
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2000; 30:293–294

Editorial:
Persistent object systems

Persistent object systems address the challenging requirements of long-lived, data-intensive
applications. At their most ambitious, they aim to support simple, reliable and efficient access to large,
shared bodies of structured data and programs, over extended periods of time. Such aims lie at the
nexus of an ongoing convergence between historically distinct communities.
On the one hand the research community has concentrated its focus on orthogonal persistence, a

programming language abstraction in which the longevity of data, including programs, is independent
of the way in which it is created and manipulated. As such, orthogonal persistence integrates the
database view of longevity of information with the programming language view of data abstraction
and manipulation, all within a coherent system.
Meanwhile, fuelled by commercial interest in object-based systems, industry has worked to bring

objects into mainstream products. Whether the context is storage and manipulation of JavaTM or
C++ objects, or support by vendors for complex data models in pure object or hybrid object-
relational databases, the management of long-lived structured objects is now an important commercial
opportunity.
The fusion of the persistence abstraction with database functionality such as transactions and crash

resilience promises increased programmer productivity, application safety, and data integrity. The
recent popularity of application programming languages such as JavaTM that emphasise safety over
raw efficiency will ensure continued interest in persistent object systems, as applications demand clean
and efficient persistence solutions for the objects they create.
In this exciting context, we are privileged to bring this special issue on Persistent object

systems to SP&E, comprising papers that run the gamut from low-level operating system support
through language design and implementation, experimental evaluation of prototypes and evaluation
methodologies, on up to high-level software architecture.We received 25 submissions, accepting six for
this special issue, having observed the standard SP&E process of peer review. Two other submissions
were recommended for separate publication in regular issues of SP&E. Authors of several of the
remaining submissions were encouraged to revise and resubmit their papers for similar consideration.
The first paper, Operating system support for persistent systems: past, present and future, by Dearle

and Hulse, surveys the history of explicit operating system support for the persistence abstraction, gives
consideration to modern trends in operating systems, and expounds the philosophy and design of a new
‘nano-kernel’ operating system called Charm, whose explicit goals are flexible support of persistent
applications via a minimal set of system primitives.

TMJava is a trademark of Sun Microsystems, Inc.

Copyright 2000 John Wiley & Sons, Ltd.

294 EDITORIAL

The second paper attacks the problem of obtaining efficient fine-grained lock management for
automatic concurrency control over access to shared objects in persistent programming languages.
Implementation of automated fine-granularity locking in a persistent programming language, by
Daynès, describes new techniques for minimising the performance impact of automatic locking, and
evaluates their performance in a persistent extension of JavaTM.
Morrison et al., in A compliant persistent architecture, systematically address the performance

problems often encountered in layered software architectures, by introducing a mechanism for
customisation of lower layers in response to the expectations of higher layers. The idea is that
the operational needs of each layer are transmitted to compliant layers lower in the architecture,
which adjust their behaviour accordingly, achieved through systematic separation of policy from
mechanism across all layers of the architecture. The paper examines an instantiation of this approach
for persistence, demonstrating how it can operate in a manner compliant to a target application.
The fourth paper,An infrastructure for generating and sharing experimental workloads for persistent

object systems, by Humphries et al., describes a trace format to express sequences of logical actions
against (single-user) persistent object stores. It includes means to express the object store schema,
object creation, and object mutation, including setting and reading object references, etc. The traces
are designed to be rich enough to assess performance of different object store implementation
mechanisms, including store garbage collectors. The authors also describe a tool that eases construction
of benchmark applications to generate traces, which is less error-prone than instrumentation by hand.
They include a discussion of their experiences using the tool to generate traces for the widely-known
007 benchmark.
In Dynamo: design, implementation, and evaluation of cooperative persistent object management

in a local area network, Yang et al. present an architecture and protocols for cooperative caching in a
decentralised ‘server-less’ setting. They outline their implementation of the Dynamo prototype system,
in which they proceed to demonstrate the superiority of their new protocols for object replacement
against competing global replacement policies.
Finally, Fast portable orthogonally persistent JavaTM, by Marquez et al., focuses on techniques

for systematic transformation of JavaTM bytecode executables to support transparent extensions of the
JavaTM programming language beyond its standard semantics. The authors apply these techniques in
developing a persistent extension of JavaTM. The transformational approach imposes no changes on
the underlying JavaTM virtual machine, resulting in maximum portability of their implementation. The
paper closes with a performance study characterising the performance of their persistent extension of
JavaTM via bytecode transformation, and comparing it to a competing implementation that instead relies
on extensive modification of the JavaTM virtual machine.
We are proud to bring this snapshot on the state of play in persistent object systems to SP&E, and

thank all those individuals who helped it into being. The papers appearing here nicely capture the
diversity of this vibrant area.

Antony Hosking
Department of Computer Sciences
Purdue University
West Lafayette, Indiana
U.S.A.

Quintin Cutts
Department of Computing Science
University of Glasgow
Glasgow
U.K.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 30:293–294

