
ACM SIGPLAN Notices, Volume 34, Number 10, October 1999

Mostly-copying reachability-based orthogonal persistence

Antony L. Hosking
hosking@cs.purdue.edu

Jiawan Chen
chenj@cs.purdue.edu

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907-1398
U.S.A.

Abstract

We describe how reachability-based orthogonal persistence can
be supported even in uncooperative implementations of languages
such as C++ and Modula-3, and without modification to the com-
piler. Our scheme extends Bartlett’s mostly-copying garbage col-
lector to manage both transient objects and resident persistent ob-
jects, and to compute the reachability closure necessary for stabi-
lization of the persistent heap. It has been implemented in our pro-
totype of reachability-based persistence for Modula-3, yielding per-
formance competitive with that of comparable, but non-orthogonal,
persistent variants of C++. Experimental results, using the OO7 ob-
ject database benchmarks, reveal that the mostly-copying approach
offers a straightforward path to efficient orthogonal persistence in
these uncooperative environments. The results also characterize the
performance of persistence implementations based on virtual mem-
ory protection primitives.

1 Introduction

Incorporatingorthogonal persistence[11] into a programming lan-
guage yields a flexible object model that encourages abstraction,
modularity and reuse in the construction of libraries and applica-
tions that manipulate persistent data. In fact, one can write code
with little thought given to the persistence or transience of the data
it allocates and manipulates.

Despite the attractions of orthogonal persistence, systems-oriented
programming languages have typically shunned it as too expensive,
or too difficult to implement. The primary reason is the implied
reliance on garbage collection to effectpersistence by reachabil-
ity. Yet garbage collection is now gaining in acceptance, even in

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists requires prior specific permission and/or a
fee.
OOPSLA ’99 11/99 Denver, CO, USA
c 1999 ACM 1-58113-238-7/99/0010...$5.00

the systems programming realm [59], and one can expect a simi-
lar trend for orthogonal persistence. The remaining issue then is
difficulty of implementation. Unfortunately, the state of the art in
production-quality optimizing compilers for systems programming
languages does not include support for accurate location of roots
for garbage collection and orthogonal persistence, despite noble at-
tempts [33]. Thus, we must resort to techniques that treat roots
conservatively. In this paper we describe and evaluate a new ap-
proach to orthogonal persistence for such uncooperative language
environments, demonstrating simplicity of implementation and ef-
fectiveness of outcome.

2 Orthogonal persistence

Orthogonally persistent object systems[11] provide an abstraction
of permanent data storage that hides the underlying storage hierar-
chy of the hardware platform (fast access volatile storage, slower
access stable secondary storage, even slower access tertiary stor-
age, etc.). This abstraction is achieved by binding a programming
language to an object store, such that persistent objects are automat-
ically cached in volatile memory for manipulation by applications
and updates propagated back to stable storage in a fault-tolerant
manner to guard against crashes. The resultingpersistent program-
ming languageand object store together preserveobject identity:
every object has a unique persistent identifier (in essence an ad-
dress, possibly abstract, in the store), objects can refer to other ob-
jects, forming graph structures, and they can be modified, with such
modifications visible in future accesses using the same unique ob-
ject identifier.

In defining orthogonal persistence Atkinson and Morrison [11]
stipulate three design principles for persistent programming lan-
guages that enable the full power of the persistence abstraction:

1. Persistence independence: the language should allow the pro-
grammer to write code independently of the persistence (or
potential persistence) of the data that code manipulates. From
the programmer’s perspective access to persistent objects is
transparent, with no need to write explicit code to transfer
objects between stable and volatile storage.

2. Data type orthogonality: persistence should be a property in-
dependent of type. Thus, an object’s type should not dictate
its longevity.

382

3. Persistence designation: the way in which persistent objects
are identified should be orthogonal to all other elements of
discourse in the language. Neither the method nor scope of
its allocation, nor the type system (e.g., the class inheritance
hierarchy), should affect an object’s longevity.

The advantages that accrue through application of these principles
to the design of persistent programming languages are many. Per-
sistence independence allows programmers to focus on the impor-
tant problem of writing correct code, regardless of the longevity of
the data that code manipulates. Moreover, the code will function
equally well for both transient and persistent data.

Data type orthogonality allows full use of data abstraction through-
out an application, since a type can be applied in any programming
context. This permits the development of programming systems
based on rich libraries of useful abstract data types that can be ap-
plied to data of all lifetimes.

Finally, persistence designation gives every allocated instance of a
type the right to the full range of persistence without requiring that
its precise longevity be specified in advance. Again, this aids pro-
gramming modularity since the producer of data need not be con-
cerned with the ultimate degree of longevity to which a consumer
might subject that data. In sum, orthogonal persistence promotes
the programming virtues of modularity and abstraction; both are
crucial to the construction of large persistent applications.

2.1 Practicalities

Complete persistence independence typically cannot be achieved,
and even if it can, it may not be desirable, since one usually wants
to offer a degree of control to the programmer. For example, in us-
ing a transaction mechanism one must generally specify at least the
placement of transaction boundaries (begin/end). Nevertheless, a
language design would not be transparent if it required different ex-
pression for the usual manipulation of persistent and non-persistent
objects; i.e., for operations such as method invocation, field access,
parameter passing, etc.

Similarly, perfect type orthogonality may not be achievable and
may not even be desirable. For example, some data structures re-
fer to strictly transient entities (e.g., open file channels or network
sockets), whose saving to persistent storage is not even meaningful
(they cannot generally be recovered after a crash or system shut-
down). Whether thread stacks and code can persist is a trickier
question. In many languages these objects are not entirely first
class, and supporting persistence for them may also be challeng-
ing to implement. Thus, perfect type orthogonality, in the sense
that any instance of any type can persist, is not so desirable as that
any instance of any typethat needs to persistcan persist.

The principle of persistence designation means that any allocated
instanceof a type is potentially persistent, so that programmers are
not required to indicate persistence at object allocation time. Lan-
guages in which the extent of an object can differ from its scope
usually allocate objects on a heap, where they are retained as long
as necessary. Deallocation of an object may be performed explicitly
by the programmer, or automatically by the system when it detects
that there are no outstanding references to the object. This can be

determined by agarbage collector[81, 80, 51] which computes the
transitive closure of all objects reachable (by following references)
from some set of system roots. In systems that support garbage
collection, persistence designation is most naturally determined by
reachabilityfrom some set of knownpersistentroots.

Only when the heap is stabilized are new objects made persistent,
and then only if they are reachable from other persistent objects
or the persistent roots. Usually, this entails physically copying ob-
jects from non-persistent regions of the heap into persistent regions.
However, copying an object requires exact knowledge of all the
pointers to the object, so that they can be updated to reflect the ob-
ject’s relocation. Objects cannot be moved in environments where
such accurate pointer information is unavailable. Thus, previous
implementations of persistence for languages such as C++ break
orthogonality, and require the programmer to distinguish transient
and persistent objects whether by type or upon allocation. In this
paper we show that reachability-based orthogonal persistence for
such languages and environments is indeed possible, and efficient,
using an approach based on mostly-copying garbage collection.

2.2 Performance

Orthogonal persistence exacerbates problems of performance by
unifying the persistent and transient object address spaces such that
anygiven reference may refer to either a persistent or transient ob-
ject. Since every access (read or write) might be to a persistent
object, they must all be protected by an appropriatebarrier. Thus,
the persistenceread barrier ensures that an object is resident in
memory, and faults it in if not, before any read operation can pro-
ceed. Similarly, the persistencewrite barrier supports efficient mi-
gration of updates back to stable storage, either when updated ob-
jects are replaced in volatile memory or during explicit stabilization
of the persistent store, by maintaining a record of which objects in
volatile memory are dirty. In general the read and write barriers
can subsume additional functionality, such as negotiation of locks
on shared objects for concurrency control.

The read and write barriers may be implemented in hardware or
software. Hardware support for barriers, utilizing the memory man-
agement hardware of the CPU, is usually implemented via the vir-
tual memory protection primitives of the underlying operating sys-
tem [4, 58, 75, 82, 79], though the cost of fielding the resulting
protection traps in some operating systems is notoriously expen-
sive [45]. In the absence of hardware-based solutions, or because
of the performance shortcomings, barriers can be implemented in
software. Typically, the compiler (whether “way-ahead-of-time” or
“just-in-time”) or interpreter must arrange for appropriate checks
to be performed before each operation that may access or update a
persistent object. Alternatively, some languages (such as C++) sup-
port overloading of access operations to include the checks. These
explicit software barriers can represent significant overhead to the
execution of any persistent program, especially if written in an or-
thogonally persistent language where every access might be to a
persistent object.

There are several approaches to mitigating these performance prob-
lems. Pointer swizzling[63] is a technique that allows accesses to
resident persistent objects to proceed at volatile memory hardware
speeds by arranging for references to resident persistent objects to

383

be represented as direct virtual memory addresses, as opposed to
the persistent identifier format used in stable storage. A read bar-
rier may still be necessary to ensure that a given reference is in
swizzled format before it can be directly used. Unnecessary soft-
ware barriers can also be eliminated by taking advantage of lan-
guage execution semantics and compile-time program analysis and
optimization [67, 43, 42, 64, 38, 39, 48, 66, 65, 18, 17].

3 Related work

The notion of orthogonal persistence has a long history [7], traced
through the development of prototype orthogonal persistent pro-
gramming languages such as PS-Algol [5, 8, 6] and Napier88
[61, 28], and extensions to existing languages such as Smalltalk
[55, 54, 77, 44, 40, 38] and Java [10, 52, 9, 53]. It is impor-
tant to note that all of these prototypes rely on support for per-
sistence from an underlying virtual machine, implemented as an
interpreter of abstract machine instructions. While dynamic trans-
lation (i.e., “JIT” compilation) can improve performance in these
systems, neither performance nor features for systems program-
ming were an initial design goal. One advantage of an abstract
execution model is that persistence of code and active execution
states (i.e., threads) can be supported more easily. Napier88, Ty-
coon [60] and Smalltalk support both, while the PJama implemen-
tation of orthogonal persistence for Java supports persistent code
but not threads (yet) [10, 52, 9, 53].

Performance-conscious persistent programming languages have
historically been based almost exclusively upon C++, which at its
outset was hostile to ideas of automatic storage management on the
grounds that it compromised performance. Hence, C++-based per-
sistence extensions have adopted models of persistence that violate
orthogonality in one or more dimensions. In E [68, 69, 73, 70],
Avalon/C++ [31] and SHORE/C++ [20] there is a distinction be-
tween database types and standard C++ types; only database types
can persist. O++ [1, 2], Texas [75, 82] and Quickstore [79], along
with prominent commercial offerings [58], adopt a different ap-
proach, requiring designation of persistence at allocation time. In-
deed, the object database standard for C++ persistence defined by
the Object Data Management Group (ODMG) is not orthogonal [3].
Until our own work [47, 41] we are unaware of any attempt to bring
orthogonal persistence into the C++ domain. This is not to say
that C++ itself will not succumb to orthogonal persistence. In fact,
we are also exploring this possibility through extension of Texas
with persistence by reachability, by marrying a garbage collector to
Texas’s portable run-time type descriptors [56] to obtain accurate
information on the location of references stored in the heap.

Orthogonal persistence can be supported without redesign and
reimplementation of the programming language if one is prepared
instead to layer support for persistence into the operating system.
Several experimental projects have taken this approach: support for
persistence is targeted explicitly in Grasshopper [29, 71] and Mungi
[34, 37], but the rudiments are there in other experimental operat-
ing systems such as Opal [24, 25], among others. Our interest here
focuses on efficient support for orthogonal persistence on stock op-
erating systems.

4 Mostly-copying garbage collection

Mostly-copying garbage collection [12, 13] is a hybrid of conser-
vative [16] and copying [35, 26] collection. It is suitable for use in
environments lacking accurate information on the location of ref-
erences from the register, static or stack areas; objects thatappear
to be referenced from these areas are treated conservatively and
not moved. Such references are calledambiguous roots, since they
have a bit pattern that coincides with the range of valid heap refer-
ences. In addition to the usualtidy language-level object references,
which always refer to object headers, ambiguous roots also include
derived references that arise out of pointer arithmetic introduced
by compiler optimizations or explicitly by the programmer in lan-
guages that permit such expression.

Mostly-copying garbage collectors do require that all pointers
stored in heap-allocated objects are tidy and can be found accu-
rately; objects accessible only from other heap objects can thus be
moved during garbage collection. Accurately finding the source lo-
cations of heap pointers requires information describing the layout
of heap objects. The compiler may generate such information di-
rectly (as does Persistent Modula-3) or it may be derived indirectly
from compiler-generated debugging information [75, 82]. The al-
ternative is information supplied manually by the programmer [13],
though this approach may be error-prone.

For mostly-copying collection the heap is divided into a number of
fixed-sizepages, which are usually some fixed multiple of virtual
memory pages. Aligning the heap pages appropriately gives each
page a unique page number formed from the common high-order
bits of the virtual addresses covered by the page. This permits effi-
cient mapping of heap references to per-page information. Objects
larger than a single heap page are allocated as a sequence of con-
secutive heap pages.

Mostly-copying garbage collection divides the heap into two page
spaces,current and previous.1 New objects are always allocated
in the current space. When the heap is “full” (e.g., some alloca-
tion threshold is reached) the roles of the page spaces are reversed
and the collector proceeds to move all reachable objects from the
previous space into the current space. The pages in each space are
not necessarily contiguous and pages from each space may be in-
terleaved. Instead, each page has an associatedspace identifierto
keep track of its status. This arrangement allows an object to be
moved by the collector from previous space into current space in
one of two ways: either by physically copying it to a current-space
page, or simply by resetting the space identifier of its page. The
latter mechanism is called pagepromotion. Objects that appear to
be referenced by ambiguous roots can thus be “moved” between
spaces by promoting their page; retaining the same virtual address
preserves the integrity of the ambiguous reference. Large objects
are also “moved” via promotion, to reduce the copying overhead of
the collector.

The mostly-copying collector, sketched in Figure 1, operates in
three phases. We assume that the spaces are abstracted as sets of

1A note about terminology: We use the termscurrentspace and
previousspace, instead of the more conventional termsto space and
from space, to emphasize that objects can move spaces by promo-
tion as well as by copying.

384

1 proc promote(p) �
2 previous:= previousnfpg;
3 current:= current[fpg.
4

5 proc closure(move) �
6 while :copyStack:empty() do
7 p := copyStack:pop();
8 foreach l 2 pointer locations(p) do
9 move(l)

10 end
11 end.
12

13 proc mover(l) �
14 r := l ";
15 if page(r) 2 previousthen
16 if r 0 = nil then
17 r 0 := copy(r);
18 copyStack:push(page(r 0))
19 end;
20 l " := r 0

21 end.
22

23 proc gc() �
24 previous:= current; current:= fg;
25 foreach r 2 AR wherepage(r) 2 previousdo
26 promote(page(r));
27 copyStack:push(page(r))
28 end;
29 closure(mover);
30 foreach p2 previousdo free(p) end.

Figure 1: Mostly-copying garbage collection

pages. The variablesp, l andr range over heap pages, heap pointer
locations and heap pointers (references), respectively. The heap
pointer stored at a given heap pointer locationl is denotedl ". AR
denotes the set of ambiguous roots; for simplicity we assume these
are the only roots, without loss of generality. The auxiliary proce-
durepromoteremoves a page from one space and adds it to another.
The procedureclosureperforms iterative Cheney-style [26] copy-
ing and scanning of the transitive closure of objects reachable from
current-space. We assume several additional auxiliary procedures:

page(r): returns the the heap page to which heap pointerr refers

pointer locations(p): returns an accurate set of all locations in
pagep that contain non-nil heap pointers

copy(r): allocates a current-space copy of the object referred to by
r; the address of the copy is termedr ’s forwarding address,
and denoted byr 0

The garbage collector (gc) begins by condemning all the cur-
rent pages of the heap,flipping their state from current-space to
previous-space (line 24). All previous-space pages will be re-
claimed at the end of collection, unless promoted in the interim.
Thus, the collector’s job is to evacuate all reachable objects, copy-
ing them from the condemned previous-space pages into current-
space. We assume a finite set of ambiguous roots from the regis-

ters, stack, and static areas. To preserve these ambiguous roots, the
collector must first promote the pages to which they refer (lines 25-
28). Note that promotion may retain unreferenced garbage objects
that just happen to lie in those pages. As the pages are promoted
they are placed in the copy stack for later processing.

The second phase of collection (line 29) copies the transitive clo-
sure of reachable objects into current-space. It proceeds by popping
pages from the copy stack and scanning their pointer locations to
discover any that refer to previous-space objects, copying each such
object and leaving behind a forwarding address, and updating the
pointer locations to refer to the current-space copies. The pages to
which objects are copied are themselves placed in the stack for pro-
cessing. This is an iterative process that completes only when the
copy stack is empty (i.e., there are no more objects whose locations
need to be scanned for references to uncopied objects). Termina-
tion is guaranteed because the closure of reachable objects is finite:
each iteration removes a page from the stack for processing and
pages are added to the stack only when objects are copied to them,
so eventually the stack becomes empty. At the end of this second
phase there are no pointers from current-space to previous-space,
and all pages in previous-space can be freed (line 30).

Mostly-copying collectors have both generational [13] and incre-
mental [32] variations. Indeed, our implementation of mostly-
copying persistence by reachability for Modula-3 merges directly
with the existing incremental/generational collector.

5 Mostly-copying persistence

We extend the implementation of the volatile heap to include pages
containing persistent objects mapped into volatile memory from
some external address space (such as a persistent object store or
object database). To keep garbage collection and heap stabilization
simple, we assume thatresidentpersistent objects are swizzled so
that they can be addressed in the same way, and have the same for-
mat, as non-persistent objects. Naturally, the application may prop-
agate swizzled references from the heap into registers, the stack and
static areas.

When garbage collecting a volatile heap containing mapped persis-
tent objects one must retain all (as-yet) non-persistent data reach-
able from those objects, even if such data is not otherwise reach-
able. The original garbage collector, as presented in Figure 1 must
be modified to maintain this invariant. We defer discussion of this
issue until Section 5.2, where we also consider how the mostly-
copying collector can remove from the volatile heap unmodified
persistent objects that are no longer reachable from the program’s
transient state. For now, we focus on the basicstabilizationmecha-
nism needed for reachability-based orthogonal persistence.

5.1 Stabilization

Stabilization refers to the flushing of new and modified persistent
objects back to disk. When a persistent program invokes thestabi-
lizeoperation (perhaps mediated by a transaction commit if the lan-
guage offers transactional concurrency control) all modified persis-
tent objects must be flushed to disk. Since a modified persistent ob-

385

1 proc stabilizer(l) �
2 r := l ";
3 if page(r) 2 currentthen
4 if :page(r):persistentthen
5 page(r):persistent:= true;
6 copyStack:push(page(r))
7 end
8 else
9 if r 0 = nil then

10 r 0 := persistentcopy(r);
11 copyStack:push(page(r 0))
12 end;
13 l " := r 0

14 end.
15

16 proc stabilize() �
17 previous:= current; current:= fg;
18 foreach p2 previouswhere p:persistentdo
19 promote(p);
20 copyStack:push(p)
21 end;
22 foreach r 2 AR wherepage(r) 2 previousdo
23 promote(page(r))
24 end;
25 closure(stabilizer);
26 foreach p2 currentdo
27 if p:persistentthen flush(p) end;
28 copyStack:push(p)
29 end;
30 closure(mover);
31 foreach p2 previousdo free(p) end.

Figure 2: Mostly-copying stabilization

ject may refer to newly-allocated objects, these must also be made
persistent and stabilized. Forming the corresponding reachability
closure is analogous to garbage collection, so we have modified the
mostly-copying garbage collection algorithm to perform the neces-
sary steps to stabilize the persistent heap. Again, this allows orthog-
onal persistence by reachability even for language environments in
which there is no accurate way to recognize heap references from
the registers, stacks and static areas. The only requirement is for
accuracy in locating pointers stored in the heap.

We sketch the mostly-copyingstabilizeprocedure in Figure 2 and
illustrate each phase of its operation with an example in Figure 3.
Figure 3(a) shows the initial heap configuration for the example.
Stabilization begins (Figure 2, lines 18-21) by promoting all persis-
tent pages (2 & 5 in the example) from previous-space to current-
space (Figure 3(b)). The objects in these pages form the initial root
set for persistence.

Like garbage collection, stabilization must be conservative with re-
spect to ambiguous roots, so ambiguously-referenced pages are also
promoted (line 23). In the example, this results in the promotion of
page1 (referenced by ambiguous roota1) and page5 (by a2), as
depicted in Figure 3(c).

The next phase (line 25) stabilizes the closure of objects reachable
from persistent pages using thestabilizerroutine. Two cases occur

for each non-persistent object encountered in the closure: the ob-
ject lies either in previous-space or in an ambiguously-referenced
non-persistent page in current-space. If the former, then the object
is simply copied to a current-space persistent page, as for objects
F, H andJ in Figure 3(d). If the latter, then the only way to make
the object persist is to stabilize its containing page, since the object
cannot be copied without violating conservative guarantees for am-
biguous roots, as for page1 in Figure 3(d). The result may be to
stabilize objects on the page that then persist needlessly, such as ob-
ject A in the example. The remaining previous-space objects (e.g.,
L, M andK) are not reachable from persistent storage so definitely
need not persist.

The last task is to flush all the persistent pages (with whatever
shadow paging or logging is necessary for rollback and recovery)
and to complete garbage collection of the remaining transient ob-
jects, treating existing current-space pages as roots (lines 26-30 and
Figure3(e)). Upon completion, the collector can safely reclaim the
previous-space pages (Figure 3(f)). Note that persistent page5 re-
mains although it is no longer reachable from the transient state of
the application. In the next section we modify the mostly-copying
garbage collector to reclaim such transiently unreachable persistent
pages.

Note that we make no assumptions about the underlying persistent
store, whether page- or object-based. Mostly-copying persistence
is entirely compatible with both page-server and object-server ap-
proaches, despite its own page-based assumptions about the mem-
ory heap. Correctness and termination of mostly-copying stabiliza-
tion can be inferred from the invariants stated here, similarly to
mostly-copying garbage collection.

5.2 Revisions to the garbage collector

We say that a persistent page istransiently unreachableif it can-
not be reached via pointers from transient store, though it may of
course have undiscovered references from the persistent store. We
are not obliged to retain such a page in volatile memory, since the
application cannot immediately access it without first discovering
references to it by faulting other persistent objects that refer to it.
Thus, we modify the mostly-copying garbage collection algorithm
to reclaim such pages as in Figure 4. Note that only unmodified per-
sistent pages are reclaimed, to avoid triggering stabilization during
garbage collection. Notice also that we always avoid the unneces-
sary overhead of physically copying already-persistent objects dur-
ing collection or stabilization by simply promoting their page.

5.3 Storage architecture flexibility

As already mentioned, we make no assumptions about the under-
lying persistent storage architecture, be it page- or object-based.
Similarly, we make no assumptions as to the underlying swiz-
zling mechanisms, save to assume that directly-swizzled pointers
to resident persistent objects can occur and may be stored into the
registers, stacks, static areas, and heap memory. Mostly-copying
reachability-based persistence is entirely flexible with respect to
the implementation of these mechanisms. For example, our cur-
rent implementation of Persistent Modula-3 uses mostly-copying

386

7

a2

a1

6

2

5

4

3

1

C

L

M

previous

ambiguous
roots

J

K

previous

previous

D

previous

G

H

previous

F

previous

A

B

previous

E

I

(a) Initial heap state

7

a2

a1

6

2

5

4

3

1

C

L

M

previous

ambiguous
roots

J

K

previous

current

D

current

G

H

previous

F

previous

A

B

previous

E

I

(b) Promote persistent pages

a2

a1

6

2

5

4

3

1

7

C

ambiguous
roots

J

K

previous

current

D

current

G

H

previous

F

previous

A

B

current

E

I

L

M

current

(c) Promote from ambiguous roots

7

a1

a2

8

6

2

5

4

3

1

C

L

M

current

roots
ambiguous

F

H

current

K

previous

D

G

A

B

E

current

previous

previous

current

current

I

J

(d) Closure over persistent pages

a1

a2

8

6

9

2

5

4

3

1

7

C

roots
ambiguous

F

H

current

previous

K

current

D

G

A

B

E

current

previous

previous

current

current

I

L

M

current

J

(e) Closure over transient pages

a1

a2

2

5

1

7

8

9

C

roots
ambiguous

D

A

B

current

current

current

I

L

M

current

J

F

H

current

K

current

(f) Free previous-space pages

persistenttransient

Figure 3: Mostly-copying stabilization

387

1 proc mover0(l) �
2 r := l ";
3 if page(r) 2 previousthen
4 if page(r):persistentthen
5 promote(page(r));
6 copyStack:push(page(r))
7 else
8 if r 0 = nil then
9 r 0 := copy(r);

10 copyStack:push(page(r 0))
11 end;
12 l " := r 0

13 end;
14 end.
15

16 proc gc0() �
17 previous:= current; current:= fg;
18 foreach p2 previousdo
19 if p:persistent̂ p:modified then
20 promote(p);
21 copyStack:push(p)
22 end
23 end;
24 foreach r 2 AR do
25 promote(page(r));
26 copyStack:push(p)
27 end;
28 closure(mover0);
29 foreach p2 previousdo free(p); end.

Figure 4: Revised garbage collection

persistence with Texas-style “pointer-swizzling at page-fault time”
[75, 82] as the underlying swizzling and faulting mechanism, above
the SHORE object store [20]. We have designed Persistent Modula-
3 for a move to compiler-inserted barriers in later versions, without
needing to change the mostly-copying heap management mech-
anism. Just as easily, one might re-engineer the Texas persis-
tent store to provide mostly-copying persistence by reachability for
C++, based on the heap layout information for swizzling that Texas
extracts from debugging information provided by the GNU C++
compiler [56].

6 PM3: Persistent Modula-3

To serve as a platform for research into compiler support for
orthogonally-persistent programming languages we have designed
and implemented PM3: a persistent extension of the Modula-3 [19]
programming language.2 Modula-3 is a systems programming lan-
guage that supports threads, objects with single inheritance, and
strong notions of type safety. Modula-3 isstrongly-typed: every
expression has a unique type, and assignability and type compati-

2Source code for Persistent Modula-3 is available via anony-
mous FTP fromftp://ftp.cs.purdue.edu/pub/hosking/pm3. Further
information appears on the World Wide Web athttp://www.cs
.purdue.edu/homes/hosking/pm3.html.

bility are defined in terms of a single syntactically specified subtype
relation, written<:. There are specific subtype rules for ordinal
types (integers, enumerations, and subranges), references and ar-
rays. Modula3’s support for garbage collection recognizes the high
degree of safety afforded by automatic storage reclamation, which
is achievable even in open runtime environments that allow interac-
tion with non-Modula-3 code.

A traced reference typeREF T refers to heap-allocated storage
(of type T) that is automatically reclaimed by the garbage collec-
tor whenever there are no longer any references to it.3 The type
REFANY contains all references. The typeNULL contains only the
reference valueNIL. Object types are also reference types. Anob-
ject is eitherNIL or a reference to a data record paired with a set
of procedures (methods) that will each accept the object as a first
argument. Every object type has a supertype,inherits the super-
type’s representation and implementation, and optionally may ex-
tend them by providing additional fields and methods, or overriding
the methods it inherits with different (but type-correct) implemen-
tations. This scheme is designed so that it is (physically) reasonable
to interpret an object as an instance of one of its supertypes. That
is, a subtype is guaranteed to have all the fields and methods de-
fined by its supertype, but possibly more, and it may override its
supertype’s method implementations with its own.

6.1 Design

Persistence in PM3 is achieved by allowing traced references to re-
fer not only to transient data, but also to persistent data. Allocated
storage persists by virtue of its reachability by following traced ref-
erences from the roots of named PM3 databases. The PM3 imple-
mentation is responsible for automatic caching of persistent data in
memory, and for automatic mediation of accesses to cached data to
enforce concurrency control.

Persistence functionality is introduced by way of the new library
interfacesTransactionandDatabase; their essentials are presented
in Figures 5 and 6. They are similar to their namesakes from
the Object Data Management Group (ODMG) standard [23], with
databases and transactions abstracted as Modula-3 objects. Each
named database has a distinguished root, from which other persis-
tent data can be reached. Databases can be shared by multiple users
and operating system processes, with locking and concurrency con-
trol enforcing serializability of transactions. Unlike the ODMG
transaction model, we do not necessarily enforce isolation between
threads executing in the same virtual address space, though we do
require that a thread execute in at most one transaction at any time,
and that it enter a transaction before attempting to interact with a
database. The design permits transactions to nest, though our cur-
rent implementation does not. We are also exploring extended se-
mantics for combining transactions and threads in PM3, along the
lines of the Venari transaction model for ML [36].

3Modula-3 also supportsuntraced references to storage allo-
cated in a separate uncollected heap; untraced storage must be deal-
located explicitly.

388

INTERFACE Transaction;
EXCEPTION
TransactionInProgress;
TransactionNotInProgress;

TYPE
T <: Public;
Public = OBJECT METHODS
begin()

RAISES f TransactionInProgress g;
(* Starts (opens) a transaction.

Raises TransactionInProgress if nested
nested transactions are not supported. *)

commit()
RAISES f TransactionNotInProgress g;
(* Commits and closes a transaction *)

chain()
RAISES f TransactionNotInProgress g;
(* Commits and reopens transaction;

retains locks if possible *)
abort()

RAISES f TransactionNotInProgress g;
(* Aborts and closes a transaction *)

checkpoint()
RAISES f TransactionNotInProgress g;
(* Checkpoints updates, retains locks

and leaves transaction open *)
isOpen(): BOOLEAN;

(* Returns true if this transaction
is open, otherwise false *)

END;
END Transaction.

Figure 5: The Transaction interface

INTERFACE Database;
FROM Transaction IMPORT
TransactionInProgress,
TransactionNotInProgress;

EXCEPTION
DatabaseExists;
DatabaseNotFound;
DatabaseOpen;

PROCEDURE Create(name: TEXT)
RAISES f DatabaseExists,

TransactionInProgress g;
PROCEDURE Open(name: TEXT): T

RAISES f DatabaseNotFound, DatabaseOpen,
TransactionInProgress g;

TYPE
T <: Public;
Public = OBJECT METHODS
getRoot(): REFANY

RAISES f TransactionNotInProgress g;
setRoot(object: REFANY)

RAISES f TransactionNotInProgress g;
END;

END Database.

Figure 6: The Database interface

6.2 Implementation

The current PM3 implementation is based on the Digital (now
Compaq) Systems Research Center’s version 3.6 Modula-3 com-
piler, runtime system and libraries (all written in Modula-3). The
compiler is structured as a loosely-coupled front-end to the GNU C
compiler, which generates efficient optimized native code. It also
produces compact, executable type descriptors for heap-allocated
data, in support of both garbage collection and persistence. The
Persistent Modula-3 compiler is essentially unchanged from the
original; it generates code that isexactlythe same as that gener-
ated by the non-persistent Modula-3 compiler. Instead of explicit
compiler-generated read and write barriers, our current implemen-
tation relies on the operating system’s virtual memory primitives,
triggering fault handling routines in the PM3 runtime system to re-
trieve objects, note updates, and obtain locks.

The PM3 runtime system manages the volatile heap, supporting al-
location of space for new and cached persistent data, and garbage
collection to free unreachable space. We have extended the exist-
ing incremental, generational, mostly-copying garbage collector to
manage both transient objects and resident persistent objects, and
to compute the reachability closure for mostly-copying stabiliza-
tion. Heap objects, whether persistent or transient, have the same
size and layout as the original non-persistent Modula-3 implemen-
tation. Heap pages, currently sized and aligned at 8 Kbytes, are the
unit of transfer between volatile memory and stable storage and the
unit of locking for concurrency control. We plan also to investigate
object-level transfer and locking along the lines of Carey et al [22].

6.2.1 Pointer swizzling

Each database is treated as a distinct virtual address space: an array
of pages bounded by the address range of the hardware platform.
Each database has a distinguished root object, at a known address
in its address space. The runtime system simply maps pages from
any number of open databases into the volatile heap as references
to the (persistent) objects on those pages arediscovered. Request-
ing the root object of a database is one way to discover a reference;
another way is to fault in a page containing references to other per-
sistent pages. Naturally, when a reference is discovered it must
be swizzled to point to a mapped (though not necessarily resident)
page in the volatile heap; mappings are created on demand as ref-
erences are swizzled. All mapped but non-resident pages are pro-
tected from access using the virtual memory protection primitives.
Thus, any access to a protected page will trap and trigger a fault: the
fault handler unprotects the page, reads its data from the persistent
store, and locates and swizzles all of its pointers. The access can
then resume. As execution proceeds, volatile heap page frames are
reserved in a “wave-front” just ahead of the most recently faulted
and swizzled pages, guaranteeing that the application will only ever
see object references as virtual memory addresses [75, 82].

We also track updates to persistent data by protecting heap pages
from writes; on the first write to the page we set a dirty bit for it,
unprotect the page and resume the write.

Note that at any point in time an application can address only as
much persistent data as can be mapped into its virtual address space.
Data from multiple databases can be mapped at the same time.

389

However, there is no restriction on the total volume of unmapped
persistent data.

6.2.2 Persistent storage

The current PM3 implementation uses the University of Wiscon-
sin’s SHORE object repository [20] as a simple transactional page
server. Each page is described in the SHORE data language (SDL)
as a single SHORE text object, with simple read and write access
implemented via the SHORE/C++ binding. Concurrency control
and recovery support are inherited directly from SHORE, with the
PM3 runtime system acquiring read locks on pages as they are
faulted and write locks on first update. We also support interac-
tion with a version of the GRAS3 [57, 14] transactional page server
that permits nested transactions, and which is implemented purely
in Modula-3.

6.2.3 Types and metadata

To ensure type safety each persistent object must also store some
representation of its type. The type is used to locate pointers
within the object when it is swizzled, and for run-time type check-
ing. Rather than store a full type descriptor, we take advantage of
Modula-3’s implementation of structural type equivalence, which
computes a characteristic 64-bit fingerprint for every type that can
be mapped to its descriptor at run time. Every database contains an
index containing the fingerprints of all the objects in the database;
objects are stored with a reference to their fingerprint to encode
their type. The type descriptors and the code for methods are com-
piled into the static area of each application program and thus need
not be stored. Instead, objects are reunited with their methods as
their contents are swizzled. The advantage of this is that we can
continue to use traditional file-based program development tools
such such compilers, assemblers, linkers and loaders. In the future,
persistence-aware development tools that operate on code stored in
the database will allow a tighter integration of code with data.

The type index is one example of metadata stored in every database.
All metadata in PM3 is implemented as Modula-3 data structures,
and stored transparently using the existing mechanisms for orthog-
onal persistence. This sleight of hand derives from our stabiliza-
tion algorithm, which permits metadata to be treated just like other
orthogonally persistent data. We believe PM3 to be unique among
persistent programming languages in that it is implemented entirely
in Modula-3, with explicit I/O only to read/write persistent pages
from/to the page server.

7 Experiments

Our experiments use the OO7 benchmark [21]. We measure statis-
tics for newly-stabilized persistent objects, and compare the per-
formance of the traversal and insertion portions of our PM3 im-
plementation of OO7 against the SHORE/C++ implementation of
OO7 distributed with SHORE. The stabilization statistics yield an
accurate picture of the effectiveness of mostly-copying stabiliza-
tion. We report results for OO7 database generation, the OO7 in-
sertion operation which allocates and inserts new objects into the

Modules 1
Assembly levels 7
Subassemblies per complex assembly 3
Composite parts per base assembly 3
Composite parts per module 500
Atomic parts per composite part 20
Connections per atomic part 3
Document size (bytes) 2 000
Manual size (bytes) 100 000
Total composite parts 500
Total atomic parts 10 000

Table 1: Small OO7 database configuration

database, and for sparse and dense OO7 traversals, both read-only
and with updates (T1, T2 and T6). Additional results for indexed
updates (T3) and updates to the manual (T9) are reported in our
earlier paper [41].

7.1 The OO7 benchmark

The OO7 benchmarks [21] are an accepted test of object-oriented
database performance. They operate on a synthetic design database,
consisting of a keyed set ofcomposite parts. Associated with each
composite part is adocumentobject consisting of a small amount
of text. Each composite part consists of a graph ofatomic parts
with one of the atomic parts designated as theroot of the graph.
Each atomic part has a set of attributes, and is connected via a bi-
directional association to several other atomic parts. The connec-
tions are implemented by interposing a separate connection object
between each pair of connected atomic parts. Composite parts are
arranged in anassemblyhierarchy; each assembly is either made up
of composite parts (abaseassembly) or other assemblies (acom-
plex assembly). Each assembly hierarchy is called amodule, and
has an associatedmanualobject consisting of a large amount of
text. Our results are all obtained with thesmallOO7 database, con-
figured as in Table 1.

7.2 Hardware

The experiments were run under Solaris 2.5.1 on a 170MHz Sun
SPARCstation 5, with 64 Mbytes RAM. The processor implemen-
tation is the Fujitsu TurboSPARC, with direct-mapped instruction
and data caches of 16 Kbytes each. Both caches are virtually-
addressed, guaranteeing consistent performance regardless of the
virtual-to-physical page mapping. This means that elapsed time
measurements obtained on this platform are not subject to jitter due
to variations in page mappings from one process incarnation to the
next. The local disk is a SUN0535 SCSI disk of 535 Mbytes.

Since we were not interested in measuring network latencies both
the SHORE server and the client were run on the same machine.
This results in improved client-server communication, through
shared memory where possible, and also more fully exposes the
underlying overheads of the salient persistence mechanisms of in-
terest to us.

390

5 ambiguous pages+ 546 accurate pages= 4 408 Kbytes

15
23

30
00

0
20

00
1

10
00

0
20

00
0

10
0

94
77

43
74

50
0

72
9

50
0

6
10

92
36

4
50

0
1 2 1 11

0
34 12 5 3 1 3 3 1 1 1 1 1 1 1 1

0

200000

400000

600000

800000

1000000

1200000

M
3_

B
U

IL
T

IN
.T

E
X

T
C

on
ne

ct
io

n.
T

C
on

ne
ct

io
nS

eq
R

ep
.R

ef
A

rr
ay

A
to

m
ic

P
ar

t.T
C

on
ne

ct
io

nS
eq

.T
<t

c=
20

9>
B

as
eA

ss
em

bl
yL

is
t.T

C
om

po
si

te
P

ar
tL

is
t.T

<t
c=

29
3>

B
as

eA
ss

em
bl

y.
T

C
om

po
si

te
P

ar
t.T

<t
c=

23
2>

A
ss

em
bl

yL
is

t.T
C

om
pl

ex
A

ss
em

bl
y.

T
D

oc
um

en
t.T

<t
c=

26
0>

<t
c=

24
4>

<t
c=

21
4>

In
tR

ef
B

P
lu

sT
re

e.
P

ag
e

R
ef

F
P

.T
T

ex
tR

ef
B

P
lu

sT
re

e.
P

ag
e

In
tR

ef
B

P
lu

sT
re

e.
T

T
ex

tR
ef

B
P

lu
sT

re
e.

T

M
od

ul
eR

ef
T

bl
R

ep
.B

uc
ke

tA
rr

ay

T
ex

tT
ex

tB
P

lu
sT

re
e.

P
ag

e

F
P

R
ef

F
P

B
P

lu
sT

re
e.

P
ag

e
M

od
ul

e.
T

M
od

ul
eR

ef
T

bl
.D

ef
au

lt
T

ex
tT

ex
tB

P
lu

sT
re

e.
T

F
P

R
ef

F
P

B
P

lu
sT

re
e.

T
M

an
ua

l.T
D

at
ab

as
e.

R
oo

t

M
od

ul
eR

ef
T

bl
R

ep
.E

nt
ry

Li
st

M
od

ul
eS

et
D

ef
.T

by
te

s

0

5000

10000

15000

20000

25000

30000

35000

in
st

an
ce

s

bytes
instances

Figure 7: Stabilization statistics for database generation

7.3 Software

We use release 1.1.1 of SHORE as the underlying object store
for PM3. SHORE objects are lighter-weight than a Unix file, but
still more heavyweight than the typical fine-grained data structures
coded in ordinary programming languages. Each persistent PM3
heap page is stored as a single SHORE object.

Our PM3 implementation of OO7 is a direct transliteration of the
SHORE/C++ implementation distributed with SHORE, but with
the OO7 schema specified using Modula-3 types, and the queries
implemented directly in Modula-3. We took great care to match the
reference SHORE/C++ (excluding known bugs), so as to ensure
faithful reproduction of the benchmark, and directly comparable
results. Where the benchmark requires the use of an index, we used
a transparently persistent B+-tree coded in Modula-3. The PM3
compiler is based on the same GNU compiler version 2.7.2 used
to compile SHORE/C++ programs. Thus, we can directly compare
the performance of PM3 with the SHORE/C++ binding. Both ver-
sions of OO7 were compiled with optimization turned on (i.e., gcc
-O2). The PM3 compiler was also invoked with a flag that disables
runtime checks on indexing arrays out of bounds and to catch cer-
tain type errors, so as to give a fairer comparison with C++.

7.4 Results

The timing results were obtained from runs on the small OO7
benchmark database, which is small enough to fit entirely in main
memory, including copies being cached in both the server and the
client. We report the elapsed time in seconds broken down into
three components: user and system CPU time in the client, plus
other remaining elapsed time which we charge to interactions with
the server for data transfer, concurrency control, etc. (identified in
the figures asuser, system andserver, respectively).

As in the original specification of OO7 [21] we obtain results for
the traversal operations running both cold and hot, by repeating
each operation five times per run. We also ran the five iterations
of each operation in two transaction modes: as a single transaction
committing only after the last iteration (one), and as a sequence of
chained transactions (many).

The cold first iteration, begins with no data cached anywhere in the
client or the server, nor in the operating system’s file system buffers
(this is achieved by reading from a very large file in such a way as
to flush the buffers of any useful data). The cold iteration is then
followed immediately by four iterations of the exact same query,
with the results from the middle three of the five iterations taken
as the hot measure. The result for the last (fifth) iteration is dis-
carded so that the overhead of commit processing is not included
in the single-transaction hot times. In contrast to the original OO7
specification, we report thesumof the results for the three hot iter-
ations instead of an average, so as to avoid obscuring any variations

391

Server SHORE/C++ PM3
interactions

Fetches objects 438 1
pages 35
bytes 46 816 288 472

Updates 10 objects 19 pages
Creations 820 objects 11 pages
Index insertions 430 22

lookups 10 84

Table 2: Insert

in behavior from one hot iteration to the next that may arise from
periodic invocations of the PM3 garbage collector.

7.4.1 Database generation

We generate thesmall database according to the configuration of
Table 1. The stabilization statistics are of most interest since they
characterize the effectiveness of mostly-copying stabilization over
large numbers of newly-allocated objects, as illustrated in Fig-
ure 7. The figure displays the number of new instances of each
type made persistent for database generation, ranked by volume in
bytes. Types are identified by name, except for anonymous types
which are tagged by their unique typecode, written<tc=n> for
typecoden.

Note first that the bulk of the small OO7 database consists of
Modula-3 texts (M3 BUILTIN.TEXT) for the manual and docu-
ment objects, the connections (Connection.T) that capture the bi-
directionality of the links between parts, sequences of references
(ConnectionSeq.T and ConnectionSeqRep.RefArray) for the
incoming and outgoing references of each atomic part, and the
atomic parts themselves (AtomicPart.T). Most of the volume is ac-
counted for by objects that are definitely part of the OO7 database;
there is little or no data that is obviously inherently transient and
persists only by falling on an ambiguously-referenced persistent
page. The most likely source of such unnecessary overhead is in
the text objects, yet the 500 documents (1 000 000 bytes) and one
manual (100 000 bytes) account for most of that volume. Of the
small remaining texts, many are allocated as index keys, so there
is only a relatively small volume of ambiguously-persistent texts,
if any. In sum, the conservatism of mostly-copying persistence ap-
pears to result in little additional burden, if any, in terms of the
volume of data made persistent.

7.4.2 Insert: Structural modification

Create ten new composite parts, which includes creating
200 new atomic parts and ten new document objects,
and insert them into the database by installing refer-
ences to these composite parts into 10 randomly chosen
base assembly objects.

The Insert operation measures the speed of structural modifications
to the OO7 database, requiring allocation and installation of many
new objects. Figure 8 records PM3 stabilization statistics for the

2 ambiguous pages+ 9 accurate pages= 88 Kbytes

38

60
0

40
3

20
0

40
0

2 1 10 10 10 10 10 1

0

5000

10000

15000

20000

25000

M
3_

B
U

IL
T

IN
.T

E
X

T
C

on
ne

ct
io

n.
T

C
on

ne
ct

io
nS

eq
R

ep
.R

ef
A

rr
ay

A
to

m
ic

P
ar

t.T
C

on
ne

ct
io

nS
eq

.T
<t

c=
24

6>
<t

c=
21

1>
<t

c=
29

5>
C

om
po

si
te

P
ar

t.T
D

oc
um

en
t.T

C
om

po
si

te
P

ar
tL

is
t.T

B
as

eA
ss

em
bl

yL
is

t.T
In

tR
ef

B
P

lu
sT

re
e.

P
ag

e

by
te

s

0

100

200

300

400

500

600

700

in
st

an
ce

s

bytes

instances

Figure 8: Stabilization statistics for Insert

0

2

4

6

8

10

12

14

16

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 13.901 6.648

System 0.174 0.267

User 0.313 0.536

C++ PM3

Figure 9: Insert

Insert operation. Again, texts form the biggest fraction of new per-
sistent objects, with the document objects accounting for 20 000
of the 21 088 text bytes stored, so the overhead for ambiguously-
persistent texts is minimal. These results confirm the effectiveness
of mostly-copying persistence.

392

Figure 9 and Table 2 graph and tabulate the performance of
SHORE/C++ against PM3 on a cold Insert with commit, show-
ing elapsed times and statistics for the transaction. The biggest
reason for PM3’s better performance than SHORE/C++ is that the
SHORE/C++ implementation of OO7 uses the builtin SHORE in-
dex support. These indexes are centralized on the server, so every
index operation (10 lookups + 430 insertions) requires communica-
tion with the server at very high cost. In contrast, PM3 uses SHORE
indexes only for mapping database pages keyed by their page num-
ber (84 lookups + 22 insertions), while the OO7 indexes are imple-
mented natively as orthogonally persistent B+-trees so their pages
can be cached and updated at the client.

7.4.3 Traversals

The OO7 traversal operations include both sparse and dense traver-
sals of the assemblies that comprise the benchmark database, as
well as sparse and dense updates of the atomic parts traversed.

7.4.3.1 Traversal T1: Raw traversal speed

Traverse the assembly hierarchy. As each base assembly
is visited, visit each of its referenced unshared compos-
ite parts. As each composite part is visited, perform a
depth-first search on its graph of atomic parts. Return a
count of the number of atomic parts visited when done.

T1 is a test of raw pointer traversal speed. Figure 10(a) shows the
cold T1 results. PM3 outperforms SHORE/C++ in both the traver-
sal without commit (one) and the traversal with commit (many),
despite the overhead for PM3 of the virtual memory page protec-
tion traps, as measured by thesystem CPU time, and the cost of
swizzling as part of theuser CPU time. PM3 fields 379 protection
traps to fetch 379 pages, or approximately 3 Mbytes. SHORE/C++
fetches 41 594 objects, totaling 2.9 Mbytes.

Despite the read-only nature of T1 there is noticeable overhead
for commits, as revealed in the results that include commit pro-
cessing (many). Theserver overhead is higher for SHORE/C++
than PM3 since the cold chained commit requires a separate client-
server communication request for each object in the client-side
cache (41 594 versus 379); hot chained commits do not pay this
overhead. This is explained as follows: on first chained commit the
SHORE client must communicate the state (clean or dirty) of any
pages it is caching across the chained commit into the next transac-
tion; subsequent chained commits need only update the server with
any differences in status from the previous commit (in this case
none).

The hot T1 results appear in Figure 10(b), showing the benefits of
client caching, even across the chained commits (many). The hot
commits impose negligible server-side overhead since the client de-
termines that no updates have occurred and restricts communication
with the server only to signal the commit. Again, PM3 outperforms
SHORE/C++, as a result of its full swizzling of object references.
There is significant client-side commit overhead for SHORE/C++,
almost doubling the elapsed time. Again, the client must check
each cached object to see if its status has changed since the previ-

0

5

10

15

20

25

30

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 2.262 17.433 3.045 11.899

System 0.517 0.574 1.048 1.086

User 5.828 6.547 3.744 4.576

C++ one C++ many PM3 one PM3 many

(a) Cold

0

1

2

3

4

5

6

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 0.016 0.043 0.005 0.000

System 0.003 0.011 0.004 0.026

User 2.690 4.814 2.335 2.345

C++ one C++ many PM3 one PM3 many

(b) Hot: 3 iterations

Figure 10: Traversal T1

ous commit; there are simply more objects cached for SHORE/C++
than heap pages for PM3.

7.4.3.2 Traversal T6: Sparse traversal speed

Traverse the assembly hierarchy. As each base assembly
is visited, visit each of its referenced unshared composite
parts. As each composite part is visited, visit the root
atomic part. Return a count of the number of atomic
parts visited when done.

The designers of OO7 intended the T6 traversal to provide insight
into the costs and benefits of a full swizzling approach, since it is
sparse and follows only a small fraction of swizzled references; full
swizzling ought to be penalized for expending swizzling effort for
little or no benefit. However, our elapsed time results do not tell
the expected story. For the cold T6 traversal (Figure 11(a)) PM3
appears to pay moderately for the overhead of swizzling at a factor

393

0

5

10

15

20

25

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 14.867 15.258 6.305 6.409

System 0.565 0.564 0.527 0.529

User 5.032 5.747 1.531 1.525

C++ one C++ many PM3 one PM3 many

(a) Cold

0

0.5

1

1.5

2

2.5

3

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 0.011 0.023 0.000 0.000

System 0.001 0.010 0.003 0.022

User 0.347 2.508 0.470 0.533

C++ one C++ many PM3 one PM3 many

(b) Hot: 3 iterations

Figure 11: Traversal T6

of 3 in theuser component for thecold T6 traversal over the hot
traversal (Figure 11(b)).

Accounting for the difference in performance between SHORE/-
C++ and PM3 turns out to be related to clustering. SHORE/C++
fetches 41 346 objects (2.9 Mbytes) versus PM3’s 144 heap pages
(1.1 Mbytes). That SHORE/C++ fetches almost as many objects
and as much data for this sparse traversal as for the dense T1 traver-
sal suggests extremely poor clustering. PM3 does much better be-
cause it uses reachability-based persistence, placing objects in per-
sistent pages via Cheney-scanning [26] such that related objects are
clustered together [72, 76]. Only an orthogonally persistent sys-
tem has sufficient flexibility to place objects by reachability, since
placement is decoupled from allocation and deferred until commit
time.

The hot results with commit (many) shown in Figure 11(b) again
reveal the superiority of full swizzling for hot operations, with PM3
markedly outperforming SHORE/C++ for hot commits. In this

case, SHORE/C++ suffers from the overhead of having to issue
5 468 paired pin/unpin operations for each access to an object in
the cache; PM3 accesses incur no such overhead.

7.4.3.3 Traversal T2: Updates

Repeat traversal T1, but update objects during the
traversal. There are three types of update patterns in
this traversal. In each, a single update to an atomic
part consists of swapping its(x;y) attributes. The three
types of updates are:

A Update one atomic part per composite part.
B Update every atomic part as it is encountered.
C Update each atomic part in a composite part four

times.

When done, return the number of update operations that
were actually performed.

All three of the T2 update traversals fetch and traverse exactly
the same set of parts; they differ only in the density (T2A versus
T2B/T2C) and frequency of update (T2B versus T2C). The com-
parable statistics for SHORE/C++ and PM3 T2 traversals appear
in Table 3. The cold traversals without commit presented in Fig-
ure 12(a)(one) capture both the cost to fetch the data and to operate
on it, but not the cost of committing the changes back to the server;
the cold traversals with commit (Figure 12(a)(many)) includes all of
these costs; the hot traversals without commit (Figure 12(b)(one))
isolate the pure CPU cost to perform the updates at the client with-
out write barrier or commit overheads; while the hot traversals with
commit (Figure 12(b)(many)) ignore the fetch costs, but record the
CPU, write barrier and commit overheads.

Hot access to cached objects is cheaper for PM3 than for SHORE/-
C++, as revealed in Figure 12(b)(one), emphasizing the benefits of
PM3’s full swizzling approach over the overloaded SHORE/C++
access operations.

Once again, commit time as measured in Figure 12(b)(many) is
proportional to the number of updated SHORE objects (i.e., atomic
part objects for SHORE/C++ and pages for PM3). Thus PM3 wins
due to the aggregation of many updated parts (9 820) into many
fewer updated pages (171) for the dense updates T2B and T2C. For
the sparse hot T2A update traversal with commit the difference in
number of updated objects/pages is less significant and other over-
heads dominate. In this case (many) PM3 is penalized for using a
SHORE index to map pages; SHORE checks each updated page to
see if its integer index key has changed, which would require updat-
ing the index. These unnecessary checks are reflected in theserver
portion of elapsed time; they can be easily avoided, in which case
we would expect PM3 to perform at least as well as SHORE/C++.

The hot T2 traversals with commit (Figure 12(b)(many)) also reveal
the raw overhead to update the objects, including the cost of the
write barrier. PM3’s trap-based write barrier poses significant over-
head (system) for the sparse update T2A traversal with commit.
For the denser T2B traversals the overhead to PM3 of each trap is
amortized over more updates, for significantly faster response than
for SHORE/C++. With T2C the trap cost is also amortized over re-
peated updates to the same page. In contrast, SHORE/C++ incurs
barrier overhead on every update, even if to a part that has already
been updated.

394

Server SHORE/C++ PM3
interactions T2A T2B T2C T2A T2B T2C

Fetches objects 41 594 41 594 41 594 1 1 1
pages 413 462 462
bytes 3 053 136 3 053 136 3 053 136 3 403 192 3 806 952 3 806 952

Updates 491 objects 9 820 objects 9 820 objects 90 pages 171 pages 171 pages

Table 3: Traversal T2

0

10

20

30

40

50

60

70

80

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 18.946 30.647 29.976 12.167 11.486 12.066

System 0.685 2.727 2.608 1.178 1.242 1.239

User 5.943 8.267 8.697 4.657 4.876 4.946

C++ T2A C++ T2B C++ T2C PM3 T2A PM3 T2B PM3 T2C

(one)

0

10

20

30

40

50

60

70

80

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 21.386 62.289 62.453 22.891 34.949 35.067

System 0.812 4.899 5.038 1.270 1.443 1.466

User 7.011 11.648 11.722 5.139 6.268 6.267

C++ T2A C++ T2B C++ T2C PM3 T2A PM3 T2B PM3 T2C

(many)
(a) Cold

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 0.033 0.040 0.042 0.006 0.008 0.008

System 0.003 0.003 0.003 0.004 0.004 0.004

User 2.713 3.373 4.278 2.300 2.836 3.050

C++ T2A C++ T2B C++ T2C PM3 T2A PM3 T2B PM3 T2C

(one)

0

20

40

60

80

100

120

140

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 10.996 101.273 102.283 37.685 71.119 70.280

System 0.371 6.636 6.916 0.915 2.149 2.186

User 5.390 14.194 14.804 4.994 8.145 8.256

C++ T2A C++ T2B C++ T2C PM3 T2A PM3 T2B PM3 T2C

(many)
(b) Hot: 3 iterations

Figure 12: Traversal T2

395

8 Conclusions

We believe PM3 to be the first successful and efficient extension
of a systems programming language with reachability-based per-
sistence. Our implementation approach, based on mostly-copying
garbage collection, is robust and requires no cooperation from
the compiler. Our experiments demonstrate that the creation of
ambiguously-persistent data has minimal impact, at least for the
OO7 benchmark operations. This does not mean to say that large
amounts of ambiguously-persistent data can never cause problems;
the pitfalls of conservatism are well-documented [78]. Techniques
such asblack-listing[15] can provide relief in such isolated cases.

We have also compared PM3’s performance with that of the non-
orthogonal SHORE/C++ binding, with highly favorable results.
PM3 generally outperforms SHORE/C++ on the traversal and in-
sertion operations of the OO7 benchmark. The expense of the trap-
based barrier mechanism for PM3 appears to be tolerable, at least
for the large fault and update granularity of 8 Kbyte pages. Never-
theless, with evidence that large granularities can adversely impact
on fetch and commit times [44, 45, 46, 38], we plan also to explore
software techniques for finer granularities by having the compiler
attach explicit software barriers to object accesses, with compiler
optimizations to remove those that are redundant. We also plan to
explore the integration of mostly-copying persistence with buffer
management, disk garbage collection and extended transaction sup-
port.

In summary, reachability-based orthogonal persistence is a de-
sirable aim for any integration of programming languages with
database systems, since it offers a more desirablethe cleanest model
for programming access to persistent data. We have clearly demon-
strated that implementing the model introduces no inherent inneffi-
ciencies. The degree to which a given persistence model is orthogo-
nal can now be claimed as the gold standard by which all persistent
programming languages and systems should be judged.

Acknowledgments

We dedicate this work to the memory of Geoff Wyant. Norman
Ramsey, Paul Wilson and Tony Printezis gave valuable feedback
on early drafts of this paper. Aria Novianto participated in many of
our early discussions on mostly-copying persistence.

This research is supported in part by the National Science Foun-
dation under Grant No. CCR-9711673 and by gifts from Sun Mi-
crosystems, Inc.

References

[1] A GRAWAL, R., AND GEHANI , N. H. ODE (Object Database and
Environment): The language and the data model. InProceedings of
the ACM International Conference on Management of Data
(Portland, Oregon, May).ACM SIGMOD Record 18, 2 (June 1989),
pp. 36–45.

[2] A GRAWAL, R., AND GEHANI , N. H. Rationale for the design of
persistence and query processing facilities in the database language
O++. In Hull et al. [49], pp. 25–40.

[3] A LAGI Ć, S. The ODMG object model: does it make sense? In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications(Atlanta,
Georgia, Oct.).ACM SIGPLAN Notices 32, 10 (Oct. 1997),
pp. 253–270.

[4] A PPEL, A. W., AND L I , K. Virtual memory primitives for user
programs. InProceedings of the ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems(Santa Clara, California, Apr.).ACM SIGPLAN Notices 26, 4
(Apr. 1991), pp. 96–107.

[5] ATKINSON, M., CHISOLM, K., AND COCKSHOTT, P. PS-Algol: an
Algol with a persistent heap.ACM SIGPLAN Notices 17, 7 (July
1982), 24–31.

[6] ATKINSON, M. P., BAILEY, P. J., CHISHOLM, K. J., COCKSHOTT,
P. W.,AND MORRISON, R. An approach to persistent programming.
The Computer Journal 26, 4 (Nov. 1983), 360–365.

[7] ATKINSON, M. P.,AND BUNEMAN, O. P. Types and persistence in
database programming languages.ACM Comput. Surv. 19, 2 (June
1987), 105–190.

[8] ATKINSON, M. P., CHISHOLM, K. J., COCKSHOTT, W. P.,AND

MARSHALL, R. M. Algorithms for a persistent heap.Software:
Practice and Experience 13, 7 (Mar. 1983), 259–271.

[9] ATKINSON, M. P., DAYN ÈS, L., JORDAN, M. J., PRINTEZIS, T.,
AND SPENCE, S. An orthogonally persistent Java.ACM SIGMOD
Record 25, 4 (Dec. 1996), 68–75.

[10] ATKINSON, M. P., JORDAN, M. J., DAYN ÈS, L., AND SPENCE, S.
Design issues for persistent Java: A type-safe object-oriented,
orthogonally persistent system. In Connor and Nettles [27],
pp. 33–47.

[11] ATKINSON, M. P.,AND MORRISON, R. Orthogonally persistent
object systems.International Journal on Very Large Data Bases 4, 3
(1995), 319–401.

[12] BARTLETT, J. F. Compacting garbage collection with ambiguous
roots. Research Report 88/2, Western Research Laboratory, Digital
Equipment Corporation, Feb. 1988.

[13] BARTLETT, J. F. Mostly-copying garbage collection picks up
generations and C++. Technical Note TN-12, Western Research
Laboratory, Digital Equipment Corporation, Oct. 1989.

[14] BAUMANN , R. Client/server distribution in a structure-oriented
database management system. Tech. Rep. AIB 97-14, RWTH
Aachen, Germany, 1997.

[15] BOEHM, H.-J. Space efficient conservative garbage collection. In
Proceedings of the ACM Conference on Programming Language
Design and Implementation(Albuquerque, New Mexico, June).ACM
SIGPLAN Notices 28, 6 (June 1993), pp. 197–206.

[16] BOEHM, H.-J.,AND WEISER, M. Garbage collection in an
uncooperative environment.Software: Practice and Experience 18, 9
(Sept. 1988), 807–820.

[17] BRAHNMATH , K., NYSTROM, N., HOSKING, A. L., AND CUTTS,
Q. Swizzle barrier optimizations for orthogonal persistence in Java.
In Morrison et al. [62], pp. 268–278.

[18] BRAHNMATH , K. J. Optimizing orthogonal persistence for Java.
Master’s thesis, Purdue University, May 1998.

[19] CARDELLI , L., DONAHUE, J., GLASSMAN, L., JORDAN, M.,
KALSOW, B., AND NELSON, G. Modula-3 language definition. In
Systems Programming with Modula-3, G. Nelson, Ed. Prentice Hall,
1991, ch. 2, pp. 11–66.

[20] CAREY, M. J., DEWITT, D. J., FRANKLIN , M. J., HALL , N. E.,
MCAULIFFE, M. L., NAUGHTON, J. E., SCHUH, D. T.,
SOLOMON, M. H., TAN, C. K., TSATALOS, O. G., WHITE, S. J.,
AND ZWILLING , M. J. Shoring up persistent applications. In
SIGMOD [74], pp. 383–394.

396

[21] CAREY, M. J., DEWITT, D. J.,AND NAUGHTON, J. F. The OO7
benchmark. InProceedings of the ACM International Conference on
Management of Data(Washington, DC, May).ACM SIGMOD
Record 22, 2 (June 1993), pp. 12–21.

[22] CAREY, M. J., FRANKLIN , M. J.,AND ZAHARIOUDAKIS , M.
Fine-grained sharing in a page server OODBMS. In SIGMOD [74],
pp. 359–370.

[23] CATTELL , R. G. G., BARRY, D., BARTELS, D., BERLER, M.,
EASTMAN, J., GAMERMAN , S., JORDAN, D., SPRINGER, A.,
STRICKLAND , H., AND WADE, D., Eds.The Object Database
Standard: ODMG 2.0. Morgan Kaufmann, 1997.

[24] CHASE, J. S., LEVY, H. M., FEELEY, M. J.,AND LAZOWSKA,
E. D. Sharing and protection in a single-address space operating
system.ACM Trans. Comput. Syst. 12, 4 (Nov. 1994), 271–307.

[25] CHASE, J. S., LEVY, H. M., LAZOWSKA, E. D.,AND

BAKER-HARVEY, M. Lightweight shared objects in a 64-bit
operating system. InProceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications(Vancouver, Canada, Oct.).ACM SIGPLAN Notices 27,
10 (Oct. 1992), pp. 397–413.

[26] CHENEY, C. J. A nonrecursive list compacting algorithm.Commun.
ACM 13, 11 (Nov. 1970), 677–678.

[27] CONNOR, R., AND NETTLES, S., Eds.Proceedings of the Seventh
International Workshop on Persistent Object Systems(Cape May,
New Jersey, May 1996). Persistent Object Systems: Principles and
Practice, Morgan Kaufmann, 1997.

[28] DEARLE, A., CONNER, R., BROWN, F.,AND MORRISON, R.
Napier88 – a database programming language? In Hull et al. [49],
pp. 179–195.

[29] DEARLE, A., DI BONA, R., FARROW, J., HENSKENS, F.,
L INDSTRÖM, A., ROSENBERG, J.,AND VAUGHAN, F.
Grasshopper: An orthogonally persistent operating system.
Computer Systems 7, 3 (Summer 1994), 289–312.

[30] DEARLE, A., SHAW, G. M., AND ZDONIK, S. B., Eds.Proceedings
of the Fourth International Workshop on Persistent Object Systems
(Martha’s Vineyard, Massachusetts, Sept. 1990). Implementing
Persistent Object Bases: Principles and Practice, Morgan Kaufmann,
1991.

[31] DETLEFS, D. D., HERLIHY, M. P.,AND WING, J. M. Inheritance
of synchronization and recovery in Avalon/C++.IEEE Computer 21,
12 (Dec. 1988), 57–69.

[32] DETREVILLE, J. Experience with concurrent garbage collectors for
Modula-2+. Tech. Rep. 64, Systems Research Center, Digital
Equipment Corporation, Palo Alto, CA, Aug. 1990.

[33] DIWAN , A., MOSS, J. E. B.,AND HUDSON, R. L. Compiler
support for garbage collection in a statically typed language. In
Proceedings of the ACM Conference on Programming Language
Design and Implementation(San Francisco, California, June).ACM
SIGPLAN Notices 27, 7 (July 1992), pp. 273–282.

[34] ELPHINSTONE, K., RUSSELL, S., HEISER, G., AND L IEDTKE, J.
Supporting persistent object systems in a single address space. In
Connor and Nettles [27], pp. 111–119.

[35] FENICHEL, R. R.,AND YOCHELSON, J. C. A LISP
garbage-collector for virtual-memory computer systems.Commun.
ACM 12, 11 (Nov. 1969), 611–612.

[36] HAINES, N., KINDRED, D., MORRISETT, J. G., NETTLES, S. M.,
AND WING, J. M. Composing first-class transactions.ACM Trans.
Program. Lang. Syst. 16, 6 (Nov. 1994), 1719–1736.

[37] HEISER, G., ELPHINSTONE, K., VOCHTELOO, J., RUSSELL, S.,
AND L IEDTKE, J. The Mungi single-address-space operating system.
Software: Practice and Experience 28, 9 (July 1998), 901–928.

[38] HOSKING, A. L. Lightweight Support for Fine-Grained Persistence
on Stock Hardware. PhD thesis, University of Massachusetts at
Amherst, Feb. 1995. Available as Computer Science Technical
Report 95-02.

[39] HOSKING, A. L. Residency check elimination for object-oriented
persistent languages. In Connor and Nettles [27], pp. 174–183.

[40] HOSKING, A. L., BROWN, E.,AND MOSS, J. E. B. Update logging
for persistent programming languages: A comparative performance
evaluation. InProceedings of the International Conference on Very
Large Data Bases(Dublin, Ireland, Aug.). Morgan Kaufmann, 1993,
pp. 429–440.

[41] HOSKING, A. L., AND CHEN, J. PM3: An orthogonally persistent
systems programming language – design implementation,
performance. InProceedings of the International Conference on Very
Large Data Bases(Edinburgh, Scotland, Sept.). Morgan Kaufmann,
1999.

[42] HOSKING, A. L., AND MOSS, J. E. B. Compiler support for
persistent programming. Tech. Rep. 91-25, Department of Computer
Science, University of Massachusetts at Amherst, Mar. 1991.

[43] HOSKING, A. L., AND MOSS, J. E. B. Towards compile-time
optimisations for persistence. In Dearle et al. [30], pp. 17–27.

[44] HOSKING, A. L., AND MOSS, J. E. B. Object fault handling for
persistent programming languages: A performance evaluation. In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications(Washington,
DC, Sept.).ACM SIGPLAN Notices 28, 10 (Oct. 1993), pp. 288–303.

[45] HOSKING, A. L., AND MOSS, J. E. B. Protection traps and
alternatives for memory management of an object-oriented language.
In Proceedings of the ACM Symposium on Operating Systems
Principles(Asheville, North Carolina, Dec.).ACM Operating
Systems Review 27, 5 (Dec. 1993), pp. 106–119.

[46] HOSKING, A. L., AND MOSS, J. E. B. Lightweight write detection
and checkpointing for fine-grained persistence. Tech. Rep. 95-084,
Department of Computer Sciences, Purdue University, Dec. 1995.

[47] HOSKING, A. L., AND NOVIANTO, A. P. Reachability-based
orthogonal persistence for C, C++ and other intransigents. In
Proceedings of the OOPSLA Workshop on Memory Management and
Garbage Collection(Atlanta, Georgia, Oct.). 1997.
http://www.dcs.gla.ac.uk/~huw/oopsla97/gc/papers.html.

[48] HOSKING, A. L., NYSTROM, N., CUTTS, Q., AND BRAHNMATH ,
K. Optimizing the read and write barriers for orthogonal persistence.
In Proceedings of the Eighth International Workshop on Persistent
Object Systems(Tiburon, California, August 1998), R. Morrison,
M. Jordan, and M. Atkinson, Eds. Advances in Persistent Object
Systems. Morgan Kaufmann, 1999, pp. 149–159.

[49] HULL , R., MORRISON, R., AND STEMPLE, D., Eds.Proceedings of
the Second International Workshop on Database Programming
Languages(Salishan Lodge, Gleneden Beach, Oregon, June 1989).
Morgan Kaufmann, 1990.

[50] Proceedings of the ACM International Symposium on Memory
Management(Vancouver, Canada, Oct., 1998).ACM SIGPLAN
Notices 34, 3 (Mar. 1999).

[51] JONES, R. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. Wiley, May 1996. With a chapter by R. Lins.

[52] JORDAN, M. Early experiences with persistent Java. InProceedings
of the First International Workshop on Persistence and Java
(Drymen, Scotland, Sept.), M. P. Atkinson and M. J. Jordan, Eds.
Sun Microsystems Laboratories Technical Report 96-58, Nov. 1996.

[53] JORDAN, M., AND ATKINSON, M. Orthogonal persistence for Java
– a mid-term report. In Morrison et al. [62].

397

[54] KAEHLER, T. Virtual memory on a narrow machine for an
object-oriented language. InProceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications(Portland, Oregon, Sept.).ACM SIGPLAN Notices 21,
11 (Nov. 1986), pp. 87–106.

[55] KAEHLER, T., AND KRASNER, G. LOOM – large object-oriented
memory for Smalltalk-80 systems. InSmalltalk-80: Bits of History,
Words of Advice, G. Krasner, Ed. Addison-Wesley, 1983, ch. 14,
pp. 251–270.

[56] KAKKAD , S. V., JOHNSTONE, M. S.,AND WILSON, P. R. Portable
run-time type description for conventional compilers. In ISMM [50],
pp. 146–153.

[57] K IESEL, N., SCHÜRR, A., AND WESTFECHTEL, B. GRAS, a
graph-oriented (software) engineering database system.Information
Systems 20, 1 (1995), 21–52.

[58] LAMB , C., LANDIS, G., ORENSTEIN, J.,AND WEINREB, D. The
ObjectStore database system.Commun. ACM 34, 10 (Oct. 1991),
50–63.

[59] L IM , T. F., PARDYAK , P.,AND BERSHAD, B. N. A
memory-efficient real-time non-copying garbage collector. In ISMM
[50], pp. 118–129.

[60] MATTHES, F., AND SCHMIDT, J. W. Persistent threads. In
Proceedings of the International Conference on Very Large Data
Bases(Santiago, Chile, Sept.). Morgan Kaufmann, 1994,
pp. 403–414.

[61] MORRISON, R., BROWN, A., CARRICK, R., CONNOR, R.,
DEARLE, A., AND ATKINSON, M. P. The Napier type system. In
Proceedings of the Third International Workshop on Persistent
Object Systems(Newcastle, New South Wales, Australia, Jan. 1989),
J. Rosenberg and D. Koch, Eds. Workshops in Computing.
Springer-Verlag, 1990, pp. 3–18.

[62] MORRISON, R., JORDAN, M., AND ATKINSON, M., Eds.
Proceedings of the Third International Workshop on Persistence and
Java(Tiburon, California, August 1998). Advances in Persistent
Object Systems, Morgan Kaufmann, 1999.

[63] MOSS, J. E. B. Working with persistent objects: To swizzle or not to
swizzle. IEEE Trans. Softw. Eng. 18, 8 (Aug. 1992), 657–673.

[64] MOSS, J. E. B.,AND HOSKING, A. L. Expressing object residency
optimizations using pointer type annotations. InProceedings of the
Sixth International Workshop on Persistent Object Systems(Tarascon,
France, Sept. 1994), M. Atkinson, D. Maier, and V. Benzaken, Eds.
Workshops in Computing. Springer-Verlag, 1995, pp. 3–15.

[65] NYSTROM, N., HOSKING, A. L., WHITLOCK, D., CUTTS, Q.,
AND DIWAN , A. Partial redundancy elimination for access path
expressions. Tech. Rep. 98-044, Department of Computer Sciences,
Purdue University, Oct. 1998. Submitted for publication.

[66] NYSTROM, N. J. Bytecode level analysis and optimization of Java
classes. Master’s thesis, Purdue University, Aug. 1998.

[67] RICHARDSON, J. E. Compiled item faulting: A new technique for
managing I/O in a persistent language. In Dearle et al. [30], pp. 3–16.

[68] RICHARDSON, J. E.,AND CAREY, M. J. Programming constructs
for database implementations in EXODUS. InProceedings of the
ACM International Conference on Management of Data(San
Francisco, California, May).ACM SIGMOD Record 16, 3 (Dec.
1987), pp. 208–219.

[69] RICHARDSON, J. E.,AND CAREY, M. J. Persistence in the E
language: Issues and implementation.Software: Practice and
Experience 19, 12 (Dec. 1990), 1115–1150.

[70] RICHARDSON, J. E., CAREY, M. J.,AND SCHUH, D. T. The
design of the E programming language.ACM Trans. Program. Lang.
Syst. 15, 3 (July 1993), 494–534.

[71] ROSENBERG, J., DEARLE, A., HULSE, D., LINDSTRÖM, A., AND

NORRIS, S. Operating system support for persistent and recoverable
computations.Commun. ACM 39, 9 (Sept. 1996), 62–69.

[72] SCHKOLNICK, M. A clustering algorithm for hierarchical structures.
ACM Trans. Database Syst. 2, 1 (Mar. 1977), 27–44.

[73] SCHUH, D., CAREY, M., AND DEWITT, D. Persistence in E
revisited – implementation experiences. In Dearle et al. [30],
pp. 345–359.

[74] Proceedings of the ACM International Conference on Management
of Data(Minneapolis, Minnesota, May).ACM SIGMOD Record 23,
2 (June 1994).

[75] SINGHAL , V., KAKKAD , S. V.,AND WILSON, P. R. Texas, an
efficient, portable persistent store. InProceedings of the Fifth
International Workshop on Persistent Object Systems(San Miniato,
Italy, Sept.), A. Albano and R. Morrison, Eds. Workshops in
Computing. Springer-Verlag, 1992, pp. 11–33.

[76] STAMOS, J. W. Static grouping of small objects to enhance
performance of a paged virtual memory.ACM Trans. Database Syst.
2, 2 (May 1984), 155–180.

[77] STRAW, A., MELLENDER, F.,AND RIEGEL, S. Object management
in a persistent Smalltalk system.Software: Practice and Experience
19, 8 (Aug. 1989), 719–737.

[78] WENTWORTH, E. P. Pitfalls of conservative garbage collection.
Software: Practice and Experience 20, 7 (July 1990).

[79] WHITE, S. J.,AND DEWITT, D. J. QuickStore: A high
performance mapped object store. In SIGMOD [74], pp. 395–406.

[80] WILSON, P. R. Uniprocessor garbage collection techniques.ACM
Comput. Surv.. To appear.

[81] WILSON, P. R. Uniprocessor garbage collection techniques. In
Proceedings of the International Workshop on Memory Management
(St. Malo, France, Sept.), Y. Bekkers and J. Cohen, Eds. No. 637 in
Lecture Notes in Computer Science. Springer-Verlag, 1992.

[82] WILSON, P. R.,AND KAKKAD , S. V. Pointer swizzling at page
fault time: Efficiently and compatibly supporting huge address
spaces on standard hardware. InProceedings of the 1992
International Workshop on Object Orientation in Operating Systems
(Paris, France, Sept.). IEEE Computer Society, 1992, pp. 364–377.

398

