
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt
oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
CRelaxing Safely: Verified On-the-Fly

Garbage Collection for x86-TSO

Peter Gammie
NICTA, Australia

peteg42@gmail.com

Antony L. Hosking
Purdue U, USA and NICTA, Australia

hosking@cs.purdue.edu

Kai Engelhardt
UNSW and NICTA, Australia

kaie@cse.unsw.edu.au

Abstract
We report on a machine-checked verification of safety for a state-
of-the-art, on-the-fly, concurrent, mark-sweep garbage collector
that is designed for multi-core architectures with weak memory
consistency. The proof explicitly incorporates the relaxed memory
semantics of x86 multiprocessors. To our knowledge, this is the first
fully machine-checked proof of safety for such a garbage collector.
We couch the proof in a framework that system implementers will
find appealing, with the fundamental components of the system
specified in a simple and intuitive programming language. The
abstract model is detailed enough for its correspondence with an
assembly language implementation to be straightforward.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection),
Run-time environments; D.4.2 [Operating Systems]: Storage Man-
agement—Garbage collection; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs—
Mechanical verification

General Terms Algorithms, Design Languages, Reliability, Veri-
fication

Keywords formal verification, machine-checked proof, relaxed
memory, TSO

1. Introduction
Garbage collectors are now ubiquitous all the way from servers
down to mobile and embedded devices, and the safety guarantees
they provide for programmers are well understood. However, the
trustworthiness of their implementations is less obvious, especially
when they exploit concurrency for performance. Particularly worri-
some is the fact that modern multi-cores have relaxed/weak memory
models. This complicates reasoning which is already intricate even
for sequentially-consistent memory.

State-of-the-art garbage collectors for multi-core systems have
several design goals. They avoid blocking the progress of mutator
(application) threads as much as possible. Assuming there is suffi-
cient memory available to satisfy allocation requests, interactions
between the application and the collector can generally be made

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
PLDI’15, June 15–17, 2015, Portland, OR, USA
© 2015 ACM. ISBN 978-1-4503-3468-6/15/06. . . $15.00.
DOI: http://dx.doi.org/10.1145/2737924.2738006

non-blocking, given atomic hardware synchronization primitives
that suffer at most only finite spurious failures, such as the atomic
compare-and-swap (CAS) primitive of x86 or the load-linked/store-
conditionally (LL/SC) primitives of ARM/PowerPC. Collection can
operate on-the-fly (i.e., concurrently) with mutator threads, provided
that a protocol for accessing references on the heap is respected.
In other words, while the collector must periodically handshake
with each mutator thread individually to poll for its mutator roots, it
can do so without stopping the world: it has no need to suspend all
mutators at the same time. With care the requisite communication
can be made non-blocking and even wait-free, and the amount of
work per collection cycle bounded.

Here, we present the machine-checked verification of safety for
a realistic, on-the-fly, mark-sweep garbage collector that accounts
for the relaxed memory model of modern x86 multi-cores. The
mark-sweep collector kernel that we verify is realistic: it lies at
the heart of the Schism real-time garbage collector [30], which
offers superior real-time predictability with good throughput. We
model the salient features of the collector algorithm, the x86-TSO
memory model [35], and concurrent execution of mutator threads,
including precise details of the write barriers that constitute the
heap access protocol, and the handshakes that initiate and terminate
the collection cycle. Importantly, safety is preserved even for
applications that are not themselves data race free: the wait-free
write barriers (which are themselves racy) ensure collector safety
even in the face of application-level data races. The collector we
model runs concurrently with mutator threads, but is not in itself
parallel. Our model (and implementation) could, with some effort,
be extended to a multi-threaded collector.

1.1 Contributions
Our contributions include:

1. The first (to our knowledge) machine-checked verification of
safety for a realistic on-the-fly garbage collector against a relaxed
memory model.

2. A comprehensive and unambiguous model that is accessible to
system designers and implementers.

Our headline result, formally proved in the Isabelle/HOL proof as-
sistant, asserts that the parallel composition of the garbage collector
(GC) with any number of mutator threads (Mi) operating against an
x86-TSO memory system (Sys) preserves safety:

GC ‖M1 ‖M2 . . . ‖ Sys |=�(∀r.reachable r→ valid_ref r)

There is always an object at every reference reachable from
a mutator root.

The verification itself is made easier due to the careful design of
the collector algorithm to meet real-time goals of predictability
and performance. These impose tighter constraints than some other

collector designs that are more relaxed about the latencies of both
collector cycle and mutator barriers. For example, at any given time
there is only ever one authoritative witness (either the collector itself
or one of the mutators) to the liveness of a given object. Abstraction
of the collector and its verification in Isabelle/HOL was performed
post hoc, starting from the pre-existing Schism implementation, in a
collaboration between run-time system and formal methods experts.
Qualitatively, the run-time system experts gained greater confidence
in the correctness of algorithm designs (and not just the particular
design modeled here), while the formal methods experts relied on
the semi-formal intuitions of the system experts when formulating
the invariants that justify this result.

2. The Verified Collector
We verify an on-the-fly mark-sweep tracing collector, similar to that
at the heart of the Schism real-time collector [30], which itself is
based on the Doligez-Leroy-Gonthier (DLG) on-the-fly collector
[7, 8]. Doligez and Gonthier [7] formalize a generic collector design
that admits multiple implementation instances. However their work
does not directly address real-time responsiveness, nor the details
of the fine-grained synchronization between the collector and the
mutators, nor the impact of relaxed memory on safety. Real-time
goals mean adopting a collector design where both timeliness and
predictability are paramount. While the Schism collector adopts
these well-known design elements, it uses novel implementation
techniques relying on hardware atomic instruction primitives to
promote mutator wait-freedom for common mutator operations. We
now briefly summarize the basic design elements of our verified
collector before considering implementation details. Jones, Hosking,
and Moss [15] provide a comprehensive survey of modern garbage
collectors.

Mark-Sweep. Our verified collector is an instance of McCarthy’s
venerable mark-sweep scheme [22]: the collector traces reachable
objects from some set of root references, generally including refer-
ences held in mutator roots (i.e., thread stacks and registers) as well
as global variables, marking all objects transitively reachable from
the roots. Tracing proceeds by marking the roots, then scanning
through the references held in known marked objects and mark-
ing their targets, and repeating these scan and mark steps until no
more marked objects are discovered. Marking an object that was not
previously marked can be thought of as advancing the wavefront
of known reachable objects. Once this upper bound on the set of
reachable objects has been determined, the collector performs a
sweep of the heap to free allocated but unmarked objects. We elim-
inate the need to reset the flag on retained objects by making the
interpretation of such marks contingent on a shared flag, which is
inverted from one collector cycle to the next [18].

Concurrent. The verified collector is concurrent in that mutators
can modify the heap while the collector is active. To preserve safety,
concurrent collectors use mutator write barriers, compiled into the
operations used to manipulate reference fields in the heap. One
such write barrier is an incremental update (or insertion barrier
[6]: whenever a mutator stores a reference into the heap it also
makes sure that the target of that inserted reference is marked. This
barrier addresses the following scenario: consider an unmarked
object whose reference is stored by a mutator behind the collector
wavefront and then all of its references are deleted ahead of the
wavefront. Then the collector will never see the reference to mark its
target, and mistakenly believe that the (reachable but unmarked)
target can safely be freed. With the insertion barrier installed
the target is marked at the time the reference was stored. Our
implementation accumulates marked objects into thread-private
work-lists which are later transferred to the collector for tracing.

Timeliness. It is also possible that a mutator loads a reference to
an unmarked object that is ahead of the wavefront, and that this root
becomes the sole witness to that object’s reachability. If marking was
to end without further ado then that unmarked but reachable object
would be mistakenly freed. One solution to this is for the collector to
rescan the mutators’ roots before marking terminates. However, such
references might hide long chains of unmarked objects, potentially
prolonging the marking phase and hence its impact on mutator
utilization. Our collector ensures the timely completion of the
collection cycle by employing a snapshot (or deletion) barrier
[1, 41], whereby mutators ensure that any references they overwrite
target marked objects. Note that establishing exactly which reference
is overwritten by a given mutator in the face of racy concurrent
updates by other mutators is tricky for weak memory platforms.
Thus, once the mutator roots have been sampled, the collector
preserves all objects reachable from those roots at that snapshot,
regardless of subsequent changes in reachability due to concurrent
mutator activity. Objects that become unreachable after the snapshot
will survive through the current collector cycle, but will be reclaimed
at the next. These retained but unreachable objects are referred to as
floating garbage.

Other sources of unmarked but reachable objects are allocations
performed by the mutators after their roots have been scanned. Once
again, to avoid rescanning the mutators before terminating marking,
the collector adopts a simple solution: newly allocated objects are
marked at creation [17].

On-the-Fly. If a snapshotting concurrent collector is to avoid
rescanning the mutators before terminating the mark phase, it
needs to obtain a coherent view of the mutator roots. The most
straightforward way to achieve this is to stop all mutator threads
before sampling their roots, and afterwards restarting the mutators
and initiating concurrent marking. But this imposes relatively long
and unpredictable pauses on mutators that degrades their real-time
properties. On-the-fly collectors instead sample the roots of each
mutator separately, and concurrently with other mutator threads.
Indeed, on-the-fly collectors need not stop threads at all: the collector
can asynchronously prompt each mutator to mark its own roots,
and then wait for them all to respond. Similarly to DLG, our
collector uses several rounds of soft handshakes with the mutators
throughout the collection cycle, for several purposes: (a) ensuring
that mutators have an up-to-date view of the collector control state
(viz., the collector phase, the sense of the marks on the objects in
the heap, and the sense of the mark to be used when allocating),
(b) marking and querying the mutator roots, and (c) querying for
objects marked by mutator write barriers. Mutators respond to soft
handshakes only at well-defined GC-safe points, compiled into the
application code at backward branches and call returns. Moreover,
elemental mutator operations such as accessing references in the
heap (where writes contain barriers), object allocation, and the
handshake handlers themselves, are free of GC-safe points and
therefore cannot be interrupted by collector requests. Only while
the collector is performing a round of handshakes is the mutator-
collector interaction synchronous, in which no interleaving of
collector operations with mutator operations can occur. At all other
times the collector and mutator operate asynchronously. However,
mutators that have yet to respond to a given handshake still run
concurrently with mutators that have already responded. In this
respect, handshakes are said to be ragged.

For safety, on-the-fly snapshotting collectors must use an inser-
tion barrier while the snapshot is being constructed. Otherwise, it
is possible for a mutator to store a reference to an unmarked object
into a marked (reachable) object behind the collector wavefront.
While it is possible to turn this barrier off after sampling the mutator
roots, our collector leaves it in place, to avoid complicating the write
barrier code sequence with unnecessary conditional code. Moreover,

G W B7
|n≥ 0|

7

Figure 1. Grey protection. The dashed edge and circle imply that
the white object W is reachable from grey object G via a chain of
white references: G→∗w W . The weak tri-color invariant says that
it is safe under this circumstance for a black object B to refer to W ,
since the collector will eventually trace and mark the chain of white
objects from G. The deletion barrier preserves the weak tricolour
invariant by greying the target of any edge (marked 7) deleted in the
chain.

an incremental update collector does not need the deletion barrier;
but, as noted, omitting it implies repeated rescanning of the muta-
tors until there are no unmarked roots, which unpredictably delays
termination of marking. Thus, our heap mutation protocol includes
both forms of write barrier.

2.1 Abstractions and Invariants
The global heap invariants preserved by the collector and the mu-
tators (via handshakes and write barriers) are commonly framed in
terms of Dijkstra’s tricolor abstraction [6]. Briefly, tracing collection
partitions the heap into black (presumed live) and white (possibly
dead) objects. By analogy with object color, heap references can be
said to take the color of their target object (e.g., a white reference is
one that refers to a white object). When the collector cycle begins
the entire heap is white. When a white object is encountered dur-
ing tracing it is marked grey (reached, not yet processed). At some
point the collector must process the children of every source grey
object (i.e., the target objects to which the fields of the source object
refer), marking each white child grey, whereupon the source object
is shaded black (reached, processed). Thus, an object is black if the
collector has finished processing it, and grey if the collector knows
about it but has not yet processed it. The grey objects represent
the collector’s wavefront as it traces through the heap to find the
reachable objects. When there are no more grey objects the trace is
complete, and the remaining white objects can safely be freed. Grey
objects represent outstanding tracing work that the collector is yet
to perform.

Safety requires that the collector find and mark all white objects
that are reachable from the roots. So long as each reachable white
object is protected from deletion it will not be missed by the collector.
It is thus sufficient to preserve the

weak tricolor invariant: any white object pointed to by a black
object is always grey-protected: it is also reachable from some
grey object via a chain of zero or more white objects.

Figure 1 illustrates this invariant, which the deletion barrier pre-
serves by ensuring that no pointer (e.g., to a white object) can be
deleted (e.g., in such a chain) without first making its target grey,
and so ensuring that the remaining white objects in the chain remain
grey-protected. Other than black (B, already seen) and grey (G, still
to be processed) objects, only those white objects (W , as yet unseen)
that are reachable via a white chain from grey objects will ever be
seen by the collector. A mutator that deletes an edge in a chain of
white objects can hide live objects from the collector. Here, the solid
white object W is live, reachable both from a black object B and
from a grey object G via a chain of white objects (dashed, and length
n≥ 0 to indicate that the chain is possibly empty). A mutator that
deletes any of the edges (marked 7) in the white chain will prevent
the collector from seeing the white object W even though it is live.
The deletion barrier prevents this from happening.

Initially, (implicitly grey) roots protect all reachable objects.
The deletion barrier preserves the weak tricolor invariant and so

ensures safety. When tracing finishes there are no grey objects, so
the invariant implies that there can be no reachable white objects,
and it is safe to reclaim all white objects. In contrast, the insertion
barrier preserves the

strong tricolor invariant: there are no pointers from black objects
to white objects.

While the collector is processing a grey object to blacken it, and
after it has been blackened, the insertion barrier prevents mutators
from storing white references into it. Thus, the collector need never
revisit black objects. When tracing finishes, the strong invariant says
there are no references from black to white, so it is safe to reclaim
all white objects. It trivially implies the weak invariant.

Our formal proof of safety relies on both the weak and strong
invariants. In effect we treat the mutators as black once their roots
have been scanned (their roots are never rescanned), and they are
permitted to acquire and hold white references in their roots so
long as these are grey-protected (weak tricolor). The alternative
of using an insertion (read) barrier on mutators whenever they
load a reference into their roots from the heap is typically too
expensive since heap reads are common. Meanwhile the strong
tricolor invariant applies to the heap.

2.2 The Collector
Figure 2 shows the collector in an informal pseudo-code that served
as the basis for our formal model in Isabelle/HOL. The collector can
be thought of as a non-terminating control loop, where each iteration
of the loop performs a mark-sweep cycle. We omit scheduling
decisions (i.e., when to trigger a collection). Three control variables
shared between the collector and the mutators are subject to relaxed
memory effects. Important invariants are indicated in comments.
Each round of handshakes asks the mutators to perform some work
asynchronously on behalf of the collector (indicated by the at m
notation); some simply signal a change in control state, and hence
the mutators need merely signal acknowledgement (nop).

The collector is idle to begin with, and from one collector cycle
to the next, so the round of handshakes at lines 3–4 ensures that
all mutators are aware that the collector is idle (phase=Idle).
Moreover, at this point the entire heap is black, including newly
allocated objects. While the collector is idle the mutator write
barriers are disabled (see §2.3).

There are three rounds of handshakes from that point to enable
marking. Each follows a change by the collector to one or more
of its control variables. Lines 5–7: The sense of the marks on
the objects is flipped by inverting the fM flag, which changes the
heap from black to white. Newly created objects continue to be
allocated white. Lines 8–10: The phase variable is set to not idle
(Init). When the collector phase is not idle the mutator write
barriers are enabled. Lines 11–14: The sense of the marks to use
for allocation of new objects is changed to black (fA← fM). The
only black objects are newly allocated objects, which cannot refer
to white objects (Black 6→White) as the write barriers are enabled.
The only grey objects are those generated by the write barriers.
At this point, with the write barriers enabled, and the sense of the
marks established, the collector is ready to begin marking. It first
uses a round of handshakes to have the mutators concurrently mark
and accumulate their (grey) roots to their private work-lists Wm,
before transferring them to the collector (lines 15–20). The use of
the atomic keyword indicates that the transfer of the marked roots
from each mutator’s work-list Wm to the collector’s shared work-list
W occurs atomically. Importantly, these grey work-lists (each Wm
and W) are all disjoint. Thus, in Schism each object header simply
contains a field that points to the next element in the work-list.
Moreover the atomic transfer of work-list Wm to the collector’s W
uses wait-free hardware primitives. Upon completion, the critical

no
p

no
p

no
p

no
p

no
p

no
p

no
p

no
p

no
p

no
p

mar
k ro

ots

mar
k ro

ots

mar
k loo

p ter
m.

mar
k loo

p ter
m.

mar
k loo

p ter
m.

mar
k loo

p ter
m.

mar
k loo

p ter
m.

phase Idle Init Mark Sweep Idle Init Mark Sweep Idle

fM

fA

hp_Idle
hp_IdleInit

hp_InitMark
hp_IdleMarkSweep

Figure 3. The mutators’ view of control state transitions and handshakes. The handshakes are annotated with their types at the top of the
diagram. At the bottom is handshake phase that the mutator is in, which we discuss in §3.2.

1 shared phase ← Idle, fM ← fA ← false, W ← ∅
2 loop
3 ∀m ∈ Mutators // Grey=∅, White=∅, heap= Black
4 handshake: at m nop
5 fM ← not fM
6 ∀m ∈ Mutators // Grey=∅, Black=∅, heap= White
7 handshake: at m nop
8 phase ← Init
9 ∀m ∈ Mutators // Black=∅

10 handshake: at m nop
11 phase ← Mark
12 fA ← fM
13 ∀m ∈ Mutators // barriers installed, allocate Black
14 handshake: at m nop
15 ∀m ∈ Mutators
16 handshake: at m
17 // Mutator m marks and returns roots
18 for each ref ∈ rootsm
19 mark(ref, Wm)
20 atomic W ← W ∪Wm, Wm ← ∅
21 // Mutator m is now black; with strong_tricolor_inv
22 // establishes reachable_snapshot_inv for m’s roots:
23 // reachable⊆ Black∪Grey→∗w White
24 // Mark: loop invariant is reachable_snapshot_inv
25 while W 6= ∅ // W ⊆ Grey
26 while W 6= ∅
27 src ← r. r ∈W
28 for each fld ∈ fields(src)
29 mark(src.fld, W)
30 W ← W r{src} // blacken: src ∈ Black
31 ∀m ∈ Mutators
32 handshake: at m
33 // Mutator m reports its grey references
34 atomic W ← W ∪Wm, Wm ← ∅
35 // Sweep: Grey=∅∧ reachable_snapshot_inv
36 // Sweep:⇒ reachable⊆ Black
37 phase ← Sweep
38 refs ← heap
39 while refs 6= ∅
40 ref ← r. r ∈ refs
41 if flag(ref) 6= fM
42 // Free: ref ∈ White∧ reachable_snapshot_inv
43 // Free:⇒ ref 6∈ reachable
44 atomic heap ← heapr{ref}
45 refs ← refsr{ref}
46 phase ← Idle

Figure 2. Pseudo-code for the collector. Mutators perform their
side of soft handshakes as specified by the at statements.

invariant is that all objects reachable from the mutator roots are
either black (newly allocated) or grey-protected (in the set of grey
objects, or white and reachable via a chain of white references from
some grey object: Grey→∗wWhite).

Iterative marking (scanning from grey to black) by the collector
now proceeds until its private work-list is empty, after which it polls
the mutators for their work-lists. This continues so long as there are
outstanding grey references (as reported by the mutators). Subtly,
entry to the marking loop only requires that if any mutator has a
non-empty work-list Wm then at least one of them (not necessarily
the same one) will report work to the collector. It is possible for a
mutator to report no grey roots, before moving past the handshake
and shading some objects (grey). It can only have done so if some
other mutator also reports a grey root. Similarly, safe termination
of the marking loop requires that if no single mutator reports a
grey object from the round of handshakes at lines 31–34 then all
mutators are free of grey references. Note that it is also possible for
the collector to hold all the grey references during the mark loop
(lines 23–30), and so this invariant only holds over the handshakes
(lines 15–20 and 31–34).

Figure 3 illustrates the control state transitions of the collector
and the handshakes that communicate these transitions to the
mutators over two example collection cycles. The collector has
three distinct active phases while it is not Idle: Init, Mark, and Mark-
Sweep. It ensures communication of control state transitions via
soft handshakes. The control variable fM toggles during the Idle
phase before the transition to Init, while fA toggles at the transition
from Init to Mark. The handshake to acquire mutator roots then
takes the collector into the marking loop. At least one handshake
occurs during the marking loop before it can terminate, and move
on to the Sweep phase. Mutators may observe new control states
even before the corresponding handshake due to TSO store buffer
effects (as illustrated with , and or), but all agree
on the new state after the handshake round. In other words, at the
completion of a round of handshakes the collector knows that each
mutator knows the new control state, but—crucially—the mutators
themselves remain uncertain about the epistemic state of the other
mutators. This lack of common knowledge complicates the formal
treatment of non-interference at these state transitions.

Figure 4 shows the anatomy of a handshake in the form of a
sequence diagram. The component Sys referred to in the diagram
represents both the hardware memory system to which both the
collector and mutators perform memory loads and stores and the
thread subsystem that implements the handshakes (implemented in
Schism using pthread primitives). The collector begins a handshake

GC Sys Mi · · ·

update load

phase, fM , fA

load

store

load

handshake

handshake

Wm

W ←W ∪Wm

handshakehandshake

W

Figure 4. Anatomy of a handshake

by (optionally, depending on the handshake type) updating some
subset of the shared control variables (fA, fM , or phase), before
initiating a handshake at the system. Mutators may load stale values
for these variables before they handshake. The system ensures that
each mutator engages the handshake, in parallel, each (optionally,
depending on the handshake type) computing private work sets
Wm and then (atomically) merging those private work sets into
the global work set W . The system (optionally, depending on the
handshake type) returns the global work set W to the collector before
the collector can continue. When not performing the handshake a
mutator can continue to perform any other mutator operation.

2.3 Marking
Both the collector (in the marking loop) and the mutators (in their
write barriers) race to mark and place grey objects atomically and
exclusively on their private work-list (collector W or mutator Wm).
The mark operation appears in Figure 5. The parameters to mark
include both the reference to be marked, ref, and the thread-private
work-list w. If an object does not have the expected mark according
to the sense of fM then the thread attempts to mark it using a strong
atomic compare-and-swap (CAS). Implemented on x86 as a single
locked CMPXCHG instruction, we spell out the explicit details of the
atomic CAS operation in line with its formal model in x86-TSO:
either the comparison at line 6 succeeds and the store at line 8
occurs, or the comparison fails only because some other thread has
already succeeded in marking the object (and claiming success).
All mutators involved in a race to mark a particular object witness
the change from not marked to marked, whether or not they win
the race. Only the winning thread places the now-marked object
into its work-list (making it grey). Note that the CAS operation is
attempted only if the flag yielded by the ordinary memory read is
not as expected and if the collector is not idle. Thus, a hardware
compare-and-swap instruction, which is typically expensive, occurs
only when the collector is not idle and when the object of interest
does not have the expected flag value. This serves to minimize
the performance impact of write barriers on mutator throughput,

1 mark(ref, w):
2 expected ← not fM
3 if flag(ref) = expected
4 if phase 6= Idle
5 atomic // CAS
6 if flag(ref) = expected // we win
7 winner ← true
8 flag(ref) ← fM
9 // ghost_honorary_grey← ref

10 else // some other thread won and marked
11 winner ← false
12 if winner
13 w ← w ∪ {ref}
14 // ghost_honorary_grey← null

Figure 5. Pseudo-code for marking

1 private
2 rootsm // some set of valid initial roots
3 Wm ← ∅
4

5 Load(src ∈ rootsm, fld ∈ fields(src)) :
6 rootsm ← rootsm ∪{src.fld}
7

8 Store(dst ∈ rootsm, src ∈ rootsm, fld ∈ fields(src)):
9 mark(src.fld, Wm) // deletion barrier

10 mark(dst, Wm) // insertion barrier
11 src.fld ← dst
12

13 Alloc:
14 atomic
15 ref ← r. r 6∈ heap
16 heap ← heap∪{ref}
17 flag(ref) ← fA
18 rootsm ← rootsm ∪{ref}
19

20 Discard(ref ∈ rootsm):
21 rootsm ← rootsm r{ref}

Figure 6. Pseudo-code for mutator operations

particularly if hardware branch prediction assumes the condition at
line 3 evaluates to false.

Some collectors avoid synchronization instructions for marking
by representing the marks in a private bit-map on the side, or
in a shared byte-map where byte stores by different marking
threads can be performed atomically (on most hardware). In that
case, the idempotency of marking can be exploited to avoid the
need for synchronization, though at the cost of multiple markers
possibly reporting the object as marked. However, if concurrently
manipulated mark bits are stored in object headers alongside other
concurrently manipulated meta-data state (such as for biased or thin
locking), or in a shared bit-map, then synchronization is necessary.
In our collector we do exploit idempotency to pay the cost of the
CAS only when there is a race to mark. Once a marker has won the
race, all other markers will observe the mark at line 3 and not even
attempt the CAS.

Mutators. Each mutator has an arbitrary set of roots, rootsm
(i.e., local variables in its stack and registers). These can have non-
empty intersection or be empty. In addition to the mutator side of the
handshake operations shown in Figure 2, other mutator operations of
interest to the collector appear in Figure 6. A mutator can: (a) load a
reference from some field of a known root object; (b) store a known
root reference to some field of a known root object, along with the
appropriate write barriers; (c) allocate a new object in the heap,
setting the mark on the object to fA and add the new reference to its

roots; or (d) discard a reference from its roots. Note that the deletion
barrier in Store does not load the deleted reference src.fld into
the mutator’s roots.

We do not consider potential interference with the collector by
mutators other than those mentioned here; we assume type safety
but not any kind of data-race freedom. Note also that we ignore
other heap accesses that involve non-reference fields of objects.

2.4 Relaxed Memory: x86-TSO
Schism [30] has been implemented for both the relaxed memory
x86 and weak memory ARM/Power architectures. Its correctness
is presumed by informal reasoning about the memory models of
those platforms. The only requirements are that there be a way to
implement strong compare-and-swap (with implied store fence),
and that handshakes include strong memory fences: a store fence
when the collector initiates a round of handshakes, a load fence at
each mutator when it accepts a handshake, a store fence when it
finishes the handshake, and a load fence at the collector after all
the handshakes complete. These are implicitly performed by the
pthread primitives that implement the handshake mechanism. All
other loads and stores execute without specific ordering constraints,
including mutator loads of collector control variables. Of course,
informal arguments do not a proof make, and while we are confident
in the correctness of the collector, our purpose here is to establish
a machine-checked formal proof of correctness. We do so for x86-
TSO [35].

The x86-TSO model postulates the existence of a store buffer
private to each hardware thread (though hardware need not imple-
ment TSO this way). Memory stores are placed in the buffer, which
the hardware can asynchronously commit to the shared memory.
The size of the buffer is unspecified. Memory loads first consult
that thread’s store buffer for the memory location to load. The most
recent value stored to that location by the thread results, if present
in the store buffer. Otherwise, the load consults the shared memory.
In this respect, a given thread will see its own stores in the order
it has emitted them. But, the stores of other hardware threads may
appear arbitrarily interleaved among those local stores, though still
in store order. Locked instructions like atomic compare-and-swap
(x86 locked CMPXCHG) flush the store buffers, and also prevent loads
from memory by all other hardware threads, ensuring that their up-
date is visible to all the other hardware threads before completion.
Similarly, memory fences (x86 MFENCE) flush the store buffer of the
issuing thread, though each flushed store can still interleave with
other non-local memory operations.

Even x86-TSO makes framing correctness and a proof of our
collector non-trivial. Past formalizations of concurrent collectors
assume sequential consistency (SC). While enforcing SC on x86-
TSO is as simple as flushing the store buffers with an MFENCE
instruction immediately after every store, doing so is expensive; for
performance our collector flushes buffers only at handshakes and
CAS. All other memory accesses are ordered only by the program
text and TSO effects. Some accesses inherently have data races:
heap updates by mutators are unordered excepting when the write
barrier is triggered to enforce ordering (with CAS), depending on
both the collector phase and the sense of the marks on the objects.
Our intuitions of correctness rely on knowing that the marks placed
on objects during tracing (by both collector and mutators) propagate
to memory in a timely way, as enforced by both write barriers and
handshakes. We discuss our refinements of the tricolor abstraction
(§2) in the following sections.

It is important to note that, while the x86-TSO model has been
extensively shown to be observationally adequate with respect to
real Intel hardware as far as correctness goes [35], it is overly
pessimistic about the efficiency of the microarchitectural realization.
Thus it is worthless for predicting realtime behavior.

s′ ∈ R s
({|l|} LOCALOP R · cs,s)→τ (cs,s′)

(c1 · c2 · cs,s)→α (cs′,s′)
((c1; ;c2) · cs,s)→α (cs′,s′)

α = act s s′ ∈ val β s
({|l|} REQUEST act val · cs,s)→«α,β» (cs,s′)

(s′,β) ∈ act α s
({|l|} RESPONSE act val · cs,s)→»α,β« (cs,s′)

Figure 7. An excerpt of CIMP process semantics _→γ _, which is
a relation between a pair of local states (a list of commands paired
with the local data state for the process) and a communication action
γ . The latter is one of τ (local computation), «α,β» (arising from a
REQUEST), or »α,β« (from a RESPONSE). The second rule shows
how we treat sequential composition using a frame stack.

sp→τ s′p
s⇒ s(p := s′p)

sp→«α,β» s′p sq→»α,β« s′q p 6= q

s⇒ s(p := s′p,q := s′q)

Figure 8. The CIMP system semantics _⇒ _ is a relation between
system states (a function s that maps process names such as p to
their local states sp). The second rule captures rendezvous. The
(:= _) is Isabelle/HOL’s syntax for function update.

3. Formal Verification in Isabelle/HOL
None of it is new; but sensible old ideas need to be repeated or
silly new ones will get all the attention.

Leslie Lamport [20]

The model is the contract that joins the intuitions of the run-time
system designers to the details required for formal verification. It
must be expressed in a language that is plausible to both communi-
ties. To that end we developed the small imperative language CIMP
that extends IMP [40] with process-algebra-style rendezvous (syn-
chronous message passing) [25], control and data non-determinism,
and (flat) parallel composition of processes. Several of its small-step
semantic rules are shown in Figure 7, using frame stacks [29]. We
derive an equivalent evaluation-context semantics [9] that supports
the generation of verification conditions in terms of atomic actions.

Each process has local control and data states: there is no shared
global state. All commands are prefixed with a label which is
enclosed in {|_|}. Processes update their local data states using
LOCALOP R, where R is a set-valued function of the process’s local
data state. Communication commands have a similar effect, and
additionally require a pair of processes to synchronize. We employ
the customary mix of deeply embedded commands and shallowly
embedded expressions (over local data states).

Process transitions are interleaved only at the top-level, with
no action hiding, as shown in the system semantics of Figure 8.
This relation on global states (a map from process names to their
local states) encodes the communication rendezvous. Intuitively, the
sender’s REQUEST command determines α as a function (act) of its

definition
mem-TSO :: (′field, ′mut, ′ref) gc-com

where
mem-TSO ≡
{| ′ ′sys-read ′ ′|} RESPONSE (λ req s. { (s, sys-read p mr s)

|p mr. req = (p, ro-Read mr) ∧ not-blocked s p })
t {| ′ ′sys-write ′ ′|} RESPONSE (λ req s. { (s(| mem-write-buffers := (mem-write-buffers s)(p := mem-write-buffers s p @ [w]) |), mv-Void)

|p w. req = (p, ro-Write w) })
t {| ′ ′sys-mfence ′ ′|} RESPONSE (λ req s. { (s, mv-Void)

|p. req = (p, ro-MFENCE) ∧ mem-write-buffers s p = [] })
t {| ′ ′sys-lock ′ ′|} RESPONSE (λ req s. { (s(| mem-lock := Some p |), mv-Void)

|p. req = (p, ro-Lock) ∧ mem-lock s = None })
t {| ′ ′sys-unlock ′ ′|} RESPONSE (λ req s. { (s(| mem-lock := None |), mv-Void)

|p. req = (p, ro-Unlock) ∧ mem-lock s = Some p ∧ mem-write-buffers s p = [] })
t {| ′ ′sys-dequeue-write-buffer ′ ′|} LOCALOP (λ s. { (do-write-action w s)(| mem-write-buffers := (mem-write-buffers s)(p := ws) |)

| p w ws. mem-write-buffers s p = w # ws ∧ not-blocked s p ∧ p 6= sys })

Figure 9. x86-TSO in CIMP, using the auxiliary functions defined by Sewell et al. [35]. The t operator denotes non-deterministic choice.

local data state, and the receiver’s RESPONSE command determines
β as a non-deterministic function of α and the latter’s local data state.
Both processes, upon rendezvous, simultaneously update their local
states non-deterministically. This mechanism encodes our intuitions
about causality and provides access to Isabelle/HOL’s rich datatypes
while avoiding the need for π-calculus-style binding or large non-
deterministic sums [25]. Channels are not primitive, but can be
modelled by a judicious choice of α .

A key strength of this approach is that the atomicity of distinct
operations is independent, which is supremely useful during the
initial phases of such projects, while leaving open the possibility of
atomicity refinement within the same framework.

3.1 Model
We model the software threads as CIMP processes which talk to a
single reactive system thread:

GC M1 M2 . . .

Sys

The system abstracts and encapsulates the TSO model, allocation,
and the synchronization structure of the handshakes, as we discuss
in the next section. The variables that the run-time system designers
consider to be global reside here. The local states of the software
components abstractly represent the program counters, the registers,
and the stacks that are thread-local. These include each thread’s
local copies of the garbage collector’s control state that are updated
as the pseudo-code suggests. The number of mutators is arbitrary.

Our complete model is available at the Archive of Formal Proof.1
We focus on the novelties of each component here.

System. We begin with an adaptation of the x86-TSO memory
model due to Sewell et al. [35] to our setting. Let us fix an arbitrary
non-empty set R of references, and treat the heap in the time-
honored manner as a a partial map from R to objects O or NULL.
An object o ∈ O consists of a garbage collection mark and a
partial mapping of fields to R ∪ {NULL}. We abstract from any
non-reference payloads that an object may have. We use the domain
of the heap to track free references. Allocation is treated as an atomic
action that creates and initializes an object which is inserted into
the heap at an arbitrary free reference. This is the coarsest and least
defensible abstraction in the present model.

We encode the transition rules given by Sewell et al. as shown
in Figure 9, which diverges only by eliding their fine-grained

1 http://afp.sf.net/entries/ConcurrentGC.shtml

treatment of x86 registers. The TSO store buffers for each thread
are represented as a sequence of pending write actions in the system
component, and the TSO lock records the name of the process
holding it, if there is one. The system component has only one
internal transition, which is to commit the oldest pending write
for any thread. We make all of the garbage collector’s control
variables (fA, fM , phase) subject to TSO, as well as all operations
on objects (including per-object mark bit flags). We exploit CIMP’s
non-standard handshaking here so that memory requests involve
only a single communication step despite requiring bi-directional
communication.

The system includes a very straightforward treatment of hand-
shakes: the collector sets the handshake type, issues an MFENCE,
and, for each mutator m in an arbitrary order, issues a request to
the system that sets the bit for m. Each mutator polls its bit at its
leisure, and resets it after issuing an MFENCE and completing the
requested work. The process of completing a handshake includes
transferring its work-list to the system for root marking and mark
loop termination. Concurrently the collector polls the mutator bits,
blocking until all have been reset, and finally loads the system’s
work-list into its local state.

We ignore the effects of TSO on the handshake state as it has no
interesting impact on collector correctness at our level of abstraction,
and should be straightforward to resolve during a later atomicity
refinement step. Similarly, work-lists are not subject to TSO; we
prove that these are disjoint and hence thread-local, which justifies
the representation used in the C code discussed in §2.2.

Collector. One would be surprised if the collector were difficult
to represent in CIMP given that the language was designed with it in
mind, and indeed our formalization of the pseudo-code presented
in Figure 2 is barely worth remarking on other than to observe
its similarity; we present the mark loop in Figure 10 just for
color. Taking inspiration from the public APIs of message-passing
µkernels like seL4 [16], we encapsulate the system REQUEST
operations so that, after some hefty syntactic sugaring, the resulting
model looks very much like an ordinary shared-variable program,
albeit one that is parameterized by the semantics of memory.

Mutators. These are less exciting than the collector, being merely
a maximally non-deterministic choice amongst the operations men-
tioned in Figure 6, an MFENCE, a local step (notionally refined by
any terminating thread-local computation), and the mutator’s side of
the handshakes tied to collector phase transitions shown in Figure 2.
We expect every client of the collector to be a formal refinement of
this process, which implies nothing beyond their respect for the heap
access protocol for references. The mutator process is parameterized
by name, and our safety proof is for an unbounded number.

http://afp.sf.net/entries/ConcurrentGC.shtml

. . .
{|. . . |} WHILE not empty W DO
{|. . . |} WHILE not empty W DO
{|. . . |} ´tmp-ref :∈ ´W ;;
{|. . . |} ´field-set := UNIV ;;
{|. . . |} WHILE not empty field-set DO
{|. . . |} ´field :∈ ´field-set ;;
{|. . . |} ´ref := ´tmp-ref→´field ;;
{|. . . |} mark-object ;;
{|. . . |} ´field-set := (´field-set − {´field})

OD ;;
{|. . . |} ´W := (´W − {´tmp-ref})

OD ;;
{|. . . |} ragged-safepoint-get-work

OD ;;
. . .

Figure 10. An excerpt of the collector model: the marking loop.
The labels on commands have been elided for reasons of space.

3.2 Formal Abstractions and Invariants

You can’t always write a chord ugly enough to say what you
want to say, so sometimes you have to rely on a giraffe filled
with whipped cream.

Frank Zappa

Our verification technique is classical: we develop a single global
invariant that holds at all reachable states, following Lamport [19];
see de Roever et al. [5] for an extended account, and Ridge [31]
for a comparable development. In practice this statement is a
conjunction of local assertions, which use the at p ` predicate
to assert that a property holds when control for process p resides at
program location `, and universal assertions that do not. Both are
predicates over the instantaneous global state (i.e., a map from each
process’s name to its current local state). This approach separates
code, assertions, and proofs, which is advantageous for large-scale
verification efforts as exemplified by the l4.verified project [16].

We show that the model satisfies this invariant by induction
over the set of reachable states induced by the _⇒ _ relation. A
custom tactic automatically discharges most verification conditions,
exploiting Isabelle’s efficient and scalable parallelism to greatly
reduce latency while discovering invariants and proofs [39].

As the high-level safety argument has already been presented in-
formally (§2), and our full formal development is publicly available,
we proceed here by linking the two: we refine the definitions that
underpin the former account, and recount some of the corner cases
uncovered by the latter.

Handshakes. We begin by formalizing the phase behavior of the
system that is illustrated in Figures 3 and 4. Intuitively, we construct
a system-wide program counter that limits the combinatorial possi-
bilities for potentially interfering operations. This takes the form of a
tight relation between the most-recent handshake type (one of: noop,
mark roots, mark loop termination), the pending-handshake bits
of the mutators and ghost state that tracks how many handshakes
the collector has initiated and how many each mutator has com-
pleted. This ghost state makes it easy to state the invariants about
the complex write barriers that run asynchronously to the collector.
The handshake type allows us to distinguish between the mark loop
termination handshake, which can happen zero or more times, and
the handshake that signals the beginning of the next collector cycle.

Each mutator knows that its fellow mutators are in one of the
preceding, the same, or the next phase, and that the collector is in
the same phase or in one of the two adjacent handshakes.

Coarse TSO Invariants. Our model contains genuine data races,
if only because we do not assume that the mutators are data-race

free; we discuss others in the following sections. The effect of TSO
on the two control variables fA and fM is benign as these are only
written by the collector, which immediately issues an MFENCE as
part of the following handshake. In contrast the phase variable is
not data-race free: there can be several writes pending to it in the
collector’s write buffer. Therefore we use the handshake state and the
state of the collector’s TSO store buffer to express our expectations
of these variables as shown in Figure 3. We also track the state of the
TSO lock with respect to program locations in the various threads.

Collector Predicates and Invariants. Our next step in refining the
informal intuitions of correctness is to find an inductive invariant that
implies our correctness assertion. To do so we need to account for
the effects of TSO on reachability: can a path go via TSO buffers?
Note that a pending write may be the only witness to the reachability
of some object from some other object. As observed earlier, the
write barriers take care of inserting greys as necessary to keep white-
reachable objects grey-reachable, and these greys are immediately
published by the CAS, which also has the effect of flushing any
pending mutations. Therefore we treat references in TSO store
buffers as extra roots, and otherwise ignore their effect on paths; a
path always goes via the heap.

For similar reasons we also consider the reference marked by
the deletion barrier for the duration of the marking operation to be a
root (line 9 in Figure 6).

Formally, a reference reaches another if there is a path from
the former to the latter through objects on the heap. A reachable
reference y is one for which there exists a root that reaches y.
Our valid_refs_inv states that there is an object on the heap for all
reachable references.

Another subtle point is the interpretation of the colors that
underpin the tricolor abstractions of §2.1. Fine-grained modelling of
TSO and CAS means that the marking operation cannot atomically
take an object from white to grey: (1) the mark may reside in a
TSO store buffer until the TSO lock is released by the CAS, and
(2) only after the CAS has been won is the reference placed on a
work-list. In terms of actual program state, our scheme blackens
a white object, and then reverts it to grey. We use ghost state
(ghost_honorary_grey) to track this last transition (lines 8–13).

We therefore use the following interpretation of colors: an object
is white if it is not marked on the heap, grey if it is on a work-list
or ghost_honorary_grey, and black if it is marked on the heap
and not on a work-list. These colours overlap: black is certainly
disjoint from white and grey, but a reference is both white and grey
(ghost_honorary_grey) during the CAS (at line 8, after the write has
been issued but not yet committed), and would be considered black
at line 12, before it is added to a work-list, if not for the ghost state.
With these subtleties addressed, these definitions directly support
the classical definitions of the strong and weak tricolor invariants
given earlier.

Our valid_W_inv says that if a reference is on a work-list or
ghost_honorary_grey for thread p, and the TSO lock is not held by
p, then its target object is marked on the heap. It also states that any
pending marks use fM , and the work-lists are disjoint. This captures
the abstract effect of the four uses of the marking function shown in
Figure 5, and effectively allows us to use colors as in the informal
argument.

Marking. The uses of mark (Figure 5) by the collector and in
the root marking operation by the mutators are straightforward to
verify as the collector’s control state is common knowledge at those
times. In contrast the two uses in the mutators’ store operation run
completely asynchronously, and the use of phase is not data-race
free since the writes that change it from mark to sweep (line 36 in
Figure 2), and sweep to idle (line 46) are unsynchronized. Further
complicating our reasoning, phase can change after we check it

http://afp.sf.net/entries/ConcurrentGC.shtml

(line 4 in Figure 5), and fM may flip after the load (line 2). Moreover
the reference that is marked by the deletion barrier (line 9 in
Figure 6) may not be the reference that presently resides in src.fld
due to interference by another mutator.

These scenarios are relatively straightforward during the collec-
tor’s steady-state mark loop. We therefore focus on the initialization
phases where the reasoning is more complicated.

Initialization. The goal of initialization is to establish the snapshot
before entering the mark loop. Our reachable_snapshot_inv asserts
that all reachable references are in the snapshot. Formally the
snapshot contains all black and grey-protected white (i.e., grey or
white-reachable from a grey) references. The invariant is established
by each mutator as it completes the root marking handshake, and
depends on all mutators having both barriers installed. Once a
mutator has established the reachable_snapshot_inv we consider
it black; that is, its roots won’t be scanned again on this collection
cycle.

This is where we cash in our very precise handshake relation.
With reference to the handshake phases shown along the bottom of
Figure 3, our sys_phase_inv says that when the collector is in the
given phase (i.e., it has initiated the handshake named here but not
yet the next one) then the assertion holds:

hp_Idle: If fA equals fM then the heap is black otherwise it is white,
and there are no grey references.

hp_IdleInit: There are no black references.

hp_InitMark: Until the write to fA is committed, there are no
black references; that is, the mutators allocate white until then.
Intuitively, to preserve the strong_tricolor_inv, we must know
that all mutators have installed their insertion barriers before
setting the allocation flag fA to fM , and we also want to set fA
as late as possible to ameliorate floating garbage.

Before recounting the invariants for the mutators, we define the
effect of the write barriers. A reference is an insertion if it is a
reference being written into an object by a write pending in a
TSO store buffer. The predicate marked_insertions asserts that
all such insertions are marked. Similarly a deletion is the reference
in an object that will be overwritten by a write pending in a TSO
store buffer. The predicate marked_deletions asserts that all such
deletions are marked.

Our mutator_phase_inv asserts that, for mutators in the given
handshake phase, the assertion holds:

hp_IdleInit: There are no black references.

hp_InitMark: Only marked_insertions holds. Note that a mutator
m that has yet to pass this handshake can defeat the deletion
barrier of a mutator m′ which has passed the handshake by
inserting white references into objects. The scenario is as follows:
the insertion barrier in m reads phase=Idle and does not mark
the reference, then the Store operation in m′ runs to completion,
and finally the white insertion by m is committed. Conversely,
all mutators that pass this handshake have flushed any white
insertions from their TSO store buffers.

hp_IdleMarkSweep: By the commencement of the mark-roots
handshake, both marked_insertions and marked_deletions hold
for all mutators, and reachable_snapshot_inv holds for all muta-
tors that have completed this handshake. The strong_tricolor_inv
guarantees to the black mutators which have marked their roots
that white-reachable objects are in fact grey-protected; the only
black objects at this point arise from allocation (only the collec-
tor takes grey to black, and then only in the mark loop), and the
insertion barrier ensures that these cannot be the sole witness to
the reachability of white objects.

The local invariants for the mutators’ asynchronous mark operations
in the Store operation that justify these assertions are the most
intricate in the entire development.

Termination of Marking. We argue that if the collector’s work-
list is empty at line 25 in Figure 2 then there are no grey references.
The gc_W_empty_mut_inv predicate asserts that, if mutator m has
completed the root marking or mark loop termination handshake,
the collector’s work-list W is empty and m has a non-empty W ,
then there is a mutator with a non-empty work-list that has yet to
complete the handshake. In concert with our other invariants, this
implies that the collector’s W must become non-empty before it
completes the handshake. Note that it is possible for the collector to
own all the grey references in the system during the mark loop, and
so this predicate is only invariant over those handshakes, when the
collector’s W is known to start empty.

With no grey references in the system, reachable_snapshot_inv
reduces to the assertion that all reachable references are black, and
it is therefore safe to free any objects that remain white.

Satisfiability of the Invariants. Finally, the formal development
exhibits a small but non-trivial concrete heap that discharges the
remaining hypotheses of our model, and further that our invariants
are satisfiable. This provides assurance of non-triviality.

4. Concluding Remarks
The goal of this work was to verify a plausible model of the extant
garbage collector. Its value is in exhaustively establishing the safety
of the synchronization and marking schemes; we conclude that
the run-time system experts had the right intuitions (sound and
formalizable) and ultimately enough of them. But of course our
development is neither the first nor the final word.

Previous Verification Efforts. Our development traces its roots
to the classic work of Dijkstra et al. [6], which originated the fun-
damental tricolor invariants. Formalization of on-the-fly collection
became much clearer with the work of Doligez and Gonthier [7].
Both of these assume that memory is sequentially consistent, and
do not address the implementation of realistic write barriers and
handshakes. Moreover both formulations proved to be unsafe in sub-
tle ways that were only revealed by more formal analyses [11, 12],
illustrating the difficulties of devising and reasoning about these
algorithms. We note in passing that Doligez and Gonthier [7] used
TLA [19], which yields a looser model than ours. For instance, we
unnecessarily fix the order of the insertion and deletion barriers in
the mutators where they do not.

Hawblitzel and Petrank [13] offer perhaps the most compre-
hensive verification of a real garbage collector down to assembly
code, though their collector is not concurrent. Vechev et al. [38]
explore correctness-preserving transformations that allow synthesis
of a diverse range of more realistic collectors (less expensive, more
concurrent), from an apex abstract collector that is simpler, and
easier to prove correct. While interesting as a means to enumerating
possible designs, this approach does not yield a collector with the
fine-grained concurrency and mutator responsiveness of our collec-
tor. A similar approach has been attempted by Pavlovic et al. [28],
again without descending to our level of fine-grained detail.

Park and Dill [27] developed a model checker for the SPARC v9
relaxed memory order (RMO) model and applied it to a simple spin
lock. Das et al. [4] considered verification of a cache coherence pro-
tocol and concurrent garbage collection using predicate abstraction.
Perplexingly they did not combine these two works.

Much recent work [10, 21, 23, 24, 36] treats garbage collection
as an exercise in separation logic. All of these are sequential;
concurrent separation logic remains a work in progress [37].

Representations. We assume that each thread runs on a separate
core; i.e., each has its own TSO buffer. This is the most adversarial
setup because any reasonable scheduler will flush TSO buffers
on context switches; as our assertions are already (necessarily)
closed under TSO flushes, schedulers should not introduce any
new interference.

More importantly we did not make all of the system state subject
to TSO: in particular, the work-lists and (less crucially) the precise
details of the implementation of handshakes. We have kept objects
and references abstract. We leave these issues to an atomicity-
refinement technique.

Least defensibly we have essentially axiomatized allocation as a
global and atomic operation, which is far from realistic. Similarly to
Doligez and Gonthier [7], we have devised but not yet verified
an extension to the model that would allow mutators to gather
pools of unallocated references from which to perform fine-grained
allocation without synchronizing. For TSO, we can also perform the
marking and initialization of the fields at each allocation without the
need for an MFENCE, because publishing the new reference to other
mutators can occur only after the prior initializing stores have been
flushed. We have yet to consider process spawning and reaping.

Connection With Reality. Clearly our safety property does not
imply every property one may need in a larger setting. For instance,
while we have established that the collector does not free live objects,
we have not shown that it does not mutilate the heap. (This is obvious
for our model as the GC never writes to references.) Moreover a real-
time collector like Schism deserves to have analytic timing bounds,
but as we have observed, the x86-TSO model is worthless for this
purpose. We know that garbage is collected within two cycles of the
collector’s outer loop, up to liveness of the mutators and hardware,
but again we owe this a proof. We concur with Gonthier [11] that a
formal treatment of liveness is likely to be complex and adds little
value, given the need for dubious fairness hypotheses.

The connection of models such as ours to more executable things
has been a major theme for the group we work in [16], and for others.
Therefore we are interested in refinement techniques that will take
us closer to the C or x86-TSO assembler implementation. The recent
work on CompCert-TSO by Sevcík et al. [34] appears to provide a
solid foundation for such a development, in concert with the recent
work by Jagannathan et al. [14] that would allow us to modularly
axiomatize our special operations (handshakes, barriers, alloc, free)
at the source-code level, and discharge these assumptions over small
pieces of x86 assembler. The details will doubtless be devilish.

Heading in the opposite direction, one might wish for a more
compositional story that can be used to show the safety of a larger
system. We did not use such program logics (featuring, for instance,
ghost state, separation, or ownership) in our present development
as they did not appear to help discover invariants; instead we
developed ad hoc encodings of the concepts we found useful, as did
l4.verified [16]. For instance our process-local states are the obvious
static separation between thread-local states, the ownership of grey
references is explicit in the form of work-lists, and ghost state takes
the form of program variables from which a read never occurs. We
did not attempt to address compositionality, but note that no such
techniques known to us would have reduced our proof effort.

Interestingly, the recent literature does not appear to address the
temporal phase structure common in concurrent systems, and indeed
our development suffers somewhat from a combinatorial explosion
in interference possibilities due to the raggedness of the handshakes.
The communication-closed layers approach recounted by de Roever
et al. [5, Chapter 12] looked promising but did not deliver for us.

Finally we could not avail ourselves of the battery of extant
theorems that reduce reasoning about data-race free (DRF) programs
on TSO to reasoning about sequentially-consistent memory [3,
26, 32], if only because the collector does not have the luxury

of assuming that mutators are DRF. An alternative approach is to
transform the model to expose data races to a standard technique
for sequential consistency [2]. This may be appealing to those using
algorithmic state-traversal techniques but it is less clear how it plays
in a deductive setting.

Observations. From our close analysis of this algorithm we know
that two of the initialization handshakes can be removed on x86-
TSO, but have yet to prove this. We also expect that the insertion
barrier can be removed after roots have been marked (i.e., across the
mark loop) in exchange for an extra branch in the store barrier. We
thank a reviewer for suggesting that this may be more performant.

Further we expect that a verification of safety for ARM/POWER
can be carried out along similar lines, despite the complexity of that
memory model [33]. What has stopped us so far is the concern that
extant models will not have the longevity of x86-TSO.

We have demonstrated here that reasoning about programs with
data races on TSO is somewhat tractable, but that may be because
the collector is carefully constructed. To scale one certainly wants
to exploit the general absence of data races. We encourage other
researchers to bring their techniques to bear on collectors of this
sophistication, and hope they find our invariants useful.

Acknowledgments
This work was carried out at the Neville Roach Laboratory in Sydney,
Australia, while the first two authors were at NICTA. We thank
our NICTA colleagues, the anonymous PLDI paper and artifact
reviewers, and Shaz Qadeer for their valuable feedback. NICTA is
funded by the Australian Government through the Department of
Communications and the Australian Research Council through the
ICT Centre of Excellence Program. The second author also receives
support from Qualcomm and the National Science Foundation under
grants nos. CNS-1161237 and CCF-1408896.

References
[1] S. Abraham and J. Patel. Parallel garbage collection on a virtual

memory system. In International Conference on Parallel Processing,
pages 243–246, University Park, Pennsylvania, Aug. 1987.

[2] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software
verification for weak memory via program transformation. In Euro-
pean Symposium on Programming, volume 7792 of Lecture Notes in
Computer Science, pages 512–532, Rome, Italy, Mar. 2013. Springer.
doi: 10.1007/978-3-642-37036-6_28.

[3] E. Cohen and B. Schirmer. From total store order to sequential con-
sistency: A practical reduction theorem. In International Conference
on Interactive Theorem Proving, volume 6172 of Lecture Notes in
Computer Science, pages 403–418, Edinburgh, Scotland, July 2010.
Springer. doi: 10.1007/978-3-642-14052-5_28.

[4] S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction.
In International Conference on Computer Aided Verification, volume
1633 of Lecture Notes in Computer Science, pages 160–171, Trento,
Italy, July 1999. Springer. doi: 10.1007/3-540-48683-6_16.

[5] W. P. de Roever, F. S. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech,
M. Poel, and J. Zwiers. Concurrency Verification: Introduction to Com-
positional and Noncompositional Methods, volume 54 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
2001.

[6] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: An exercise in cooperation.
Commun. ACM, 21(11):966–975, Nov. 1978. doi: 10.1145/359642.
359655.

[7] D. Doligez and G. Gonthier. Portable, unobtrusive garbage collection
for multiprocessor systems. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 70–83, Portland, Oregon,
Jan. 1994. doi: 10.1145/174675.174673.

http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-14052-5_28
http://dx.doi.org/10.1007/3-540-48683-6_16
http://dx.doi.org/10.1145/359642.359655
http://dx.doi.org/10.1145/359642.359655
http://dx.doi.org/10.1145/174675.174673

[8] D. Doligez and X. Leroy. A concurrent generational garbage collector
for a multi-threaded implementation of ML. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
113–123, Charleston, South Carolina, Jan. 1993. doi: 10.1145/
158511.158611.

[9] M. Felleisen and R. Hieb. The revised report on the syntactic theories
of sequential control and state. Theoretical Computer Science, 103(2):
235–271, Sept. 1992. doi: 10.1016/0304-3975(92)90014-7.

[10] X. Feng. Local rely-guarantee reasoning. In ACM SIGPLAN Sym-
posium on Principles of Programming Languages, pages 315–327,
Savannah, Georgia, Jan. 2009. doi: 10.1145/1480881.1480922.

[11] G. Gonthier. Verifying the safety of a practical concurrent garbage
collector. In International Conference on Computer Aided Verification,
volume 1102 of Lecture Notes in Computer Science, pages 462–465,
New Brunswick, New Jerseu, July–Aug. 1996. Springer. doi: 10.1007/
3-540-61474-5_103.

[12] D. Gries. An exercise in proving parallel programs correct. Commun.
ACM, 20(12):921–930, Dec. 1977. doi: 10.1145/359897.359903.

[13] C. Hawblitzel and E. Petrank. Automated verification of practical
garbage collectors. In ACM SIGPLAN Symposium on Principles of
Programming Languages, pages 441–453, Savannah, GA, Jan. 2009.
doi: 10.1145/1480881.1480935.

[14] S. Jagannathan, V. Laporte, G. Petri, D. Pichardie, and J. Vitek.
Atomicity refinement for verified compilation. ACM Trans. Prog. Lang.
Syst., 36(2):6:1–30, Apr. 2014. doi: 10.1145/2601339.

[15] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Handbook:
The Art of Automatic Memory Management. CRC Applied Algorithms
and Data Structures. Chapman & Hall, Aug. 2012.

[16] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an OS kernel. In
ACM SIGOPS Symposium on Operating Systems Principles, pages 207–
220, Big Sky Resort, Montana, Oct. 2009. doi: 10.1145/1629575.
1629596.

[17] H. T. Kung and S. W. Song. An efficient parallel garbage collection
system and its correctness proof. In Symposium on Foundations of
Computer Science, pages 120–131, Providence, Rhode Island, Oct.
1977. IEEE. doi: 10.1109/SFCS.1977.5.

[18] L. Lamport. Garbage collection with multiple processes: an exercise in
parallelism. In International Conference on Parallel Processing, pages
50–54, 1976.

[19] L. Lamport. Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

[20] L. Lamport. Who builds a house without drawing blueprints? Commun.
ACM, 58(4):38–41, Apr. 2015. doi: 10.1145/2736348.

[21] C. Lin, Y. Chen, and B. Hua. Verification of an incremental garbage
collector in Hoare-style logic. International Journal of Software and
Informatics, 3(1):67–88, Mar. 2009.

[22] J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine, Part I. Commun. ACM, 3(4):184–195, Apr.
1960. doi: 10.1145/367177.367199.

[23] A. McCreight, Z. Shao, C. Lin, and L. Li. A general framework for
certifying garbage collectors and their mutators. In ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 468–479, San Diego, California, June 2007. doi: 10.1145/
1250734.1250788.

[24] A. McCreight, T. Chevalier, and A. Tolmach. A certified framework
for compiling and executing garbage-collected languages. In ACM
SIGPLAN International Conference on Functional Programming, pages
273–284, Baltimore, Maryland, Sept. 2010. doi: 10.1145/1863543.
1863584.

[25] R. Milner. Communication and Concurrency. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1989.

[26] S. Owens. Reasoning about the implementation of concurrency
abstractions on x86-TSO. In European Conference on Object-Oriented
Programming, volume 6183 of Lecture Notes in Computer Science,
pages 478–503, Maribor, Slovenia, June 2010. Springer. doi: 10.1007/
978-3-642-14107-2_23.

[27] S. Park and D. L. Dill. An executable specification and verifier for
relaxed memory order. IEEE Transactions on Computers, 48(2):227–
235, 1999. doi: 10.1109/12.752664.

[28] D. Pavlovic, P. Pepper, and D. R. Smith. Formal derivation of concur-
rent garbage collectors. In International Conference on Mathematics
of Program Construction, volume 6120, pages 353–376, Québec City,
Canada, June 2010. Springer. doi: 10.1007/978-3-642-13321-3_
20.

[29] A. M. Pitts. Operational semantics and program equivalence. In
International Summer School on Applied Semantics, Advanced Lec-
tures, volume 2395 of Lecture Notes in Computer Science, pages
378–412. Springer, Caminha, Portugal, Sept. 2000. doi: 10.1007/
3-540-45699-6_8.

[30] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek.
Schism: Fragmentation-tolerant real-time garbage collection. In ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 146–159, Toronto, Canada, June 2010. doi: 10.1145/
1806596.1806615.

[31] T. Ridge. Verifying distributed systems: the operational approach. In
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 429–440, Savannah, Georgia, Jan. 2009. doi: 10.
1145/1480881.1480934.

[32] T. Ridge. A rely-guarantee proof system for x86-TSO. In International
Conference on Verified Software: Theories, Tools, Experiments, volume
6217 of Lecture Notes in Computer Science, pages 55–70, Edinburgh,
Scotland, Aug. 2010. Springer. doi: 10.1007/978-3-642-15057-9_
4.

[33] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Under-
standing POWER multiprocessors. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 175–186,
San Jose, California, June 2011. doi: 10.1145/1993498.1993520.

[34] J. Sevcík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell.
CompCertTSO: A verified compiler for relaxed-memory concurrency.
J. ACM, 60(3):22, 2013. doi: 10.1145/2487241.2487248.

[35] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen.
x86-TSO: a rigorous and usable programmer’s model for x86 multi-
processors. Commun. ACM, 53(7):89–97, July 2010. doi: 10.1145/
1785414.1785443.

[36] N. Torp-Smith, L. Birkedal, and J. C. Reynolds. Local reasoning about
a copying garbage collector. ACM Trans. Prog. Lang. Syst., 30(4), July
2008. doi: 10.1145/1377492.1377499.

[37] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating weak
memory with ghosts, protocols, and separation. In ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 691–707, Portland, Oregon, Oct. 2014. doi: 10.
1145/2660193.2660243.

[38] M. T. Vechev, D. F. Bacon, P. Cheng, and D. Grove. Derivation and
evaluation of concurrent collectors. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 341–353,
Ottawa, Canada, June 2007. doi: 10.1145/1133981.1134022.

[39] M. Wenzel. Shared-memory multiprocessing for interactive the-
orem proving. In International Conference on Interactive Theo-
rem Proving, volume 7998 of Lecture Notes in Computer Science,
pages 418–434, Rennes, France, July 2013. Springer. doi: 10.1007/
978-3-642-39634-2_30.

[40] G. Winskel. The Formal Semantics of Programming Languages. MIT
Press, Cambridge, Massachusetts, 1993.

[41] T. Yuasa. Real-time garbage collection on general-purpose machines.
Journal of Systems and Software, 11(3):181–198, Mar. 1990. doi: 10.
1016/0164-1212(90)90084-Y.

http://dx.doi.org/10.1145/158511.158611
http://dx.doi.org/10.1145/158511.158611
http://dx.doi.org/10.1016/0304-3975(92)90014-7
http://dx.doi.org/10.1145/1480881.1480922
http://dx.doi.org/10.1007/3-540-61474-5_103
http://dx.doi.org/10.1007/3-540-61474-5_103
http://dx.doi.org/10.1145/359897.359903
http://dx.doi.org/10.1145/1480881.1480935
http://dx.doi.org/10.1145/2601339
http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1109/SFCS.1977.5
http://dx.doi.org/10.1145/2736348
http://dx.doi.org/10.1145/367177.367199
http://dx.doi.org/10.1145/1250734.1250788
http://dx.doi.org/10.1145/1250734.1250788
http://dx.doi.org/10.1145/1863543.1863584
http://dx.doi.org/10.1145/1863543.1863584
http://dx.doi.org/10.1007/978-3-642-14107-2_23
http://dx.doi.org/10.1007/978-3-642-14107-2_23
http://dx.doi.org/10.1109/12.752664
http://dx.doi.org/10.1007/978-3-642-13321-3_20
http://dx.doi.org/10.1007/978-3-642-13321-3_20
http://dx.doi.org/10.1007/3-540-45699-6_8
http://dx.doi.org/10.1007/3-540-45699-6_8
http://dx.doi.org/10.1145/1806596.1806615
http://dx.doi.org/10.1145/1806596.1806615
http://dx.doi.org/10.1145/1480881.1480934
http://dx.doi.org/10.1145/1480881.1480934
http://dx.doi.org/10.1007/978-3-642-15057-9_4
http://dx.doi.org/10.1007/978-3-642-15057-9_4
http://dx.doi.org/10.1145/1993498.1993520
http://dx.doi.org/10.1145/2487241.2487248
http://dx.doi.org/10.1145/1785414.1785443
http://dx.doi.org/10.1145/1785414.1785443
http://dx.doi.org/10.1145/1377492.1377499
http://dx.doi.org/10.1145/2660193.2660243
http://dx.doi.org/10.1145/2660193.2660243
http://dx.doi.org/10.1145/1133981.1134022
http://dx.doi.org/10.1007/978-3-642-39634-2_30
http://dx.doi.org/10.1007/978-3-642-39634-2_30
http://dx.doi.org/10.1016/0164-1212(90)90084-Y
http://dx.doi.org/10.1016/0164-1212(90)90084-Y

	Introduction
	Contributions

	The Verified Collector
	Abstractions and Invariants
	The Collector
	Marking
	Relaxed Memory: x86-TSO

	Formal Verification in Isabelle/HOL
	Model
	Formal Abstractions and Invariants

	Concluding Remarks

