
G.N.C. Kirby, A. Dearle, and D.I.K. Sjøberg (Eds.): POS-9, LNCS 2135, pp. 157-160, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Session 4: Overview

Antony L. Hosking

Department of Computer Sciences, Purdue University,
West Lafayette, IN 47907-1398, USA

hosking@cs.purdue.edu

The papers in this session both address the behavior of persistent object stores in
response to the applications they are intended to support.

The first paper, by Richer and Shapiro, was presented by Nicolas Richer [NR]. It
evaluates the behavior of five memory allocation and clustering strategies for the
PerDiS persistent distributed object store, when it is used as the underlying storage
platform for sites on the World Wide Web. The workloads comprise recorded traces
of actual accesses to two different web sites. These are used to drive a simulation of
the PerDiS allocation strategies, in which the web sites are modelled as an object
graph.

Results of the study include demographics on object size (80% are less than 50K
bytes), the fraction of objects participating in cycles (many), and the size of those
cycles in bytes and number of objects (small). The simulations show that a large
fraction of references cross the boundaries of „bunches“, which are regions of
clustered objects in the PerDiS store. Inter-bunch references are more expensive than
intra-bunch references. Moreover, the bunch is the unit of garbage collection in
PerDiS, so cycles that cross bunch boundaries cannot easily be collected. The high
number of inter-bunch references is unexpected and negatively impacts performance
for all of the PerDiS allocation and clustering strategies. Still, strategies that perform
allocation depth-first by graph topology yield marginally better locality of reference
overall.

Several questions followed the presentation, paraphrased as follows. Brian Lewis
[BL] asked why simulation was used instead of using PerDiS directly. Richer
responded that they wanted to work in parallel with the evolution of the PerDiS
platform in order to obtain a result. He noted that the simulation included essentially
the same allocation strategies as PerDiS.

Malcolm Atkinson [MPA] noted that it is certainly feasible to use the web as an
accessible application workload, but wondered if the web can give any real
information relating to what goes on in distributed applications. His concern is that
the web has no reachability graph that makes much sense, nor update models that are
managed in any organized way. He wanted to know how one might transfer
knowledge from a Web-based study to other application domains. Richer conceded
that this is a difficult point to counter. At the beginning they only wanted to study true
persistent applications, but these are not easily available, so they wanted to find
something comparable between the Web and some persistent applications.
Unfortunately, this comparison is not very encouraging, but a better match might be
confirmed by other measurement. He didn’t think that the results would transfer

158 A.L. Hosking

directly, though they can yield some information about widely distributed data; in
fact, he could think of nothing more widely distributed than the Web.

Atkinson then made another comment, stating that the talk began by asking how
many cycles are not garbage collected by PerDiS since they span the units of garbage
collection (i.e., the bunch), but that the paper doesn’t seem to address that question
directly since it doesn’t ask what bunches are going to coincide at any given time
while garbage collecting. Again, Richer conceded the difficulty of answering this,
since it would require experiments that drive the real behavior of PerDiS with real
users from different sites and to measure what is never reclaimed. Currently, the
PerDiS platform is not used in this way so there is no real way to measure it yet. They
tried in this study to measure the maximum number of cycles that might not be
reclaimed; there may be fewer, but they wanted an upper bound. Without real
experience of the real platform they cannot say how much for real is not reclaimed.

Alex Wolf [AW] wondered why the study used a simulation instead of analysis,
noting that the workload and data are stable enough for analysis. Richer responded
that simulation seemed easier, since it directly encodes the basic policies used in the
actual PerDiS platform. He said that they used parts of the real platform in the
simulator, so it was simpler to simulate by using the allocation policies directly from
PerDiS.

Wolf then made a second observation in that the study took a very traditional
programming language approach, worrying about clustering for the particular reason
of garbage collection only. He noted that with application to persistent object systems
there are so many other reasons to form clusters, such as access patterns, units of
transfer between clients and servers, locking granularity, and so on. Looking at things
from the one perspective does not give such an interesting result with respect to
persistent object systems. In reply, Richer conceded as much, but also stated that they
were dealing with PerDiS and wanted to address that alone, in which garbage
collection is an important part of the system.

The second paper, by Garratt, Jackson, Burden and Wallis, was presented by
Andrea Garratt [AG]. Their study compares two Java-based persistent storage
mechanisms and their suitability for implementing the indexing component of an
experimental World Wide Web search engine. The platforms compared are PJama
and an unnamed commercially available object-oriented database system. The authors
were interested in both ease of use and performance, on which scores both systems
were judged fairly easy to use, while PJama demonstrates significantly superior
performance, though at the cost of more disk space. The following discussion ensued.

Lewis asked what is needed to make a persistent object system successful for a
commercial web index. Garratt’s answer was that the sheer performance needs to be
scalable, and that they did not appear to be getting good scaling from either of the
stores they were using, especially regarding response times for very large postings
lists. Garratt posited that for sheer performance they would need to implement their
own disk management software to get results, but that they were pleased with PJama
for what they were doing.

Tony Printezis [TP] commented that with everything in postings lists, sheer
performance would be difficult to achieve. Garratt’s answer was that compression,
and storing the lists contiguously on disk, should improve performance.

Fausto Rabitti [FR] then offered an observation that the work seemed naive from
the point of information retrieval, so they cannot compare the results with information
retrieval systems for web or for text. There are many things in the literature that could

Session 4: Overview 159

be used here to improve performance. His major point was that the long postings lists
must be scanned sequentially, whereas other systems would avoid this by applying
techniques to eliminate the post work and get a superset of results which can then be
post-processed. He also noted that commercial systems based on basic index
strategies go directly to disk, and that indexing in an object-oriented database system
is not the same as in PJama, where the B+-tree index must be programmed on top of
the system instead of being built-in. Rabitti found it strange that they did not use the
internal indexes of the object-oriented database system making the comparison with
PJama seem unfair.

Steve Blackburn [SB] followed up by saying that the question is really whether
orthogonal persistence can provide a panacea for data management, and that one
should not necessarily assume that an orthogonally persistent system will be suitable
for all data management tasks. Blackburn felt that one should be asking what the
limits are to orthogonal persistence, what it can be applied to, and whether the
applications used in these papers are good applications for orthogonal persistence.
Garratt answered that her group is pleased with the results for PJama, and that for an
experimental search engine such as theirs, PJama offered a good platform in which to
try out ideas. They might look for something else for better performance. Bernd
Matthiske [BM] asked what scale of application might need to be supported. Garratt
indicated that in future they intended to use much larger corpuses (on the order of
terabytes).

Tony Hosking [AH] asked if the time measure in the results was wall-clock or
CPU time, and if it included the time to access the disk. Garratt responded that the
measure was system and user time. Hosking responded that this would not then
include disk access time.

Eliot Moss [EM] had a question regarding text indexing, and referred back to work
by Eric Brown from the mid-1990s where implementing special access methods and
representations for inverted lists inside the Mneme object store seemed to be better
than using whatever data structures one gets with a high-level language. Moss asked
Garratt to comment on that, in terms of both compactness and speed. Garratt
responded that they simply wanted to test out ideas and so did not go down that path.
Compression might yield performance improvements.

The whole discussion then took a more general turn. Atkinson commented that he
was experiencing a strong sense of deja vu from the 1970s, in which he attended lots
of meetings about relational database systems and heard many people saying that they
made life so much easier, while others claimed they could never go fast enough so
one should not pursue them. Atkinson felt that if one takes any technology and tries to
map it to disks (which are very complicated beasts), while also supporting a wide
range of applications, it takes a very long time and effort in optimization to make it go
fast enough. He noted that there are many applications that one can throw at a mature
relational database system that will make it crawl. Atkinson felt that it is important to
look at the real costs of building applications both in terms of development hours and
the number of skilled programmers needed. It would be nice if one could actually
measure that. From the Wolverhampton team he was hearing that PJama helped in
development time, but he wasn’t hearing anything from the PerDiS group on that
score.

In response, Richer said it was difficult to quantify. PerDiS was designed from the
outset to be easy to use by application programmers, for whom distribution is not
familiar, so they wanted to support something that increased productivity and the

160 A.L. Hosking

possibility of new applications without sophisticated knowledge of distributed
systems. Richer felt that PerDiS was a success on this count, but that for now
performance was a problem. He felt that if the abstractions provided by PerDiS were
useful then performance could be enhanced in many ways, but it might take a lot of
work.

Ron Morrison [RM] followed with a comment on Atkinson’s comment, saying that
we might be trying to be far too ambitious. The research space is enormous, but there
are a number of valid ways to approach the research. One approach is to build a new
computational artefact that has not been built before. In this community persistence
and hyper-programming are examples of this. There are many applications that could
not have been built without the infrastructure that these technologies provide. Within
the Snyder classification these constitute proofs of existence and yield valid science.
Alternatively, one can seek performance that is better than prior implementations by
showing a new techniques has an edge under certain conditions—proofs of
performance. Trying to do that for the whole research space is impossible since it is
just too big. Another approach is to demonstrate that a particular configuration of
ideas or an approach achieves predefined objectives—this is proof of concept. As a
community we must guard against knocking results because they are „not faster“ or
„not better“. There is always an argument that will take away from those results, but
that criticism itself must be judged on its pertinence to the issues addressed by the
work it criticises.

The last word was had by Blackburn, commenting on orthogonal persistence and
the temptation to take it and find direct applications for it. Orthogonal persistence
provides an abstraction to help the programming task. He outlined his experience
working with some data mining people who were interested in using orthogonal
persistence in their domain. Blackburn found that the key people involved were
mathematicians devising models using Mathematica, which were then instantiated
into code to run data mining systems. He looked at producing Java bytecodes directly
from Mathematica and semantically extending those with persistence abstractions.
This would have given the data mining people something they could have used: the
mathematicians could use the tool they were familiar with, while persistence
abstractions sufficient to their needs were incorporated transparently, even though it
was not really full-blown orthogonal persistence. Blackburn wondered if applying
orthogonal persistence directly is the best way, or whether we should instead take our
experiences with orthogonal persistence and extend from them into other domains.

