
Main Memory Management for Persistence

Antony L. Hosking

Object Oriented Systems Laboratory
Department of Computer and Information Science

University of Massachusetts
Amherst, MA 01003

Abstract

Reachability-based persistence imposes new requirements
for main memory management in general, and garbage col-
lection in particular. After a brief introduction to the charac-
teristics and requirements of reachability-based persistence,
we present the design of a run-time storage manager for
Persistent Smalltalk and Persistent Modula-3, which allows
the reclamation of storage from both temporary objects and
buffered persistent objects.

1 Introduction

Persistent programming languages are intended to support
the uniform manipulation of objects regardless of their life-
times. Just as ordinary programming languages allow the
manipulation of temporary objects (objects that live only
until the program terminates), persistent programming lan-
guages allow the transparent manipulation of permanent ob-
jects (objects that outlive the program). In contrast, non-
persistent programming languages require the explicit use of
a file system or database for the storage and retrieval of per-
manent objects. A particular goal of language designers has
been the provision of orthogonal persistence, allowing pro-
grams to be expressed independently of the longevity of the
data they manipulate, and conversely, so that the longevity
of an object is independent of the way it is manipulated [1,
2].

A common approach to supporting orthogonal persistence
in a programming language is to provide the illusion of a
persistent heap. As far as the programmer is concerned,
all objects are allocated and manipulated in the persistent
heap just as if they were in an ordinary main memory heap.
However, objects may survive from one run of a program
to the next, by virtue of being reachable from some set of
persistent roots. When a persistent program begins execution

some of its variables are initialized by binding them to (some
subset of) the persistent roots. Thus, the program is able to
begin manipulating permanent objects in the persistent heap,
creating new objects and updating old objects to refer to
them. These new objects must also eventually be made to
persist if they are in some way reachable from the persistent
roots.

Implementing the abstraction of a persistent heap can be
achieved in many ways. The simplest approach is that used in
programming environments such as Smalltalk [6]. The heap
is stored in some file on disk and then loaded into memory
in its entirety when the environment begins executing. New
objects are created and old objects updated in main memory.
Finally, the user may elect to save the updates by asking
that the heap, in its entirety, be written back to disk. This
approach is acceptable in single-user systems where the heap
is small enough to fit entirely in (virtual) memory, and if
the load and save times are tolerable. However, there are
many data-intensive applications, such as computer-aided
design (CAD), that must deal with large amounts of shared
permanent data for which this approach is not practical. If the
application accessesonly a small fraction of a large persistent
heap then indiscriminate loading of all the objects is clearly
undesirable. Rather, we would prefer to retrieve just those
objects that the application needs to manipulate. Without
knowing its access patterns in advance, retrieval must be
triggered by the program’s need to access objects that are
not yet resident. Such a mechanism has been called object
faulting. As in paged virtual memory systems, where a page
fault causes a non-resident page to be brought into physical
memory, an object fault causes the retrieval of a non-resident
object. We call that part of the persistent heap that is in
main memory volatile since only objects in memory can be
manipulated and updated.

Our version of object faulting [7, 8, 9] is being used to im-
plement persistence for Smalltalk and Modula-3 [5]. Here,
we concern ourselves with management of the volatile heap,
and the requirements imposed by persistence on the tech-
niques used. We present a design that allows reclamation of
storage in the volatile heap, with garbage collection of tem-

Page 1

porary objects and reuse of memory used to buffer permanent
objects.

2 Object faulting

The basic idea of object faulting is to perform residency
checks at run time to ensure that an object is resident before it
is manipulated. We implement these checks in a manner sim-
ilar to LOOM [11], by having resident pseudo-objects called
fault blocks stand in for non-resident objects. Every mem-
ory reference to a non-resident object is actually a pointer
to a fault block. The check itself can be performed either
explicitly, assuming that fault blocks are specially marked to
distinguish them from other objects, or implicitly using pag-
ing hardware, by allocating fault blocks in pages of memory
set to “no access” and arranging for page traps to invoke a
fault handling routine.

The approach is illustrated in Figure 1. In Figure 1(a) we
see that a non-resident object is referred to by pointers to its
fault block. When a pointer to the fault block is dereferenced
an object fault occurs, bringing the non-resident object into
memory (Figure 1(b)). The fault block is overwritten with an
indirect block which contains a pointer to the now resident
object in memory. Note that the newly resident object may
contain references to other persistent objects. These will
typically be represented as object identifiers in permanent
storage, but will be converted to in-memory pointers when
the object is made resident, in a process known as swizzling
[13]. In Figure 1(b) such a reference has been swizzled to
point to a fault block. Note also that there remains a level
of indirection via the indirect block. To eliminate some of
this overhead we arrange for the garbage collector to bypass
any indirect block it comes across. There is a tradeoff to
this, since it requires us to check for indirect blocks at run
time, similarly to fault blocks. Alternatively, we could adopt
the convention that every resident object must be referenced
through an indirect block, so that such checks would be
unnecessary.

2.1 Handling an object fault

Object faults are handled by calls to an underlying secondary
storage manager, which supports identifier-based retrieval of
objects from secondary storage. The fault block actually
contains the identifier for the persistent object it represents.
At fault time this identifier is passed to the storage manager
to retrieve the object. We use the Mneme persistent object
store as the underlying storage manager [12].

Retrieving just one object at every object fault has been
shown to be extremely inefficient—this was the chief down-
fall of LOOM. Fortunately, Mneme allows us to group ob-
jects into segments for retrieval, so that an object fault actu-

 fault block

 indirect block

 non−resident object

 resident object

(a) Fault blocks stand in for non−resident objects
S T

(b) Target object (T) faulted in
S T

Figure 1: Object Faulting

ally retrieves an entire segment of objects, which is placed
in memory in Mneme’s buffers. Clustering techniques may
place related objects in the same segment.

As mentioned earlier, objects can be swizzled from their
persistent format to the in-memory format expected by the
program. We perform copy swizzling: when an object is first
faulted we make a swizzled copy of it in a specially managed
persistent area of the volatile heap. The persistent form of
the object may contain references to other persistent objects.
Swizzling converts these references to in-memory pointers.
To avoid both conditional code and lookup cost in swizzling
we can convert all such references into newly allocated fault
blocks.1 This means that there may be more than one fault
block for any given object and implies that a fault block may
refer to an object that is already resident. To avoid mak-
ing more than one copy of a persistent object we must keep
track of which objects have been swizzled by maintaining
some sort of resident object table mapping persistent identi-
fiers to their swizzled copies; Mneme supports this mapping
efficiently.

In summary, an object fault is handled as follows (see
Figure 2):

1In some circumstances the creation of a fault block can be avoided if
the reference being swizzled can quickly be determined to refer to a resident
object. In general, this is not easy to establish. However, references to
objects clustered in the same segment can be specially marked to indicate
they should be swizzled to point directly at their target object. Further,
we can go ahead and retrieve the target object if it is known that it will
eventually be needed. This can be established through compile-time analysis
of programs [7, 8].

Page 2

segmentsMneme Buffers

Disk

stored id

correspondence
map

1

4

3 2

Volatile Heap

ST

T segments
retrieved/stored

Figure 2: Handling an Object Fault

1. The secondary storage manager retrieves the segment
containing the target object (T) if the segment is not
already resident in its buffers.

2. If the resident object table contains no entry for the
object, then a swizzled copy of it (T0) is made in the
volatile heap and the map is updated.

3. The object’s identifier is stored with its swizzled copy.

4. A pointer to the copy swizzled object is returned.

2.2 Writing objects back

When a program finishes execution, all its persistent objects
must be written back to disk. This means that the buffers
of the secondary storage manager must be updated to reflect
any changes before they are written out to secondary stor-
age. Updating the buffers involves unswizzling all modified
objects in the buffer: every in-memory pointer is replaced
with the persistent identifier of the object it refers to. The
persistent identifier stored with each swizzled copy enables
this. If a pointer refers to a newly created object then that
object must be promoted: space must be allocated for it in the
persistent store and a persistent identifier assigned to it. In
its turn it will also eventually need to be unswizzled, perhaps
dragging further new objects with it into the persistent store.

2.3 Buffer management

Buffer management allows the buffering in memory of just
that part of the persistent heap that is needed by the program

at any stage of its execution. It is necessary for a number
of reasons. Firstly, programs that manipulate large amounts
of persistent data may tie up memory with persistent objects
that no longer need to be resident. We would like to be able to
reuse this memory for other purposes. Secondly, our eventual
goal is to provide for multi-user access, in which concurrently
executing programs compete for access to objects in the same
persistent heap. Objects that are no longer being manipulated
should be returned to the shared persistent store so that other
programs needing to access them can proceed.

2.4 Implications for memory management

Our model of persistence has certain implications for run-
time memory management. Firstly, only transient—as
yet non-persistent—objects should be subject to run-time
garbage collection, since they are the only objects for which
finding all references is relatively cheap (their references all
reside in memory).2 Note that the root set for collection of
transient objects must include all references from resident
persistent objects to transient objects. Secondly, promotion
of a transient object requires moving it into the separately
managed persistent area. We achieve this by copying the ob-
ject over to the persistent area and leaving an indirect block
in its place. To reclaim the space occupied by the original
transient object we must guarantee that all pointers to the in-
direct block are eventually found and updated to refer to the
promoted object in the persistent area. This limits the style
of garbage collection we can apply by excluding collection
schemes that do not accurately find all pointers to objects,
such as ambiguous roots collectors [3, 4].

3 Design and rationale

As we have mentioned, the volatile heap is partitioned into
two areas: a transient area, and a persistent area (see Fig-
ure 3). The transient area is managed by a multi-generational
scavenging garbage collector (for details of this collector
see [10])—such collectors focus their efforts on scavenging
younger generations, based on the observation that young ob-
jects tend to die young [14]. New objects are allocated in the
youngest generation of the transient area. Objects that have
survived a certain number of scavenges at one generation are
promoted to the next higher generation, on the bet that they
are likely to survive even longer and so should be moved out
of the more frequently scavenged younger generations.

2This does not preclude garbage collection of the objects in the persistent
store. However, we see this as an “off-line” activity since it requires tracing
all objects in the store reachable from the persistent roots. Doing this as part
of a running application would be disastrously expensive since it involves
touching (and faulting) many more objects than the application might ever
otherwise retrieve.

Page 3

older
generations

younger
generations

chunks

Persistent AreaTransient Area

remembered
not remembered
threshold

Figure 3: The volatile heap and remembered pointers

As is typical of generational collectors, each generation
g has an associated remembered set which keeps track of
pointers from older objects to objects in g.3 This includes
pointers from older generations to younger generations, as
well as pointers from the persistent area to the transient area.
Since pointers from old objects to young objects have been
observed to be relatively rare in systems such as Smalltalk,
the remembered sets are unlikely to be overly large. On
the other hand, pointers from young objects to old objects
are much more common, so we do not keep track of them.
Thus, in addition to pointers from the run-time stack and
registers, the root set used to find all objects that must survive
a scavenge of g includes all the pointers indicated by its
remembered set as well as any pointers from generations
younger than g. These last could be found by scanning the
younger generations. However, since scanning costs are on
a par with scavenging, we elect to scavenge them instead.
That is, initiating a scavenge of g causesg and all generations
younger than g to be scavenged as a unit.

3.1 Managing the persistent area

The persistent area is subdivided into chunks—these are the
unit of reclamation in the area. Chunks exist in one of four
states (see Figure 4):

Live: persistent objects are being copy swizzled into the
chunk, with allocation using a free pointer and limit
check.

Closed: the chunk is no longer available for allocation,
although there may still be pointers into it.

Evacuated: all objects in the chunk have been relocated
and indirect blocks left in their place; there may still be
pointers into the chunk.

3Our remembered sets record the memory addresses of pointers that
(may) refer to objects in g.

Live

Evacuated

ClosedFree

identified as a
candidate for
reclamation

objects moved,
overwritten with
indirect blocks

indirect
blocks
bypassed

reused for
allocation

Figure 4: Life cycle of chunks in the persistent area

older
generations

younger
generations

Persistent AreaTransient Area

closed
chunk

Figure 5: Chunk is closed

Free: the indirect blocks have been bypassed so there are
no pointers into the chunk, allowing it to be reclaimed.

When a persistent object is to be copy swizzled, space for
the copy is found in some live chunk. If no live chunk exists
with sufficient free space then a free chunk is made live.
When the buffer manager indicates the need (or opportunity)
to reclaim some live chunk, it identifies a candidate chunk for
reclamation and marks it as closed, so that no more swizzled
persistent objects are allocated in it (Figure 5).

The closed chunk is then scanned to evacuate each of its
objects, leaving indirect blocks in their place. Evacuating
an object can be achieved in one of two ways: the object
can be copied to another live chunk, or the object can be
unswizzled into the secondary storage manager’s buffers,
thence to be written back to disk. In the first case, the
indirect block will point to the copied object. In the second
case, the indirect block is set to point to a fault block for the
persistent object. If the buffer manager made a good choice
of candidate chunk for reclamation then there are unlikely
to be many pointers into the chunk, and indirectly to the
fault blocks. For this reason, the fault blocks are allocated in
the youngest generation of the transient area where they will
quickly be reclaimed. Note that there may still be pointers
into an evacuated chunk from other parts of memory, but

Page 4

older
generations

younger
generations

Persistent AreaTransient Area

evacuated
chunk

Figure 6: Evacuated chunk: contains only indirect blocks

they will all point at indirect blocks (Figure 6).
In order to free an evacuated chunk we must ensure that

there are no pointers into it—i.e., that all the indirect blocks
have been bypassed (Figure 7). To help achieve this we
maintain a remembered set for every chunk to track point-
ers into the chunk. Since there are likely to be many more
pointers from young transient objects to (old) persistent ob-
jects we do not track pointers from transient generations that
are younger than some threshold. This threshold may vary
subject to the policy preferences of each application. Re-
membered pointers into the chunk can be updated to bypass
the indirect blocks. To eliminate any pointers into the chunk
from generations below the threshold we need only wait until
those generations have each been scavenged at least once—
recall that we arrange for the garbage collector to bypass
all indirect blocks it comes across. If the chunk must be
freed immediately then the scavenge can be initiated imme-
diately. Remembered set information can also be used by
the buffer manager to determine which chunk to target for
reclamation—the chunk with the smallest remembered set is
a likely candidate.

4 Summary and Conclusions

We have described a scheme for managing main memory
storage of temporary and persistent objects in languages
that provide the abstraction of a large persistent heap of
objects. Such a scheme must satisfy a number of require-
ments. Firstly, for performance, run-time garbage collection
should be performed only on transient objects. Secondly,
buffering of persistent objects requires the ability to move
objects within memory. Finally, the scheme must support
accurate discovery of all pointers to any given object, so that
they may be updated when the object moves.

older
generations

younger
generations

Persistent AreaTransient Area

free
chunk

Figure 7: Free chunk: indirect blocks bypassed

References

[1] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W.
Cockshott, and R. Morrison. An approach to
persistent programming. The Computer Journal,
26(4):360–365, Nov. 1983.

[2] M. P. Atkinson and R. Morrison. Procedures as
persistent data objects. ACM Trans. Prog. Lang. Syst.,
7(4):539–559, Oct. 1985.

[3] J. F. Bartlett. Compacting garbage collection with
ambiguous roots. Research Report 88/2, Western
Research Laboratory, Digital Equipment Corporation,
Feb. 1988.

[4] H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. Software: Practice and
Experience, 18(9):807–820, Sept. 1988.

[5] L. Cardelli, J. Donahue, L. Glassman, M. Jordan,
B. Kalsow, and G. Nelson. Modula-3 report (revised).
Technical Report DEC SRC 52, DEC Systems
Research Center/Olivetti Research Center, Palo
Alto/Menlo Park, CA, Nov. 1989.

[6] A. Goldberg and D. Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley,
1983.

[7] A. L. Hosking and J. E. B. Moss. Towards
compile-time optimisations for persistence. In
A. Dearle, G. M. Shaw, and S. B. Zdonik, editors,
Proceedings of the Fourth International Workshop on
Persistent Object Systems, pages 17–27, Martha’s
Vineyard, Massachusetts, Sept. 1990. Published as
Implementing Persistent Object Bases: Principles and
Practice, Morgan Kaufmann, 1990. Also available as
COINS Technical Report 90-74, University of
Massachusetts.

[8] A. L. Hosking and J. E. B. Moss. Compiler support
for persistent programming. COINS Technical Report
91-25, University of Massachusetts, Amherst,
MA 01003, Mar. 1991.

Page 5

[9] A. L. Hosking, J. E. B. Moss, and C. Bliss. Design of
an object faulting persistent Smalltalk. COINS
Technical Report 90-45, University of Massachusetts,
Amherst, MA 01003, May 1990.

[10] R. L. Hudson, J. E. B. Moss, A. Diwan, and C. F.
Weight. A language-independent garbage collector
toolkit. COINS Technical Report 91-47, University of
Massachusetts, Amherst, Sept. 1991. Submitted for
publication.

[11] T. Kaehler and G. Krasner. LOOM—large
object-oriented memory for Smalltalk-80 systems. In
G. Krasner, editor, Smalltalk-80: Bits of History,
Words of Advice, chapter 14, pages 251–270.
Addison-Wesley, 1983.

[12] J. E. B. Moss. Design of the Mneme persistent object
store. ACM Trans. Inf. Syst., 8(2):103–139, Apr. 1990.

[13] J. E. B. Moss. Working with persistent objects: To
swizzle or not to swizzle. COINS Technical Report
90-38, University of Massachusetts, Amherst,
MA 01003, May 1990. Submitted for publication.

[14] D. Ungar. Generation scavenging: A non-disruptive
high performance storage reclamation algorithm. In
Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical
Software Development Environments, pages 157–167,
Pittsburgh, Pennsylvania, Apr. 1984. ACM SIGPLAN
Not. 19, 5 (May 1984).

Page 6

