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Abstract
Transactional memory (TM) promises to simplify concurrent pro-
gramming while providing scalability competitive to fine-grained
locking. Language-based constructs allow programmers to denote
atomic regions declaratively and to rely on the underlying system to
provide transactional guarantees along with concurrency. In contrast
with fine-grained locking, TM allows programmers to write simpler
programs that are composable and deadlock-free.

TM implementations operate by tracking loads and stores to mem-
ory and by detecting concurrent conflicting accesses by different
transactions. By automating this process, they greatly reduce the pro-
grammer’s burden, but they also are forced to be conservative. In
certain cases, conflicting memory accesses may not actually violate
the higher-level semantics of a program, and a programmer may wish
to allow seemingly conflicting transactions to execute concurrently.

Open nested transactions enable expert programmers to differen-
tiate between physical conflicts, at the level of memory, and logical
conflicts that actually violate application semantics. A TM system
with open nesting can permit physical conflicts that are not logical
conflicts, and thus increase concurrency among application threads.

Here we present an implementation of open nested transactions
in a Java-based software transactional memory (STM) system. We
describe new language constructs to support open nesting in Java, and
we discuss new abstract locking mechanisms that a programmer can
use to prevent logical conflicts. We demonstrate how these constructs
can be mapped efficiently to existing STM data structures. Finally, we
evaluate our system on a set of Java applications and data structures,
demonstrating how open nesting can enhance application scalability.

Categories and Subject Descriptors D.3.3 [PROGRAMMING LAN-
GUAGES]: Language Constructs and Features—Concurrent program-
ming structures

General Terms Design, Languages, Performance

Keywords transactional memory, nested transactions, open nesting,
abstract locks
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1. Introduction
With the recent advent of multi-core architectures, the need for bet-
ter concurrent programming methodologies has intensified. In par-
ticular, careful reasoning about shared data is crucial to both scala-
bility and reliability of concurrent programs. Transactional memory
(TM) simplifies concurrent programming by providing the program-
mer with a simpler, more sequential, semantic universe in which to
reason and program. Recent work has shown that TM implementa-
tions can match the scalability of fine-grained synchronization while
retaining the program-level simplicity of coarse-grained locks. More-
over, unlike locks, transactions are composable and deadlock-free,
significantly reducing programmer burden.

The ideas behind TM borrow greatly from the wide body of liter-
ature on transaction processing, mostly in the context of databases. In
particular, memory transactions have been designed to respect the first
three fundamental ACID properties: atomicity, consistency, and isola-
tion. One important idea in the database context is that of open nested
transactions, where a programmer can exploit higher-level semantics
to enhance concurrency. Moss and Hosking have recently suggested
that open nested transactions can be used in the context of transac-
tional memory as well [13, 14, 15]. To understand the benefits of open
nesting, we must distinguish physical serializability and abstract se-
rializability. We call a concurrent execution of a set of transactions
physically serializable if the resulting state of memory is consistent
with some serial execution of those transactions. On the other hand,
we call a concurrent execution of a set of transactions abstractly seri-
alizable if the resulting abstract view of data is consistent with some
serial execution of those transactions.

We illustrate the difference in the example of Figure 1, which
uses a set s that is implemented as a linked list. Suppose that s is
initially empty and that it always inserts a new element at the end
of its internal linked list. Then, physically serializable executions of
these transactions must result in either the order (x,y,z) or the
order (z,x,y). In particular, (x,z,y) is not a valid result as it
would violate the atomicity of Transaction 1.

However, the programmer may realize that list ordering is not
relevant to the abstract state of the set. Set membership tests, etc.,
will produce the same result regardless of the order of the elements on
the internal linked list. Thus, the order (x,z,y) is consistent with

Transaction 1:

atomic {
s.insert(x);
s.insert(y);

}

Transaction 2:

atomic {
s.insert(z);

}

Figure 1. Example 1: Physical versus abstract serializability



Transaction 1:

atomic {
s.insert(x);
if (!s.contains(z))
s.insert(y);

}

Transaction 2:

atomic {
s.insert(w);
if (!s.contains(y))
s.insert(z);

}

Figure 2. Example 2: Physical versus abstract serializability

an abstractly serializable execution: both transactions successfully
inserted their elements into the set. By permitting such a result, a
programmer can increase concurrency. With abstract serializability,
if Transaction 1 stalls between the inserts of x and y, Transaction 2
may still proceed to insert z.

It’s important to note that abstract serializability still demands
some form of conflict detection and resolution. We cannot simply ex-
ecute the two transactions in the above example concurrently with
no conflict management. First, we must ensure that the set insertions
themselves happen atomically individually. For example, a concurrent
execution that results in (x,z) is neither physically nor abstractly se-
rializable. Second, we must ensure that abstract conflicts do not occur.
Consider the slightly more complex example in Figure 2. In this case,
assuming s is initially empty and our set-based notion of abstract se-
rializability, the only two valid execution results are {w,x,y} and
{w,x,z} (where the sets are unordered). If Transaction 1 observes
that s does not contain z, concurrently executing Transaction 2 must
not be allowed to insert z without properly serializing with Transac-
tion 1. Transaction 2 must either wait for Transaction 1 to complete,
or one of the transactions must abort.

We use open nested transactions to support abstract serializability.
In the examples above, the set operations can be implemented as
open nested transactions operating at a lower-level of abstraction. In
this case, the individual set operations can themselves be physically
serializable. However, once they complete, they can release memory
resources to enhance concurrency. To provide conflict detection at the
abstract level, we integrate an abstract locking mechanism into our
design. In the preceding example, Transaction 1 should use an abstract
lock to establish the fact that z is not in the set. Transaction 2 will
later try to obtain an abstract lock to permit inserting z into the set,
but this lock conflicts with the one held by Transaction 1, preventing
Transaction 2 from inserting z. If both transactions get past their if
statement, then at least one of them will have to abort, since each
conflicts with the other.

To abort a transaction properly, we allow the programmer to pro-
vide an abstract compensating action for each of its open nested trans-
actions. In the case at hand, it is not sufficient merely to roll back the
state of memory. Undoing the memory operations that Transaction 1
performed to insert x into the list may inadvertently also remove w
if w was appended after x. Instead, an abstract compensating action
must be performed. In this case, to abort the first transaction, we must
logically remove x from the list, e.g., by executing s.remove(x).

The examples above highlight the potential scalability shortcom-
ings of TM systems that support only physical serializability. With-
out transactions, the programmer has the burden of expressing with
locks all possible conflicts in a system, but also has the freedom of
determining that certain actions do not conflict whether it be for phys-
ical or logical reasons. A TM implementation based upon physical
serializability significantly reduces the burden on the programmer by
automating conflict detection, but is forced to be conservative as the
example above shows.

Our goal is to offer open nested transactions as a means for pro-
grammers to obtain the precision of locks while retaining the bene-
fits of transactional memory including serializability, composability,
and deadlock-freedom. Some of this power will come at the cost of
increased complexity since a system cannot automatically reason at

the level of application semantics. Nevertheless, we believe that, for
expert programmers, the scalability benefits of open nesting can out-
weigh the costs. Open nesting is for expert library programmers to
build software components that average programmers can compose
together in a scalable way using transactions. Average programmers
can use these software components without being aware of open nest-
ing, so they still benefit from the productivity advantage of transac-
tions but also get good performance.

Most existing TM implementations provide no open nesting mech-
anism. Two very recent notable exceptions are TCC [2, 10] and
LogTM [11], both hardware TM implementations that support open
and closed nesting. In both cases, however, the model of open nesting
is lower-level than what we propose here.

The novel contributions of our paper are as follows:

• We present the first implementation of open nested transactions
in an STM, and show how to map open nesting functionality effi-
ciently onto existing STM data structures. Prior implementations
of open nesting relied on hardware support [11, 2, 10]. Ours is a
pure software implementation integrated into a high-performance
STM and managed run-time.

• We propose new language constructs for open nesting that sup-
port two-phase abstract locking with hierarchical lock modes. We
demonstrate how these constructs enable a straightforward imple-
mentation of scalable, open-nested variants of standard Java data
structures. We also show how to integrate abstract locks into an
STM implementation efficiently.

• We present the first evaluation of open nested data structures
for transactional memory. Previous implementations studied open
nesting in a more limited setting. Although they supported com-
pensating actions, they evaluated open nesting only in a setting
that did not require them.

• We demonstrate that open nested transactions enhance the scala-
bility of concurrent data structures for long-running transactions
without introducing significant overhead to short-running transac-
tions in an STM.

• We demonstrate that open nested transactions also reduce transac-
tional overhead for long-running software transactions on a single
thread by reducing the memory requirements of STM validation.

• We discuss the potential pitfalls of open nesting, and we propose a
set of guidelines the programmer and TM implementations should
follow in order to exploit open nesting safely.

2. Language Extension and Semantics
We now define syntax and semantics for open nested transactions.1

Because open nesting is a general mechanism that can violate physi-
cal serializability, it must be used with care. Our focus here is to pro-
vide the programmer with the tools to enforce abstract serializability,
not general escape from serializability altogether. We discuss the po-
tential dangers of badly formed open nested actions, and we propose
programming conventions for using open nesting safely.

Atomic actions. We begin by summarizing the syntax and behav-
ior of standard closed nested transactions as they are now widely
accepted [14, 15]. We use the term atomic action to denote a unit
of sequential computation that must execute atomically. Java syntax
for transactions typically permits a method or block to be marked
as atomic, by writing the keyword atomic where the keyword
synchronized is permitted. A block/method may not be both

1 We have developed a language proposal that is more detailed and includes a
few more features, but space precludes detailed discussion in this paper. We
leave broader and more detailed consideration of the language design issues to
future publication.



atomic and synchronized. Each execution of an atomic
block or method occurs as a transaction. An atomic action has three
possible outcomes:

• It can succeed (complete successfully), in which case its effects
are committed.

• It can abort, in which case its effects are undone, and the action
will be retried from the beginning.

• It can fail (complete abruptly) when it throws an unhandled excep-
tion, in which case its effects are undone specially and the action
is not retried.2

The effects of an atomic action include assignments to (shared) in-
stance and class fields, and (unshared) local variables and formal
method parameters and exception handler parameters (i.e., all de-
clared variables), as well as the effects of nested atomic actions that it
executes. With closed nesting, when a nested atomic action commits,
it merges its read and write sets to those of the outer atomic action.
None of its effects will be visible to other atomic actions (except its
ancestors) until the top-level atomic action commits.

Open atomic actions. Just like a normal closed nested transaction,
an open atomic action executes as an atomic action. However, when
it succeeds its effects may be made visible to the world immediately.
This may break the physical serializability of its enclosing transac-
tion, while improving concurrency. To preserve abstract serializabil-
ity while relaxing physical serializability, a nested open atomic ac-
tion is augmented with handlers that execute (as separate open atomic
actions) depending on whether the enclosing transaction succeeds,
aborts, or fails. The handlers are registered with the enclosing trans-
action when the open atomic action succeeds (if it fails then its effects
are discarded in the same way as for closed transactions). The han-
dlers we support for an open atomic action include:

• on-abort to define compensation actions to undo the global effects
of committed children when their parent fails.

• on-commit to define cleanup actions for committed children to be
performed when their parent succeeds.

• on-validation to permit high-level checking (e.g., to validate op-
timistic abstract locks, to check integrity, or to check invariants
when running in unreliable environments) for committed children
when their parent is about to commit.

• on-top-commit to perform finalization actions for all committed
descendants of a top-level transaction (e.g., to flush buffered out-
put) when the top-level transaction commits.

Before an open atomic action can succeed, it usually must also acquire
an associated set of abstract locks, each of which specifies locking
some object on behalf of the open atomic action in some predefined
lock mode. If a lock on object o in mode m is compatibly acquired in
the context of the current atomic action then we say that the current
atomic action holds a lock on o in mode m in the current context.
Lock acquisition may fail due to lock conflict, when comparing triples
consisting of lock context, lock object o, and lock mode m, in which
case the current action aborts and will be retried.

Syntax for an open atomic action might be indicated by augment-
ing the standard atomic block/method syntax with handlers and a
locks clause. However, because the purpose of open atomic actions
is to permit programmers to construct abstractions that relax physi-
cal serializability while preserving abstract serializability, we prefer
to express open actions for Java in terms of Java’s principal abstrac-
tion mechanism, the class. Defining open atomic actions in terms of

2 Our current implementation treats an exception as normal completion and
commits the transaction, as does the design of Harris and Fraser [5]. Transac-
tion behavior on exceptions is largely an orthogonal issue to open nesting.

MethodDeclaration:
MethodHeader LocksClauseopt MethodBody

LocksClause:
locks ( LockExpressions )

LockExpressions:
LockExpression
LockExpressions , LockExpression

LockExpression:
Expression : Expression

MethodBody:
Block OpenAtomicHandlersopt

OpenAtomicHandlers:
OpenAtomicHandler
OpenAtomicHandlers OpenAtomicHandler

OpenAtomicHandler:
onabort Block
oncommit Block
onvalidation Block
ontopcommit Block

Figure 3. Syntax for open atomic classes and methods

classes and their public methods promotes their use in construction of
appropriate abstraction levels for concurrency.

Open atomic classes. An open atomic class is declared by the (new)
modifier openatomic. This indicates that the (separately desig-
nated) openatomic instance or class fields of the class may be
accessed only during execution of openatomic instance or class
methods of the class. Subclasses of openatomic classes are (im-
plicitly) openatomic. The openatomicmodifier makes no sense
for interfaces since they carry no implementation.

Open atomic fields. Open atomic classes may not have public fields,
since there is no way to prevent public fields from being accessed
outside the class. All (non-public) class or instance fields of an open
atomic class are implicitly openatomic, and accessible only during
the execution of openatomic instance or class methods of the
class and its subclasses (this is enforced statically, though we omit
details here). We provide additional syntax (not described here) for
declaring specific non-public fields not to be openatomic where
the programmer needs an escape from this default.

Open atomic methods. All public methods of an open atomic class
are themselves openatomic, and may have any of the handlers
enumerated above (onabort, oncommit, onvalidation, and
ontopcommit), and optionally a locks clause, indicating the
abstract locks the method must acquire before it can return.

2.1 Syntax
Java syntax for open atomic handlers and locks clauses is given in
Figure 3. Handlers are within the scope of their method’s header (i.e.,
as siblings to the scope of the method’s block (if any). Thus, han-
dlers can refer to this and instance fields (in an instance method),
the method’s parameters, and class fields. Except for the method’s pa-
rameters, when the handler is executed the value of these variables is
whatever they are at that time. The values of method parameters used
in the handler are initialized to the value they had when the method
completed. To simplify writing these handlers, we allow two special
expression forms:

• @result is the value that the method originally returned

• @old(exp) is whatever value exp had at the time the method
was entered (i.e., immediately before the method’s Block was
executed).



Supporting these constructs, and supporting use of method parameter
values, requires generating code that saves the necessary values and
makes them available to the handler if and when it is run.

The locks clause is attached to the method’s header so as to
make conflict properties more clearly apparent in the method decla-
ration. The locks themselves must be acquired for the openatomic
method to return (successfully). A LockExpression consists of a
pair of expressions: the object to be locked o and the lock mode m.

2.2 Example: An open atomic Map
Figure 4 illustrates how an open atomic implementation of the Map in-
terface can be defined as a wrapper for Map objects. In this example,
we see that OpenMap is declared as an openatomic class imple-
menting the Map interface. It wraps an unsynchronized Map object to
permit safe concurrent access to the map, with get, put, remove,
and size operations defined as openatomic methods.

In this example (and generally), onabort handlers are needed
only for methods that mutate the state of the map. The put operation
on Map objects returns the previous value associated with the given
key in the map, or null if there was none. Thus, the onabort
handler for put must either revert the map to contain that previous
association if there was one, or simply remove the new association.
Likewise, remove returns the previous value if any, so its onabort
handler must restore that previous association.

This example makes use of three lock modes:3 shared (S), exclu-
sive (X), and intention exclusive (IX). The compatibility matrix for
these locks is given in the following table:

S IX X
S yes no no
IX no yes no
X no no no

where the rows indicate the lock that is held on some object by one
transaction and the columns indicate the lock that is requested on the
same object by another transaction, and the entries say whether the
lock can be granted. Thus, shared locks are compatible since multi-
ple readers can operate on the same data item at the same time. On
the other hand, one cannot write a data item while it still has readers;
similarly, one cannot read a data item while it has a writer. Intention
locks reveal (at a coarser granularity) that some writer is modifying
some portion of a larger data item. Thus, to put/remove an as-
sociation for some key in the map requires an intention lock on the
map as a whole (as represented by the lock object). Two requests
to put/remove associations for different keys do not conflict. How-
ever, to put/remove an association for any key does conflict with
requests that read the state of the map as a whole, such as the size
operation. These constraints are recorded for put and remove by
acquisition of an exclusive lock on the key for which the association
is being changed, to prevent others from changing that particular as-
sociation, along with acquisition of an intention exclusive lock on the
map as a whole (for lock) to prevent others from shared mode access
to the whole map (such as size requires).

We need the separate lock object, rather than this, because
equality on locked objects is defined in terms of Java .equals (see
below), whereas in Java the return value of the method equals or
hashCode depends on the associations defined by the map. The
same map may have different equals or hashCode return values
as its contents are changing, which in turn may cause a lock operation
on this to succeed when it shouldn’t. We need a constant lock
object to uniquely identify each map (and also to avoid costly com-
parison of map contents using equals or hashCode).

3 These are a subset of standard lock modes defined by Gray [4].

import java.util.*;
import java.openatomic.SXModes.*;
public openatomic class OpenMap implements Map {
private final Map map;
private final Object lock = new Object();
public OpenMap(Map map) { this.map = map; }
public Object get(Object key)
locks(key:S)
{ return map.get(key); }

public Object put(Object key, Object value)
locks(key:X, lock:IX)
{ return map.put(key, value); }
onabort {
if (@result == null) map.remove(key);
else map.put(key, @result);

}
public Object remove (Object key)
locks(key:X, lock:IX)
{ return map.remove(key); }
onabort {
if (@result != null) map.put(key, @result);

}
public int size()
locks(lock:S)
{ return map.size(); }

}

Figure 4. A concurrent map implemented as an open atomic class.
We omit other methods of the Map interface.

2.3 Detailed Semantics
We describe the semantics of transaction execution, both closed and
open, in terms of abstract logs. While these logs are similar to the
logs one might use in an implementation (as we do), they are for
descriptive purposes only. A new transaction begins with an empty
log. If a transaction reads a memory location, it adds that fact to
the log, and if it writes a memory location, it notes that fact plus
the previous value of the memory location. Read and write entries
are adequate for implementing flat transactions and closed nesting.
In that setting, committing a closed nested action appends its log to
its parent’s log, and committing a top-level action discards the log.
Aborting a transaction processes the log in reverse order, and for each
write entry, restores the previous value. We define conflict in terms of
logs, too: two actions conflict if neither action is an ancestor of the
other and both attempt to access a location in conflicting modes (i.e.,
at least one of them tries to write). Conflicting actions must not both
commit, and they must also never both write the same location (or
undoing the writes may not work properly).

Open atomic actions add two kinds of things to the logs: handlers
and abstract locks, and mandate more complicated committing and
aborting procedures.

If there is no conflict, an open atomic action does the following
to commit. First, it invokes any onvalidation handlers in its log,
as open atomic actions, in the order in which they were logged. An
onvalidation handler may force abort (retry), in which case we
proceed to abort the action. If all the onvalidation handlers com-
plete successfully, the next step is to invoke any logged oncommit
handlers, as open atomic actions, in the order in which they were
logged. After invoking the oncommit handlers, we might need to
process the ontopcommit handlers. If we are committing a nested
open action, we append the ontopcommit handlers, as well as the
other handlers and abstract locks of the committing open action, to the
end of the parent’s log, and discard our own log. If we are commit-
ting a top-level transaction—in this case, which could be just atomic,
rather than open atomic—we invoke all ontopcommit handlers, as
open atomic actions, in the order in which they were logged.



In the presence of open actions, aborting transactions is also more
complex. We first process the log of the aborting transaction in reverse
order, processing two kinds of entries: writes and onabort handlers.
To process a write entry, we restore the written location to its previous
value; to process an onabort handler, we invoke it as an open
atomic action. Notice that if the same location is written multiple
times, with intervening open actions that have onabort handlers,
we will roll back the same location more than once, generally with
different values. The purpose here is to guarantee, as much as possible,
that an onabort handler sees a memory state that is abstractly
equivalent to the state at the end of its corresponding committed
forward action.

Concerning abstract locks and concurrency control, an abstract
lock consists of: a context object (or class), namely the object (or
class) whose method was being run as an open action; a locked object,
which is the object mentioned in the lock expression; and a lock
mode. Lock modes come from a given lock mode class (we allow
users to write their own lock mode classes, specifying which modes
conflict with other modes for that lock mode class). Two abstract
locks conflict if: they specify the same context object (in the sense
of Java ==), the same locked object (in the sense of Java .equals),
and conflicting modes of the same lock mode class. A lock acquiring
action A conflicts with a lock holder B if B is not an ancestor of A and
the lock that A is requesting conflicts with some lock in B’s log. We do
not specify exactly when an open action attempts to acquire abstract
locks—only some time during the execution of the action.

2.4 Using Open Nested Transactions Safely
We have defined open nesting to enable a programmer to relax con-
straints of physical serializability and, instead, rely on abstract serial-
izability. In this manner, a programmer can exploit high-level appli-
cation semantics to enhance the scalability of a program. This power,
however, comes at a cost. In particular, the programmer must be aware
of several issues specific to open nesting.

Correctly specify abstract locks and handlers. The first issue
should be clear: a TM system that permits open nesting cannot guar-
antee the serializability of transactions. It relies on the programmer
not to make mistakes. Without open nesting, the system can guarantee
that an atomic block is serializable with respect to other atomic
blocks. A TM system can reason about loads and stores. It can auto-
matically detect conflicts among memory accesses and perform com-
pensating actions. With open nesting and abstract serializability, the
programmer must specify conflicts (via abstract locks) and provide
compensation actions (via handlers). Moreover, if these are specified
incorrectly, the application will behave in an unintended manner. For
example, in Figure 4, the put operation’s onabort handler must
differentiate between a new insertion to a map and an update that
replaces an existing value. If the onabort handler was incorrectly
written only to remove new values, it would not properly compen-
sate the put operation. For example, if the transaction in Figure 5
is forced to abort at a late point, the incorrect version of the handler
would inadvertently remove the original entry. When the transaction
is re-executed, it would fail to insert the new value.

Avoid deadlocks in on-abort handlers. The second issue is more
subtle: open nested transactions can lead to deadlock. Consider the ex-
ample in Figure 6. Suppose both transactions are concurrently execut-
ing their respective onabort handlers. In each case, the onabort

atomic {
if(map.get(key) == value1)
map.put(key,value2); // same key, new value

}

Figure 5. Serializability relies upon a correct onabort handler

Transaction 1:

atomic {//closed atomic
x = ...
m1();

}
m1() {//open atomic
// no write to y

} onabort {
y = ... // deadlock

}

Transaction 2:

atomic {//closed atomic
y = ...
m2();

}
m2() {//open atomic
// no write to x

} onabort {
x = ... // deadlock

}

Figure 6. A potential deadlock in onabort handlers

handler conflicts with the other transaction. It is not sufficient merely
to re-execute the handler. One of the top-level transactions must be
aborted for either to make progress. However, we are already in the
middle of aborting each transaction; otherwise, we would not be exe-
cuting the onabort handlers in the first place! Each transaction must
make progress to abort correctly, and both are blocked. As a result, we
are deadlocked.

It seems that the problem here is that x and y are accessed some-
times open atomic and sometimes not. But this problem is actually
more insidious than it appears. Imagine that we altered Transaction
2 in Figure 6 to write xx and yy instead. Even though these values
are disjoint from those in Transaction 1, deadlock may still occur. A
TM implementation will typically register conflicts between accesses
to different memory addresses that map to the same underlying re-
sources (e.g., cache lines in hardware TM or objects in software TM).
If xx and x conflict and yy and y conflict, our altered program may
deadlock even though the programmer sees no conflict at the applica-
tion level. So there are also issues of granularity of access in addition
to inside/outside of open actions.

The programmer can take the following guidelines to avoid a
deadlock as in Figure 6.

1. The programmer must guarantee that, if a certain memory location
in an object is accessed via a certain open nesting context, then all
memory locations in that object must be accessed only via that
same context.

2. The programmer must guarantee that open nesting contexts are
partially ordered. That is, if an open action on object o1 invokes
an open action on object o2, then an open action on o2 should
never invoke an open action on o1.

Guideline 1 ensures that two conflicting accesses can only occur
within the same context (or within no open context). Under this
condition, a deadlock as in Figure 6 can only occur if the open nesting
contexts form a cycle. However, if the programmer observes guideline
2, no such cycle can be formed.

In addition, the TM implementation must guarantee that two mem-
ory locations, at least one of which is open atomic, can conflict only
if they are within the same object. This guarantees there is no false
sharing to cause the same deadlock.

Use escaping newly-created objects with caution. Another kind of
situation that can arise using open actions concerns the state of objects
created by a closed ancestor of an open action. If the open action
updates shared data to refer to the new object, and the parent aborts,
the state of the object will be rolled back. The TM implementation
must guarantee that the new object that is rolled back remains type-
safe. Software TM can build this into its allocation support; hardware
TM may need to run allocation, including object header initialization
but not the init method of a constructor, as an open action.



public Object put(final Object key,Object value) {
final Object[] returnValue = new Object[1];
TxnDesc _td = txnGetDesc();
Action handler = new Action() {
public void execute() {
if (returnValue[0] != null)
map.put(key, returnValue[0]);

else
map.remove(key);

}};
while (true) {
THandle _th = txnStart(_td);
try {
txnLock(_td, key, X);
txnLock(_td, lock, IX);
oldValue[0] = map.put(key, value);
return oldValue[0];

} finally {
int committed = txnCommitOpen(_td, _th);
if (committed == 1) {
txnLogOnAbortHandler(_td, handler);

} else if (committed == 0) continue;
}}}

Figure 7. Code generated for OpenMap.put using Polyglot

3. Supporting Open Nesting in STM
We implemented open nesting as an extension to a Java-based soft-
ware TM [1]. At the core of our system lies McRT-STM [19], an in-
place update STM that implements strict two-phase locking [4] for
writes, and optimistic concurrency control using versioning for reads.
One may find detailed descriptions of our base system in earlier pa-
pers [1, 19]; here we give only a brief overview of those features rel-
evant to understanding the open nesting implementation.

McRT-STM keeps track of the data accessed by a transaction using
a per-transaction read set, write set, and undo log. The read and write
sets record version numbers of the data that the transaction reads
and writes, respectively. The undo log contains old values of data
written by the transaction. The system uses the read set to validate the
execution of a transaction. At validation time, if all the data read by
the transaction still have the same version numbers as when they were
originally read (and recorded in the read set), no other transaction can
have written the data, and the transaction can commit. A different
version number indicates a conflict and requires transaction abort.
When a transaction commits or aborts it release locks on all the data
it has written. On abort it also restores memory locations that it has
written to their original values recorded in the undo log.

Our base system supports closed nested transactions. A nested
transaction shares its read set, write set, and undo log with its an-
cestors. For each nested transaction, the system maintains a structure
called a transaction memento that contains pointers to the portions of
the read set, write set, and undo log pertaining to the nested trans-
action. This effectively turns the read/write sets and undo logs into a
stack of such sets and logs, which we call the transaction activation
stack, where each memento defines a frame in the stack.

3.1 Language Constructs
In our previous work [1], we prototyped transactional constructs in
the Java language using Polyglot [16], an extensible source-to-source
compiler for Java. We use our Polyglot extension to translate a Java
program with transactional constructs to pure Java, and we have ex-
tended this further to support open nesting. In Figure 7, we show
the generated Java code for the put method from Figure 4. The
onabort handler is translated into the Java approximation of a clo-
sure: an object of an anonymous class extending a predefined class
Action. When the open nested transaction commits, this object is

mcrtSTMStartNonNested(TxnDescriptor* td)
mcrtSTMCommitNonNested(TxnDescriptor* td)
mcrtSTMStartNested(TxnDescriptor* td,

Memento* mmt)
mcrtSTMCommitNested(TxnDescriptor* td,

Memento* mmt)
mcrtSTMCommitOpenNested(TxnDescriptor* td,

Memento* mmt)
mcrtSTMLock(TxnDescriptor* td,int object,int mode)
mcrtSTMLogOnAbortHandler(TxnDescriptor* td,

int object)
mcrtSTMLogOnCommitHandler(TxnDescriptor* td,

int object)
mcrtSTMLogOnValidationHandler(TxnDescriptor* td,

int object)
mcrtSTMLogOnTopCommitHandler(TxnDescriptor* td,

int object)

Table 1. Low-level STM API routines for open nesting

registered with the STM using txnLogOnAbortHandler. Ab-
stract locks are translated into calls to txnLock, and released au-
tomatically by McRT-STM. All of these methods with the prefix txn
are handled specially by the system. We modified StarJIT, our dy-
namic compiler, to translate these methods to a low-level McRT-STM
API. We defined this API previously [19, 1] and extend it here with
new functions to support open nesting. Table 1 shows relevant part of
the extended API. StarJIT is able to track the nesting-level of trans-
actions at compile time and translates STM operations to the appro-
priate top-level (e.g., mcrtSTMStartNonNested) or nested (e.g.,
mcrtSTMStartNested) McRT-STM call.

3.2 Validation and Commit
When an open nested action tries to commit, we first validate its read
set, just as for closed actions. We scan the read set from the end (most
recent entry) back to the memento point for the committing action.
We compare version numbers in the read set to the current version
numbers for the corresponding objects. If all reads are up to date,
validation succeeds; otherwise, it fails.

If validation succeeds, the open action can commit, which requires
three steps. First, we release the locks acquired by the action (these
are recorded in the tail of the write set). Second, we discard the
read/write sets and undo log, by cutting back to the memento pointers.
This second step effectively pops the top frame from the transaction
activation stack. And then, we append the handlers and the abstract
locks of the committing atomic action to the parent’s log.

If validation fails, the current open atomic action must abort, par-
tially. First, we undo its writes and invoke any on-abort handlers
registered by committed child open nested transactions, by scanning
the undo log from the end to the memento, restoring memory loca-
tions to their recorded previous values and calling handlers. Then
we release the memory-level or abstract locks acquired by the cur-
rent action and its child transactions, by scanning the tail of the write
set backward to the memento’s start point. Finally, we discard the
read/write sets and undo logs. After all this, execution returns to where
the aborted action started.

If we fail to acquire a lock, not only do we abort the current
action, but we roll back to the beginning of the containing top-level
transaction. This is necessary to avoid deadlocks and livelocks. For
example, transactions T1 and T2 below can livelock if we roll back
only partially. (Methods m1 and m2 are open atomic.)

T1: atomic { a.f=...; m1(); } m1(){ b.f=...; }
T2: atomic { b.f=...; m2(); } m2(){ a.f=...; }



In a full roll back to the top level, we scan and undo all entries in the
undo log, release all locks, and discard the entire read/write set and
log, returning execution to the beginning of the top-level transaction.
In certain cases, it may be safe to roll back less far.

3.3 Pessimism and Optimism
The semantics as presented in Section 2.3 have more the flavor of pes-
simistic locking: acquiring and checking read and write locks as we
go, detecting conflicts early. Previous work with STM systems (our
own and others) has shown that optimistic handling of reads (read ver-
sioning) is more efficient than pessimistically checking at each access.
Rather, one notes the version read by any given transaction, and imme-
diately before commit, validates that this is still the current version. In
the case of flat transactions and closed nesting, it is straightforward to
argue that pessimistic and optimistic execution both maintain consis-
tency of committed work. Does adding open actions break this prop-
erty? We claim that if open actions are abstractly serializable, then we
maintain abstract consistency either way. The only difference is that
an optimistic scheme may detect conflicts later, and need to execute
more compensating actions.

3.4 Parent/Child Read/Write Set Overlap Problems
The validation and commit protocols we gave above work fine when
parent actions and their open child actions access different memory
locations. However, they require extension to handle cases where the
sets overlap.

Parent reads location, then child writes it: Here the child’s
write, because it increases a version number, appears to conflict with
the parent’s read. Our proposed solution is to maintain, with each
parent, an additional list, the committed write list, that enumerates
versions written by committed descendants of the the given action. If
a committing action has read version k of some object whose current
version is n > k, then we check to make sure that all versions k
through n (not including n) are in the committed write list, i.e., all the
changes are “ours”. If not, validation fails, otherwise it succeeds. Note
that this also handles the case of an arbitrary number of committed
written versions during the parent action.4

Parent writes location, then child also writes it: Here there are
three issues. One is that when the child commits, we might release the
write lock on the modified object. We record the write lock only in
the oldest writing ancestor’s frame, so it will be released only when
that action commits. A second concern is that we might fail to undo
properly if the child aborts and needs to be retried. But we undo
back to the memento point, which properly restores previous memory
contents. Another concern would be that our optimizations that try
to avoid logging more than one write per transaction might over-
zealously optimize away a necessary log entry. But both our static
and our dynamic optimizations respect transaction boundaries, so it is
not a problem.

3.5 Handlers
Handlers and abstract locks generalize our existing STM data struc-
tures. On-abort handlers generalize undo log entries, on-validation
handlers generalize read set entries, and on-commit handlers gener-
alize buffered writes. (We do not actually buffer writes in the current
implementation; our point is the conceptual correspondence.) Finally,
abstract locks clearly generalize write locks. To implement handlers
and abstract locks, we simply used the existing STM data structures,
and extended them to deal with the new kinds of entries. In the ex-
tended STM, simple read/write set entries and undo logs are inter-
leaved with abstract locks and closures for handlers.

4 Our current implementation does not maintain and check the committed write
list, since the discussed case is rare and does not come up in most properly
structured programs including our benchmarks.

Note that we interleave entries in the natural way to achieve the
previously specified semantics. In particular, on-abort handler entries
interleave with previous-value entries in the undo log so that process-
ing them all in reverse order implements our abort semantics. While
the interleaving order is less important for on-validation handlers, we
interleave them with read versions in the read set, and validation pro-
cesses all entries, invoking on-validation handlers as they come up
in the scan. On-commit and on-top-commit handlers require an ad-
ditional list in our current STM, but are straightforward to add. In a
buffering STM that creates copies for shared data in a private buffer,
on-commit and on-top-commit handlers may be mapped into buffer
entries for speculative writes.

Each handler is recorded in the STM data structures as a closure,
i.e., code plus an execution environment. We implement these clo-
sures using Java anonymous classes. Each handler definition is trans-
lated source-to-source into an instantiation of an object of an anony-
mous class implementing a well known interface. The object is then
recorded in the STM data structures after the associated open nested
action commits.

3.6 Lock Manager
As described in Section 2, we rely on abstract locks to provide isola-
tion at the abstract level. In general, abstract locking could be provided
by the user, via handlers. For example, in a paper on LogTM [11], the
authors show how to lock a B-Tree entry to enforce isolation at the
entry level using open nesting. However, this approach is rather com-
plicated for the programmer. It requires that a lock slot be added to
each entry. It requires user-level condition synchronization in case the
lock is already acquired. It also requires some mechanism for “lock-
ing” the fact that a key/entry is not in the data structure (as in Figure 2).
For these reasons, we instead tightly integrated abstract locking into
the language itself.

At an implementation-level, we also had the choice of providing
abstract locks at the Java level (i.e., by mapping language extensions
to a user-provided Java lock manager) or natively integrating into the
underlying STM. For performance reasons we chose the latter route.
We implemented a lock manager similar to that described by Gray [4].
It supports several standard lock modes to support hierarchical lock-
ing, including exclusive, shared, and intention locks. We can readily
extend this approach to allow user-defined sets of lock modes, each
such set having its own lock mode conflict matrix.

When an open nested transaction begins, the system attempts to
acquire its abstract locks as shown by the txnLock operations in
Figure 7. When an abstract lock is requested in a particular mode, the
system checks whether the lock is free or held by any other threads.
It tests whether the requested mode is compatible with the existing
mode (e.g., multiple threads may hold a shared lock). If the modes are
compatible, the existing mode is upgraded if necessary. The calling
thread is added to the lock’s list of holders, and the abstract lock is
added to the current transaction’s log. If the mode is not available, the
lock cannot be acquired. In this case, we do a full abort. Full abort on a
locking failure ensures that abstract locks do not lead to deadlock. For
example, the partially lowered code sequence in Figure 8, and more
complicated sequences, won’t deadlock, even though the same locks
are acquired in the opposite order.

Abstract locks are released by STM without intervention of user
code or compiler-generated code. When an open atomic action com-

Transaction 1:

open {
txnLock(desc, o1, X);
txnLock(desc, o2, X);

}

Transaction 2:

open {
txnLock(desc, o2, X);
txnLock(desc, o1, X);

}

Figure 8. Abstract locks will not deadlock



mits, the abstract locks that it has acquired are appended to its parent’s
log. From then on, STM handles the abstract locks as ordinary locks,
releasing them only when a top-level or open atomic action commits.

4. Experimental Results
To evaluate our system, we performed experiments using the stan-
dard HashMap and TreeMap data structures from the Java class
library. In particular, we compared the performance of synchronized
and atomic versions of these data structures with our new open nested
versions. The workload consists of long-running transactions of map
operations. In our experiments, we had 16 transactions, each consist-
ing of 4096 put operations. We executed these transactions in various
ways: all 16 serially in one thread; break them into groups, each group
executed serially on one thread, concurrently with the other groups;
or each transaction in its own thread, concurrent with all other trans-
actions. In any case, a transaction still consisted of 4096 operations,
which must be run as a single (large) atomic step. The code of each
transaction looks like this:

atomic {
for (int i = 0; i < 4096; i++)

map.put(key[i], value[i]);
}

All keys across all transactions are different: there is no logical
conflict. Ideally, if we run each transaction in a separate thread, we
should see no conflicts. However, there will be physical conflicts on
the shared internal state of the data structure, e.g., the buckets in the
hash map, or nodes in the red-black tree.

A transaction consisting of a massive sequence of library calls
is only one particular form of long-running transaction. Other long-
running transactions might have a small number of library calls, each
very time consuming. Although open nesting should also improve
scalability of such long transactions, we have not studied them.

For open nesting, we initialized map using OpenMap as de-
scribed in Section 2. For comparison, we used three other variants
of the workload. For closed nesting, we initialized map using the
AtomicMap wrapper. Closed nesting was implemented as runtime
flattening in these experiments. No partial abort was used for closed
nesting. For coarse-grained locking, we used the standard Java library
class HashMap or TreeMap, changing the atomic keyword to
synchronized in the driver above. For the unsafe version, we sim-
ply removed the atomic keyword from the code, and used the stan-
dard Java library classes. We do not present data here for unsafe code
in multi-threaded cases, because such executions are incorrect.

We performed all experiments on a 16-way IBM xSeries 445 ma-
chine. This machine has 4 boards, each having 4 Intel Xeon processors
running at 2.2 GHz. Each processor has 8 KB L1 cache, 512 KB L2
cache, and 2MB L3 cache. Each board has a shared 64MB L4 cache.

Consider first our results for TreeMap, varying the atomicity
strategy and the number of threads, presented in Figure 10. We can
see that closed nesting does not scale very well for this benchmark:
it gives no speed-up compared to the unsafe single threaded version.
In closed nesting, the read/write sets of all child transactions are ap-

import java.util.*;
public class AtomicMap implements Map {

private final Map map;
public AtomicMap(Map map) { this.map = map; }
public Object put(Object key, Object value) {

atomic { return map.put(key,value); }
}
...

}

Figure 9. A concurrent wrapper for Map using closed nesting
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Figure 10. 65536 put operations on a TreeMap
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Figure 11. 65536 put operations on a 128 bucket HashMap

pended to the parent’s. Thus, if any child writes the root of the red-
black tree, it will conflict with other transactions, because all trans-
actions read the root. And any such conflict will cause the transac-
tion to abort and retry. Given the large number of put operations
in each transaction, such conflicts are essentially unavoidable, so the
transactions executed serially. Open nesting avoids this problem, so it
scales fairly well. With 4 or more threads, it beats the synchronized
version. With 4 or 8 threads, it is even faster than the unsafe single
thread version. This demonstrates that, given enough concurrency and
enough processors, open nesting’s scalability enables it to overcome
its overheads. Open nesting stops scaling after 4 threads, because the
intentional lock on the single global lock object per data structure
becomes a bottleneck and causes contention.

Now consider our results for HashMap. In this case, conflicts
usually occur in accessing buckets or linked list entries. We populated
the map before the long transaction of puts, so we avoided inserting
new entries. In other words, we only did in-place updates. Therefore,
we didn’t have conflicts due to the buckets; but we still had conflicts
due to linked list entries. If two keys are mapped to the same bucket,
a transaction writing an entry nearer the front of the list will cause
another transaction writing an entry nearer to the end of the list
to abort, because the second transaction must read the earlier entry
written by the first transaction in order to compare and find its entry to
write. Figure 11 shows the results for a HashMap with 128 buckets.
Closed nested transactions had huge read sets (from searching the
lists) and poor performance (because of the conflicts in updating
buckets’ list pointers). It stopped scaling after 8 threads. Open nesting



 0

 50

 100

 150

 200

 250

 0  2  4  6  8  10  12  14  16

E
xe

cu
tio

n 
tim

e 
in

 m
ill

is
ec

on
ds

# of threads

Closed nested
Open nested

Synchronized
Unsafe

Figure 12. 65536 put operations on a 65536 bucket HashMap
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Figure 13. Locking overhead

had smaller read sets and avoided the false conflicts due to linked list
traversals, so it scaled very well and obtained speed-up compared to
coarse-grained locking and unsafe code.

If we increase the number of buckets, we increase the concurrency
of the HashMap, and the performance of the various approaches
changes. Figure 12 shows results for a HashMapwith 65536 buckets.

In Figure 13 we present the overhead for abstract locks—user-
level or built-in—compared to a baseline that uses no abstract locks
in open atomic actions. We repeated our previous experiments using
OpenMap with 128 buckets, with abstract locks using different lock
managers, and even without abstract locks. These results show that a
user-level lock manager is unacceptably slow, although it allows rapid
prototyping. A user-level lock manager is much easier to implement
because we benefit from all the rich features we added into Java
for transactional memory, such as atomic actions, retry, and open
nesting. Note that the user-level lock manager caused more scalability
problems in this experiment, due to conflicts accessing its lock table.
In contrast, a built-in lock manager implemented natively in the STM
is much faster, although more difficult to implement. Compared to
the same program with all abstract locking removed, a built-in lock
manager added only ˜25ms overhead in our experiments, while the
overall execution time (without abstract locks) varies from 2844ms to
453ms, as we increase the number of threads.

In Figure 14 we show the effect of transaction size At each point
we executed 65536 put operations in a single thread. The x-axis
shows the number of put operations per transaction for a given run.
At the far left, we executed 65536 transactions of one put each, and
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Figure 14. 65536 put operations in a single thread

at the far right, we executed one single transaction of 65536 puts. In
between, the transaction size doubled at each data point from left to
right, while the total number of puts stayed constant. In other words,
the number of transactions decreased by 50% at each data point from
left to right. On the open nested line, each put is an open atomic
action, while on the closed nested line, the put is part of the single
top-level transaction.

We can see that, for small transaction sizes in general, open nesting
exhibits a small overhead over flattened, closed nesting. This overhead
is from 2% to 18% for transaction size from 2 to 4096. As transac-
tion size increases, however, we see a penalty for closed nested trans-
actions. At 32768 puts per transaction, the open nested variant is
roughly 26% faster than the flattened one, and at 65536 puts per
transaction, 15% faster. We believe that this results from memory ef-
fects when the read set size exceeds the lowest level of cache. With
open nested transactions, however, each put operation is validated
almost immediately, and its read set entries removed at that time. As a
result, the maximum read set size is much lower, speeding validation.
Note that we used a more light-weight driver in this experiment, so we
observed better performance than our previous results for HashMap.

Figure 14 suggests that reducing read set size would potentially
improve the performance of closed nesting. We did some preliminary
experiments using runtime read set filtering, which reduces redundant
read set entries. The results did show improvement to single thread
performance for flattening. However, it did not improve the scalability
of closed nesting. Open nesting still scaled better, and showed better
performance given enough processors. Details about runtime filtering
are out of the scope of this paper, and will be covered in our future
publication.

5. Related Work
Transaction processing [4] has been widely studied in the database
community for decades. Moss proposed [12] nested transactions to
improve the performance and reliability of transaction execution for
distributed systems. In that model, nested transactions are closed; the
parent transaction inherits all locks of a committing child transaction.
However, on conflict a child transaction can be aborted without abort-
ing the parent, reducing the overall cost of an abort.5 Other researchers
in the database community extended this idea to support open nesting
models that allow child transactions to release locks early. Garcia-
Molina proposed [3] to use semantic knowledge to allow a transaction
to release locks early and, instead, register a compensating action to

5 Moss’s scheme also permits child transactions themselves to be performed in
parallel; this form of nested parallelism is beyond the scope of this paper. We
use linear nesting, as described by Moss and Hosking [14, 15].



be performed if a transaction must abort. Weikum and others [21, 22]
described a theory of multi-level serializability that describes serializ-
ability at different levels of abstraction and accounts for compensat-
ing actions. In this database context, the different levels of abstraction
were well-defined and disjoint. For example, in a two-level scheme,
the higher level might correspond to tuples and their insert, removal,
and updates, while the lower level might correspond to pages and spe-
cific read and write operations to those pages. Importantly, a system
only needs to reason about conflicts at the same level.

Herlihy and Moss [8] coined the term transactional memory
to denote transactional access to shared memory. Since then, re-
searchers [10, 17, 20, 7, 5, 9, 18, 23] have proposed and built a num-
ber of hardware and software transactional memory implementations.
Most implementations either did not support nested transactions or
simply flattened nested transactions into a single top-level transaction.
More recently, Harris et al. [6] argued that closed nested transactions,
supporting partial rollback, are important to implement composable
transactions, and presented an orElse construct that relies upon closed
nesting. In an earlier paper [1], we demonstrated a Java-based system
that provided both nested atomic regions and orElse, and we intro-
duced the notion of mementos to support efficient partial rollback.

In the past year, a number of researchers have proposed the use
of open nesting in transactional memory. Moss described the use of
open nesting to implement more highly concurrent data structures in
a transactional setting [13]. In contrast to the database setting, the dif-
ferent levels of nesting are not well-defined; thus different levels may
conflict. For example, a parent and child may both access the same
memory location and conflict. Both TCC [2, 10] and LogTM [11]
describe hardware transactional memory implementations of closed
and open nesting. Both support commit and abort handlers for open
nesting. Our work is different in several ways. We describe the first
implementation of open nesting in a software transactional memory
system. Second, our implementation is the first to support arbitrary
levels of open nesting. Both hardware implementations above are in-
herently limited by the the number of bits set aside per cache line or
the associativity of the cache. Third, we provide the first system that
integrates two-phase abstract locking. Finally, we offer performance
results from a running system, while hardware proposals necessarily
rely on simulation.

6. Conclusions
We presented a full-featured and efficient implementation of open
nested transactions in a software transactional memory system. We
prototyped extensions to Java to define open nested regions with han-
dlers to support high-level validation, early release of memory re-
sources, and rollback, and with abstract locking to support high-level
concurrency control. We described an efficient mapping of these fea-
tures to a high-performance software transactional memory imple-
mentation. Finally, we illustrated the costs and benefits of open nest-
ing on Java data structures in a running implementation. We found
that open nesting is effective in increasing concurrency among trans-
actions and reducing the overhead of individual transactions.
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