

V
er

sio
ns

 c
re

at
ed

0 % shared writes
50 % shared writes
100 % shared writes

(d) 32% writes, 68%
reads

Figure 5.17. OO7 with four futures: versions created per iteration

The number of write barriers for objects increases as the number of writes to shared ob-

jects grows across different configurations. We are particularly penalized by the number

85

of static variable accesses for this implementation of OO7, which uses them to capture

the traversal parameters. In general, static analyses such as escape analysis could be very

helpful in optimizing away unnecessary barrier overheads [9, 10, 14]. We note, however,

that for OO7 such analyses are unlikely to have much impact, because all futures oper-

ate over a single recursively-defined data structure. Nonetheless, even without the benefit

of advanced compiler optimizations, the performance of our implementation using just

run-time optimizations is encouraging.

5.5 Related Work

The semantics of futures [18, 19] and their implementation [36, 44] have been well-

studied in the context of functional languages. However, from the point of view of the

work presented in this thesis, the most interesting research efforts in this area concern

application of futures in the context of imperative programming languages.

Promises [41] are a variant of futures for a statically typed language, Argus [40]. They

are used to implement asynchronous remote method calls. Futures, in their original in-

terpretation, are expression annotations that may or may not be taken into account by the

run-time system. As a result, the result of their evaluation may be either the placeholder

for the actual value (if the run-time system evaluates the expression asynchronously) or the

value itself (if evaluation is synchronous). Promises are strongly typed and the operation

of claiming a promise is made explicit, which avoids any run-time check to distinguish

the different types of returned values. Making the claim operation explicit also allows

convenient handling of run-time exceptions and problems related to the distributed setting

(e.g., node failures).

More recently, Pratikakis et al. [48] present a static analysis to allow Java programs

to use futures without requiring wholesale changes to the program to satisfy type restric-

tions. Their analysis tracks how an object representing a future flows through a program,

and injects coercions that perform a claim operation on the object at points where the value

yielded by the future, rather than the object representing the future, is required. The anal-

86

ysis uses qualifier inference to track how futures are used. Our goals are similar in spirit

to their work in that both attempt to treat futures as a transparent concurrency mechanism.

However, unlike our design and implementation, Pratikakis et al. make no guarantees that

the evaluation of a future does not introduce behavior inconsistent with the sequential pro-

gram from which it was derived. Although we expect that futures are primarily useful for

spawning concurrent tasks that exhibit relatively little to modest sharing, it is nonetheless

critical that safety violations be detected when they do occur.

Safe futures are a mechanism allowing relatively straightforward parallelization of se-

quential Java programs. The ParaTran project [35] was an attempt to achieve similar goals

for sequential Lisp programs in the presence of side-effects. A sequential Lisp program is

divided into tasks that can be executed concurrently, using a compile-time analysis. Like

our implementation of safe futures, ParaTran uses optimistic concurrency control tech-

niques to monitor data accesses performed by concurrently executing tasks and to revoke

fragments of computation after detecting violations of the (logical) serial execution order.

To the best of our knowledge however, ParaTran has never been implemented to run on

a real system and the available simulation results do not include all the potential costs of

such an implementation. One of the major goals of our work was a thorough performance

evaluation of an implementation based on a realistic language execution environment.

Another approach to parallelizing sequential programs in the presence of side-effects

has been explored in the context of the Jade programming language [50]. Jade is a high-

level, implicitly parallel language designed to exploit coarse-grained concurrency. It has

been implemented on a wide variety of platforms, ranging from shared memory multipro-

cessor machines to loosely coupled networks of workstations using message-passing. It

has been proven to be effective in parallelizing sequential programs (up to linear speedups

have been achieved).

Jade provides a programmer with an abstraction of both single address space and se-

rial semantics. In order to parallelize a sequential program, the programmer must delimit

code fragments (tasks) that can be executed concurrently and explicitly specify invariants

describing how different tasks access shared data. The run-time system is then responsi-

87

ble for exploiting available concurrency and verifying data access invariants in order to

preserve the semantics of the serial program. Violations of data access invariants result in

run-time errors.

The most recent approach to automatic parallelization of sequential Java programs has

been developed by Garcia et al. [49]. Their Mitosis compiler enables automatic extrac-

tion of thread-level parallelism through speculative execution of threads. Their system

estimates, based on the cost-benefit model, whether spawning of a new speculative thread

has the potential to improve overall run-time performance. Spawning of a thread consists

of two separate operations: a spawning point (SP) and a control quasi-independent point

(CQIP). The SP identifies the point where speculative thread is created and the CQIP iden-

tifies the point when speculative thread starts executing. Correctness of the thread’s execu-

tion after the CQIP relies on the processors state (memory and register values) at the CQIP

being correctly predicted. This prediction is encapsulated withing a pre-computation slice

(p-slice), computed by the compiler. Mispredictions are handled by the existing hardware.

Performance evaluation of the Mitosis compiler architecture (used to parallelize several

sequential benchmarks from the Olden suite) shows an average speedup of over 100%.

5.6 Conclusions

In this chapter, we have described how optimistic transactions can be used to support

safe futures in Java. Futures provide a simple and intuitive API for concurrent program-

ming that allows a concurrent program to be constructed often through only a small rewrite

of a sequential one. Unfortunately, futures as currently specified in Java are not treated as

a semantically transparent annotation, thus significantly weakening their utility. Program-

mers who use futures must reason about the subtle interactions among future-encapsulated

computations, in much the same way they must reason about the interaction of threads in

a typical multi-threaded Java program. Safe futures obviate the need for such reasoning

by guaranteeing that their injection into a sequential program does not alter the observable

behavior of the program. Furthermore, the cost of providing this added level of safety is

88

not prohibitive. The evaluation of our implementation indicates that safe futures can be

used to exploit concurrency even for applications with modest mutation rates on shared

data.

89

6 TRANSACTIONAL MONITORS

Programmers developing concurrent applications often reason about safety of concurrent

execution in terms of such high level properties as isolation and atomicity. It has been

widely recognized that it is difficult to express and enforce these properties using low-

level mechanisms such as mutual exclusion synchronization. We have discussed the most

common problems related to using mutual exclusion in Section 1.1.

Recent proposals recognize that such high level properties can be enforced by concur-

rency control mechanisms that avoid the problems of locking, by transplanting notions of

transactions to the programming language context [27, 30, 56]. These mechanisms ensure

atomicity and isolation of operations performed within a transaction, while enhancing con-

currency by permitting the operations of different transactions to be interleaved as long as

the resulting schedule is serializable. Atomicity is a powerful abstraction, permitting pro-

grammers to more easily reason about the effects of concurrent programs independently

of arbitrary interleavings. There is comprehensive empirical evidence that programmers

almost always use mutual-exclusion locks to enforce properties of atomicity and isola-

tion [20]. Thus, making transaction-like concurrency abstractions available to program-

mers is generating intense interest.

Nevertheless, lock-based programs are unlikely to disappear any time soon. Certainly,

there is much legacy code (including widespread use of standard libraries) that utilizes

mutual-exclusion locks. Moreover, locks are extremely efficient when contention for them

is low – in many cases, acquiring/releasing an uncontended lock is as cheap as modifying

a single memory word using an atomic compare-and-swap operation. In contrast, trans-

actional concurrency control protocols require much more complicated tracking of opera-

tions performed within the transaction as well as validation of those operations before the

transaction can commit. Given that transaction-based schemes impose such overheads,

many programmers will continue to program using exclusion locks, especially when the

90

likelihood of contention is low. The advantages of transactional execution accrue only

when contention would otherwise impede concurrency and serializability violations are

low.

These trade-offs argue for consideration of a hybrid approach, where existing concur-

rency abstractions used to enforce atomicity and isolation, such as Java’s monitors, can be

implemented by either locks or transactions. In fact, from a programmer’s perspective it is

irrelevant whether threads entering a monitor acquire a mutual-exclusion lock or execute

transactionally, so long as the language-defined properties of the monitor are enforced.

Dynamically choosing which style of execution to use based on the observed contention

for the monitor permits the best of both worlds: low-cost locking when contention is low,

and improved concurrency using transactions when multiple threads attempt to simultane-

ously execute within the monitor.

Complicating this situation is the issue of nesting, which poses both semantic and

implementation difficulties. The closed nested transaction model [45] represents the purest

expression of nested transactions for preserving atomicity and isolation. In this model,

when an inner transaction commits, isolation semantics for transactions mandate that its

effects are not globally visible until the outermost transaction in which it runs successfully

commits. In contrast, Java monitors expressed as synchronized methods/blocks reveal all

prior effects upon exit, even if the synchronized execution is nested inside another monitor.

Obtaining a meaningful reconciliation of locks with transactions requires addressing this

issue.

We now proceed to describing how locks and transactions can be reconciled within

Java’s monitor abstraction. Our treatment is transparent to applications: programs con-

tinue to use the standard Java synchronization primitives to express the usual constraints

on concurrent executions. A synchronized block1 may be guarded by a transactional

monitor (implemented using transactional machinery) even if it was previously guarded

by an exclusive monitor (implemented using mutual exclusion), and vice versa. Trans-

actional execution dynamically toggles back to mutual exclusion whenever continuing
1A synchronized method can be expressed as a non-synchronized method whose entire body is enclosed in
a synchronized block.

91

transactional execution becomes infeasible, such as at native method calls, whose effects,

in general, cannot be undone. In both cases, hybrid execution does not violate Java seman-

tics, and serves only to improve performance. We argue correctness of our approach using

a formal semantics. We also describe design and implementation of a Java run-time sup-

porting hybrid-mode execution and present a detailed implementation study that quantifies

overheads inherent with our approach.

We now proceed to describe a formal semantics that defines safety criteria under which

exclusive monitors and transactional monitors can co-exist. We show that for programs

that obey standard atomicity properties, Java monitors can be realized using either of the

concurrency control protocols with no change in observable behavior. In this way, we

resolve the apparent mismatch in the visibility of the effects of Java monitors versus closed

nested transactions.

6.1 Semantics

To examine notions of safety with respect to transactions and mutual exclusion, we

define a two-tiered semantics for a simple dynamically-typed call-by value object calculus

similar to Classic Java [22] extended with threads and synchronization. The first tier

describes how programs written in this language are evaluated to yield a schedule that

defines a sequence of possible thread interleavings, and a memory model that reflects

how and when updates to shared data performed by one thread are reflected in another.

The second tier defines constraints used to determine whether a schedule is safe based on

a specific interpretation of what it means to protect access to shared data; this tier thus

captures the behavior of specific concurrency control mechanisms.

The syntax of the language is presented in Figure 6.1. We take metavariables L to

range over class declarations, C to range over class names, t to denote thread identifiers,

M to range over methods, m to range over method names, f and x to range over fields and

parameters, respectively, l to range over locations, and v to range over values. We use P

for process terms, and e for expressions.

92

P ::= (P | P) | t[e]
L ::= class C{f M}
M ::= m (x){e}
e ::= x | l | this | e.f | e.f := e | e.m (e)

| 〈e〉e | new C () | spawn (e) | guard (e) {e}

Figure 6.1. Language syntax.

A program defines a collection of class definitions, and a collection of processes.

Classes are all uniquely named, and define a collection of instance fields and instance

methods which operate over these fields. Every method consists of an expression whose

value is returned as the result of a call to that method. Every class has a unique (nullary)

constructor to initialize object fields. Expressions can read the contents of a field, store

a new value into an instance field, create a new object, perform a method call, enforce

sequencing of actions, or guard the evaluation of a subexpression.

To evaluate a guard expression of the form, guard (e) {e′}, expression e is first evalu-

ated to yield a location l. We refer to l as a monitor and use it to mediate the execution of

the guarded expression e′. Note, that evaluation of different expressions may be mediated

by the same monitor. If only one thread at a time is allowed to evaluate any of the expres-

sions guarded by the same monitor, the monitor acts as a mutual-exclusion lock (becomes

an exclusive monitor). Otherwise, the monitor becomes a transactional monitor and is

used to mediate execution of multiple threads by enforcing serializability of their actions.

In the remaining part of this section we will discuss how these two types of monitors can

transparently co-exist within the same framework.

The semantics of the calculus is presented in Figure 6.2 and Figure 6.3. In the fol-

lowing, we use over-bar to represent a finite ordered sequence, for instance, f represents

f1 f2 . . . fn. The term αα denotes the extension of the sequence α with a single element α,

and αα′ denotes sequence concatenation, S.OPt denotes the extension of schedule S with

operation OPt. Given schedules S and S′, we write S � S′ if S is a subsequence of S′.

93

A value is either the distinguished symbol null, a location, or an object C(l) (an

instance of class C, in which field fi has value li). Program evaluation and schedule con-

struction is specified by a reduction relation, P,∆,Γ,S =⇒ P′,∆′,Γ′,S′ that maps program

states to new program states. A state consists of a collection of evaluating processes (P),

a thread store (∆) that maps threads to their local caches (represented by σ), and a global

store (Γ). This last element of the program state requires additional explanation. As de-

scribed below, updates performed by one thread become visible to other threads as a result

of guard expressions being evaluated. The global store Γ is parametrized by locations

representing monitors in order to allow different threads to observe different values resid-

ing in the same locations, depending on which guard expressions have been evaluated by

these threads. Informally, threads evaluate expressions using their local caches, loading

and flushing their caches at synchronization points defined by guard expressions. This

semantics roughly corresponds to a release consistency memory model similar to the Java

Memory Model [43], described in Section 4.1.2. An auxiliary relation →t is used to

describe reduction steps performed by a specific thread t using its own local cache σ. Ac-

tions that are recorded by a schedule are those that read and write locations, and those that

acquire and release monitors, the latter generated as part of guard expression evaluation.

In global evaluation rules EtP[e] denotes a collection of processes containing a process

with thread identifier t executing expression e with context E. The expression “picked”

for evaluation is determined by the structure of evaluation contexts. Most of the rules

are standard: holes in contexts can be replaced by the value of the expression substituted

for the hole. Method invocation binds the variable this to the current receiver object,

in addition to binding actuals to parameters, and evaluates the method body in this aug-

mented environment. Read and write operations augment the schedule in the obvious way.

Constructor application returns a reference to a new object whose fields are initialized to

null.

In order to spawn a new thread for evaluation of expression e, we first associate the

new thread with a fresh thread identifier, set the thread’s local cache to be the current local

cache of its parent, and begin evaluation of e using an empty context.

94

Evaluation contexts:

E ::= •
| E[•].f := e

| l.f := E[•]
| E[•].m(e)
| l.m(l E[•] e)
| E[•] ; e
| guard (E[•]) {e}

EtP[e] ::= P | t[E[e]]

Program states:

t ∈ Tid
P ∈ Process
x ∈ Var
l ∈ Loc
v ∈ Val = null | C(l) | l
σ ∈ Store = Loc → Val
∆ ∈ TStore = Tid → Store
Γ ∈ SMap = Loc → Store

OPtl
OPΓ

t
l

∈ Ops =
{rd,wt}×Tid×Loc
{acq,rel}×Tid×Loc×SMap

S ∈ Schedule= OPt l | OPΓ
t l

Λ ∈ State = Process×Store×Schedule

Figure 6.2. Program states and evaluation contexts.

Let guard (l) {e} be an expression where evaluation of the guarded expression e is

mediated using monitor l. Before evaluating e, local cache of the thread evaluating guard

expression is updated to load the current contents of the global store at location l. In other

words, global memory is indexed by the set of locations that act as monitors: whenever a

thread attempts to synchronize against one of these monitors (say, l), the thread augments

its local cache with the store associated with l in the global store. The guarded expression

e is then evaluated with respect to this updated cache. When the evaluation completes, the

converse operation is performed: the contents of the local cache is flushed to the global

store indexed by l. Thus, threads that synchronize on different monitors will not have

their updates made visible to one another. To simplify the presentation, we prohibit nested

guard expressions from synchronizing on the same reference (l 6∈ lockset(S,t), where

lockset(S,t) represents a set of monitors acquired by t in S at the point of the guard

expression evaluation).

95

Sequential evaluation rules:

l′,l fresh
σ′ = σ[l′ 7→ C(l),l 7→ null]

S′ = S .wttl1wtt ln .wtt l
′

l1, . . . ,ln ∈ l

new C (),σ,S →t l′,σ′,S′

σ(l) = C(l′′) σ(l′) = v

σ′ = σ[l′′i 7→ v]
S′ = S .rdtl′ .wttl′′i

l.fi := l′,σ,S →t l′,σ′,S′

〈l〉e,σ,S →t e,σ,S

class C{f M} ∈ L σ(l) = C(l′)
S′ = S .rdt l′i

l.fi,σ,S →t l′i,σ,S′

σ(l) = C(l′) = v σ(l) = v′

class C{f M} ∈ L m (x){e} ∈ M

l.m (l),σ,S →t [v/this,
v′/x]e,σ,S

Global evaluation rules:

∆(t) = σ
e,σ,S →t e′,σ′,S′

EtP[e],∆,Γ,S =⇒ EtP[e′],∆[t 7→ σ′],Γ,S′

t′ fresh ∆′ = ∆[t′ 7→ ∆(t)]
P′ = P | t′[e]

EtP[spawn (e)],∆,Γ,S =⇒ EtP′[null],∆′,Γ,S

∆(t) = σ σ′ = σ◦Γ(l)
∆′ = ∆[t 7→ σ′]
l 6∈ lockset(S,t)

P | t[e],∆′,Γ,φ =⇒∗ P′ | t[l′],∆′′,Γ′,S′

Γ′′ = Γ′[l 7→ ∆′′(t)]

EtP[guard (l) {e}],∆,Γ,S =⇒ EtP′[l′],∆′′,Γ′′,S.acqΓ
t
l.S′.relΓ

′

t
l

Figure 6.3. Language semantics.

6.1.1 Safety

Evaluation of an expression of the form guard (l) {e} by thread t results in a sched-

ule being augmented to record the fact that the evaluation of guarded expression e has

96

been mediated by monitor l. When evaluation of the guard expression starts, an acquire

operation (acqΓ
t
l) is inserted into the schedule. When the evaluation completes, a release

operation (relΓ
t
l) is inserted into the schedule to reflect that l is no longer used as a moni-

tor by t. The global store recorded in the schedule at acquire and release points is used to

define safety conditions for mutual exclusion and transactional execution as we describe

below.

The semantics makes no attempt to enforce a particular concurrency model on thread

execution. Instead, we specify safety properties that dictate the legality of an interleaving

by defining predicates on schedules. To do so, it is convenient to reason in terms of

regions, i.e., subschedules produced as a result of guard expression evaluation:

region(S) = {Si � S | Si = acqΓ
t
l.S′i.relΓ

′

t
l}

For any region R = acqΓ
t
l.S′i.relΓ

′

t
l , T (R) = t , and L(R) = l.

For a schedule to be safe with respect to a concurrency control protocol where evalua-

tion of a guarded expression is mediated using a transactional monitor, it must conform to

the notions of transactional atomicity and isolation:

∀N,R ∈ region(S), T (N) = T (R) = t

l = L(N) R = S′.N.S′′

acqΓ
t′
l 6∈ S′′, t 6= t′

atomic(S)

∀R ∈ region(S) = acqΓ
t
l.S′.relΓ

′

t
l

∀rdtl
′ ∈ S′

Γ(l) = σ Γ′(l) = σ′

σ(l′) = σ′(l′)

isolation(S)

Atomicity guarantees, that the effects of a guarded expression’s evaluation are not

propagated to other threads until the the end of the region containing operations of this

expression. Observe, that our semantics propagates updates to the global store at the

end of the region (which is a release operation). These updates become visible to any

other thread that subsequently executes a guard expression using the same monitor. Thus,

97

effects of evaluating a guarded expression within an inner region might become visible

to other threads before the end of the enclosing region. This would however violate our

intuitive notion of atomicity for the enclosing guarded region, since partial effects (i.e.,

resulting from evaluation performed within the inner region) would become visible before

it completes. Our atomicity rule thus captures the essence of the closed nested transaction

model: the effects of an inner transaction are visible to the parent, via the local store, but

are propagated to other threads only when the outermost transaction completes.

Isolation guarantees that evaluation of the guarded expression is not affected by oper-

ations of other (concurrently executing) threads, i.e., values observed during evaluation of

the guarded expression do not reflect updates performed by other threads. This property

is enforced by requiring that for every location read during evaluation of the guarded ex-

pression in region R, the global store associated with the monitor guarding this expression

is not modified in R. We define tsafe(S) (read “transaction-safe”) to hold if atomic(S) and

isolation(S) hold.

The predicate msafe(S) (read “mutual-exclusion-safe”) specified below defines the

structure of schedules that correspond to an interpretation of monitors in terms of mu-

tual exclusion:

∀R ∈ region(S),T (R) = t,L(R) = l

acqΓ′

t′
l 6∈ R, t 6= t′

msafe(S)

For a schedule to be safe with respect to a concurrency control protocol using exclu-

sive monitors, multiple threads cannot be allowed to concurrently evaluate an expression

guarded by the same monitor. Thus if thread t is evaluating expression e guarded by

monitor l, no other thread can attempt to acquire l until t releases it.

Mutual-exclusion-safety by itself does not guarantee transaction-safety in the pres-

ence of nesting. One can easily construct an msafe schedule where neither atomic nor

isolation hold. Fortunately, programmers almost always use mutual exclusion locks to

enforce properties of atomicity and isolation. We show that in the case of programs where

98

mutual exclusion is guaranteed to enforce these properties, both implementations of mon-

itors (transactional and exclusive) can safely and transparently co-exist. Comprehensive

empirical evidence proving that this is indeed the case for most Java programs is provided

in [20]. The notion of atomicity used in [20] is in fact more restrictive than our notion

of safety, which would allow an even larger number of programs to be accepted by our

semantics. In our case, the notion of safety is refined by taking into account actual data

access operations instead of just the monitor operations.

Suppose program P induces schedule SP and tsafe(SP) holds. Now, if msafe(SP) also

holds, then any region in SP could be implemented either transactionally or using mutual

exclusion. Suppose, however, that msafe(SP) does not hold. This is clearly possible: con-

sider an interleaving in which distinct threads concurrently evaluate guarded expressions

protected by the same monitor, but the bodies of the expressions access disjoint locations.

Our soundness theorem shows that every such schedule can be permuted to one which

satisfies both msafe and tsafe. In other words, for every transaction-safe schedule, there is

an equivalent schedule that also satisfies constraints defining mutual exclusion. Thus, as

long as regions in a program obey atomicity and isolation, they can be implemented either

using exclusive or transactional monitors without violating program semantics.

Theorem 6.1.1 (Soundness)

Let

EtP[e],∆0,Γ0,φ =⇒ EtP[l],∆,Γ,S

and suppose tsafe(S) holds but msafe(S) does not. Then, there exists a schedule SM

such that

EtP[e],∆0,Γ0,φ =⇒ EtP[l],∆M,ΓM,SM

where tsafe(SM) and msafe(SM) hold, and in which Γ = ΓM.

99

Proof Let R � S = acqΓ
t
l.S′.relΓ

′

t
l and suppose msafe(S) does not hold. Since msafe(S)

does not hold, there must be some R′ = acqΓ′′

t′
l.S′′.relΓ

′′′

t′
l such that acqΓ′′

t′
l ∈ S′. Since

isolation(S) holds, none of the effects performed by t′ while synchronized on monitor l

are visible to t. Similarly, since atomicity holds, actions performed by t within R are

not visible to t′ in S′′. Suppose that relΓ
′′′

t′
l follows R in S. Then, effects of R may

become visible to operations in R′. But, then isolation(R′) would not hold. Thus, we can

construct a permuted schedule SM of S in which R′ precedes R, msafe(SM), isolation(SM),

and atomic(SM) all hold.

6.2 Design

Our design applies the semantics for guard expressions to Java monitors to allow co-

existence of both transactional and exclusive monitors within the same system. It should

be allowed for different synchronized blocks to be protected by either a transactional mon-

itor or an exclusive monitor, without changing execution semantics of a program. The

same arguments applies to synchronized methods. The modifications necessary to support

this hybrid approach should not lead to performance degradation in the common case of

single-threaded execution of a synchronized block (i.e., when monitor is uncontended),

and should lead to notable performance improvements in the case when multiple threads

attempt to acquire the same monitor simultaneously (i.e., when monitor is contended).

Also, the runtime system should be equipped with a mechanism to determine whether to

execute a given monitor transactionally or exclusively: mutual exclusion should be used

when a monitor is uncontended, transactions should be used only when contention is de-

tected.

Synchronization techniques using exclusive monitors have been thoroughly investi-

gated. Furthermore, recent solutions [3,5] are optimized towards the non-contended case,

which precisely fulfills our design requirement. Bringing transactions to the programming

language context is somewhat more challenging and doing it efficiently is still an open

issue. Our solution uses optimistic transactions to mediate operations of different threads

100

acquiring the same transactional monitor. Alternative designs, along with motivation be-

hind the choice of optimistic transactions have been discussed in Section 1.2.3.

Our discussion makes an obvious but important assumption that while any given mon-

itor can be at one time executed transactionally and at another time exclusively, multiple

threads cannot simultaneously acquire it using different protocols. A thread that attempts

to acquire a monitor of one type (say, exclusive) currently held by another thread (or

threads) in a different mode (say, transactional) will be blocked until the monitor is re-

leased by all its holders.

6.2.1 Nesting and Delegation

Since Java monitors support nesting, transactional monitors must also support nesting.

There is no conceptual difficulty in dealing with nesting. We have already observed that

for a large number of Java programs, the behavior of the synchronization protocol based

on closed nested transactions is equivalent to that of the protocol based on mutual exclu-

sion. However, providing support for nesting may pose efficiency challenges since each

nested transaction must maintain enough information to guarantee atomicity and isolation

of transactional execution.

Note that there is no a priori reason why concurrent data accesses must be mediated

exclusively by the monitor protecting them. For example, a single global monitor could

conceivably be used to protect all synchronized blocks in the program. Under transac-

tional execution, a single global monitor effectively serves to implement the atomic con-

struct [27], described in Chapter 3. Under exclusive execution, a single global monitor

defines a global exclusive lock. The primary reason why applications choose not to me-

diate access to shared data using a single monitor is because of increased contention on

monitor acquisition and potentially reduced concurrency. In the case of mutual exclusion,

a global lock reduces opportunities for concurrent execution. In the case of transactional

execution, a global monitor would have to potentially mediate accesses from logically

disjoint transactions, and is likely to be inefficient and non-scalable.

101

T T ′

1 acq(outer)
2 acq(inner)
3 acq(inner)
4 rel(inner)
5 rel(outer)
6 rel(inner)

outer inner

(a) step 1: T sets
outer’s delegate to
outer

outer inner

(b) step 2: T sets
inner’s delegate to
outer

outer inner

(c) steps 3-5: dele-
gates remain set de-
spite releases by T

outer inner

(d) step 6: all dele-
gates are cleared

Figure 6.4. Delegation example

Nonetheless, we can leverage this observation to optimize an important specific case

for transactional monitors. Consider a thread T acquiring monitor outer and, prior to

releasing outer, acquiring monitor inner. If no other thread simultaneously attempts to

acquire monitor inner (monitor is uncontended), acquisition of monitor inner can be

delegated to monitor outer. In other words, instead of synchronizing on monitor inner

we can establish outer as inner’s delegate and synchronize on outer. Since monitor

inner is uncontended, there is nothing for inner to mediate, and no loss of efficiency

accrues because of nesting (provided that the act of setting a delegate is inexpensive). Of

course, when monitor inner is contended, we must ensure that atomicity and isolation are

appropriately enforced. Note that if inner was an exclusive monitor, there would be no

benefit in using delegation since acquisition of an uncontended mutual-exclusion monitor

is already expected to have low overhead.

Figure 6.4 is an illustration of how the delegation protocol works for a specific sched-

ule; for simplicity, we show only synchronization operations. The schedule consists of

steps 1 through 6 enumerated in the first column of the table describing the schedule.

The right-hand side of Figure 6.4 describes the state of the (transactional) monitors, used

throughout the schedule, with respect to delegation. A monitor whose delegate has been

set is shaded grey, an arrow represents a reference to monitor’s delegate. We assume that

102

delegates of both monitor outer and monitor inner are initially unset. Thread T starts

by entering synchronized block protected by monitor outer, creating a new transaction

whose accesses are going to be mediated by outer and setting a delegate of outer to it-

self (step 1 in Figure 6.4(a)). Then thread T proceeds to enter an inner synchronized block

protected by monitor inner. Because no delegate for inner exists and thread T is already

executing within a transaction, T sets a delegate of inner to point to monitor outer (step

2 in Figure 6.4(b)). Note that the protocol implements a closed nested transaction model:

effects of T ’s execution within the synchronized block guarded by monitor inner are not

made globally visible until the execution of the outer synchronized block is complete (and

its transaction commits), since it is only monitor outer that is responsible for mediating

concurrent accesses. The delegates stay set throughout steps 3, 4 and 5 (Figure 6.4(b)),

even after thread T , the setter of both delegates, releases monitor outer. In the meantime

however thread T ′ attempts to enter a different synchronized block guarded by monitor

inner. The delegate of inner is at this point already set to outer and thread T ′ starts

its own transaction whose accesses are going to be mediated by monitor outer. The

delegates are cleared only after transaction executed by thread T ′ gets terminated (either

committed or aborted) – there is no more use for the delegates at this point. Note that some

precision is lost in this case: transactional meta-data maintained by outer is presumably

greater than what would be necessary to simply implement consistency checks for actions

guarded by inner. However, despite nesting, only one monitor has been used to mediate

concurrent data accesses and only one set of transactional meta-data had to be created

(associated with monitor outer). Note, however, that if actions taken in steps 2 and 3

were performed in the opposite order (i.e., T ′ would try to acquire monitor inner before

T), thread T ′ would try to acquire monitor inner whose delegate is not set at the point

of acquisition. In this case the protocol would behave in the same way as a traditional

implementation of the closed nested transaction model – two sets of transactional meta-

data would be created (one for monitor outer and one for monitor inner) to mediate

concurrent data accesses.

103

6.2.2 Transactions to Mutual Exclusion Transition

A system using optimistic transactions must include support for the revocation mech-

anism. Revocation procedure typically relies on the ability to undo effects of all transac-

tional computation. In realistic scenarios, however, some actions are non-revocable (e.g.,

I/O) - their effects cannot be undone. It is also difficult to predict at the point of starting a

new transaction if any non-revocable action will become part of this transaction since it is

non-trivial, in general, to predict the exact shape of the call graph. One solution is to abort

and revoke a transaction before a non-revocable action is about to take place but, in the

case the same execution path is chosen after abort, this could lead to repeated (potentially

infinitely) aborts. Our system utilizes a different solution. Because we enable coexistence

of both transactional and exclusive monitors, transactional execution can attempt a transi-

tion to mutual-exclusion right before executing a non-revocable action. This way a costly

revocation of transactional monitors can be avoided and computation may safely proceed.

An identical solution is used to thread notifications – mode transition is attempted before

executing wait and notify actions.

In order to enable mode transition, every thread executing a synchronized block pro-

tected by a transactional monitor must maintain an ordered (in the order of acquisition)

list of all inner transactional monitors. At the transition point a thread must atomically

leave and successfully commit all the transactions it is currently executing as well as suc-

cessfully acquire all monitors from the list in mutual exclusion (turning them into mu-

tual exclusion monitors). Successful acquisition of mutual-exclusion monitors involves

waiting on all threads holding these monitors to release them (and cleanup the respec-

tive delegates). From the point of a successful transition, a thread keeps executing in

mutual-exclusion mode until exiting the outermost synchronization block. If the transi-

tion is unsuccessful, the transactional monitor (along with all the inner monitors) must be

revoked and re-executed.

104

6.3 Implementation

An efficient implementation of exclusive monitors (i.e., thin-locks [5]) already ex-

ists in Jikes RVM. Therefore we concentrate our description on the implementation of

transactional monitors. We use transactional delegation protocol to reduce overheads for

uncontended inner transactional monitors by deploying nested transaction support only

when absolutely necessary. Thus, transactions are leveraged only at the outermost level or

in the case of contended inner monitors.

Our implementation follows the three-phase optimistic approach for closed nested

transactions. We use transaction-local, per-object versions to log shared data accesses. In

the write phase (at commit time), the updates are propagated to the shared heap lazily, us-

ing forwarding pointers as described in Section 2.2. In the closed nested transaction model

the effects of inner transactions are not visible until the outermost transaction commits. In

other words, termination of an inner transaction can be deferred until the outermost trans-

action terminates. At this point, the validation phase takes place and all transactions are

examined to decide if they should commit or abort. Adopting this approach enables us to

maintain versions only per outermost transaction scope. In the remainder of this section

we discuss our strategy for detection of serializability violations (through data dependency

tracking), our solutions for the automatic revocation procedure and shared data versioning,

as well as some additional implementation details. Support for shared data management

is provided using read and write barriers (as described in Section 2.4) inserted by Jikes

RVM’s compilers.

6.3.1 Dependency Tracking

The semantics of Java monitors dictates that data dependencies are tracked only be-

tween transactions whose operations are mediated by the same transactional monitor. Sup-

port for dependency tracking is based on the notion of access maps described in Sec-

tion 2.3. Each transaction hashes its shared data accesses into two local maps: a read map

and a write map. Once a transaction commits and propagates its updates into the shared

105

heap it also propagates information about its own updates to a global write map associated

with the monitor. Other transactions whose operations are mediated by the same monitor

will then, during their validation phase, intersect their local read maps with the global

write map to determine if the shared data accesses caused a violation of serializability.

Note however that monitors (and thus transactions) can be nested. Since all transactions

are terminated (and thus validated) at the same time, the local maps can be maintained

only per outermost transaction scope. In other words both local maps become associated

with a thread when starting the outermost transaction and the association is cleared when

the outermost transaction terminates. However, because of nesting, there may exist mul-

tiple global write maps associated with inner monitors. The validation phase must then

check the local read map against all the global write maps. In order to reduce the num-

ber of read barriers we apply the optimization described in Section 5.3.1 to execute read

barriers only on reference loads: objects referenced from the thread’s stack are pre-read

before the acquisition of a transactional monitor. This read barrier optimization enables

early detection of serializability violations as a direct result of conservatively pre-reading

objects that are never read, but only written to (the details are described below).

6.3.2 Revocation

Our revocation procedure is identical to the one used for revocable monitors, as de-

scribed in Section 4.2.2, and allows for a transaction to be aborted at an arbitrary point

during its execution. The abort is signaled by throwing the Revoke exception. Undo and

re-execution procedures are implemented using a combination of bytecode re-writing and

virtual machine modifications. Even though Java monitors are lexically scoped, it is nec-

essary to support transaction aborts at arbitrary points to correctly handle native method

calls as well as wait and notify operations, as described in Section 6.2.2.

106

6.3.3 Versioning

We use shared data versioning to prevent the effects of incomplete transactions from

being made visible to other threads until they commit. The implementation of versioning is

based on a general procedure described in Section 2.2.2 using lazy propagation of updates.

Because our array versioning procedure is identical to that used for versioning objects,

we refer only to objects in the following description. Versions are accessible through a for-

warding pointer from the original object. We use a “copy-on-write” strategy for creating

new versions. A transaction creates a new (uncommitted) version right before performing

its first update and redirects all subsequent read and write operations to access that version.

It is important to remember that in order to guarantee transparency all programs executed

in our system must satisfy certain safety properties (defined in Section 6.1), similar to the

notion of atomicity as defined in [21] and [20]. In most cases atomicity also implies race-

freedom, that is, every access to a shared data item being protected by the same monitor.

As a result, two writes to the same location performed by two different threads are very

likely to be protected by the same transactional monitor – they are automatically detected

as a serializability violation. Because of pre-reading optimization mentioned above the

writes are also treated as reads which would result in the same slot of both local read and

write maps being tagged, and subsequent abort of one transaction upon successful commit

of the other. Therefore, only the first transaction writing to a given object needs to create

a version for it. Other transactions are immediately aborted.

Upon successful commit of a transaction, the current version becomes the committed

version and remains accessible via the forwarding pointer from the original object. All

subsequent accesses are re-directed via the forwarding pointer to the committed version.

When a transaction aborts all its versions are discarded. Note that at most two versions of

an object exist at any given time: a committed version and an uncommitted version.

As noted above, the read barriers are only executed on reference loads. In general,

multiple on-stack references may end up pointing to different versions of the same ob-

ject. This is possible, even though read barriers are responsible for retrieving the most

107

up-to-date version of the object, because updates can be performed concurrently. It is the

responsibility of the run-time system to ensure that the version of an object accessible

through an on-stack reference is the up-to-date. The visibility rules for the Java Memory

Model [43] (described in Section 4.1.2) dictate that at certain synchronization points (e.g.,

monitor entry, access to volatile variables, etc.) threads are obliged to have the same view

of the shared heap. As a result, it is legal for operations mediated by a transactional mon-

itor to access out-dated versions of objects until such a synchronization point is reached.

It is only at these points that all the references residing on the stack need to be forwarded

to refer to the most up-to-date versions of their respective objects. Reference forwarding

is implemented using a stack inspection procedure described in Section 5.3.3.

In addition to performing reference forwarding at synchronization points, when a ver-

sion is first created by a transaction, the thread creating this version must forward all

references on its stack to point to the new version. This ensures that all subsequent ac-

cesses (by the same thread) observe the results of the update. Reference forwarding is also

used when a transaction aborts to remove all the newly created versions from the stack.

We now present an example of how these different implementation features interact.

Figure 6.6 describes actions concerning shared data versioning and serializability violation

T T ′ T ′′

1 acq(outer)
2 wt(o2)
3 acq(inner)
4 wt(o1)
5 acq(outer)
6 acq(inner)
7 rd(o1)
8 rel(outer)
9 rel(inner)
10 rd(o1)
11 rel(inner)
12 rel(outer)

Figure 6.5. A non-serializable schedule.

108

T’
LW LR

LRLW

T

T’’
GW

o2

o1

LW LR

GW

(a)

LR

T’
LR

LR

T

T’’

o2v

o2

o1v
o1

LW

LW

LW

GW

GW

(b)

LR

T’
LR

LR

T

T’’

o2v

o2

o1v
o1

LW

LW

LW

GW

GW

(c)

LR

T’
LR

LR

T

T’’

o2v

o2

o1v

LW

LW

LW

GW

GW

o1

(d)

LR

T’
LR

LR

T

T’’

o2v

o2

o1v

LW

LW

LW

GW

GW

o1

(e)

LR

T’
LR

LR

T

T’’

o2v

o2

o1v

LW

LW

LW

GW

GW

o1

(f)

Figure 6.6. A non-serializable execution.

detection, performed by threads T , T ′ and T ′′ executing the schedule shown in Figure 6.5.

The diagram in Figure 6.6(a) represents the initial state, before any threads have started

executing. Wavy lines represent threads, and circles represent objects o1 and o2. The

objects have not yet been versioned – they are shaded grey because at the moment they

contain the most up-to-date values. The larger box (open at the bottom) represents the

scope of transactional monitor outer, the smaller box (open at the top) represents the

scope of transactional monitor inner. Both the global write map (GW) associated with

the monitor and the local maps (write map LW and read map LR) associated with each

thread have three slots. Maps that belong to a given thread are located above the wavy

line representing this thread. We assume that accesses to object o1 hash to the first slot of

every map and accesses to object o2 hash to the second slot of every map

The execution begins with threads T and T ′′ starting to run transactions whose opera-

tions are mediated using monitors outer and inner (respectively) and performing updates

109

to objects o2 and o1 (respectively), as presented on Figure 6.6(b). Updating objects in-

volves version creation (o2v becomes a new version of object o2 and o1v becomes a new

version of object o1) and tagging of the local write maps. Thread T tags the second slot of

its local write map since it modifies object o2, whereas thread T ′′ tags the first slot of its

local write map since it modifies object o1. On Figure 6.6(c) thread T ′ starts executing: it

starts running the outermost transaction whose operations are mediated by monitor outer,

its inner transaction whose operations are mediated by monitor inner and performs a read

of object o1 (reading an object involves tagging thread’s local read map). In the next di-

agram (Figure 6.6(d)), transaction executed by thread T ′′ attempts a commit. Since no

writes by other transactions mediated by monitor inner have been performed, commit is

successful: o1v becomes the committed version, contents of the local write map associ-

ated with T ′′ is transfered to inner’s global write map and the local write map is cleared.

Similarly, on Figure 6.6(e), transaction executed by thread T commits successfully: o2v

becomes a committed version and the local write map is cleared after its contents has been

transfered to the global write map associated with monitor outer. On Figure 6.6(f) thread

T ′ proceeds to again read object o1 and then to commit its transactions (both inner and

outer). However, because a new committed version of object o1 has been created, o1v

is read by T ′ instead of the original object. When attempting to commit both its inner

and the outer transactions, thread T ′ must intersect its local read map with global maps

associated with both monitor outer and monitor inner. The first intersection is empty

(no writes performed in the scope of monitor outer could compromise reads performed

by T ′), the second however is not – both transactions executed by T ′ must be then aborted

and re-executed.

6.3.4 Header Compression

For performance we need efficient access to several items of meta-data associated

with each object (e.g., versions and their identities, delegates, access maps associated

with objects representing monitors, etc.). At the same time, we must keep overheads to a

110

minimum when transactions are not used. The simplest solution is to extend object headers

to associate the necessary meta-data. Our transactional meta-data requires up to four 32-

bit words. Unfortunately, our virtual machine platform does not support variable header

sizes and extending the header of each object by four words has serious implications for

space and performance, even in the case of non-transactional execution. On the other

hand keeping meta-data “on the side” (e.g., in a hash table), also results in a significant

performance hit.

We therefore implement a compromise. The header of every object is extended by

a single descriptor word that is lazily populated when meta-data needs to be associated

with the object. If an object is never accessed in a transactional context, its descriptor word

remains empty. Because writes are much less common than reads, we treat the information

needed for reads as the common case. The first transactional read will place the object’s

identity hash-code in the descriptor (the run-time generates its own hash-codes to improve

data distribution in access maps). If additional meta-data needs to be associated with

the object (e.g., a new version on write) then the descriptor word is overwritten with a

reference to a new descriptor object containing all the necessary meta-data (including the

hash-code originally stored in the descriptor word). We discriminate these two cases using

the low-order bit of the descriptor word.

6.3.5 Code Duplication

Transactional support (e.g., read and write barriers) is required only when a thread

decides to execute a given monitor transactionally. However, it is difficult to determine

if a particular method is going to be used in a non-transactional context only. To avoid

unnecessary overheads during non-transactional execution, we use bytecode rewriting to

duplicate the code of all (user-level) methods actually being executed by the program. Ev-

ery method can then be compiled in two versions: one that embeds transactional support

(transactional methods) and one that does not (non-transactional methods). This allows the

run-time system to dynamically build a call chain consisting entirely of non-transactional

111

methods for non-transactional execution. Unfortunately, because of our choice to access

most up-to-date versions of objects through forwarding pointers, we cannot fully elimi-

nate read barriers even in non-transactional methods. We can however eliminate all write

barriers and make the non-transactional read barriers very fast in the common case – they

need simply differentiate objects that have never been accessed transactionally from those

that have. In addition to the usual reference load, such barriers consist only of a null check,

one condition, and one load. These instructions verify that the descriptor word is empty,

indicating that the object has never been accessed transactionally, and thus no alternate

version has ever been created.

6.3.6 Triggering Transactional Execution

Our implementation must be able to determine whether to execute a given monitor

transactionally or exclusively. We use a very light-weight heuristic to detect monitor con-

tention and trigger transactional execution only for contended monitors . The first thread

to enter a monitor always executes the monitor exclusively. It is only after a thin mutual-

exclusion lock is “inflated” by being turned into a fat lock (on contended acquisition of the

lock) that the monitor in question is asserted to be contended. All threads queued waiting

for the monitor will then execute transactionally once the currently executing (locking)

thread exits the monitor. We recognize that there are more advanced and potentially more

conservative heuristics that a production system may wish to use. For example, program-

mer annotations could be provided to mark the concurrency control mechanism that is to

be used for different monitors. Adaptive solutions based on dynamic profiling or solu-

tions utilizing off-line profiles may also provide more refined information on when to best

execute monitors transactionally.

6.4 Experimental Evaluation

The performance evaluation of our prototype implementation is divided into two parts.

We use a number of single-threaded benchmarks (from the SPECjvm98 [55] and Java

112

compress db
raytrace

crypt fft heap
lufact

series sor
sparse

-20

-10

0

10

20

30

40

50

O
ve

rh
ea

d
(%

)

(a) total overhead
compress db

raytrace
crypt fft heap

lufact
series sor

sparse
-20

-10

0

10

20

30

40

50

O
ve

rh
ea

d
(%

)

ext header
other
barrier

(b) component overheads

Figure 6.7. Uncontended execution

Grande [54] suites) to measure the overheads of supporting hybrid-mode execution (e.g.,

compiler-inserted barriers, code-duplication, object layout modifications, etc.) when mon-

itors are uncontended. We also use an extended version of the OO7 object database bench-

mark [13], to expose the range of performance when executing under different levels of

monitor contention. We measure the behavior when all monitors are executed transaction-

ally and when using a hybrid scheme that executes monitors transactionally only when

sufficient monitor contention is detected. Our measurements were taken on an 700MHz

Intel Pentium III symmetric multi-processor (SMP) with 2GB of RAM running Linux ker-

nel version 2.4.20-31.9smp (RedHat 9.0). Our implementation uses version 2.3.4+CVS

(with 2005/12/08 15:01:10 UTC timestamp) of Jikes RVM for all the configurations used

to take the measurements (mutual-exclusion-only, transactions-only and hybrid). We ran

each benchmark configuration in its own invocation of the virtual machine, repeating the

benchmark six times in each invocation, and discarding the results of the first iteration,

in which the benchmark classes are loaded and compiled, to eliminate the overheads of

compilation.

113

6.4.1 Uncontended Execution

A summary of our performance evaluation results when monitors are uncontended is

presented in Figure 6.7. Our current prototype implementation is restricted to running

bytecodes compiled with debugging information for local variables; this information is

needed by the bytecode rewriter for generating code to store and restore local state in case

of abort. Therefore, we can only obtain results for those SPECjvm98 benchmarks for

which source code is available.

In Figure 6.7(a) we report total summary overheads for a configuration that supports

hybrid-mode execution. The overheads are reported as a percentage with respect to a

“clean” build of the “vanilla” unmodified Jikes RVM. The average overhead is on the or-

der of 7%, with a large portion of the performance degradation attributed to execution

of the compiler-inserted barriers, as described below. Figure 6.7(b) reveals how different

mechanisms for transactional execution affect performance in the uncontended case. The

bottom of every bar represents the effect of extending the header of every object by one

word (as needed to support transaction-related meta-data). The middle of every bar repre-

sents the cost of all other system modifications, excluding compiler-inserted barriers.2 The

top bar captures overhead from execution of the barriers themselves (mostly read barriers

but also barriers on static variable accesses).

Observe that changing the object layout can by itself have a significant impact on

performance. In most cases, the version of the system with larger object headers indeed

induces overheads over the clean build of Jikes RVM, but in some situations (e.g., FFT or

Series), its performance actually improves over the clean build by a significant amount;

variations in cache footprint is the most likely cause. The performance impact of the

compiler-inserted barriers is also clearly noticeable, especially in the case of benchmarks

from the SPECjvm98 suite. When discounting overheads related to the execution of the

barriers, the average overhead with respect to the clean build of Jikes RVM drops to a

little over 1% on average. This result is consistent with that reported by Blackburn and
2The measurements were taken after artificially removing compiler-inserted barriers from the “full” version
of the system. Naturally our system cannot function without barriers.

114

Table 6.1
Component organization of the OO7 benchmark

Component Number
Modules 1

Assembly levels 7
Subassemblies per complex assembly 3

Composite parts per assembly 3
Composite parts per module 500

Atomic parts per composite part 20
Connections per atomic part 3

Document size (bytes) 2000
Manual size (bytes) 100000

Hosking [8] for garbage collection read barriers that can incur overheads up to 20%. It

would be beneficial for our system to use a garbage collector that might help to amortize

the cost of the read barrier. Fortunately, there exist modern garbage collectors (e.g., [6])

that fulfill this requirement.

6.4.2 Contended Execution

Our motivation behind choosing OO7 as a benchmark was to accurately gauge the

various trade-offs inherent with our implementation over a wide range of different work-

loads, rather than emulating specific workloads of potential applications. We believe the

benchmark captures essential features of scalable concurrent programs that can be used

to quantify the impact of the design decisions underlying our implementation. The struc-

ture of the OO7 database as well as operations performed during database traversals are

described in Section 5.4.2.

Our experiments here use traversals that always operate on the shared module, since

we are interested in the effects of contention on performance of our system. Our imple-

mentation of OO7 conforms to the standard OO7 database specification. All the results

are obtained with an OO7 database configured as in Table 6.1. Our traversals differ from

the original OO7 traversals in adding a parameter that controls entry to monitors at vary-

115

10 30 50 70 90
Shared writes (%)

0

0.5

1

1.5

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

) level 1
level 3
level 6

(a) transactions-only

10 30 50 70 90
Shared writes (%)

0

0.5

1

1.5

2

El
ap

se
d

tim
e

(n
or

m
al

iz
ed

) level 1
level 3
level 6

(b) hybrid-mode

Figure 6.8. Normalized execution times for the OO7 benchmark

ing levels of the database hierarchy. We run 64 threads on 8 physical CPUs. Every thread

performs 1000 traversals (enters 1000 monitors) and visits 4M atomic parts during each

iteration. When running the benchmarks we varied the following parameters:

• ratio of shared reads to shared writes: from 10% shared reads and 90% shared writes

(mostly read-only workload) to 90% shared reads and 10% shared writes (mostly

write-only workload).

• level of the assembly hierarchy at which monitors are entered: level one (module

level), level three (second layer of complex assemblies) and level six (fifth layer

of complex assemblies). Varying the level at which monitors are entered models

different granularities of user-level synchronization from coarse-grained through to

fine-grained and diversifies the degree of monitor contention.

Figure 6.8 plots execution times for the OO7 benchmark when all threads execute all

monitors transactionally (Figure 6.8(a)) and when threads execute in hybrid mode, where

the mode is chosen based on monitor contention (Figure 6.8(b)). The execution times

are normalized with respect to the performance of the “clean” build of Jikes RVM (90%

confidence intervals are also reported). Figure 6.9 plots the total number of aborts for both

transactions-only (Figure 6.9(a)) and hybrid (Figure 6.9(b)) executions. Different lines on

116

10 20 30 40 50 60 70 80 90
Shared writes (%)

100

1000

10000

100000
N

um
be

r o
f a

bo
rts

level 1
level 3
level 6

(a) transactions-only

10 20 30 40 50 60 70 80 90
Shared writes (%)

100

1000

10000

100000

N
um

be
r o

f a
bo

rts

level 1
level 3
level 6

(b) hybrid-mode

Figure 6.9. Total number of aborts for the OO7 benchmark

the graphs represent different levels of user-level synchronization granularity – one being

the most coarse-grained and six being the most fine-grained.

When there is a suitable amount of monitor contention, and when the number of writes

is moderate, transactional execution significantly outperforms mutual exclusion by up to

three times. The performance of the transactions-only scheme degrades as the number of

writes increases (and so does the number of generated hash-codes) since the number of

bitmap collisions increases, leading to a large number of aborts even at low contention

(Figure 6.9(b)). Extending the size of the maps used to detect serializability violations

would certainly remedy the problem, at least in part. However, we cannot use maps of an

arbitrary size. This could unfavorably affect memory overheads (especially compared to

mutual-exclusion locks) but more importantly we have determined that the time to process

potentially multiple maps at the end of the outermost transaction must be bounded. Oth-

erwise, the time spent to process them becomes a source of significant delay (currently

each map contains over 16,000 slots). The increased number of aborts certainly has a

very significant impact on the difference in performance between the transactions-only

and hybrid schemes. The overheads of the transactions-only scheme cannot however be

attributed only to the increased abort rate – observe that the shape of the graphs plotting

execution times and aborts are different. During hybrid-mode execution, monitors are exe-

117

cuted transactionally only when monitor contention is detected, read and write operations

executed within uncontended monitors incur little overhead, and the revocations are very

few. Thus, instead of performance degradation of over 70% in the transactions-only case

when writes are dominant, our hybrid scheme incurs overhead on the order of only 10%.

6.5 Related Work

Our system supporting hybrid execution relies on the existence of a low-cost imple-

mentation of mutual-exclusion monitors to handle cases when monitors are uncontended

(at most one thread attempts to acquire a given monitor at a time). One of the solutions

fulfilling our requirements (and in fact used as part of our system), thin locks, has been

proposed by Bacon et al. [5]. Their design goal was to enable low-cost acquisition of

uncontended monitors without compromising performance in the case when monitors are

contended (multiple threads compete for acquisition of the same monitor). Their solution

is optimized towards the common case, that is, the acquisition of an uncontended monitor

with no subsequent signaling operations (wait or notify) executed with respect to this

monitor.

In the common case, all the information concerning the monitor state is stored in a

header of an object used as a monitor. This includes the recursion count (the same moni-

tor may be acquired multiple times by the same thread) and the identifier of the thread that

acquired this monitor. Modifications to the object header are performed using the atomic

compare-and-swap operation (its availability in the implementation platform is assumed).

This results in the cost of monitor acquisition in the common case to be limited to only

several assembly instruction. If more than one thread attempts to acquire the same moni-

tor, or a signaling operation is to be invoked with respect to this monitor, the monitor gets

inflated. A data structure representing the inflated monitor is created and a header of an

object used as a monitor is made to point to this structure. In addition to the same informa-

tion as the non-inflated monitor, the inflated one maintains two queues for threads waiting

on this monitor – one for threads waiting to be notified and one for threads competing to

118

acquire it. Bacon et al. implement their solution in IBM’s production Java virtual machine

for AIX and in Jikes RVM.

Another approach to implementing Java monitors, meta-locks, sharing similar goals

with the solution presented above, has been described by Agesen et al. [3]. Their solution,

similarly to thin locks, is optimized towards the uncontended case. A synchronization

operation on a given monitor is in their system divided into three parts: acquisition of the

meta-lock associated with the monitor, manipulation of synchronization data associated

with the monitor and release of the meta-lock.

In order to minimize the per-object space overhead (even further than in the case of

thin locks which required several bits of information even in the common case), they en-

code monitor state using two lowest-order bits of the multi-use word in the header of an

object used as a monitor. In case object is never used as a monitor, the multi-use word

contains information unrelated to monitor acquisition (e.g., object’s hash-code). Other-

wise, in the common uncontended case, the content of the multi-use word is atomically

replaced with a reference to a fresh lock record, containing all monitor-related information

(such as identity of a thread acquiring the monitor, recursion count, etc.). This operation

is implemented using an atomic compare-and-swap and conceptually merges the first two

phases of the meta-lock protocol (described previously) into one. In the case of multiple

threads competing for acquisition of the same monitor, making the multi-use word to point

to the lock record involves several intermediate steps to guarantee correctness of thread

interaction in presence of concurrency. The meta-lock protocol has been implemented in

the EVM, Sun’s production Java virtual machine embedded in Java 2 SDK Production

Release.

In order for transactional monitors and exclusive monitors to safely and transparently

co-exist in our system, programs executed in the system must satisfy certain safety prop-

erties (defined in Section 6.1), similar to the notion of atomicity as defined by Flanagan et

al. in [21] and [20]. A block of code is considered to be atomic if any possible interaction

between operations of this block executed by one thread and operations of other threads is

benign. In other words, it appears as if the operations of an atomic block were not inter-

119

leaved with operations of any other thread. The aforementioned research efforts exploring

the notion of atomicity concentrate on verification of whether this property holds for con-

current programs using mutual exclusion as a synchronization mechanism – we provide

the details below. We have also described two systems that dynamically enforce atomicity

property using transactions as a concurrency control mechanism, one in Chapter 3 and the

other in Section 4.4.

Both dynamic and static approaches to atomicity verification are inspired by Lipton’s

theory of reduction [39]. Let a specific execution of a program be defined as an ordered

sequence of interleaved thread operations. Lipton’s theory of reduction classifies thread

operations into two categories, based on their behavior in all executions of a given pro-

gram. An operation is a right mover if it can be swapped with an operation of another

thread immediately following it in the execution order, without changing the behavior of

the program (e.g., two reads of two different threads could be safely swapped). An opera-

tion of a thread is a left mover if it can be swapped, in a similar fashion, with an operation

of another thread immediately preceding it in the execution order. A block of code is then

considered to be atomic if it consists of a sequence of right movers, followed by a single

action, followed by sequence of left movers. By definition, during an arbitrary execution

of a program, operations of the atomic block can then be (conceptually) permuted (by

swapping them with operations of other threads) to form a contiguous sequence of opera-

tions, without changing the behavior of the program. In other words, with respect to the

operations of the atomic block, the behavior of the program is the same regardless of their

interleaving with operations of other threads.

The static atomicity checker, developed by Flanagan and Quadeer [21], has been built

on top of the static type checker. The type system classifies lock acquisition operations

as right movers and lock release operations as left movers. An access to a shared variable

is considered to be both left and right mover, provided that all accesses to this variable

are guaranteed to be protected by the same lock. This property can be automatically

verified by the type checker – the association between a shared variable and a lock that

should be used to protect accesses to this variable is established using a number of simple

120

heuristics or manually by a programmer. A programmer is additionally responsible for

specifying blocks of code to be checked for atomicity. Atomicity of the code blocks

may be then automatically verified by the type checker using classification of operations

described above.

The dynamic atomicity checker (the Atomizer), developed by Flanagan and Freund

[20], instruments the code of an application to allow for tracking of thread operations at

run-time, and thus atomicity verification is performed with respect to specific executions.

The approach to classify thread operations is similar to the one used by the static checker,

but a programmer is relieved from a burden of explicitly specifying locks protecting shared

variables. Locking discipline is automatically inferred by the atomicity checker. Annota-

tions specifying which blocks of code should be checked for atomicity are also optional.

By default, all synchronized blocks of code (including synchronized methods) as well as

public and protected methods are verified. The results of verifying atomicity for a signifi-

cant number of Java benchmarks (over 100,000 lines of Java code) confirm the hypothesis

of the authors that, for the majority of Java programs analyzed, mutual exclusion is indeed

correctly used to enforce the atomicity property.

6.6 Conclusions

Existing approaches to providing concurrency abstractions for programming languages

offer disjoint solutions for mediating concurrent accesses to the shared data throughout the

lifetime of the entire application. Typically these mechanisms are either based on mutual

exclusion or on some form of transactional support. Unfortunately, none of these tech-

niques is ideally suited for all possible workloads. Mutual exclusion performs best when

there is no contention on guarded region execution, while transactions have the potential

to extract additional concurrency when contention exists.

We have designed and implemented a system that seamlessly integrates mutual exclu-

sion with a synchronization mechanism using optimistic transactions. We also formally

argue correctness (with respect to language semantics) of such a system and provide a

121

detailed performance evaluation of our hybrid scheme for different workloads and varying

levels of contention. We demonstrate that our implementation of the system supporting

hybrid execution has low overheads (on the order of 7%) in the uncontended (base) case

and that significant performance improvements (speedups up to 3×) can be expected from

running contended monitors transactionally.

122

7 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The goal stated in the thesis statement was to use optimistic transactions for manag-

ing concurrency in a programming language environment and demonstrate improvements

over concurrency management techniques based on mutual exclusion. We believe that this

goal has been achieved. We have presented revocable monitors, described their ability to

resolve deadlock and priority inversion problems and demonstrated their effectiveness in

improving throughput of high-priority threads in a priority scheduling environment. Safe

futures allow concurrent programs to be constructed often through only a small re-write

of the sequential code. Our implementation of this mechanism allows concurrency to be

extracted for applications with modest mutation rates, which we have confirmed through

experimental evaluation. Transactional monitors provide seamless integration between

mutual exclusion based synchronization and transactional synchronization. We have pre-

sented a low-overhead implementation of transactional monitors and demonstrated that

significant performance improvements can be expected in comparison to using traditional

exclusive monitors.

7.2 Future Work

One of the main goals for our future work is to better understand implications of the

current design and implementation decisions and use this knowledge for even further im-

proved performance. First of all, we would like to contrast our current approach with a

solution using pessimistic transactions, preferably implemented within the same platform

for easy comparison. The same argument applies to other aspects of our approach, includ-

ing the choice of logging, barrier-related trade-offs. Ultimately, we would like to construct

123

a generic framework where all the components are freely interchangeable which would al-

low for an easy analysis of their mutual interactions and their final effect on the overall

performance.

We would also like to explore application of compiler optimizations and hardware sup-

port to further improve performance of our solutions. For example, the ability to statically

identify thread-local objects would be a great help in reducing barrier-related overheads.

Hardware support could facilitate detection of shared data dependencies (e.g., through

modifications to cache coherency protocols) or lower the overheads associated with revo-

cations (e.g., through hardware-assisted thread checkpointing).

Another direction we would like to pursue is to experiment with semantics-related

trade-offs. Perhaps programmability could be improved by exposing certain mechanisms

to a programmer, for example, through parameterizing revocation actions where a pro-

grammer is responsible for providing a routine that is invoked before, after or instead of

simply re-executing a transaction. Lowering a degree of transparency could also lead to

performance improvements, for example, if only pre-specified objects would be subject to

transactional access control.

LIST OF REFERENCES

124

LIST OF REFERENCES

[1] Latte : An open-source Java virtual machine and just-in-time compiler.

[2] The Ovm virtual machine.

[3] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y. S. Ramakrishna, and
Derek White. An efficient meta-lock for implementing ubiquitous synchronization.
In OOPSLA’99 [46], pages 207–222.

[4] Bowen Alpern, C. R. Attanasio, John J. Barton, Anthony Cocchi, Susan Flynn Hum-
mel, Derek Lieber, Ton Ngo, Mark Mergen, Janice C. Shepherd, and Stephen Smith.
Implementing Jalapeño in Java. In OOPSLA’99 [46], pages 314–324.

[5] David Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin locks: Feath-
erweight synchronization for Java. In Proceedings of the ACM Conference on Pro-
gramming Language Design and Implementation, volume 33, pages 258–268, May
1998.

[6] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage collector with
low overhead and consistent utilization. In Conference Record of the ACM Sympo-
sium on Principles of Programming Languages, volume 38, pages 285–298, January
2003.

[7] A.J. Bernstein. Program analysis for parallel processing. IEEE Transactions on
Computers, 15(5):757–762, October 1966.

[8] Stephen M. Blackburn and Antony L. Hosking. Barriers: Friend or foe? In Proceed-
ings of the ACM International Symposium on Memory Management, pages 143–151.
ACM, 2004.

[9] Bruno Blanchet. Escape analysis for object-oriented languages: Application to Java.
In OOPSLA’99 [46], pages 20–34.

[10] Jeff Bogda and Urs Hölzle. Removing unnecessary synchronization in Java. In
OOPSLA’99 [46], pages 35–46.

[11] Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve Furr, and Mark
Turnbull. The real-time specification for Java, June 2000.

[12] Michael J. Carey, David J. DeWitt, Chander Kant, and Jeffrey F. Naughton. A status
report on the OO7 OODBMS benchmarking effort. In Proceedings of the ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Applications,
volume 29, pages 414–426, October 1994.

[13] Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. The OO7 benchmark.
In Proceedings of the ACM International Conference on Management of Data, vol-
ume 22, pages 12–21, June 1993.

125

[14] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam
Midkiff. Escape analysis for Java. In OOPSLA’99 [46], pages 1–19.

[15] Laurent Daynès and Grzegorz Czajkowski. Lightweight flexible isolation for
language-based extensible systems. In Proceedings of the International Conference
on Very Large Data Bases, 2002.

[16] Zeng Fancong. Deadlock resolution via exceptions for dependable Java applica-
tions. In Proceedings of the International Conference on Dependable Systems and
Networks, pages 731–740, 2003.

[17] Zeng Fancong and Richard P. Martin. Ghost locks: Deadlock prevention for Java. In
Proceedings of the Mid-Atlantic Student Workshop on Programming Languages and
Systems, 2004.

[18] Cormac Flanagan and Matthias Felleisen. The semantics of future and its use in
program optimizations. In Conference Record of the ACM Symposium on Principles
of Programming Languages, pages 209–220, 1995.

[19] Cormac Flanagan and Matthias Felleisen. The semantics of future and an application.
J. Funct. Program., 9(1):1–31, 2005.

[20] Cormac Flanagan and Stephen N. Freund. Atomizer: a dynamic atomicity checker
for multithreaded programs. In Conference Record of the ACM Symposium on Prin-
ciples of Programming Languages, pages 256–267, 2004.

[21] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In
Proceedings of the ACM Conference on Programming Language Design and Imple-
mentation, pages 338–349, 2003.

[22] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins.
In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 171–183. ACM Press, 1998.

[23] James Gosling, Bill Joy, Guy Steele, Jr., and Gilad Bracha. The Java Language
Specification. Addison-Wesley, second edition, 2000.

[24] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Data Management Systems. Morgan Kaufmann, 1993.

[25] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501–538, October
1985.

[26] Per Brinch Hansen. The nucleus of a multiprogramming system. Communications
of the ACM, 13(4):238–241, April 1970.

[27] Tim Harris and Keir Fraser. Language support for lightweight transactions. In Pro-
ceedings of the ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, volume 38, pages 388–402, November 2003.

[28] Tim Harris and Keir Fraser. Revocable locks for non-blocking programming. In
PPOPP’05 [47], pages 72–82.

[29] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable
memory transactions. In PPOPP’05 [47], pages 48–60.

126

[30] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Soft-
ware transactional memory for dynamic-sized data structures. In Proceedings of the
Annual ACM Symposium on Principles of Distributed Computing, pages 92–101,
2003.

[31] C. A. R. Hoare. Monitors: An operating system structuring concept. Communica-
tions of the ACM, 17(10):549–557, October 1974.

[32] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for Automatic Dy-
namic Memory Management. Wiley, May 1996. Chapter on distributed collection
by Lins.

[33] Simon L. Peyton Jones, Andrew Gordon, and Sigbjòrn Finne. Concurrent Haskell.
In Conference Record of the ACM Symposium on Principles of Programming Lan-
guages, pages 295–308, 1996.

[34] JSR166: Concurrency utilities. http://www.jcp.org/en/jsr/detail?id=166.

[35] M. Katz. Paratran: A transparent, transaction based runtime mechanism for paral-
lel execution of Scheme. Technical report, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1989.

[36] David Kranz, Robert H. Halstead, Jr., and Eric Mohr. Mul-T: A high-performance
parallel Lisp. In Proceedings of the ACM Conference on Programming Language
Design and Implementation, volume 24, pages 81–90, July 1989.

[37] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM
Transactions on Database Systems, 9(4):213–226, June 1981.

[38] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1999.

[39] Richard J. Lipton. Reduction: A method of proving properties of parallel programs.
Communications of the ACM, 18(12):717–721, December 1975.

[40] Barbara Liskov. Distributed programming in Argus. Communications of the ACM,
31(3), March 1988.

[41] Barbara Liskov and Liuba Shrira. Promises: Linguistic support for efficient asyn-
chronous procedure calls in distributed systems. In Proceedings of the ACM Con-
ference on Programming Language Design and Implementation, volume 23, pages
260–267, July 1988.

[42] Jeremy Manson, Jason Baker, Antonio Cunei, Suresh Jagannathan, Marek Proc-
hazka, Bin Xin, and Jan Vitek. Preemptible atomic regions for real-time Java. In
Proceedings of the IEEE Real-Time Systems Symposium, pages 62–71, 2005.

[43] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. In
Conference Record of the ACM Symposium on Principles of Programming Lan-
guages, pages 378–391, 2005.

[44] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation: A
technique for increasing the granularity of parallel programs. In Proceedings of the
ACM Conference on Lisp and Functional Programming, pages 185–197, 1990.

127

[45] J. Eliot B. Moss. Nested Transactions: An Approach to Reliable Distributed Comput-
ing. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,
April 1981. Also published as MIT Laboratory for Computer Science Technical
Report 260.

[46] Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, volume 34, October 1999.

[47] Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming, 2005.

[48] Polyvios Pratikakis, Jaime Spacco, and Michael W. Hicks. Transparent proxies for
Java futures. In Proceedings of the ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, volume 39, pages 206–223, October
2004.

[49] Carlos Garcia Quiǹones, Carlos Madriles, Jesùs Sànchez, Pedro Marcuello, Antonio
Gonzàlez, and Dean M. Tullsen. Mitosis compiler: An infrastructure for speculative
threading based on pre-computation slices. In Proceedings of the ACM Conference
on Programming Language Design and Implementation, pages 269–279, 2005.

[50] Martin C. Rinard, Daniel J. Scales, and Monica S. Lam. Jade: A high-level, machine-
independent language for parallel programming. IEEE Computer, 26(6):28–38,
1993.

[51] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Ben
Hertzberg. A high performance software transactional memory system for a multi-
core runtime. In Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2006.

[52] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization. IEEE Transactions on Computers,
29(9):1175–1185, September 1990.

[53] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the
Annual ACM Symposium on Principles of Distributed Computing, pages 204–213,
1995.

[54] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel Java Grande benchmark suite.
In Proceedings of the ACM/IEEE Conference on Supercomputing, page 8, 2001.

[55] SPEC. SPECjvm98 benchmarks, 1998. http://www.spec.org/osg/jvm98.

[56] Adam Welc, Suresh Jagannathan, and Antony L. Hosking. Transactional monitors
for concurrent objects. In Martin Odersky, editor, Proceedings of the European Con-
ference on Object-Oriented Programming, volume 3086 of Lecture Notes in Com-
puter Science, pages 519–542. Springer-Verlag, 2004.

VITA

128

VITA

Adam Welc was born and grew up in Bydgoszcz, a city located in the northern part of

Poland, where he also attended high school at Nicolas Copernicus II General Secondary

School. He received a Master of Science in Computer Science from the Poznan University

of Technology, Poland, in May 1999, and a Master of Science in Computer Science from

the Purdue University in May 2003.

In January 2000, Adam became a research assistant in the Secure Software Systems

group at the Purdue Department of Computer Sciences, working with Professor Antony

Hosking and Professor Suresh Jagannathan. He completed summer internships at the Sun

Microsystems Laboratories in 2001 and at the IBM TJ Watson Research Center in 2004.

Adam’s work is in the area of programming language design and implementation, with

specific interests in developing new concurrency and synchronization models, transaction

processing, and compiler and run-time system optimizations.

