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Abstract. Aggressive optimization of programs often relies on analysis and trans-
formation that cuts across the natural abstraction boundaries of the source pro-
gramming language, such as procedures in procedural languages, or classes in
class-based object-oriented languages like Java. Unfortunately, execution envi-
ronments for languages such as Java dynamically link code into the application
as it executes, precluding cross-cutting analyses and optimizations that are too
expensive to apply on-line.
Fortunately, persistent object systems usually treat the code base as an integral
part of the persistent store. This code base approximates the notion of “whole-
program” that has been exploited in other optimization frameworks. This paper
describes an analysis and optimization framework for Java that operates against
the persistent code base, and couples the results of analysis and optimization
with the run-time system to ensure continued correctness of the resulting code.
The framework performs extensive analysis over the code in the store, supporting
optimizations that cut across class boundaries in ways that are not safe to perform
off-line on stand-alone Java classes.

1 Introduction

Techniques for aggressive optimization of programs often rely on analyses and trans-
formations that cut across the natural abstraction boundaries that allow for separate
compilation of the source programming language. These atomic compilation units typi-
cally correspond to natural encapsulation boundaries, such as procedures in procedural
languages, or classes in class-based object-oriented languages like Java. Such aggressive
analyses and optimizations then take into account the particular combination of units
that make up a given application program, and specialize the code from each unit to that
particular combination. For statically-linked languages such as C and Modula-3, where
the units that make up a given program are known statically, aggressive (and possibly ex-
pensive) analysis and optimization can be performed off-line. Unfortunately, execution
environments for more dynamic languages such as Java link code into the application as
it executes, precluding analyses and optimizations that may prove too expensive to apply
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on-line. Moreover, even for analyses that are not too expensive to apply on-line, some
candidate optimizing transformations that are safe to apply at one time may subsequently
become invalid if the code base evolves in a way that violates their safety.

Fortunately, persistent object systems usually treat the code base as an integral part
of the persistent store. For example, the PJama prototype of orthogonal persistence for
Java captures all classes loaded by a persistent application and stores them in the per-
sistent store. This code base approximates the notion of “whole-program” that has been
exploited in other optimization frameworks. We describe an analysis and optimization
framework that operates against the code base of the PJama persistent store, and which
couples the results of analysis and optimization with PJama’s run-time system to en-
sure continued correctness of the resulting code. Our framework performs extensive
analysis over the code in the persistent store, supporting optimizations that cut across
class boundaries in ways that could not be safely achieved with stand-alone Java classes
off-line.

The object-oriented programming paradigm aims to provide modular and reusable
programs and libraries by encouraging the use of polymorphism and numerous small
methods. However, the same qualities that make object-oriented programming attractive
also make it difficult to optimize. Optimization techniques for procedural languages rely
on potentially expensive static analysis of large portions of code. In contrast, object-
oriented programs tend to be dynamic in nature and to have many short methods, so
inlining is often employed to increase the size of the code regions for optimization.

We have implemented a number of analyses that attempt to reduce the dynamic
nature of Java programs and, through method inlining, increase method size so that
traditional optimizations may have a greater effect. The Java Language Specification
[Gosling et al. 1996] requires that changes made to Java classes arebinary compatible
with pre-existing class binaries. However our optimizations break Java’s data encap-
sulation model by allowing caller methods to access the private data of classes whose
methods are inlined. For example, consider a methodm1 declared in classAand a method
m2 declared in classB that accesses one ofB’s private fields. Inlining a call inm1 to
m2 would result inm1 accessing one ofB’s private fields. This violates encapsulation
as well as Java’s static rules that ensure binary compatibility. Thus, our optimizations
must be performed on classes in a safe environment in which the restrictions placed on
transformations to ensure binary compatibility can be lifted. Code could be optimized at
runtime when the virtual machine has complete control over the classes. However, our
optimizations require extensive program analysis whose runtime cost would most likely
outweigh any benefit gained by optimization.

Some implementations of orthogonal persistence for Java maintain a representation
of classes, as well as instantiated objects, in the persistent store. Such a store provides
a good approximation of the closed-world environment in which a Java program may
actually run. The classes in a persistent store are verified to be binary compatible upon
their entry to the virtual machine, so there is no need to “reverify” classes in the persistent
store. Moreover, a program executing within a persistent store has an unusual concept of
“runtime”. Because data persists between executions in its runtime format, the execution
of the program can be thought of in terms of the lifetime of its data. The program
runs, pauses (no code executes, but the runtime data persists), then resumes. When the
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program is “paused” classes within the store may be modified without regard to binary
compatibility. It is during these “pauses” that we perform our optimizations on classes
residing with an persistent store.

Because our optimizations are static they cannot account for new classes that are
introduced via class reflection or native methods. The introduction of new classes may
invalidate some of our optimizations. To handle this, the virtual machine notifies the
optimizer at runtime of changes in the class hierarchy. The optimizer, in turn, may
revert certain methods to their unoptimized form, de-optimizing them based on the
information provided by the virtual machine. We use a property known aspre-existence
(discussed below) to avoid the need to de-optimize active methods (i.e., to avoid on-stack
replacement).

Here we explore performing extensiveoff-line optimization of Java classes that reside
in a persistent store. By off-line, we do not necessarily mean that the persistent system is
inactive – transformations may be performed concurrently with the persistent application
– but rather that the type analyses necessary for the optimizing transformations must not
be invalidated by the concurrent execution through dynamic class loading. Thus, one
might envision the optimizer running in a background thread, taking advantage of qui-
escent periods in the store. For now, however, our implementation operates against the
persistent store as a separate, privileged application. This is unavoidable since we use the
PJama prototype of orthogonal persistence for Java [Atkinson et al. 1996], which cur-
rently has no support for controlled concurrent access to a store by multiple applications.
We use our Bytecode-Level Optimizer andAnalysisTool (BLOAT) [Hosking et al. 1999;
Hosking et al. 2000] to model, analyze, and optimize Java programs, with method inlin-
ing to expose additional optimization opportunities to our intra-procedural optimizations.

2 Type Analysis

A callee method is invoked by acaller method at acall-site. There are two kinds of call-
sites. Adynamically bound call-site invokes aninstance method and requires a run-time
dynamic method lookup to determine the exact method to be invoked based on the type
of its receiver object.Astatically bound call-site invokes aclass method or aconstructor
method and does not require such a lookup. Type analysis computes the possible types of
a receiver object and thus computes a set of methods that could be invoked at a call-site.
If only one method can be invoked at a call-site, the call-site is said to bemonomorphic.
Otherwise, it ispolymorphic.

Class hierarchy analysis [Dean et al. 1995; Fernandez 1995; Diwan et al. 1996] uses
the class inheritance hierarchy in conjunction with static type information about a call-
site to compute the possible methods that may be invoked. We use the class hierarchy
given in Figure 1 to demonstrate our analyses and optimizations. Consider thegetArea
method in Figure 2 which contains a dynamically bound call to thearea method.Without
considering type and flow analysis (i.e., ignoring the context of the call), then the call
to area might resolve to the implementation of thearea method in any of theTriangle,
Circle, or Rectangle classes. Observe that if the compile-time type of the receiver of
the invocation ofarea is Rectangle or its subclassSquare, the only method that could
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abstract class Shape {
abstract float area();
float getPI() { return 3.14579F; }
static float square(float f) {
return f * f;

}
}

class Triangle extends Shape {
float b, h;
Triangle(float b, float h) {
this.b = b; this.h = h;

}
float area() { return b * h / 2; }

}

class Circle extends Shape {
float r;
Circle(float r) { this.r = r; }
float area() {

return getPI() * Shape.square(r);
}

}

class Rectangle extends Shape {
float s1, s2;
Rectangle(float s1, float s2) {
this.s1 = s1; this.s2 = s2;

}
float area() { return s1 * s2; }

}

class Square extends Rectangle {
Square(float s) { super(s, s); }

}

Fig. 1. Example class hierarchy

possible be invoked is thearea implementation inRectangle because no subclass of
Rectangle overridesarea. This observation is key to class hierarchy analysis.

Rapid type analysis (RTA) [Bacon and Sweeney 1996] extends class hierarchy anal-
ysis by using class instantiation information to reduce the set of potential receiver types
at a call-site. Consider the program in Figure 2. Class hierarchy analysis stated that the
call toarea could invoke thearea method ofTriangle, Circle, or Rectangle. However,
a quick glance at the program reveals that it is impossible for thearea method imple-
mented inTriangle to be invoked because neitherTriangle nor any of its subclasses is
instantiated. Classes that are instantiated are said to belive.

RTA must be careful in the way that it marks a class as being instantiated. Invoking
a class’s constructor does not necessarily mean that the class is instantiated. Consider
an invocation of the one-argument constructor ofSquare. Calling this constructor in-
dicates that classSquare is instantiated. However,Square’s constructor invokes the
constructor of its superclass,Rectangle. This invocation ofRectangle’s constructor
does not indicate thatRectangle is instantiated.
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float getArea(boolean b) {
Shape s;
if(b)
s = new Circle(2);

else
s = new Square(3);

float area = s.area();
return area;

}

Fig. 2. Calling methodarea

Rapid type analysis examines a program’s methods starting at its entry point (e.g.,
main method). One following operations occurs at an invocation of methodm.

– If the call-site is statically bound, thenm is marked as being live and is examined
further.

– If the call-site is dynamically bound, then the set of potential receiver types is
calculated using class hierarchy analysis. For each potential receiver type that has
been instantiated,T, the implementation ofm that would be invoked with receiver
type T is made live and is examined further. The implementations ofm in the
uninstantiated classes are “blocked” on each uninstantiated typeT.

– If m is a constructor of classT and the caller is not a constructor of a subclass of
T, the classT is instantiated andm becomes live and is examined. Additionally, any
methods that were blocked onT are unblocked and examined.

In our running example, classesCircle andSquare are live. The constructors for
Circle and Square, the area methods ofCircle and Rectangle, and thegetPI and
square methods are all live. Thearea method ofTriangle is blocked onTriangle.

3 Call-Site Customization

The compiler for the SELF language introduced the notion of call-sitecustomization
[Chambers et al. 1989]. Customization optimizes a dynamically bound call-site based
on the type of the receiver. If the type of the receiver can be precisely determined during
compilation, then the call-site can be statically bound.

The call toarea in Figure 2 can be customized in the following manner. Rapid
type analysis concluded that the thearea method of eitherCircle or Rectangle will
be invoked. Customization replaces the dynamically bound call-site with two type tests
and corresponding statically bound invocations (in the form of a call to a class method)
as show in Figure 3. If the call-site is monomorphic, no type test is necessary. Two class
methods,$area in Circle and$area in Rectangle have been created containing the
same code as the instance method versions ofarea. In the case that the receiver type is
none of the expected types, the virtual method is executed.

Once a call to an instance method has been converted into a call to a class method,
the call may beinlined. Inlining consists of copying the code from the callee method
into the caller method. Thus, inlining completely eliminates any overhead associated
with invoking the method.
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float getArea(boolean b) {
Shape s;
if (b)
s = new Circle(2);

else
s = new Square(3);

float area;
if (s instanceof Circle) {
Circle c = (Circle) s;
area = Circle.$area(c);

} else if(s instanceof Rectangle) {
Rectangle r = (Rectangle) s;
area = Rectangle.$area(r);

} else
area = s.area();

return area;
}

Fig. 3. Customized call toarea

Our optimization framework performs intra-procedural data-flow analysis that in
some cases precisely determines the types of receiver objects. For instance, if the receiver
object is created within the caller method by a constructor call, we know the receiver’s
type.

Our analyses have resulted in an increased number of statically bound call-sites
whose callee methods are precisely known and may beinlined. Inlining involves copying
the callee’s code into the caller method. By inlining methods, we not only eliminate the
overhead of invoking a method, but we also give our intra-procedural optimizer a large
code context in which to perform its optimizations.

4 Pre-existence

When customizing call-sites certain assumptions are made about the classes in the pro-
gram. For instance, the analysis may determine that a call-site is monomorphic and
inlines the invocation. However, additional classes may enter the system that invali-
date assumptions made during the analysis. In this case the optimized code must be
de-optimized.

This situation is further exacerbated by the fact that optimized code may need to
be de-optimized while it is executing. Consider the program in Figure 4a. The method
getSomeShape may potentially load a subclass ofShape that is unknown at analysis
time.getSomeShape could be a native method or, in the worst case, could ask the user
for the name of a class to load. In any case, the call toarea cannot be inlined without
the possibility of later adjustment.

The SELF system [H¨olzle et al. 1992] solved this problem by using a run-time mech-
anism calledon-stack replacement to modify executing code. SELF maintains a signifi-
cant amount of debugging information that allows for quick de-optimization of optimized
code. When an optimization is invalidated, SELF recovers the original source code and
re-optimizes it taking the invalidating information into account. Maintaining the amount
of information necessary to perform these kinds of optimizations requires a noticeable
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float getSomeArea() {
Shape s = getSomeShape();
float area = s.area();
return area;

}

(a) Receiver does not pre-exist

float getSomeArea(Shape s) {
float area = s.area();
return area;

}

(b) Receiver pre-exists

Fig. 4. Pre-existence of receiver objects

space and time overhead, increases the complexity of the optimizer, and places certain
constraints on the kinds of optimizations that can be performed.

Detlefs and Agesen [1999] introduced the concept ofpre-existence to eliminate the
need for on-stack replacement. Consider a methodfoo containing an invocation of
methodbar with receiver objecto. o is said topre-exist if it is created beforefoo
is called. The type of any pre-existent object must have been introduced before the
methodfoo is called. Any invalidation of assumptions made about the type ofo this
introduction may cause will not affect the methodfoo while it is executing. Therefore,
on-stack replacement on methodfoo will never occur and it is safe to inline the call to
bar.

Consider the version ofgetSomeArea presented in Figure 4b. In this method the
call-site’s receiver is one of the method’s arguments. If any previously unknown sub-
class ofShape were to enter the system, it would have to do so before the call to
getSomeArea. At the time that the new class enters the system, the as-yet-uncalled
getSomeArea method would be appropriately re-optimized to account for the new
class.

A technique calledinvariant argument analysis is used to determine whether or not
a call-site’s receiver pre-exists. Invariant argument analysis traces the uses of the caller’s
arguments. If an argument is used as receiver, then it pre-exists. Additionally, receivers
that result solely from allocations operations pre-exist.

5 Implementation

We analyze and optimizeclass files, a binary representation of Java classes that are
suitable for execution on a Java virtual machine, and are able to take advantage of the
semantics of some of the machine’s instructions. When performing rapid type analysis,
instead of analyzing calls to constructors, we use occurrences of thenew instruction
to denote a class instantiation. When customizing call-sites we transforminvokevirtual
instructions which call an instance bound method toinvokespecial instructions that
invoke an instance method, but do not perform a dynamic method lookup.

To accommodate our optimizations several changes were made to the PJama virtual
machine. By allowing caller methods access to the private data of their inlined methods,
our optimizations break encapsulation. Once a class is loaded into the virtual machine,
it is no longer necessary to enforce encapsulation. Thus, we disable data access checks
for loaded classes. Also, for security reasons, the Java Virtual Machine Specification
[Lindholm and Yellin 1999] allows theinvokespecial instruction to only invoke super-
class and private methods. We have relaxed this rule and allowinvokespecial to call
any instance method.
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6 De-optimization

Pre-existence ensured that classes entering the system could never invalidate executing
code. However, other optimized code may need to be de-optimized in the face of such
changes to the type system. Consider a caller methodfoo that contains a call to the
area method. Suppose that rapid type analysis has determined that the call-site will
only invoke thearea method ofTriangle and that its receiver object pre-exists because
it is a method parameter. Customization will transform this call into a non-virtual call to
thearea method ofTriangle. Suppose further that at runtime the program, using Java’s
reflection mechanism, loads theEquilateralTriangle class, a subclass ofTriangle that
overrides thearea method. During customization we assumed that no subclass ofTri-
angle overrode thearea method. However, the introduction of theEquilateralTriangle
invalidates this assumption and the customized invocation of thearea method ofTrian-
gle is incorrect because the receiver object may be an instance ofEquilateralTriangle
in addition toTriangle. Thus, we must de-optimizefoo at runtime by undoing the effects
of customization. In an attempt to make de-optimization as fast as possible,foo is simply
reverted to its unoptimized form.

In the above example, we say that methodfoo depends on thearea method of
Triangle because if thearea method ofTriangle is overridden, thenfoo must be de-
optimized. The optimizer maintains a series of dependencies [Chambers et al. 1995]
among methods resulting from call-site customization. As a result of the customization
shown in Figure 3 thegetArea method would depend on thearea method ofCircle and
the area method ofRectangle. Note that if our analysis can precisely determine the
type(s) of a receiver object (e.g., the object is created inside the caller method), then no
dependence is necessary. The dependencies are represented as Java objects and reside
in the persistent store.

The PJama virtual machine was modified to communicate with the optimizer at
runtime to determine when methods should be de-optimized. When a class is loaded into
the virtual machine, the optimizer is notified. If the newly-loaded class invalidates any
assumptions made about the class hierarchy during optimization, the optimizer consults
the method dependencies and de-optimizes the appropriate methods. To account for any
degradation in performance that de-optimization may produce, it may be desirable to re-
optimize a Java program multiple times during its lifetime. Subsequent re-optimizations
will account for classes that are introduced by reflection.

A persistent store provides a closed-world model of a Java program, allows us to
disregard the restriction of binary compatibility, and provides a repository in which
the optimizer can store data necessary for de-optimization to ensure correct program
behavior when classes are introduced into the system at runtime. Thus, persistence
enables us to safely perform our inter-procedural optimizations on Java programs.

It is important to note that the general cross-class optimizations we support can-
not be performed outside the virtual machine by modifying the bytecode at load time,
since the modified bytecode would violate Java’s structural constraints and fail bytecode
verification.
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Table 1. Benchmarks

Name Description

crypt Java implementation of the Unix crypt utility
db Operations on memory-resident database
huffman Huffman encoding
idea File encryption tool
jack Parser generator
jess Expert system
jlex Scanner generator
jtb Abstract syntax tree builder
lzw Lempel-Ziv-Welch file compression utility
mpegaudioMPEG Layer-3 decoder
neural Neural network simulation

7 Results

To evaluate the impact of inter-procedural optimizations on Java programs, we optimized
several Java benchmark applications and compared their performance using static and dy-
namic performance metrics. To obtain the measurements we used a software library that
allows user-level access to the UltraSPARC hardware execution counters,1 permitting
us to gain accurate counts of hardware clock cycles, cache misses such as instruction
fetch stalls and data read misses. Benchmarks were run with the operating system in
single-user mode to avoid spurious interference from unrelated processes.

The experiments were performed on a Sun Ultra 5 with a 333 MHz UltraSPARC-IIi
processor with a 2MB external (L2) cache and 128MB of RAM. The UltraSPARC-IIi
has a 16-KB write-through, non-allocating, direct mapped primary data cache that is
virtually-indexed and virtually-tagged. The 16-KB primary instruction cache is two-
way set associative, physically indexed and tagged, and performs in-cache 2-bit branch
prediction with single cycle branch following.

We used eleven benchmarks programs as described in Table 1 to measure the im-
pact of inter-procedural optimizations. Several of the benchmarks were taken from the
SpecJVM [SPEC 1998] suite of benchmarks. Table 2 gives some static statistics about
the benchmarks: the number of live classes and methods, the number of virtual call-
sites, the percentage of those call-sites that pre-exist, and the percentage of pre-existent
call-sites that are monomorphic and duomorphic (only two methods could be invoked).
It is interesting to note that for most benchmarks the majority of virtual call-sites are
precluded from inlining because they do not pre-exist. Note also that nearly all (89.8–
95.7%) of pre-existent call-sites are monomorphic or duomorphic. Thus, from a static
point of view, extensive customization of polymorphic call-sites seems unnecessary.

Table 3 summarizes the time spent optimizing each benchmark and supports our
claim that our inter-procedural optimizations are too expensive to perform during pro-
gram execution. The optimizer spends the vast majority of its time constructing the call
1 See http://www.cs.msu.edu/∼enbody/
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Table 2. Inlining statistics (static)

Benchmarklive classeslive methodsvirtual calls% preexist% mono% duo

crypt 134 853 1005 38.9 87.0 3.1
db 151 1010 1373 36.7 87.7 4.2
huffman 141 875 1071 38.6 87.7 2.9
jack 184 1170 2305 31.5 86.1 8.3
jess 245 1430 2563 35.0 92.2 3.0
jlex 154 1008 1315 35.4 88.8 2.6
jtb 273 2111 3965 32.8 87.7 8.0
lzw 142 905 1031 38.3 86.8 3.0
mpegaudio 173 1146 1594 31.6 87.1 5.2
neural 139 883 1024 39.1 87.2 3.0

Table 3. Optimization times

Benchmark Total (sec) % Call Graph% Customize % Inline % Commit
UserSystem UserSystemUser System UserSystem UserSystem

crypt 75.40 17.63 56.84 81.79 7.88 0.6219.58 0.5115.70 17.07
db 317.97 61.30 74.68 84.34 5.99 0.20 7.30 1.5512.03 13.92
huffman 78.59 18.29 58.65 82.23 7.79 0.5518.59 0.7114.98 16.51
jack 333.69 65.56 71.34 81.18 6.54 0.23 9.85 5.5412.27 13.06
jess 394.01 72.26 66.50 75.63 9.17 0.2612.17 10.6412.16 13.47
jlex 90.11 19.03 55.03 81.87 7.70 0.8422.02 0.6815.25 16.61
jtb 258.14 23.26 31.05 75.71 7.53 0.4746.82 3.8314.60 19.99
lzw 75.43 18.43 56.81 82.69 7.93 0.3819.58 0.6515.68 16.28
mpegaudio 351.02 64.04 74.09 85.81 7.17 0.27 7.69 0.5011.04 13.43
neural 74.52 18.63 58.99 81.59 8.24 0.2717.35 1.1315.42 17.02

graph and committing the optimized classes back to class-files. Call-site customization
and inlining is comparatively inexpensive to perform.

Each benchmark was optimized in five configurations: no optimization, (nop), only
intra-procedural optimizations (intra), call-site customization (cust), inlining of non-
virtual calls (inline), and intra-procedural optimizations on top of inlining (both). Our
intra-procedural optimizations include dead code elimination, constant/copy propaga-
tion, partial redundancy elimination, and register allocation of Java virtual machine local
variables. Through analysis of empirical data, several conditions on the inter-procedural
optimizations were arrived at: only monomorphic call-sites were customized, no callee
method that is larger than 50 instructions is inlined and no caller method is allowed to
exceed 1000 instructions because of inlining.

Examining the number of bytecodes executed provides insight into the effectiveness
of our inter-procedural optimizations. Figures 5 and 6 summarize bytecode counts for
the five optimization levels:nop, intra, cust, inline, andboth.As Figure 5 demonstrates
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Fig. 5. Total bytecodes executed
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Fig. 6. Method invocations

the inter-procedural optimizations,cust and inline, do not have a significant effect on
the total number of bytecodes executed. However, combining inter-procedural and intra-
procedural optimizations (both) results in up to 8% fewer bytecodes being executed than
with the intra-procedural optimizations alone (intra).

The effects of call-site customization and method inlining can be seen by examining
the number and kind of methods executed. Figure 6 reports the number ofinvokespecial,
invokevirtual2, andinvokestatic instructions. Call-site customization (cust) results in
an often drastic reduction in the number ofinvokevirtual instructions. Likewise, method
inlining removes as many as 52% of method invocations. For several benchmarks (crypt,
idea, and neural) very few static method invocations are inlined. This is most likely due
to the fact that the bodies of these methods exceed the 50 instruction limit placed on
inlined methods.

Figure 7 compares the execution times (number of cycles executed) of our bench-
marks. The benchmarks were executed on the Sun Java 2 SDK SolarisTM Production
Release Virtual Machine with Just-In-Time compilation disabled3. Our optimizations
cause a -2–22% decrease in the number of machine cycles. For several benchmarks, our
optimizations cause an increase in the number of instruction fetch stalls and data read
misses leading to an increase in the number of cycles.
2 There were a negligible number ofinvokeinterface instructions executed.
3 For some benchmarks, our optimizations expose a bug in the JIT.
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Fig. 7. Execution times (cycles)

For most benchmarks customizing monomorphic call-sites has little effect on the
number of cycles executed. This leads us to believe that the interpreter’sinvokevirtual
instruction has been optimized for maximum efficiency since it appears to have the
same cost as the non-virtualinvokespecial instruction. However, the increase in speed
provided by method inlining demonstrates that the method invocation sequence is still
costly. In most cases inlining enabled the intra-procedural optimizations to increase
performance further.

8 Related Work

Much work has been done in the area of type analysis of object-oriented
programming languages, particularly in type prediction and type inferencing.
Palsberg and Schwartzbach [1991] present a constraint-based algorithm for inter-
procedural type inferencing that operates inO(n3) time wheren is the size of the
program.Agesen [Agesen 1994] presents a survey of various improvements to theO(n3)
algorithm. Several strategies create copies of methods called “templates” whose type
information is specialized with respect to the type of the parameters. Agesen also de-
scribes the “Cartesian Product Algorithm” [Agesen 1995] that creates a template for
every receiver and argument tuple per call-site. Several of the above algorithms were
considered for our type analysis. However, as implementation began it became obvious
that none of them is practical using our modeling framework for the numerous classes
in JDK1.2.

Diwan et al. [1996] use class hierarchy analysis and an intra-procedural algorithm in
addition to a context-insensitive type propagation algorithm to optimize Modula-3 pro-
grams. Budimlic and Kennedy present inter-procedural analyses and method inlining of
Java programs [Budimlic and Kennedy 1997; Budimlic and Kennedy 1998]. They im-
plementcode specialization in which virtual methods contain a run-time type test to
determine whether or not inlined code should be executed. In order to preserve Java’s
encapsulation mechanism, their analyses must operate on one class at a time. Thus, no
method’s from other classes may be inlined.

The Soot optimization framework [Sundaresan et al. 1999] performs similar analysis
to ours. While they describe type analyses that are more aggressive than rapid type
analysis, it is unclear as to the practicality of these analyses under JDK1.2.
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The Jax application extractor [Tip et al. 1999] uses rapid type analysis to determine
the essential portions of a Java program with the goal of reducing the overall size of the
application. Jax performs several simple optimizations such as inlining certain accessor
methods and marking non-overridden methods as beingfinal and respects Java’s data
encapsulation rules. Unlike the other tools described above, Jax accounts for dynamic
changes in the type system via a specification provided by the user.

Several studies [Grove et al. 1995; Fernandez 1995] examine the effects of using
run-time profiling data to optimize object-oriented programs. Profiling data can be used
to identify sections of code that are executed frequently where optimizations may have
greater impact as well as the true types of the receivers of method calls.

More recently, the Jalepe˜no Java Virtual machine [Alpern et al. 1999] has taken a
unique approach to optimizing Java program. Jalepe˜no is written almost entirely in
Java and yet it executes without a bytecode interpreter. It employs several compilers
that translate bytecode into native machine instructions. The compilers use both static
techniques and profiling data, but differ in the number and kinds of optimizations they
perform.

9 Conclusions

Java programs whose classes reside inside a persistent store give us a unique opportunity
for whole-program optimization. We can relax certain constraints placed on stand-alone
Java programs and safely perform expensive off-line optimizations. In order to ensure
correct program execution in the face of an evolving system, certain optimizations are
undone at runtime. Our results show that our optimizations are able to remove a signifi-
cant portion of the dynamic call overhead associated with Java programs, and to inline
methods for more effective optimization of the resulting regions of larger context.
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