
The DaCapo Benchmarks:
Java Benchmarking Development and Analysis ⇤

Stephen M Blackburnα β, Robin Garnerβ, Chris Hoffmannγ, Asjad M Khanγ, Kathryn S McKinleyδ,
Rotem Bentzurε, Amer Diwanζ, Daniel Feinbergε, Daniel Framptonβ, Samuel Z Guyerη, Martin Hirzelθ,
Antony Hoskingι, Maria Jumpδ, Han Leeα, J Eliot B Mossγ, Aashish Phansalkarδ, Darko Stefanovićε,

Thomas VanDrunenκ, Daniel von Dincklageζ, Ben Wiedermannδ
αIntel, βAustralian National University, γUniversity of Massachusetts at Amherst, δUniversity of Texas at Austin,

εUniversity of New Mexico, ζUniversity of Colorado, ηTufts, θIBM TJ Watson Research Center, ιPurdue University,
κWheaton College

Abstract
Since benchmarks drive computer science research and industry
product development, which ones we use and how we evaluate
them are key questions for the community. Despite complex run-
time tradeoffs due to dynamic compilation and garbage collection
required for Java programs, many evaluations still use methodolo-
gies developed for C, C++, and Fortran. SPEC, the dominant pur-
veyor of benchmarks, compounded this problem by institutionaliz-
ing these methodologies for their Java benchmark suite. This paper
recommends benchmarking selection and evaluation methodolo-
gies, and introduces the DaCapo benchmarks, a set of open source,
client-side Java benchmarks. We demonstrate that the complex in-
teractions of (1) architecture, (2) compiler, (3) virtual machine, (4)
memory management, and (5) application require more extensive
evaluation than C, C++, and Fortran which stress (4) much less, and
do not require (3). We use and introduce new value, time-series,
and statistical metrics for static and dynamic properties such as
code complexity, code size, heap composition, and pointer muta-
tions. No benchmark suite is definitive, but these metrics show that
DaCapo improves over SPEC Java in a variety of ways, including
more complex code, richer object behaviors, and more demanding
memory system requirements. This paper takes a step towards im-
proving methodologies for choosing and evaluating benchmarks to
foster innovation in system design and implementation for Java and
other managed languages.
Categories and Subject Descriptors C.4 [Measurement Techniques]
General Terms Measurement, Performance
Keywords methodology, benchmark, DaCapo, Java, SPEC

1. Introduction
When researchers explore new system features and optimizations,
they typically evaluate them with benchmarks. If the idea does not
improve a set of interesting benchmarks, researchers are unlikely
to submit the idea for publication, or if they do, the community is
unlikely to accept it. Thus, benchmarks set standards for innovation
and can encourage or stifle it.

⇤ This work is supported by NSF ITR CCR-0085792, NSF CCR-0311829,
NSF CCF-CCR-0311829, NSF CISE infrastructure grant EIA-0303609,
ARC DP0452011, DARPA F33615-03-C-4106, DARPA NBCH30390004,
IBM, and Intel. Any opinions, findings and conclusions expressed herein
are those of the authors and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c� 2006 ACM 1-59593-348-4/06/0010. . . $5.00.

For Java, industry and academia typically use the SPEC Java
benchmarks (the SPECjvm98 benchmarks and SPECjbb2000 [37,
38]). When SPEC introduced these benchmarks, their evaluation
rules and the community’s evaluation metrics glossed over some of
the key questions for Java benchmarking. For example, (1) SPEC
reporting of the “best” execution time is taken from multiple it-
erations of the benchmark within a single execution of the virtual
machine, which will typically eliminate compile time. (2) In ad-
dition to steady state application performance, a key question for
Java virtual machines (JVMs) is the tradeoff between compile and
application time, yet SPEC does not require this metric, and the
community often does not report it. (3) SPEC does not require re-
ports on multiple heap sizes and thus does not explore the space-
time tradeoff automatic memory management (garbage collection)
must make. SPEC specifies three possible heap sizes, all of which
over-provision the heap. Some researchers and industry evaluations
of course do vary and report these metrics, but many do not.
This paper introduces the DaCapo benchmarks, a set of gen-

eral purpose, realistic, freely available Java applications. This pa-
per also recommends a number of methodologies for choosing and
evaluating Java benchmarks, virtual machines, and their memory
management systems. Some of these methodologies are already in
use. For example, Eeckhout et al. recommend that hardware ven-
dors use multiple JVMs for benchmarking because applications
vary significantly based on JVM [19]. We recommend and use this
methodology on three commercial JVMs, confirming none is a con-
sistent winner and benchmark variation is large. We recommend
here a deterministic methodology for evaluating compiler optimiza-
tions that holds the compiler workload constant, as well as the stan-
dard steady-state stable performance methodology. For evaluating
garbage collectors, we recommend multiple heap sizes and deter-
ministic compiler configurations. We also suggest new and previ-
ous methodologies for selecting benchmarks and comparing them.
For example, we recommend time-series data versus single values,
including heap composition and pointer distances for live objects as
well as allocated objects. We also recommend principal component
analysis [13, 18, 19] to assess differences between benchmarks.
We use these methodologies to evaluate and compare DaCapo

and SPEC, finding that DaCapo is more complex in terms of static
and dynamic metrics. For example, DaCapo benchmarks have
much richer code complexity, class structures, and class hierarchies
than SPEC according to the Chidamber and Kemerer metrics [12].
Furthermore, this static complexity produces a wider variety and
more complex object behavior at runtime, as measured by data
structure complexity, pointer source/target heap distances, live and
allocated object characteristics, and heap composition. Principal
component analysis using code, object, and architecture behavior
metrics differentiates all the benchmarks from each other.
The main contributions of this paper are new, more realistic Java

benchmarks, an evaluation methodology for developing benchmark
suites, and performance evaluation methodologies. Needless to say,

169

the DaCapo benchmarks are not definitive, and they may or may not
be representative of workloads that vendors and clients care about
most. Regardless, we believe this paper is a step towards a wider
community discussion and eventual consensus on how to select,
measure, and evaluate benchmarks, VMs, compilers, runtimes, and
hardware for Java and other managed languages.

2. Related Work
We build on prior methodologies and metrics, and go further to
recommend how to use them to select benchmarks and for best
practices in performance evaluation.

2.1 Java Benchmark Suites
In addition to SPEC (discussed in Section 3), prior Java bench-
marks suites include Java Grande [26], Jolden [11, 34], and
Ashes [17]. The Java Grande Benchmarks include programs with
large demands for memory, bandwidth, or processing power [26].
They focus on array intensive programs that solve scientific com-
puting problems. The programs are sequential, parallel, and dis-
tributed. They also include microbenchmark tests for language and
communication features, and some cross-language tests for com-
paring C and Java. DaCapo also focuses on large, realistic pro-
grams, but not on parallel or distributed programs. The DaCapo
benchmarks are more general purpose, and include both client and
server side applications.
The Jolden benchmarks are single-threaded Java programs

rewritten from parallel C programs that use dynamic pointer data
structures [11, 34]. These programs are small kernels (less than 600
lines of code) intended to explore pointer analysis and paralleliza-
tion, not complete systems. The Soot project distributes the Ashes
benchmarks with their Java compiler infrastructure, and include
the Jolden benchmarks, a few more realistic benchmarks such as
their compiler, and some interactive benchmarks [17]. The DaCapo
benchmarks contain many more realistic programs, and are more
ambitious in scope.

2.2 Benchmark Metrics and Characterization
Dufour et al. recommend characterizing benchmarks with architec-
ture independent value metrics that summarize: (1) size and struc-
ture of program, (2) data structures, (3) polymorphism, (4) memory,
and (5) concurrency into a single number [17]. We do not consider
concurrency metrics to limit the scope of our efforts. We use met-
rics from the first four categories and add metrics, such as filter-
ing for just the live objects, that better expose application behavior.
Our focus is on continuous metrics, such as pointer distributions
and heap composition graphs, rather than single values. Dufour et
al. show how to use these metrics to drive compiler optimization
explorations, whereas we show how to use these metrics to develop
methodologies for performance and benchmark evaluation.
Prior work studied some of the object properties we present

here [4, 15, 21, 39], but not for the purposes of driving benchmark
selection and evaluation methodologies. For example, Dieckmann
and Hölzle [15] measure object allocation properties, and we add
to their analysis live object properties and pointer demographics.
Stefanović pioneered the use of heap composition graphs which
we use here to show inherent object lifetime behaviors [39].

2.3 Performance Evaluation Methodologies
Eeckhout et al. study SPECjvm98 and other Java benchmarks using
a number of virtual machines on one architecture, AMD’s K7 [19].
Their cluster analysis shows that methodologies for designing new
hardware should include multiple virtual machines and benchmarks
because each widely exercises different hardware aspects. One
limitation of their work is that they use a fixed heap size, which
as we show masks the interaction of the memory manager’s space-
time tradeoff in addition to its influence on mutator locality. We

add to Eeckhout et al.’s good practices in methodology that the
hardware designers should include multiple heap sizes and memory
management strategies. We confirm Eeckhout et al.’s finding. We
present results for three commercial JVMs on one architecture that
show a wide range of performance sensitivities. No one JVM is best
across the suite with respect to compilation time and code quality,
and there is a lot a variation. These results indicate there is plenty
of room for improving current commercial JVMs.
Many recent studies examine and characterize the behavior of

Java programs in simulation or on hardware [19, 21, 23, 28, 29,
30, 31, 32, 33]. This work focuses on workload characterization,
application behavior on hardware, and key differences with C pro-
grams. For example, Hauswirth et al. mine application behavior
to understand performance [21]. The bulk of our evaluation fo-
cuses on benchmark properties that are independent of any particu-
lar hardware or virtual machine implementation, whereas this prior
work concentrates on how applications behave on certain hardware
with one or more virtual machines. We extend these results to sug-
gest that these characteristics can be used to separate and evaluate
the benchmarks in addition to the software and hardware running
them. Much of this Java performance analysis work either disables
garbage collection [15, 35], which introduces unnecessary mem-
ory fragmentation, or holds the heap size and/or garbage collector
constant [19, 28], which may hide locality effects.
A number of researchers examine garbage collection and its in-

fluence on application performance [3, 4, 20, 22, 28, 40]. For ex-
ample, Kim and Hsu use multiple heap sizes and simulate different
memory hierarchies with a whole heap mark-sweep algorithm, as-
sisted by occasional compaction [28]. Kim and Hsu, and Rajan et
al. [33] note that a mark-sweep collector has a higher miss rate than
the application itself because the collector touches reachable data
that may not be in the program’s current working set. Blackburn
et al. use the methodology we recommend here for studying the
influence of copying, mark-sweep, and reference counting collec-
tors, and their generational variants on three architectures [4]. They
show a contiguously allocating generational copying collector de-
livers better mutator cache performance and total performance than
a whole-heap mark-sweep collector with a free-list. A few studies
explore heap size effects on performance [9, 10, 28], and as we
show here, garbage collectors are very sensitive to heap size, and
in particular to tight heaps. Diwan et al. [16, 41], Hicks et al. [22],
and others [7, 8, 24] measure detailed, specific mechanism costs
and architecture influences [16], but do not consider a variety of
collection algorithms. Our work reflects these results and method-
ologies, but makes additional recommendations.

3. Benchmark and Methodology Introduction
This section describes SPEC Java and SPEC execution rules, how
we collected DaCapo benchmarks, and our execution harness.
3.1 SPEC Java Benchmarks.
We compare the DaCapo suite to SPECjvm98 [37] and a modified
version of SPECjbb2000 [38], and call them the SPEC Java bench-
marks, or SPEC for short. We exclude SPECjAppServer because it
requires multiple pieces of hardware and software to execute. The
original SPECjbb2000 is a server-side Java application and reports
its score as work done over a fixed time rather than elapsed time for
a fixed work load. Although throughput (measuring work done over
a fixed time) is one important criteria for understanding applica-
tions such as transaction processing systems, most applications are
not throughput oriented. Superficially, the difference between fix-
ing the time and workload is minor, however a variable workload is
methodologically problematic. First, throughput workloads force a
repetitive loop into the benchmark, which influences JIT optimiza-
tion strategies and opportunities for parallelism, but is not represen-
tative of the wide range of non-repetitive workloads. Furthermore,

170

variable workloads make performance hard to analyze and reason
about. For example, the level and number of classes optimized and
re-optimized at higher levels and the number of garbage collec-
tions vary with the workload, leading to complex cascading effects
on overall performance. We therefore modify SPECjbb2000, creat-
ing pseudojbb, which executes a fixed workload (by default, 70,000
transactions execute against a single warehouse).
SPEC benchmarking rules discourage special casing the vir-

tual machine, compiler, and/or architecture for a specific SPEC
Java benchmark. They specify the largest input size (100), se-
quencing through the benchmarks, no harness caching, and no pre-
compilation of classes. The SPECjvm98 harness runs all the bench-
marks multiple times, and intersperses untimed and timed execu-
tions. Benchmarkers may run all the programs as many times as
they like, and then report the best and worst results using the same
virtual machine and compiler configurations. SPEC indicates that
reporting should specify the memory sizes: 48MB, 48–256MB, and
greater than 256MB, but does not require reporting all three. All
these sizes over provision the heap. Excluding the virtual machine,
SPEC programs allocate up to 271MB, and have at most 8MB live
in the heap at any time, except for pseudojbb with 21MB live (see
Section 7). Since 2000, none of the vendors has published results
for the smaller heaps.
The SPEC committee is currently working on collecting a new

set of Java benchmarks. The SPEC committee consists of industrial
representatives and a few academics. One of their main criteria
is representativeness, which industry is much better to judge than
academia. When SPEC releases new benchmark sets, they include
a performance comparison point. They do not include or describe
any measured metrics on which they based their selection. This
paper suggests methodologies for both selecting and evaluating
Java Benchmarks, which are not being used or recommended in
current industrial standards, SPEC or otherwise.

3.2 DaCapo Benchmarks
We began the DaCapo benchmarking effort in mid 2003 as the re-
sult of an NSF review panel in which the panel and the DaCapo
research group agreed that the existing Java benchmarks were lim-
iting our progress. What followed was a two-pronged effort to iden-
tify suitable benchmarks, and develop a suite of analyses to char-
acterize candidate benchmarks and evaluate them for inclusion. We
began with the following criteria.

1. Diverse real applications.We want applications that are widely
used to provide a compelling focus for the community’s innova-
tion and optimizations, as compared to synthetic benchmarks.

2. Ease of use. We want the applications to be relatively easy to
use and measure.

We implemented these criteria as follows.

1. We chose only open source benchmarks and libraries.
2. We chose diverse programs tomaximize coverage of application
domains and application behaviors.

3. We focused on client-side benchmarks that are easy to measure
in a completely standard way, with minimal dependences out-
side the scope of the host JVM.

4. We excluded GUI applications since they are difficult to bench-
mark systematically. In the case of eclipse, we exercise a non-
GUI subset.

5. We provide a range of inputs. With the default input sizes,
the programs are timely enough that it takes hours or days to
execute thousands of invocations of the suite, rather than weeks.
With the exception of eclipse, which runs for around a minute,
each benchmark executes for between 5 and 20 seconds on
contemporary hardware and JVMs.

We considered other potential criteria, such as long running, GUI,
and client-server applications. We settled on the above character-
istics because their focus is similar to the existing SPEC bench-
marks, while addressing some of our key concerns. Around 20 stu-
dents and faculty at six institutions then began an iterative process
of identifying, preparing, and experimenting with candidate bench-
marks. Realizing the difficulty of identifying a good benchmark
suite, we made the DaCapo benchmark project open and transpar-
ent, inviting feedback from the community [14]. As part of this
process, we have released three beta versions.
We identified a broad range of static and dynamic metrics,

including some new ones, and developed a framework in Jikes
RVM [1] for performing these detailed analyses. Sections 6, 7,
and 8 describe these metrics. We systematically analyzed each can-
didate to identify ones with non-trivial behavior and to maximize
the suite’s coverage. We included most of the benchmarks we eval-
uated, excluding only a few that were too trivial or whose license
agreements were too restrictive, and one that extensively used ex-
ceptions to avoid explicit control flow.

The Constituent Benchmarks We now briefly describe each
benchmark in the final pre-release of the suite (beta-2006-08) that
we use throughout the paper. More detailed descriptions appear in
Figures 4 through 14. The source code and the benchmark harness
are available on the DaCapo benchmark web site [14].
antlr A parser generator and translator generator.
bloat A bytecode-level optimization and analysis tool for Java.
chart A graph plotting toolkit and pdf renderer.
eclipse An integrated development environment (IDE).
fop An output-independent print formatter.
hsqldb An SQL relational database engine written in Java.
jython A python interpreter written in Java.
luindex A text indexing tool.
lusearch A text search tool.
pmd A source code analyzer for Java.
xalan An XSLT processor for transforming XML documents.
The benchmark suite is packaged as a single jar file containing
a harness (licensed under the Apache Public License [2]), all the
benchmarks, the libraries they require, three input sizes, and input
data (e.g., luindex, lusearch and xalan all use the works of Shake-
speare). We experimented with different inputs and picked repre-
sentative ones.

The Benchmark Harness We provide a harness to invoke the
benchmarks and perform a validity check that insures each bench-
mark ran to completion correctly. The validity check performs
checksums on err and out streams during benchmark execution
and on any generated files after benchmark execution. The harness
passes the benchmark if its checksums match pre-calculated values.
The harness supports a range of options, including user-specified

hooks to call at the start and end of the benchmark and/or after the
benchmark warm-up period, running multiple benchmarks, and
printing a brief summary of each benchmark and its origins. It also
supports workload size (small, default, large), which iteration (first,
second, or nth), or a performance-stable iteration for reporting ex-
ecution time. To find a performance-stable iteration, the harness
takes a window size w (number of executions) and a convergence
target v, and runs the benchmark repeatedly until either the coef-
ficient of variation, σµ , of the last w runs drops below v, or reports
failure if the number of runs exceeds a maximum m (where σ is the
standard deviation and µ is the arithmetic mean of the last w exe-
cution times). Once performance stabilizes, the harness reports the
execution time of the next iteration. The harness provides defaults
for w and v, which the user may override.

171

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 3 4 5 6

10 20 30 40 50 60 70 80 90

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

Heap size (MB)

PPC 1.6 SS
PPC 1.6 MS

P4 3.0 SS
P4 3.0 MS

AMD 2.2 SS
AMD 2.2 MS

PM 2.0 SS
PM 2.0 MS

(a) SPEC

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 3 4 5 6

50 100 150 200

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

Heap size (MB)

PPC 1.6 SS
PPC 1.6 MS

P4 3.0 SS
P4 3.0 MS

AMD 2.2 SS
AMD 2.2 MS

PM 2.0 SS
PM 2.0 MS

(b) DaCapo

Figure 1. The Impact of Benchmarks and Architecture in Identifying Tradeoffs Between Collectors

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6
 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

20 40 60 80 100

N
or

m
al

iz
ed

 T
im

e

Ti
m

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

(a) 209 db, Pentium-M

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6
 3.5

 4

 4.5

 5

 5.5

100 200 300 400 500 600

N
or

m
al

iz
ed

 T
im

e

Ti
m

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

(b) hsqldb, Pentium-M

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6

 6

 6.5

 7

 7.5

 8

 8.5
50 100 150 200

N
or

m
al

iz
ed

 T
im

e

Ti
m

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

(c) pseudojbb, AMD

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6
 11

 12

 13

 14

 15

 16

50 100 150 200

N
or

m
al

iz
ed

 T
im

e

Ti
m

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

(d) pseudojbb, PPC

Figure 2. Gaming Your Results

4. Virtual Machine Experimental Methodologies
We modified Jikes RVM [1] version 2.4.4+ to report static met-
rics, dynamic metrics, and performance results. We use this virtual
machine because it is open source and performs well. Unless other-
wise specified, we use a generational collector with a variable sized
copying nursery and a mark-sweep older space because it is a high
performance collector configuration [4], and consequently is popu-
lar in commercial virtual machines. We call this collector GenMS.
Our research group and others have used and recommended the fol-
lowing methodologies to understand virtual machines, application
behaviors, and their interactions.

Mix. The mix methodology measures an iteration of an applica-
tion which mixes JIT compilation and recompilation work with
application time. This measurement shows the tradeoff of total
time with compilation and application execution time. SPEC’s
“worst” number may often, but is not guaranteed to, correspond
to this measurement.

Stable. To measure stable application performance, researchers
typically report a steady-state run in which there is no JIT com-
pilation and only the application and memory management sys-
tem are executing. This measurement corresponds to the SPEC
“best” performance number. It measures final code quality, but
does not guarantee the compiler behaved deterministically.

Deterministic Stable & Mix. This methodology eliminates sam-
pling and recompilation as a source of non-determinism. It
modifies the JIT compiler to perform replay compilation which
applies a fixed compilation plan when it first compiles each
method [25]. We first modify the compiler to record its sam-
pling information and optimization decisions for each method,
execute the benchmark n times, and select the best plan. We
then execute the benchmark with the plan, measuring the first
iteration (mix) or the second (stable) depending on the experi-
ment.

The deterministic methodology produces a code base with opti-
mized hot methods and baseline compiled code. Compiling all the

methods at the highest level with static profile information or us-
ing all baseline code is also deterministic, but it does not provide
a realistic code base. These methodologies provide compiler and
memory management researchers a way to control the virtual ma-
chine and compiler, holding parts of the system constant to tease
apart the influence of proposed improvements. We highly recom-
mend these methodologies together with a clear specification and
justification of which methodology is appropriate and why. In Sec-
tion 5.1, we provide an example evaluation that uses the determin-
istic stable methodology which is appropriate because we compare
garbage collection algorithms across a range of architectures and
heap sizes, and thus want to minimize variation due to sampling
and JIT compilation.

5. Benchmarking Methodology
This section argues for using multiple architectures and multiple
heap sizes related to each program’s maximum live size to evaluate
the performance of Java, memory management, and its virtual ma-
chines. In particular, we show a set of results in which the effects
of locality and space efficiency trade off, and therefore heap size
and architecture choice substantially affect quantitative and quali-
tative conclusions. The point of this section is to demonstrate that
because of the variety of implementation issues that Java programs
encompass, measurements are sensitive to benchmarks, the under-
lying architecture, the choice of heap size, and the virtual machine.
Thus presenting results without varying these parameters is at best
unhelpful, and at worst, misleading.

5.1 How not to cook your books.
This experiment explores the space-time tradeoff of two full heap
collectors: SemiSpace and MarkSweep as implemented in Jikes
RVM [1] with MMTk [4, 5] across four architectures. We exper-
imentally determine the minimum heap size for each program us-
ing MarkCompact in MMTk. (These heap sizes, which are specific
to MMTk and Jikes RVM version 2.4.4+, can be seen in the top
x-axes of Figures 2(a)–(d).) The virtual machine triggers collec-
tion when the application exhausts the heap space. The SemiSpace

172

First iteration Second iteration Third iteration
Benchmark A B/A C/A Best A B/A C/A Best 2nd/1st A B/A C/A Best 3rd/1st

SPEC
201 compress 7.2 0.76 0.75 0.75 3.3 1.51 1.65 1.00 0.75 3.2 1.02 1.69 1.00 0.65
202 jess 3.2 0.80 0.58 0.58 2.0 1.27 0.81 0.81 0.82 2.0 0.63 0.79 0.63 0.65
205 raytrace 2.6 0.86 0.54 0.54 1.5 0.99 0.82 0.82 0.66 1.5 0.64 0.82 0.64 0.58
209 db 8.0 1.07 1.00 1.00 6.9 1.14 1.14 1.00 0.91 6.8 1.05 1.14 1.00 0.88
213 javac 6.0 0.48 0.69 0.48 2.5 0.93 1.34 0.93 0.62 2.2 1.06 1.50 1.00 0.60
222 mpegaudio 3.8 1.73 1.22 1.00 2.8 1.11 1.65 1.00 0.69 2.7 1.10 1.64 1.00 0.67
227 mtrt 2.9 0.72 0.51 0.51 1.4 1.53 0.94 0.94 0.74 1.5 0.61 0.81 0.61 0.56
228 jack 5.7 1.08 0.61 0.61 3.1 1.27 1.05 1.00 0.66 3.0 1.21 1.08 1.00 0.64
geomean 0.94 0.74 0.68 1.22 1.18 0.94 0.73 0.91 1.18 0.86 0.65

DaCapo
antlr 6.0 0.53 0.68 0.53 3.4 0.69 0.94 0.69 0.66 3.2 0.69 0.97 0.69 0.64
bloat 12.0 0.98 1.03 0.98 9.7 1.28 1.20 1.00 0.93 9.1 1.24 1.28 1.00 0.88
chart 12.2 0.97 1.47 0.97 9.5 1.30 1.68 1.00 0.90 9.2 0.73 1.71 0.73 0.75
eclipse 61.7 1.28 0.96 0.96 39.4 1.60 1.17 1.00 0.74 23.8 1.60 1.94 1.00 0.54
fop 7.1 0.40 0.40 0.40 4.8 0.33 0.36 0.33 0.63 5.1 0.31 0.35 0.31 0.66
hsqldb 12.0 0.82 0.47 0.47 7.7 0.67 0.66 0.66 0.66 7.3 0.86 0.68 0.68 0.67
luindex 15.5 1.04 0.94 0.94 9.8 1.41 1.41 1.00 0.80 9.1 1.55 1.49 1.00 0.79
lusearch 13.1 0.74 0.90 0.74 10.6 0.92 1.06 0.92 0.91 10.5 1.56 1.07 1.00 1.10
jython 16.5 0.52 0.68 0.52 8.3 0.92 2.87 0.92 1.09 7.9 0.92 0.83 0.83 0.59
pmd 10.4 1.04 0.95 0.95 7.5 1.50 1.15 1.00 0.89 6.9 1.18 1.27 1.00 0.76
xalan 8.3 0.87 0.90 0.87 5.3 1.53 1.20 1.00 0.86 5.0 1.24 1.26 1.00 0.76
geomean 0.84 0.85 0.76 1.10 1.25 0.86 0.83 1.08 1.17 0.84 0.74

Table 1. Cross JVM Comparisons

collector must keep in reserve half the heap space to ensure that
if the remaining half of the heap is all live, it can copy into it. The
MarkSweep collector uses segregated fits free-lists. It collects when
there is no element of the appropriate size, and no completely free
block that can be sized appropriately. Because it is more space effi-
cient, it collects less often than the SemiSpace collector. However,
SemiSpace’s contiguous allocation offers better locality to contem-
poraneously allocated and used objects than MarkSweep.
Figure 1 shows how this tradeoff plays out in practice for SPEC

and DaCapo. Each graph normalizes performance as a function of
heap size, with the heap size varying from 1 to 6 times the mini-
mum heap in which the benchmark can run. Each line shows the
geometric mean of normalized performance using either a Mark-
Sweep (MS) or SemiSpace (SS) garbage collector, executing on
one of four architectures. Each line includes a symbol for the ar-
chitecture, unfilled for SS and filled for MS. The first thing to note
is that the MS and SS lines converge and cross over at large heap
sizes, illustrating the point at which the locality/space efficiency
break-even occurs. Note that the choice of architecture and bench-
mark suite impacts this point. For SPEC on a 1.6GHz PPC, the
tradeoff is at 3.3 times the minimum heap size, while for DaCapo
on a 3.0GHz Pentium 4, the tradeoff is at 5.5 times the minimum
heap size. Note that while the 2.2GHz AMD and the 2.0 GHz Pen-
tium M are very close on SPEC, the Pentium M is significantly
faster in smaller heaps on DaCapo. Since different architectures
have different strengths, it is important to have a good coverage
in the benchmark suite and a variety of architectures. Such results
can paint a rich picture, but depend on running a large number of
benchmarks over many heap sizes across multiple architectures.
The problem of using a subset of a benchmark suite, using a

single architecture, or choosing few heap sizes is further illustrated
in Figure 2. Figures 2(a) and (b) show how careful benchmark
selection can tell whichever story you choose, with 209 db and
hsqldb performing best under the opposite collection regimens.
Figures 2(c) and (d) show that careful choice of architecture can
paint a quite different picture. Figures 2(c) and (d) are typical of
many benchmarks. The most obvious point to draw from all of
these graphs is exploring multiple heap sizes should be required
for Java and should start at the minimum in which the program can
execute with a well performing collector. Eliminating the left hand

side in either of these graphs would lead to an entirely different
interpretation of the data.
This example shows the tradeoff between space efficiency and

locality due to the garbage collector, and similar issues arise with
almost any performance analysis of Java programs. For example,
a compiler optimization to improve locality would clearly need a
similarly thorough evaluation [4].

5.2 Java Virtual Machine Impact
This section explores the sensitivity of performance results to
JVMs. Table 1 presents execution times and differences for three
leading commercial Java 1.5 JVMs running one, two, and three
iterations of the SPEC Java and DaCapo benchmarks. We have
made the JVMs anonymous (‘A’, ‘B’, & ‘C’) in deference to li-
cense agreements and because JVM identity is not pertinent to the
point. We use a 2GHz Intel Pentium M with 1GB of RAM and
a 2MB L2 cache, and in each case we run the JVM ‘out of the
box’, with no special command line settings. Columns 2–4 show
performance for a single iteration, which will usually be most im-
pacted by compilation time. Columns 6–8 present performance for
a second iteration. Columns 11–13 show performance for a third
iteration. The first to the third iteration presumably includes pro-
gressively less compilation time and more application time. The
Speedup columns 10 and 15 show the average percentage speedup
seen in the second and third iterations of the benchmark, relative to
the first. Columns 2, 6 and 11 report the execution time for JVM A
to which we normalize the remaining execution results for JVMs B
and C. The Best column reports the best normalized time from all
three JVMs, with the best time appearing in bold in each case.
One interesting result is that no JVM is uniformly best on all

configurations. The results show there is a lot of room for over-
all JVM improvements. For DaCapo, potential improvements range
from 14% (second iteration) to 25% (first iteration). Even for SPEC
potential improvements range from 6% (second iteration) to 32%
(first iteration). If a single JVM could achieve the best performance
on DaCapo across the benchmarks, it would improve performance
by a geometric mean of 24% on the first iteration, 14% on the
second iteration, and 16% on the third interaction (the geomean
row). Among the notable results are that JVM C slows down sig-
nificantly for the second iteration of jython, and then performs best

173

on the third iteration, a result we attribute to aggressive hotspot
compilation during the second iteration. The eclipse benchmark
appears to take a long time to warm up, improving considerably
in both the second and third iterations. On average, SPEC bench-
marks speed up much more quickly than the DaCapo benchmarks,
which is likely a reflection on their smaller size and simplicity. We
demonstrate this point quantitatively in the next section.
These results reinforce the importance of good methodology

and the choice of benchmark suite, since we can draw dramatically
divergent conclusions by simply selecting a particular iteration,
virtual machine, heap size, architecture, or benchmark.

6. Code Complexity and Size
This section shows static and dynamic software complexity met-
rics which are architecture and virtual machine independent.
We present Chidamber and Kemerer’s software complexity met-
rics [12] and a number of virtual machine and architecture in-
dependent dynamic metrics, such as, classes loaded and byte-
codes compiled. Finally, we present a few virtual machine depen-
dent measures of dynamic behavior, such as, methods/bytecodes
the compiler detects as frequently executed (hot), and instruc-
tion cache misses. Although we measure these features with Jikes
RVM, Eeckhout et al. [19] show that for SPEC, virtual machines
fairly consistently identify the same hot regions. Since the DaCapo
benchmarks are more complex than SPEC, this trend may not hold
as well for them, but we believe these metrics are not overly influ-
enced by our virtual machine. DaCapo and SPEC differ quite a bit;
DaCapo programs are more complex, object-oriented, and exercise
the instruction cache more.
6.1 Code Complexity
To measure the complexity of the benchmark code, we use the Chi-
damber and Kemerer object-oriented programming (CK) metrics
[12] measured with the ckjm software package [36]. We apply the
CKmetrics to classes that the application actually loads during exe-
cution. We exclude standard libraries from this analysis as they are
heavily duplicated across the benchmarks (column two of Table 3
includes all loaded classes). The average DaCapo program loads
more than twice as many classes during execution as SPEC. The
following explains what the CK metrics reveal and the results for
SPEC and DaCapo.

WMC Weighted methods per class. Since ckjm uses a weight
of 1, WMC is simply the total number of declared methods
for the loaded classes. Larger numbers show that a program
provides more behaviors, and we see SPEC has substantially
lower WMC values than DaCapo, except for 213 javac, which
as the table shows is the richest of the SPEC benchmarks and
usually falls in the middle or top of the DaCapo’s program
range of software complexity. Unsurprisingly, fewer methods
are declared (WMC in Table 2) than compiled (Table 3), but
this difference is only dramatic for eclipse.

DIT Depth of Inheritance Tree. DIT provides for each class a
measure of the inheritance levels from the object hierarchy top.
In Java where all classes inherit Object the minimum value
of DIT is 1. Except for 213 javac and 202 jess, DaCapo
programs typically have deeper inheritance trees.

NOC Number of Children. NOC is the number of immediate
subclasses of the class. Table 2 shows that in SPEC, only
213 javac has any interesting behavior, but hsqldb, luindex,
lusearch and pmd in DaCapo also have no superclass structure.

CBO Coupling between object classes. CBO represents the num-
ber of classes coupled to a given class (efferent couplings).
Method calls, field accesses, inheritance, arguments, return
types, and exceptions all couple classes. The interactions be-
tween objects and classes is substantially more complex for

Benchmark WMC DIT NOC CBO RFC LCOM
SPEC

201 compress 154 19 0 55 426 780
202 jess 614 97 1 632 1846 2032
205 raytrace 330 33 3 117 743 1046
209 db 152 12 0 42 454 789
213 javac 1011 186 38 1175 3293 3753
222 mpegaudio 367 40 0 167 796 1350
227 mtrt 332 33 3 117 743 1046
228 jack 375 46 0 163 860 6911
pseudojbb 541 35 0 254 1419 2487
min 152 12 0 42 426 780
max 1011 186 38 1175 3293 6911
geomean 366 40 2 176 950 1701

DaCapo
antlr 1253 84 8 674 3094 8444
bloat 2265 206 21 1661 6232 6521
chart 1627 101 16 648 3979 29169
eclipse 10763 830 164 7277 26209 218199
fop 1433 148 17 998 3867 13041
hsqldb 2419 73 3 766 4676 47371
jython 3023 225 60 1398 5725 97111
luindex 494 50 0 246 1372 2260
lusearch 618 55 0 297 1441 3419
pmd 2348 215 4 1199 5384 126893
xalan 2433 161 24 971 5682 37394
min 494 50 0 246 1372 2260
max 10763 830 164 7277 26209 218199
geomean 1857 138 10 935 4420 22561

WMC Weighted methods/class CBO Object class coupling
DIT Depth Inheritance Tree RFC Response for a Class
NOC Number of Children LCOM Lack of method cohesion

Table 2. CK Metrics for Loaded Classes (Excluding Libraries)

DaCapo compared to SPEC. However, both 202 jess and
213 javac have relatively high CBO values.

RFC Response for a Class. RFC measures the number of different
methods that may execute when a method is invoked. Ideally,
we would find for each method of the class, the methods that
class will call, and repeat for each called method, calculating
the transitive closure of the method’s call graph. Ckjm calcu-
lates a rough approximation to the response set by inspecting
method calls within the class’s method bodies. The RFC metric
for DaCapo shows a factor of around five increase in complex-
ity over SPEC.

LCOM Lack of cohesion in methods. LCOM counts methods in
a class that are not related through the sharing of some of
the class’s fields. The original definition of this metric (used
in ckjm) considers all pairs of a class’s methods, subtracting
the number of method pairs that share a field access from the
number of method pairs that do not. Again, DaCapo is more
complex, e.g., eclipse and pmd have LCOMmetrics at least two
orders of magnitude higher than any SPEC benchmark.

In summary, the CK metrics show that SPEC programs are not very
object-oriented in absolute terms, and that the DaCapo benchmarks
are significantly richer and more complex than SPEC. Furthermore,
DaCapo benchmarks extensively use object-oriented features to
manage their complexity.

6.2 Code Size and Instruction Cache Performance
This section presents program size metrics. Column 2 of Table 3
shows the total number of classes loaded during the execution of
each benchmark, including standard libraries. Column 3 shows the
total number of declared methods in the loaded classes (compare to
column 2 of Table 2, which excludes standard libraries). Columns
4 and 5 show the number of methods compiled (executed at least

174

Methods & Bytecodes Compiled I-Cache Misses
Classes Methods All Optimized % Hot L1 I-cache ITLB

Benchmark Loaded Declared Methods BC KB Methods BC KB Methods BC /ms norm /ms norm
SPEC

201 compress 157 1118 254 23.9 16 3.7 6.3 15.5 69 0.08 4 0.07
202 jess 293 1777 655 42.4 46 4.3 7.0 10.1 383 0.45 31 0.56

205 raytrace 177 1316 381 32.4 44 9.0 11.5 27.8 1826 2.12 191 3.42
209 db 149 1108 249 23.7 11 1.5 4.4 6.3 34 0.04 2 0.04

213 javac 302 2261 978 89.0 141 25.4 14.4 28.5 6356 7.39 672 12.04
222 mpegaudio 200 1407 425 68.3 88 19.4 20.7 28.4 731 0.85 24 0.43

227 mtrt 178 1318 379 32.4 39 7.6 10.3 23.5 1940 2.25 45 0.81
228 jack 202 1392 488 53.6 33 5.4 6.8 10.1 3142 3.65 201 3.60
pseudojbb 238 2622 824 69.7 174 25.7 21.1 36.9 5556 6.46 759 13.60

min 149 1108 249 23.7 11 1.5 4.4 6.3 34 0.04 2 0.04
max 302 2622 978 89.0 174 25.7 21.1 36.9 6356 7.39 759 13.60

geomean 204 1523 464 43.6 46 7.8 10.0 18.0 860 1.00 56 1.00
DaCapo

antlr 307 3517 1541 212.7 101 14.1 6.6 6.6 6198 7.20 597 10.70
bloat 471 5231 2023 169.1 100 9.5 4.9 5.6 6031 7.01 398 7.13
chart 706 8972 2299 204.1 113 20.8 4.9 10.2 11919 13.85 952 17.06

eclipse 1023 12450 3713 243.0 14 2.0 0.4 0.8 5053 5.87 702 12.58
fop 865 5761 2593 206.0 69 7.8 2.7 3.8 6603 7.68 532 9.53

hsqldb 355 5970 1411 130.2 122 18.9 8.6 14.5 4866 5.66 524 9.39
luindex 309 3118 940 74.3 168 29.3 17.9 39.4 1876 2.18 154 2.76
lusearch 295 2795 822 65.5 133 21.7 16.2 33.1 10183 11.84 1888 33.84
jython 886 9443 3242 462.5 297 28.5 9.2 6.2 2114 2.46 226 4.05
pmd 619 6163 2247 152.4 137 14.3 6.1 9.4 2819 3.28 223 4.00
xalan 552 6562 1747 126.2 194 36.0 11.1 28.5 3718 4.32 268 4.80
min 295 2795 822 65.5 14 2.0 0.4 0.8 1876 2.18 154 2.76
max 1023 12450 3713 462.5 297 36.0 17.9 39.4 11919 13.85 1888 33.84

geomean 527 5768 1866 162.4 108 14.8 5.8 9.1 4792 5.57 455 8.16

Table 3. Bytecodes Compiled and Instruction Cache Characteristics

once) and the corresponding KB of bytecodes (BC KB) for each
benchmark. We count bytecodes rather than machine code, as it is
not virtual machine, compiler, or ISA specific. The DaCapo bench-
marks average more than twice the number of classes, three times
as many declared methods, four times as many compiled methods,
and four times the volume of compiled bytecodes, reflecting a sub-
stantially larger code base than SPEC. Columns 6 and 7 show how
much code is optimized by the JVM’s adaptive compiler over the
course of two iterations of each benchmark (which Eeckhout et al.’s
results indicate is probably representative of most hotspot finding
virtual machines [19]). Columns 8 and 9 show that the DaCapo
benchmarks have a much lower proportion of methods which the
adaptive compiler regards as hot. Since the virtual machine selects
these methods based on frequency thresholds, and these thresholds
are tuned for SPEC, it may be that the compiler should be selecting
warm code. However, it may simply reflect the complexity of the
benchmarks. For example, eclipse has nearly four thousand meth-
ods compiled, of which only 14 are regarded as hot (0.4%). On
the whole, this data shows that the DaCapo benchmarks are sub-
stantially larger than SPEC. Combined with their complexity, they
should present more challenging optimization problems.
We also measure instruction cache misses per millisecond as

another indicator of dynamic code complexity. We measure misses
with the performance counters on a 2.0 GHz Pentium M with a
32KB level 1 instruction cache and a 2MB shared level two cache,
each of which are 8-way with 64 byte lines. We use Jikes RVM
and only report misses during the mutator portion of the second
iteration of the benchmarks (i.e., we exclude garbage collection).
Columns 10 and 11 show L1 instruction misses, first as misses
per millisecond, and then normalized against the geometric mean
of the SPEC benchmarks. Columns 12 and 13 show ITLB misses
using the same metrics. We can see that on average DaCapo has
L1 I-cache misses nearly six times more frequently than SPEC,
and ITLB misses about eight times more frequently than SPEC. In

particular, none of the DaCapo benchmarks have remarkably few
misses, whereas SPEC benchmarks 201 compress, 202 jess, and
209 db hardly ever miss the IL1. All DaCapo benchmarks have
misses at least twice that of the geometric mean of SPEC.
7. Objects and Their Memory Behavior
This section presents object allocation, live object, lifetime, and
lifetime time-series metrics. We measure allocation demographics
suggested by Dieckmann and Hölzle [15]. We also measure lifetime
and live object metrics, and show that they differ substantially from
allocation behaviors. Since many garbage collection algorithms are
most concerned with live object behaviors, these demographics are
more indicative for designers of new collection mechanisms. Other
features, such as the design of per-object metadata, also depend on
the demographics of live objects, rather than allocated objects.
The data described in this section and Section 8 is presented in

Table 4, and in Figures 4(a) through 14(a), each of which contains
data for one of the DaCapo benchmarks, ordered alphabetically.
In a companion technical report [6], we show these same graphs
for SPEC Java. For all the metrics, DaCapo is more complex and
varied in its behavior, but we must exclude SPEC here due to
space limitations. Each figure includes a brief description of the
benchmark, key attributes, and metrics. It also plots time series and
summaries for (a) object size demographics (Section 7.2), (b) heap
composition (Section 7.3), and (c) pointer distances (Section 8).
Together this data shows that the DaCapo suite has rich and diverse
object lifetime behaviors.
Since Jikes RVM is written in Java, the execution of the JIT

compiler normally contributes to the heap, unlike most other JVMs,
where the JIT is written in C. In these results, we exclude the JIT
compiler and other VM objects by placing then into a separate,
excluded heap. To compute the average and time-series object data,
we modify Jikes RVM to keep statistics about allocations and to
compute statistics about live objects at frequent snapshots, i.e.,
during full heap collections.

175

Heap Volume (MB) Heap Objects Mean Object Size 4MB
Alloc/ Alloc/ Nursery

Benchmark Alloc Live Live Alloc Live Live Alloc Live Survival %
SPEC

201 compress 105.4 6.3 16.8 3,942 270 14.6 28,031 24,425 6.6
202 jess 262.0 1.2 221.3 7,955,141 22,150 359.1 35 56 1.1
205 raytrace 133.5 3.8 35.1 6,397,943 153,555 41.7 22 26 3.6
209 db 74.6 8.5 8.8 3,218,642 291,681 11.0 24 31 14.6
213 javac 178.3 7.2 24.8 5,911,991 263,383 22.4 32 29 25.8
222 mpegaudio 0.7 0.6 1.1 3,022 1,623 1.9 245 406 50.5
227 mtrt 140.5 7.2 19.5 6,689,424 307,043 21.8 22 25 6.6
228 jack 270.7 0.9 292.7 9,393,097 11,949 786.1 30 81 2.8
pseudojbb 207.1 21.1 9.8 6,158,131 234,968 26.2 35 94 31.3
min 0.7 0.6 1.1 3,022 270 1.9 22 25 1.1
max 270.7 21.1 292.7 9,393,097 307,043 786.1 28,031 24,425 50.5
geomean 86.5 3.8 23.0 1,180,850 35,886 32.9 77 110 8.7

DaCapo
antlr 237.9 1.0 248.8 4,208,403 15,566 270.4 59 64 8.2
bloat 1,222.5 6.2 195.6 33,487,434 149,395 224.2 38 44 6.0
chart 742.8 9.5 77.9 26,661,848 190,184 140.2 29 53 6.3
eclipse 5,582.0 30.0 186.0 104,162,353 470,333 221.5 56 67 23.8
fop 100.3 6.9 14.5 2,402,403 177,718 13.5 44 41 14.2
hsqldb 142.7 72.0 2.0 4,514,965 3,223,276 1.4 33 23 63.4
jython 1,183.4 0.1 8,104.0 25,940,819 2,788 9,304.5 48 55 1.6
luindex 201.4 1.0 201.7 7,202,623 18,566 387.9 29 56 23.7
lusearch 1,780.8 10.9 162.8 15,780,651 34,792 453.6 118 330 1.1
pmd 779.7 13.7 56.8 34,137,722 419,789 81.3 24 34 14.0
xalan 60,235.6 25.5 2,364.0 161,069,019 168,921 953.5 392 158 3.8
min 100.3 0.1 2.0 2,402,403 2,788 1.4 24 23 1.1
max 60,235.6 72.0 8,104.0 161,069,019 3,223,276 9,304.5 392 330 63.4
geomean 907.5 6.2 147.6 18,112,439 103,890 174.3 53 62 8.4

Table 4. Key Object Demographic Metrics

7.1 Allocation and Live Object Behaviors
Table 4 summarizes object allocation, maximum live objects, and
their ratios in MB (megabytes) and objects. The table shows that
DaCapo allocates substantially more objects than the SPEC bench-
marks, by nearly a factor of 20 on average. The live objects and
memory are more comparable; but still DaCapo has on average
three times the live size of SPEC. DaCapo has a much higher ratio
of allocation to maximum live size, with an average of 147 com-
pared to SPEC’s 23 measured in MB. Two programs stand out;
jython with a ratio of 8104, and xalan with a ratio of 2364. The
DaCapo benchmarks therefore put significantly more pressure on
the underlying memory management policies than SPEC.
Nursery survival rate is a rough measure of how closely a pro-

gram follows the generational hypothesis which we measure with
respect to a 4MB bounded nursery and report in the last column
of Table 4. Note that nursery survival needs to be viewed in the
context of heap turnover (column seven of Table 4). A low nurs-
ery survival rate may suggest low total GC workload, for exam-
ple, 222 mpegaudio and hsqldb in Table 4. A low nursery survival
rate and a high heap turnover ratio instead suggests a substantial
GC workload, for example, eclipse and luindex. SPEC and Da-
Capo exhibit a wide range of nursery survival rates. Blackburn et al.
show that even programs with high nursery survival rates and large
turnover benefit from generational collection with a copying bump-
pointer nursery space [4]. For example, 213 javac has a nursery
survival rate of 26% and performs better with generational collec-
tors. We confirm this result for all the DaCapo benchmarks, even
on hsqldb with its 63% nursery survival rate and low turnover ratio.
Table 4 also shows the average object size. The benchmark

suites do not substantially differ with respect to this metric. A sig-

nificant outlier is 201 compress, which compresses large arrays of
data. Other outliers include 222 mpegaudio, lusearch and xalan,
all of which also operate over large arrays.

7.2 Object Size Demographics
This section improves the above methodology for measuring object
size demographics. We show that these demographics vary with
time and when viewed from of perspective of allocated versus live
objects. Allocation-time size demographics inform the structure of
the allocator. Live object size demographics impact the design of
per-object metadata and elements of the garbage collection algo-
rithm, as well as influencing the structure of the allocator. Fig-
ures 4(a) through 14(a) each use four graphs to compare size demo-
graphics for each DaCapo benchmark. The object size demograph-
ics are measured both as a function of all allocations (top) and as
a function of live objects seen at heap snapshots (bottom). In each
case, we show both a histogram (left) and a time-series (right).
The allocation histogram plots the number of objects on the

y-axis in each object size (x-axis in log scale) that the program
allocates. The live histogram plots the average number of live
objects of each size over the entire program. We color every fifth
bar black to help the eye correlate between the allocation and live
histograms. Consider antlr in Figure 4(a) and bloat in Figure 5(a).
For antlr, the allocated versus live objects in a size class show only
modest differences in proportions. For bloat however, 12% of its
allocated objects are 38 bytes whereas essentially no live objects
are 38 bytes, which indicates they are short lived. On the other
hand, less than 1% of bloat’s allocated objects are 52 bytes, but
they make up 20% of live objects, indicating they are long lived.
Figure 14(a) shows that for xalan there is an even more marked
difference in allocated and live objects, where 50% of allocated

176

objects are 12 bytes, but none stay live. In fact, 65% of live objects
are 2 Kbytes, whereas they make up only 2% of allocated objects.
How well these large objects are handled will thus in large part
determine the performance of the collector on xalan.
For each allocation histogram, we also present a time series

graph in Figures 4(a) through 14(a). Each line in the time series
graph represents an object size class from the histogram on the
left. We color every fifth object size black, stack them, and place
the smallest size classes at the bottom of the graphs. The distance
between the lines indicates the cumulative number of objects allo-
cated or live of the corresponding size, as a function of time (in
bytes of allocation by convention).
Together, the histogram and time-series data show marked dif-

ferences between allocated and live object demographics. For ex-
ample, the allocation histograms for bloat, fop, and xalan (Fig-
ures 5(a), 8(a), 14(a)) are similar, but the time series data shows
many differences. The xalan program has eight allocation phases
that are self-similar and mirrored in the live data, although in dif-
ferent size class proportions. Whereas, in bloat allocation and live
objects show much less phase behavior, and phases are not self-
correlated. Comparing live and allocated time-series for fop shows
a different pattern. There is a steady increase in the live objects
of each size (and consequently, probably growing data structures),
whereas fop allocates numerous sizes in a several distinct allocation
phases. Thus, the allocation and live graphs are very different. This
shows that live and allocation time series analysis can reveal com-
plexity and opportunities that a scalar metric will never capture.
7.3 Heap Composition Graphs
Figures 4(b) through 14(b) each plot heap composition in lines of
constant allocation as a function of time, measured in allocations
(top) and pointer mutations (bottom). Like the live object time
series graphs, these graphs expose the heap composition but show
object lifetime behaviors rather than object size. Since both graphs
show live objects, their shapes are similar. The heap composition
graphs group objects into cohorts based on allocation time. We
choose cohort sizes as a power of two (2n) such that there are
between 100 and 200 cohorts, shown as a line in each graph. The
top line corresponds to the oldest cohort and indicates the total
volume of live objects in the heap. The gaps between each of the
lines reflects the amount in each cohort, and when objects in a
cohort die, adjacent lines move closer together or if they all die,
the lines merge. It is not uncommon for programs to immediately
allocate long lived data, indicated by a gap between the top line and
the other cohorts; bloat, hsqldb, jython, and lusearch all show this
behavior in Figures 5(b), 9(b), 10(b), and 12(b).
Qualitatively, the complexity of the graphs in Figures 4(b)

through 14(b) reflect the object lifetime behaviors of each of
the benchmarks. With the exception of jython and lusearch, the
DaCapo benchmarks show much richer lifetime behaviors than
SPEC [6]; jython is an interpreter, which leads to a highly regular
execution pattern. Although jython allocates more than any of the
SPEC benchmarks, its behavior is highly regular. We experimented
with a number of interpreted workloads and found very similar,
highly regular behavior, suggesting that the interpreter rather than
the interpreted program dominates. The programs chart and xalan
show distinct self-similar phases with respect to object lifetimes
in Figures 6(b) and and 14(b). The programs fop and hsqldb show
regular, steady heap growth in Figures 8(b) and 9(b). On the other
hand, bloat, eclipse, luindex, and pmd show irregular, complex
object lifetime patterns in Figures 5(b), 7(b), 11(b), and 13(b).

8. Reference Behavior in Pointer Distances
Java programs primarily use pointer-based data structures. This
section provides statistics that describe the connectivity of the data
structures created and manipulated by the DaCapo benchmarks.

We measure pointer distance between its source and target objects
by the relative ages of the objects, for both static snapshots of
the heap, and dynamically as pointers change. These properties
influence aspects of memory performance, such as temporal and
spatial locality and the efficacy of generational garbage collectors.
Figures 4(c) through 14(c) show the relative distances between

the sources and targets of pointers in the heap for each benchmark.
Pointer distance is measured by the difference between the target
and source object positions within (a close approximation to) a per-
fectly compacted heap. We approximate a continuously perfectly
compacted heap by tracking cohort sizes and the logical position
of each object within each cohort during frequent garbage collec-
tions. The youngest object has a heap position of 0 and the oldest
has a heap position equal to the volume of live objects in the heap.
Thus, positive values are old to young object pointers, and negative
values are young to old.
We include both a ‘static’ snapshot measure of pointer distance,

and a ‘dynamic’ mutation measure. Snapshot pointer distance is
established by examining all pointers in the live object graph at a
garbage collection–measuring the state of the object graph. Mu-
tation distance is established by examining every pointer as it is
created–measuring the activity over the object graph. We express
these metrics as aggregate histograms for the execution of the en-
tire benchmark, and as a time series to reflect the changing shape
of the histogram over time (measured in mutations).
We first consider snapshot pointer distance, the top histogram

and time series in Figures 4(c) through 14(c). The most striking
feature of these graphs is the wide range of behaviors displayed
by the benchmarks. Several programs show very irregular time-
varying behavior, e.g., antlr, chart, eclipse, and luindex; whereas
bloat hsqldb, and pmd are more stable, but still vary a bit; and xalan
shows a very complex, but exactly repeated pattern.
The mutation pointer distance graphs have the same axes and

are shown below each snapshot pointer distance figure. These
graphs are computed by tracking pointer distances at all pointer
stores (in a write barrier), rather than at static snapshots of the
heap. These graphs show a wider range of irregularity and patterns
than the heap snapshots.
To illustrate the differences between these metrics, consider

bloat in Figure 5(c). Many pointers point from old to new objects
(positive numbers in the snapshot graphs in the top half of Fig-
ure: 5(c)), but almost all pointer mutations install new to old point-
ers (negative numbers in the mutation graphs). The snapshot graphs
indicate that around 40% of pointers will point from old to new at
any given snapshot (see the top-most line in the time series) and
about 60% will point from new to old (the bottom-most line). On
the other hand, the mutation graphs show that for most of the execu-
tion of the benchmark, nearly 100% of pointer mutations are in the
new to old direction. The divergence of the snapshot and mutation
data, and the time-varying nature of each highlight the limitations
of single value summaries of benchmark behaviors.
9. Principal Components Analysis
Previous sections demonstrate that DaCapo is more object oriented,
more complex, and larger than SPEC, whereas this section demon-
strates that all the constituent programs differ from each other, us-
ing principal component analysis (PCA) [18]. This result indicates
that we satisfy our goal of program diversity. It also confirms that
DaCapo benchmarks differ from SPEC, which is unsurprising by
now given the results from the preceding sections.
PCA is a multivariate statistical technique that reduces a large

N dimensional space into a lower dimensional uncorrelated space.
PCA generates a positive or negative weight (factor loading) associ-
ated with each metric. These weights transform the original higher
dimension space into P principal components using linear equa-
tions. We follow the PCA methodology from prior work [13, 19],

177

Rank
Metric PC1 PC2 PC3 PC4

Architecture
Instruction mix – ALU -9 -15 7 -3
Intruction mix – branches -10 -4 16 1
Instruction mix – memory 1 13 -11 -13
Branch mispreds/instruction for a PPM predictor 8 8 12 14
Register dependence distance up to 16 -5 -12 -5 12
Register dependence distance between 16 and 64 -15 -1 6 -7
Register dependence distance above 64 6 3 13 -15

Code
Instruction cache misses in miss/msec -14 14 1 11
Bytecode compiled in KB -7 11 8 -6
Methods compiled -2 7 9 -9

Memory
Pointer distance – mean 3 -16 10 -5
Pointer distance – standard deviation -4 9 14 16
Mutation distance – mean 16 10 3 4
Mutation distance – standard deviation -12 2 15 2
Incoming pointers per object – standard deviation -13 5 -2 -8
Outgoing pointers per object – standard deviation -11 6 -4 -10

Table 5. Metrics Used for PC Analysis and Their PC Rankings
but use different constituent metrics. Table 5 shows these metrics
which cover architecture, code, and memory behavior. We include
architecture metrics to expand over the code and memory met-
rics presented and explored in depth by previous sections, and to
see which of these differentiate the benchmarks. Our code met-
rics include the i-cache miss rate for each benchmark, the number
of methods compiled and the volume of bytecodes compiled. The
memory metrics include static and dynamic pointer distances, and
incoming and outgoing pointer distributions.
Following prior work [27], our architecture metrics are micro-

architecture neutral, meaning that they capture key architectural
characteristics such as instruction mix, branch prediction, and
register dependencies, but do so independently of the underlying
micro-architecture. We gather these metrics using a modified ver-
sion of Simics v. 3.0.11 [42]. We use our harness to measure stable
performance in Sun’s HotSpot JVM, v. 1.5.0 07-b03 running on a
simulated Sun Ultra-5 10 with Solaris 9.
PCA computes four principal components (PC1, PC2, PC3, and

PC4) which in our case account for 70% of the variance between
benchmarks. PCA identifies principal components in order of sig-
nificance; PC1 is the most determinative component and PC4 is the
least. Table 5 shows the relative ranks of each of the metrics for
PC1–PC4. The absolute value of the numbers in columns 2–5 in-
dicates the rank significance of the metric, while the sign indicates
whether the contribution is negative or positive. We bold the ten
most significant values overall; six of these contribute to PC1, four
to PC2, three to PC3, and none to PC4. Memory instruction mix is
the most significant metric for PC1, and methods compiled is the
next most significant. Note that the three most significant contribu-
tors to PC1 cover each of the three metric categories.
Scatter plots in Figure 3 show how the benchmarks differ in

two-dimensional space. Figure 3 plots each program’s PC1 value
against its PC2 value in the top graph, and Figure 3 plots PC3
and PC4 in the bottom graph. Intuitively, the further the distance
between two benchmarks, the further apart they are with respect
to the metrics. The benchmarks differ if they are apart in either
graph. Since the programs are well distributed in these graphs, the
benchmarks differ.

10. Conclusion
Benchmarks play a strategic role in computer science research
and development by creating a common ground for evaluating
ideas and products. The choice of benchmarks and benchmarking
methodology can therefore have a significant impact on a research

- 1 . 5 - 1 . 0 - 0 . 5 0.0 0.5 1.0 1.5 2.0 2.5
Component 1

- 1 . 5

- 1 . 0

- 0 . 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
om

po
ne

nt
 2

xalan

pmd

lusearch
luindex

jython

hsqldbfop
eclipse

chart

bloat

antlr

jack

mt r t

mpegaudio

javac

d b raytrace

jess

compress

- 1 0 1 2
Component 3

-2 .00
-1 .75
-1 .50
-1 .25
-1 .00
-0 .75
-0 .50
-0 .25

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

C
om

po
ne

nt
 4

xalan

pmd
lusearch

luindex

jython

hsqldb

fop

eclipse

chart

bloat

antlr

jack

mt r t

mpegaudio

javac

d b

raytrace

jess

compress

Figure 3. PCA Scatter Plots; PC1 & PC2 (top), and PC3 & PC4.
field, potentially accelerating, retarding, or misdirecting energy and
innovation. Prompted by concerns among ourselves and others
about the state-of-the-art, we spent thousands of hours at eight
separate institutions examining and addressing the problems of
benchmarking Java applications. The magnitude of the effort surely
explains why so few have developed benchmark suites.
This paper makes two main contributions: 1) it describes a range

of methodologies for evaluating Java, including a number of new
analyses, and 2) it presents the DaCapo benchmark suite. We show
that good methodology is essential to drawing meaningful conclu-
sions and highlight inadequacies prevalent in current methodology.
A few of our specific methodology recommendations are:

• When selecting benchmarks for a suite, use PCA to quantify
benchmark differences with metrics that include static and dy-
namic code and data behavior.

• When evaluating architectures use multiple JVMs. Evaluating
new architecture features will also benefit from multiple JVMs.

• When evaluating JVM performance, use multiple architectures
with mix and stable methodologies, reporting first and/or sec-
ond iterations as well as steady-state to explore the compile and
runtime tradeoffs in the JVM.

• When measuring memory performance, use and report heap
sizes proportional to the minimums.

• Whenmeasuring GC and JIT compilation performance use mix
and stable methodologies, and use constant workload (rather
than throughput) benchmarks.

• When measuring GC or compile time overheads use determin-
istic stable and mix methodologies.

This paper uses these methodologies to demonstrate that the Da-
Capo benchmarks are larger, more complex and richer than the
commonly used SPEC Java benchmarks. The DaCapo benchmarks
are publicly available, evolving, and have and will remain open to
public feedback [14].

178

Acknowledgments
We thank Andrew Appel, Randy Chow, Frans Kaashoek, and Bill
Pugh who encouraged this project at our three year ITR review.
We thank Mark Wegman who initiated the public availability of
Jikes RVM, and the developers of Jikes RVM. Fahad Gilani wrote
the original version of the measurement infrastructure for his ANU
Masters Thesis.

References
[1] B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel, D. Lieber,

M. Mergen, T. Ngo, J. Shepherd, and S. Smith. Implementing Jalapeño in Java.
In ACM Conference on Object–Oriented Programming Systems, Languages,
and Applications, Denver, CO, Nov. 1999.

[2] Apache Software Foundation. Apache Software License, 2000. http://www.-
opensource.org/licenses/apachepl.php.

[3] C. Attanasio, D. Bacon, A. Cocchi, and S. Smith. A comparative evaluation
of parallel garbage collectors. In Proceedings of the Fourteenth Workshop on
Languages and Compilers for Parallel Computing, Cumberland Falls, KY, Aug.
2001.

[4] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities: The
performance impact of garbage collection. In Proceedings of the ACM
Conference on Measurement & Modeling Computer Systems, pages 25–36,
NY, NY, June 2004.

[5] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water? High
performance garbage collection in Java with MMTk. In Proceedings of the 26th
International Conference on Software Engineering, pages 137–146, Scotland,
UK, May 2004.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo
Benchmarks: Java benchmarking development and analysis (extended version).
Technical Report TR-CS-06-01, Dept. of Computer Science, Australian
National University, 2006. http://www.dacapobench.org.

[7] S. M. Blackburn and A. Hosking. Barriers: Friend or foe? In The International
Symposium on Memory Management, pages 143–151, Oct. 2004.

[8] S. M. Blackburn and K. S. McKinley. In or out? Putting write barriers in
their place. In The International Symposium on Memory Management, pages
175–184, June 2002.

[9] S. M. Blackburn, S. Singhai, M. Hertz, K. S. McKinley, and J. E. B. Moss.
Pretenuring for Java. In ACM Conference on Object–Oriented Programming
Systems, Languages, and Applications, pages 342–352, Tampa, FL, Oct. 2001.
ACM.

[10] T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling garbage collection
and heap growth to reduce the execution time of Java applications. In
ACM Conference on Object–Oriented Programming Systems, Languages,
and Applications, pages 353–366, Tampa, FL, 2001.

[11] B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching
linked data structures in java controller. In The International Conference on
Parallel Architectures and Compilation Techniques, pages 280–291, Barcelona,
Spain, Sept. 2001.

[12] S. R. Chidamber and C. F. Kemerer. A metrics suite for object-oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, June 1994.

[13] F. Chow, A. Wright, and K. Lai. Characterization of java workloads by principal
components analysis and indert branches. In Proceedings of the Workshop on
Workload Characterization, pages 11–19, Dallas, TX, Nov. 1998.

[14] DaCapo Project. The DaCapo Benchmarks, beta-2006-08, 2006. http://www.-
dacapobench.org.

[15] S. Dieckmann and U. Hölzle. A study of the allocation behavior of the
SPECjvm98 Java benchmarks. In European Conference on Object-Oriented
Programming, June 1999.

[16] A. Diwan, D. Tarditi, and J. E. B. Moss. Memory subsystem performance
of programs using copying garbage collection. In Conference Record of the
Twenty-First ACM Symposium on Principles of Programming Languages, pages
1–14, Portland, OR, Jan. 1994.

[17] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic metrics
for Java. In ACM Conference on Object–Oriented Programming Systems,
Languages, and Applications, pages 149–168, Anaheim, CA, Oct. 2003.

[18] G. H. Dunteman. Principal Components Analysis. Sage Publications, 1989.

[19] L. Eeckhout, A. Georges, and K. De Bosschere. How Java programs interact
with virtual machines at the microarchitecture level. In ACM Conference on
Object–Oriented Programming Systems, Languages, and Applications, pages
169–186, Anaheim, CA, October 2003.

[20] R. Fitzgerald and D. Tarditi. The case for profile-directed selection of garbage
collectors. In The International Symposium on Memory Management, pages
111–120, Minneapolis, MN, Oct. 2000.

[21] M. Hauswirth, A. Diwan, P. Sweeney, and M. Mozer. Automating vertical
profiling. In ACM Conference on Object–Oriented Programming Systems,
Languages, and Applications, pages 281–296, San Diego, CA, October 2005.

[22] M.W. Hicks, J. T. Moore, and S. Nettles. The measured cost of copying garbage
collection mechanisms. In ACM International Conference on Functional
Programming, pages 292–305, 1997.

[23] U. Hölzle and D. Ungar. Do object-oriented languages need special hardware
support? In European Conference on Object-Oriented Programming, pages
283–302, London, UK, 1995.

[24] A. L. Hosking, J. E. B. Moss, and D. Stefanović. A comparative performance
evaluation of write barrier implementations. In ACM Conference on Object–
Oriented Programming Systems, Languages, and Applications, pages 92–109,
Vancouver, BC, Oct. 1992.

[25] X. Huang, Z. Wang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, and
P. Cheng. The garbage collection advantage: Improving mutator locality. In
ACM Conference on Object–Oriented Programming Systems, Languages, and
Applications, pages 69–80, Vancouver, BC, 2004.

[26] Java Grande Forum. The Java Grande Benchmark Suite, 2006. http://www.-
epcc.ed.ac.uk/javagrande/.

[27] A. Joshi, A. Phansalkar, L. Eeckhout, and L. John. Measuring benchmark
similarity using inherent program characteristics. IEEE Transactions on
Computers, 55(6):769 – 782, June 2006.

[28] J. Kim and Y. Hsu. Memory system behavior of Java programs: methodology
and analysis. In Proceedings of the ACM Conference on Measurement &
Modeling Computer Systems, pages 264–274, Santa Clara, California, June
2000.

[29] T. Li, L. John, V. Narayanan, A. Sivasubramaniam, J. Sabarinathan, and
A. Murthy. Using complete system simulation to characterize SPECjvm98
benchmarks. In Proceedings of the 2000 ACM International Conference on
Supercomputing, pages 22–33, Santa Fe, NM, 2000.

[30] Y. Luo and L. John. Workload characterization of multithreaded Java servers.
In IEEE International Symposium on Performance Analysis of Systems and
Software, pages 128–136, 2001.

[31] M. Marden, S. Lu, K. Lai, and M. Lipasti. Comparison of memory system
behavior in Java and non-Java commercial workloads. In Proceedings of the
Workshop on Computer Architecture Evaluation using Commercial Workloads,
Boston, MA, Feb. 2002.

[32] R. Radhakrishnan, N. Vijaykrishnan, L. K., A. Sivasubramaniam, J. Rubio,
and J. Sabarinathan. Java runtime systems: Characterization and architectural
implications. IEEE Transactions on Computers, 50(2):131–146, Feb. 2001.

[33] A. Rajan, S. Hu, and J. Rubio. Cache performance in Java virtual machines:
A study of constituent phases. In IEEE International Workshop on Workload
Characterization, Nov. 2002.

[34] A. Rogers, M. Carlisle, J. H. Reppy, and L. J. Hendren. Supporting dynamic
data structures on distributed-memory machines. ACM Transactions on
Programming Languages and Systems, 17(2):233–263, Mar. 1995.

[35] Y. Shuf, M. J. Serran, M. Gupta, and J. P. Singh. Characterizing the
memory behavior of Java workloads: A structured view and opportunities
for optimizations. In Proceedings of the ACM Conference on Measurement &
Modeling Computer Systems, pages 194–205, Cambridge, MA, June 2001.

[36] D. D. Spinellis. ckjm Chidamber and Kemerer metrics Software, v 1.6.
Technical report, Athens University of Economics and Business, 2005. http://-
www.spinellis.gr/sw/ckjm.

[37] Standard Performance Evaluation Corporation. SPECjvm98 Documentation,
release 1.03 edition, March 1999.

[38] Standard Performance Evaluation Corporation. SPECjbb2000 (Java Business
Benchmark) Documentation, release 1.01 edition, 2001.

[39] D. Stefanović. Properties of Age-Based Automatic Memory Reclamation
Algorithms. PhD thesis, Department of Computer Science, University of
Massachusetts, Amherst, Massachusetts, Dec. 1998.

[40] D. Stefanović, M. Hertz, S. M. Blackburn, K. McKinley, and J. Moss. Older-
first garbage collection in practice: Evaluation in a Java virtual machine. In
Memory System Performance, Berlin, Germany, June 2002.

[41] D. Tarditi and A. Diwan. Measuring the cost of memory management. Lisp
and Symbolic Computation, 9(4), Dec. 1996.

[42] Virtutec, Inc. Virtutech Simics, 2006. http://www.simics.net.

179

Benchmark Description and Origin
Short Description A parser generator and translator gener-

ator
Long Description ANTLR parses one or more grammar

files and generate a parser and lexical
analyizer for each.

Threads Single threaded
Repeats Two iterations, each parses 44 distinct

grammar files
Version 2.7.2

Copyright Public Domain
Author Terence Parr
License Public Domain

Benchmark Characteristics
Total Allocation (MB) 237.9

(Obj) 4,208,403
Maximum Live (MB) 1.0

(Obj) 15,566
Pointer Mutations (M) 3.91

Classes Loaded 126

4 2 4 4 8 128 460 768 2048
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

%
 A

llo
ca

te
d

O
bj

ec
ts

0 2 5 5 0 7 5 100 125 150 175 200 225 250
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

O
bj

ec
ts

 (K
)

4 2 4 4 8 128 460 768 2048
Object size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

%
 L

iv
e

O
bj

ec
ts

0 2 5 5 0 7 5 100 125 150 175 200 225 250
Time (MB of allocation)

 0

 2.5

 5

 7.5

 10

 12.5

 15

O
bj

ec
ts

 (K
)

(a) Allocated (above) and Live (below) Object Size Histograms and Time-series

0 2 5 5 0 7 5 100 125 150 175 200 225

Time (MB of allocation)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
ea

p
Vo

lu
m

e
(M

B)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2

- 5 . 0

- 2 . 5

0.0

2.5

5.0

Po
in

te
rs

 (%
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

- 7 5

- 5 0

- 2 5

0

2 5

5 0

D
is

ta
nc

es
 (%

)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

Time (millions of pointer mutations)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
ea

p
Vo

lu
m

e
(M

B)

(b) Heap Composition Time-series, in Allocations (above) and Mutations (below)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2

Log_2 of Mutation Distance (Bytes)

- 7 . 5

- 5 . 0

- 2 . 5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
ut

at
io

ns
 (%

)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

Time (millions of pointer mutations)

- 5 0

- 2 5

0

2 5

5 0

7 5

100

D
is

ta
nc

es
 (%

)

(c) Snapshot (above) and Mutation (below) Pointer Distance Histograms and Time-series

Figure 4. Benchmark Characteristics: antlr

180

Benchmark Description and Origin
Short Description A Bytecode-level optimization and

analysis tool for Java
Long Description BLOAT analyzes and optimizes some of

its own class files
Threads Single threaded
Repeats Single iteration, transitively optimizes

classes referenced by a single root class
Version 1.0

Copyright Copyright (c) 1997-2001 Purdue Re-
search Foundation of Purdue University

Author Nathaniel Nystrom and David Whitlock
License BSD-style

Benchmark Characteristics
Total Allocation (MB) 1,222.5

(Obj) 33,487,434
Maximum Live (MB) 6.2

(Obj) 149,395
Pointer Mutations (M) 257.84

Classes Loaded 281

4 2 4 4 8 128 460 768 2048
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0

%
 A

llo
ca

te
d

O
bj

ec
ts

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300
0

2 5
5 0
7 5

100
125
150
175
200
225
250
275
300
325

O
bj

ec
ts

 (K
)

4 2 4 4 8 128 460 768 2048
Object size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

%
 L

iv
e

O
bj

ec
ts

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300
Time (MB of allocation)

 0

 25

 50

 75

 100

 125

 150

O
bj

ec
ts

 (K
)

(a) Allocated (above) and Live (below) Object Size Histograms and Time-series

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

Time (MB of allocation)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

H
ea

p
Vo

lu
m

e
(M

B)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2

- 7 . 5

- 5 . 0

- 2 . 5

0.0

2.5

5.0

7.5

Po
in

te
rs

 (%
)

0 2 5 5 0 7 5 100 125 150 175 200 225 250
- 7 0

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0

3 0

4 0

5 0

D
is

ta
nc

es
 (%

)

0 2 5 5 0 7 5 100 125 150 175 200 225 250

Time (millions of pointer mutations)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

H
ea

p
Vo

lu
m

e
(M

B)

(b) Heap Composition Time-series, in Allocations (above) and Mutations (below)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2

Log_2 of Mutation Distance (Bytes)

- 4 0

- 3 5

- 3 0

- 2 5

- 2 0

- 1 5

- 1 0

- 5

0

5

M
ut

at
io

ns
 (%

)

0 2 5 5 0 7 5 100 125 150 175 200 225 250

Time (millions of pointer mutations)

- 1 0 0

- 7 5

- 5 0

- 2 5

0

2 5

5 0

D
is

ta
nc

es
 (%

)

(c) Snapshot (above) and Mutation (below) Pointer Distance Histograms and Time-series

Figure 5. Benchmark Characteristics: bloat

181

Benchmark Description and Origin
Short Description A graph plotting toolkit and pdf renderer
Long Description jfreechart plots a number of complex

line graphs and renders them as pdf via
itext

Threads Single threaded
Repeats Single iteration plots 14 distinct graphs
Version 0.9.21, 1.0b

Copyright (C)opyright 2000-2004, by Object Re-
finery Limited and Contributors; Copy-
right 2000, 2001, 2002 by Bruno
Lowagie

Author David Gilbert, Bruno Lowagie and
Paulo Soares

License LGPL and MPL

Benchmark Characteristics
Total Allocation (MB) 742.8

(Obj) 26,661,848
Maximum Live (MB) 9.5

(Obj) 190,184
Pointer Mutations (M) 19.64

Classes Loaded 219

4 2 4 4 8 128 460 768 2048
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

%
 A

llo
ca

te
d

O
bj

ec
ts

0 5 0 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
0

2 5

5 0

7 5

100

125

150

175

O
bj

ec
ts

 (K
)

4 2 4 4 8 128 460 768 2048
Object size

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

%
 L

iv
e

O
bj

ec
ts

0 5 0 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Time (MB of allocation)

 0

 25

 50

 75

 100

 125

 150

 175

O
bj

ec
ts

 (K
)

(a) Allocated (above) and Live (below) Object Size Histograms and Time-series

0 5 0 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Time (MB of allocation)

0

1

2

3

4

5

6

7

8

9

1 0

H
ea

p
Vo

lu
m

e
(M

B)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2

- 2 5

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

2 5

Po
in

te
rs

 (%
)

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
- 1 0 0

- 7 5

- 5 0

- 2 5

0

2 5

5 0

D
is

ta
nc

es
 (%

)

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

Time (millions of pointer mutations)

0

1

2

3

4

5

6

7

8

9

1 0

H
ea

p
Vo

lu
m

e
(M

B)

(b) Heap Composition Time-series, in Allocations (above) and Mutations (below)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2

Log_2 of Mutation Distance (Bytes)

- 1 0
- 5

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5

M
ut

at
io

ns
 (%

)

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

Time (millions of pointer mutations)

- 7 5

- 5 0

- 2 5

0

2 5

5 0

7 5

100

D
is

ta
nc

es
 (%

)

(c) Snapshot (above) and Mutation (below) Pointer Distance Histograms and Time-series

Figure 6. Benchmark Characteristics: chart

182

Be
nc
hm

ar
k
D
es
cr
ip
tio
n
an
d
O
rig
in

Sh
or
tD
es
cr
ip
tio
n

A
n
in
te
gr
at
ed
de
ve
lo
pm
en
te
nv
iro
nm
en
t

Lo
ng
D
es
cr
ip
tio
n

Ru
n
as
er
ie
so
fe
cl
ip
se
jd
t(
no
n-
gu
i)
pe
r-

fo
rm
an
ce
te
sts

Th
re
ad
s

W
or
kl
oa
d
is
sin
gl
et
hr
ea
de
d,
bu
tE
cl
ip
se

us
es
m
ul
tip
le
th
re
ad
si
nt
er
na
lly

Re
pe
at
s

Si
ng
le
ite
ra
tio
n,
pe
rfo
rm
s
m
ul
tip
le
di
s-

tin
ct
Ec
lip
se
ta
sk
s

Ve
rs
io
n

3.
1.
2

Co
py
rig
ht

Ec
lip
se
Fo
un
da
tio
n

A
ut
ho
r

Ec
lip
se
Fo
un
da
tio
n

Li
ce
ns
e

Ec
lip
se
Pu
bl
ic
Li
ce
ns
e

Be
nc
hm

ar
k
Ch
ar
ac
te
ris
tic
s

To
ta
lA
llo
ca
tio
n
(M
B)

5,
58
2.
0

(O
bj
)

10
4,
16
2,
35
3

M
ax
im
um

Li
ve
(M
B)

30
.0

(O
bj
)

47
0,
33
3

Po
in
te
rM

ut
at
io
ns
(M
)

33
5.
49

Cl
as
se
sL
oa
de
d

79
5

4
24

48
12

8
46

0
76

8
20

48
0.

0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

% Allocated Objects

0
50

0
1,

00
0

1,
50

0
2,

00
0

2,
50

0
3,

00
0

3,
50

0
4,

00
0

4,
50

0
5,

00
0

5,
50

0
6,

00
0

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

Objects (K)

4
24

48
12

8
46

0
76

8
20

48
O

bj
ec

t s
iz

e

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

22
.5

25
.0

% Live Objects

0
50

0
1,

00
0

1,
50

0
2,

00
0

2,
50

0
3,

00
0

3,
50

0
4,

00
0

4,
50

0
5,

00
0

5,
50

0
6,

00
0

Ti
m

e
(M

B
of

 a
llo

ca
tio

n)

 0

50

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

 4
50

Objects (K)

(a
)
A
llo
ca
te
d
(a
bo
ve
)a
nd
Li
ve
(b
el
ow
)O
bj
ec
tS
iz
e
H
ist
og
ra
m
sa
nd
Ti
m
e-
se
rie
s

0
50

0
1,

00
0

1,
50

0
2,

00
0

2,
50

0
3,

00
0

3,
50

0
4,

00
0

4,
50

0
5,

00
0

5,
50

0

Ti
m

e
(M

B
of

 a
llo

ca
tio

n)

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

22
.5

25
.0

27
.5

30
.0

Heap Volume (MB)

0
4

8
12

16
20

24
28

32

-1
0.

0

-7
.5

-5
.0

-2
.50.
0

2.
5

5.
0

7.
5

Pointers (%)

0
2

5
5

0
7

5
10

0
12

5
15

0
17

5
20

0
22

5
25

0
27

5
30

0
32

5
35

0
-9

0
-8

0
-7

0
-6

0
-5

0
-4

0
-3

0
-2

0
-1

001
0

2
0

3
0

4
0

Distances (%)

0
25

50
75

10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

Ti
m

e
(m

ill
io

ns
 o

f p
oi

nt
er

 m
ut

at
io

ns
)

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

22
.5

25
.0

27
.5

30
.0

Heap Volume (MB)

(b
)
H
ea
p
Co
m
po
sit
io
n
Ti
m
e-
se
rie
s,
in
A
llo
ca
tio
ns
(a
bo
ve
)a
nd
M
ut
at
io
ns
(b
el
ow
)

0
4

8
12

16
20

24
28

32

Lo
g_

2
of

 M
ut

at
io

n
D

is
ta

nc
e

(B
yt

es
)

-2
0.

0

-1
7.

5

-1
5.

0

-1
2.

5

-1
0.

0

-7
.5

-5
.0

-2
.50.
0

2.
5

5.
0

Mutations (%)

0
25

50
75

10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

Ti
m

e
(m

ill
io

ns
 o

f p
oi

nt
er

 m
ut

at
io

ns
)

-7
5

-5
0

-2
502550

Distances (%)

(c
)
Sn
ap
sh
ot
(a
bo
ve
)a
nd
M
ut
at
io
n
(b
el
ow
)P
oi
nt
er
D
ist
an
ce
H
ist
og
ra
m
sa
nd
Ti
m
e-
se
rie
s

Fi
gu
re
7.
Be
nc
hm
ar
k
Ch
ar
ac
te
ris
tic
s:
ec
lip
se

183

Be
nc
hm

ar
k
D
es
cr
ip
tio
n
an
d
O
rig
in

Sh
or
tD
es
cr
ip
tio
n

A
n
ou
tp
ut
-in
de
pe
nd
an
tp
rin
tf
or
m
at
te
r

Lo
ng
D
es
cr
ip
tio
n

fo
p
ta
ke
s
an
X
SL
-F
O
fil
e,
pa
rs
es
it
an
d

fo
rm
at
s
it,
ge
ne
ra
tin
g
an
en
cr
yp
te
d
pd
f

fil
e

Th
re
ad
s

Si
ng
le
th
re
ad
ed

Re
pe
at
s

Si
ng
le
ite
ra
tio
n,
re
nd
er
s
a
sin
gl
e
X
SL
-

FO
fil
e

Ve
rs
io
n

0.
20
.5

Co
py
rig
ht

Co
py
rig
ht
(C
)
19
99
-2
00
3
Th
e
A
pa
ch
e

So
ftw
ar
e
Fo
un
da
tio
n

A
ut
ho
r

A
pa
ch
e
So
ftw
ar
e
Fo
un
da
tio
n

Li
ce
ns
e

A
pa
ch
e
Pu
bl
ic
Li
ce
ns
e

Be
nc
hm

ar
k
Ch
ar
ac
te
ris
tic
s

To
ta
lA
llo
ca
tio
n
(M
B)

10
0.
3

(O
bj
)

2,
40
2,
40
3

M
ax
im
um

Li
ve
(M
B)

6.
9

(O
bj
)

17
7,
71
8

Po
in
te
rM

ut
at
io
ns
(M
)

3.
85

Cl
as
se
sL
oa
de
d

23
1

4
24

48
12

8
46

0
76

8
20

48
0.

0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

% Allocated Objects

0
10

20
30

40
50

60
70

80
90

10
0

11
0

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

Objects (K)

4
24

48
12

8
46

0
76

8
20

48
O

bj
ec

t s
iz

e

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

22
.5

25
.0

27
.5

% Live Objects

0
10

20
30

40
50

60
70

80
90

10
0

11
0

Ti
m

e
(M

B
of

 a
llo

ca
tio

n)

 0

25

50

75

 1
00

 1
25

 1
50

 1
75

Objects (K)

(a
)
A
llo
ca
te
d
(a
bo
ve
)a
nd
Li
ve
(b
el
ow
)O
bj
ec
tS
iz
e
H
ist
og
ra
m
sa
nd
Ti
m
e-
se
rie
s

0
10

20
30

40
50

60
70

80
90

10
0

Ti
m

e
(M

B
of

 a
llo

ca
tio

n)

01234567 Heap Volume (MB)

0
4

8
12

16
20

24
28

32

-7
.5

-5
.0

-2
.50.
0

2.
5

5.
0

7.
5

Pointers (%)

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

2.
25

2.
50

2.
75

3.
00

3.
25

3.
50

3.
75

4.
00

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
001
0

2
0

3
0

4
0

Distances (%)

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

2.
25

2.
50

2.
75

3.
00

3.
25

3.
50

3.
75

4.
00

Ti
m

e
(m

ill
io

ns
 o

f p
oi

nt
er

 m
ut

at
io

ns
)

01234567 Heap Volume (MB)

(b
)
H
ea
p
Co
m
po
sit
io
n
Ti
m
e-
se
rie
s,
in
A
llo
ca
tio
ns
(a
bo
ve
)a
nd
M
ut
at
io
ns
(b
el
ow
)

0
4

8
12

16
20

24
28

32

Lo
g_

2
of

 M
ut

at
io

n
D

is
ta

nc
e

(B
yt

es
)

-1
5.

0

-1
2.

5

-1
0.

0

-7
.5

-5
.0

-2
.50.
0

2.
5

5.
0

7.
5

Mutations (%)

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

2.
25

2.
50

2.
75

3.
00

3.
25

3.
50

3.
75

4.
00

Ti
m

e
(m

ill
io

ns
 o

f p
oi

nt
er

 m
ut

at
io

ns
)

-1
00-7

5

-5
0

-2
5025

Distances (%)

(c
)
Sn
ap
sh
ot
(a
bo
ve
)a
nd
M
ut
at
io
n
(b
el
ow
)P
oi
nt
er
D
ist
an
ce
H
ist
og
ra
m
sa
nd
Ti
m
e-
se
rie
s

Fi
gu
re
8.
Be
nc
hm
ar
k
Ch
ar
ac
te
ris
tic
s:
fo
p

184

Be
nc
hm

ar
k
D
es
cr
ip
tio
n
an
d
O
rig
in

Sh
or
tD
es
cr
ip
tio
n

A
n
SQ
L
re
la
tio
na
ld
at
ab
as
ee
ng
in
ew
rit
-

te
n
in
Ja
va

Lo
ng
D
es
cr
ip
tio
n

H
SQ
LD
B
ex
ec
ut
es

a
JD
BC
-li
ke

in
-

m
em
or
y
be
nc
hm
ar
k,
ex
ec
ut
in
g
a
nu
m
-

be
ro
ft
ra
ns
ac
tio
ns
ag
ai
ns
ta
m
od
el
of
a

ba
nk
in
g
ap
pl
ic
at
io
n

Th
re
ad
s

20
cl
ie
nt
th
re
ad
s

Re
pe
at
s

40
tra
ns
ac
tio
ns
pe
rc
lie
nt

Ve
rs
io
n

1.
8.
0.
4

Co
py
rig
ht

Co
py
rig
ht
(c
)
20
01
-2
00
2,
Th
e
H
SQ
L

D
ev
el
op
m
en
tG
ro
up

A
ut
ho
r

Th
e
H
SQ
LD
B
D
ev
el
op
m
en
tG
ro
up

Li
ce
ns
e

Th
e
H
SQ
LD
B
lic
en
se
.

Be
nc
hm

ar
k
Ch
ar
ac
te
ris
tic
s

To
ta
lA
llo
ca
tio
n
(M
B)

14
2.
7

(O
bj
)

4,
51
4,
96
5

M
ax
im
um

Li
ve
(M
B)

72
.0

(O
bj
)

3,
22
3,
27
6

Po
in
te
rM

ut
at
io
ns
(M
)

19
.3
1

Cl
as
se
sL
oa
de
d

13
1

4
24

48
12

8
46

0
76

8
20

48
051015202530354045 % Allocated Objects

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

13
0

14
0

15
0

051015202530354045 Objects (K)

4
24

48
12

8
46

0
76

8
20

48
O

bj
ec

t s
iz

e

0510152025303540 % Live Objects

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

13
0

14
0

15
0

Ti
m

e
(M

B
of

 a
llo

ca
tio

n)

 0

 2
50

 5
00

 7
50

1,
00

0
1,

25
0

1,
50

0
1,

75
0

2,
00

0
2,

25
0

2,
50

0
2,

75
0

3,
00

0
3,

25
0

Objects (K)

(a
)
A
llo
ca
te
d
(a
bo
ve
)a
nd
Li
ve
(b
el
ow
)O
bj
ec
tS
iz
e
H
ist
og
ra
m
sa
nd
Ti
m
e-
se
rie
s

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

13
0

14
0

Ti
m

e
(M

B
of

 a
llo

ca
tio

n)

010203040506070 Heap Volume (MB)

0
4

8
12

16
20

24
28

32

-1
7.

5

-1
5.

0

-1
2.

5

-1
0.

0

-7
.5

-5
.0

-2
.50.
0

2.
5

5.
0

Pointers (%)

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

-8
0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
001
0

2
0

3
0

Distances (%)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20

Ti
m

e
(m

ill
io

ns
 o

f p
oi

nt
er

 m
ut

at
io

ns
)

010203040506070 Heap Volume (MB)

(b
)
H
ea
p
Co
m
po
sit
io
n
Ti
m
e-
se
rie
s,
in
A
llo
ca
tio
ns
(a
bo
ve
)a
nd
M
ut
at
io
ns
(b
el
ow
)

0
4

8
12

16
20

24
28

32

Lo
g_

2
of

 M
ut

at
io

n
D

is
ta

nc
e

(B
yt

es
)

-1
2.

5

-1
0.

0

-7
.5

-5
.0

-2
.50.
0

2.
5

5.
0

7.
5

Mutations (%)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20

Ti
m

e
(m

ill
io

ns
 o

f p
oi

nt
er

 m
ut

at
io

ns
)

-5
0

-2
502550

Distances (%)

(c
)
Sn
ap
sh
ot
(a
bo
ve
)a
nd
M
ut
at
io
n
(b
el
ow
)P
oi
nt
er
D
ist
an
ce
H
ist
og
ra
m
sa
nd
Ti
m
e-
se
rie
s

Fi
gu
re
9.
Be
nc
hm
ar
k
Ch
ar
ac
te
ris
tic
s:
hs
ql
db

185

Be
nc
hm

ar
k
D
es
cr
ip
tio
n
an
d
O
rig
in

Sh
or
tD
es
cr
ip
tio
n

A
py
th
on
in
te
rp
re
te
rw
rit
te
n
in
Ja
va

Lo
ng
D
es
cr
ip
tio
n

jy
th
on
ex
ec
ut
es
(in
te
rp
re
ts)
th
e
py
be
nc
h

be
nc
hm
ar
k
or
a
sm
al
lp
yt
ho
n
pr
og
ra
m

Th
re
ad
s

Si
ng
le
th
re
ad
ed

Re
pe
at
s

Si
ng
le
ite
ra
tio
n
ru
ns
as
in
gl
ei
te
ra
tio
n
of

th
e
py
be
nc
h
py
th
on
be
nc
hm
ar
k

Ve
rs
io
n

2.
1

Co
py
rig
ht

Co
py
rig
ht
(c
)P
yt
ho
n
So
ftw
ar
e
Fo
un
da
-

tio
n

A
ut
ho
r

Jim
H
ug
un
in
an
d
Ba
rry
W
ar
sa
w

Li
ce
ns
e

Jy
th
on
So
ftw
ar
e
Li
ce
ns
e.

Be
nc
hm

ar
k
Ch
ar
ac
te
ris
tic
s

To
ta
lA
llo
ca
tio
n
(M
B)

1,
18
3.
4

(O
bj
)

25
,9
40
,8
19

M
ax
im
um

Li
ve
(M
B)

0.
1

(O
bj
)

2,
78
8

Po
in
te
rM

ut
at
io
ns
(M
)

82
.9
6

Cl
as
se
sL
oa
de
d

25
1

4
24

48
12

8
46

0
76

8
20

48
051015202530354045 % Allocated Objects

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
0

1,
10

0
1,

20
0

1,
30

0
05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

Objects (K)

4
24

48
12

8
46

0
76

8
20

48
O

bj
ec

t s
iz

e

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

22
.5

25
.0

% Live Objects

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
0

1,
10

0
1,

20
0

1,
30

0
Ti

m
e

(M
B

of
 a

llo
ca

tio
n)

 0

 0
.2

 0
.5

 0
.8

 1

 1
.2

 1
.5

 1
.8

 2

 2
.2

 2
.5

 2
.8

Objects (K)

(a
)
A
llo
ca
te
d
(a
bo
ve
)a
nd
Li
ve
(b
el
ow
)O
bj
ec
tS
iz
e
H
ist
og
ra
m
sa
nd
Ti
m
e-
se
rie
s

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
0

1,
10

0
1,

20
0

Ti
m

e
(M

B
of

 a
llo

ca
tio

n)

0.
00

0

0.
02

5

0.
05

0

0.
07

5

0.
10

0

0.
12

5

0.
15

0

Heap Volume (MB)

0
4

8
12

16
20

24
28

32

-3
0

-2
5

-2
0

-1
5

-1
0-50510

Pointers (%)

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

-9
0

-8
0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
001
0

2
0

Distances (%)

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

Ti
m

e
(m

ill
io

ns
 o

f p
oi

nt
er

 m
ut

at
io

ns
)

0.
00

0

0.
02

5

0.
05

0

0.
07

5

0.
10

0

0.
12

5

0.
15

0

Heap Volume (MB)

(b
)
H
ea
p
Co
m
po
sit
io
n
Ti
m
e-
se
rie
s,
in
A
llo
ca
tio
ns
(a
bo
ve
)a
nd
M
ut
at
io
ns
(b
el
ow
)

0
4

8
12

16
20

24
28

32

Lo
g_

2
of

 M
ut

at
io

n
D

is
ta

nc
e

(B
yt

es
)

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0-505

Mutations (%)

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

Ti
m

e
(m

ill
io

ns
 o

f p
oi

nt
er

 m
ut

at
io

ns
)

-1
00-7

5

-5
0

-2
502550

Distances (%)

(c
)
Sn
ap
sh
ot
(a
bo
ve
)a
nd
M
ut
at
io
n
(b
el
ow
)P
oi
nt
er
D
ist
an
ce
H
ist
og
ra
m
sa
nd
Ti
m
e-
se
rie
s

Fi
gu
re
10
.
Be
nc
hm
ar
k
Ch
ar
ac
te
ris
tic
s:
jy
th
on

186

Be
nc
hm

ar
k
D
es
cr
ip
tio
n
an
d
O
rig
in

Sh
or
tD
es
cr
ip
tio
n

A
te
xt
in
de
xi
ng
to
ol

Lo
ng
D
es
cr
ip
tio
n

In
de
xe
sa
se
to
fd
oc
um
en
ts,
th
ew
or
ks
of

Sh
ak
es
pe
ar
e
an
d
th
e
K
in
g
Ja
m
es
Bi
bl
e

Th
re
ad
s

Si
ng
le
th
re
ad
ed

Re
pe
at
s

Si
ng
le
ite
ra
tio
n
in
de
xe
s
tw
o
m
ul
ti-
fil
e

do
cu
m
en
ts

Ve
rs
io
n

1.
9.
1

Co
py
rig
ht

Co
py
rig
ht
(C
)
Th
e
A
pa
ch
e
So
ftw
ar
e

Fo
un
da
tio
n

A
ut
ho
r

Lu
ce
ne
Pr
oj
ec
t
M
an
ag
em
en
t
Co
m
m
it-

te
e

Li
ce
ns
e

A
pa
ch
e
Pu
bl
ic
Li
ce
ns
e

Be
nc
hm

ar
k
Ch
ar
ac
te
ris
tic
s

To
ta
lA
llo
ca
tio
n
(M
B)

20
1.
4

(O
bj
)

7,
20
2,
62
3

M
ax
im
um

Li
ve
(M
B)

1.
0

(O
bj
)

18
,5
66

Po
in
te
rM

ut
at
io
ns
(M
)

21
.7
5

Cl
as
se
sL
oa
de
d

12
8

4
24

48
12

8
46

0
76

8
20

48
0.

0
2.

5
5.

0
7.

5
10

.0
12

.5
15

.0
17

.5
20

.0
22

.5
25

.0
27

.5
30

.0
32

.5

% Allocated Objects

0
25

50
75

10
0

12
5

15
0

17
5

20
0

0510152025303540 Objects (K)

4
24

48
12

8
46

0
76

8
20

48
O

bj
ec

t s
iz

e

0510152025303540 % Live Objects

0
25

50
75

10
0

12
5

15
0

17
5

20
0

Ti
m

e
(M

B
of

 a
llo

ca
tio

n)

 0

 2
.5

 5

 7
.5

10

 1
2.

5

15

 1
7.

5

Objects (K)

(a
)
A
llo
ca
te
d
(a
bo
ve
)a
nd
Li
ve
(b
el
ow
)O
bj
ec
tS
iz
e
H
ist
og
ra
m
sa
nd
Ti
m
e-
se
rie
s

0
25

50
75

10
0

12
5

15
0

17
5

20
0

Ti
m

e
(M

B
of

 a
llo

ca
tio

n)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Heap Volume (MB)

0
4

8
12

16
20

24
28

32
-1

5.
0

-1
2.

5

-1
0.

0

-7
.5

-5
.0

-2
.50.
0

2.
5

5.
0

7.
5

Pointers (%)

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

-7
5

-5
0

-2
502
5

5
0

Distances (%)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22

Ti
m

e
(m

ill
io

ns
 o

f p
oi

nt
er

 m
ut

at
io

ns
)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Heap Volume (MB)

(b
)
H
ea
p
Co
m
po
sit
io
n
Ti
m
e-
se
rie
s,
in
A
llo
ca
tio
ns
(a
bo
ve
)a
nd
M
ut
at
io
ns
(b
el
ow
)

0
4

8
12

16
20

24
28

32

Lo
g_

2
of

 M
ut

at
io

n
D

is
ta

nc
e

(B
yt

es
)

-1
2.

5
-1

0.
0

-7
.5

-5
.0

-2
.50.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

Mutations (%)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22

Ti
m

e
(m

ill
io

ns
 o

f p
oi

nt
er

 m
ut

at
io

ns
)

-5
0

-2
50255075

Distances (%)

(c
)
Sn
ap
sh
ot
(a
bo
ve
)a
nd
M
ut
at
io
n
(b
el
ow
)P
oi
nt
er
D
ist
an
ce
H
ist
og
ra
m
sa
nd
Ti
m
e-
se
rie
s

Fi
gu
re
11
.
Be
nc
hm
ar
k
Ch
ar
ac
te
ris
tic
s:
lu
in
de
x

187

Benchmark Description and Origin
Short Description A text search tool
Long Description Text search of keywords over a corpus

of data comprising the works of Shake-
speare and the King James bible

Threads 32 threads
Repeats Each thread searches a large index for

about 3500 distinct words
Version 1.9.1

Copyright Apache Software Foundation, Apache
license v2.0

Author Lucene Project Management Commit-
tee

License Apache Public License

Benchmark Characteristics
Total Allocation (MB) 1,780.8

(Obj) 15,780,651
Maximum Live (MB) 10.9

(Obj) 34,792
Pointer Mutations (M) 64.77

Classes Loaded 118

4 2 4 4 8 128 460 768 2048
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

%
 A

llo
ca

te
d

O
bj

ec
ts

0 250 500 750 1,000 1,250 1,500 1,750
0

2 5

5 0

7 5

100

125

150

O
bj

ec
ts

 (K
)

4 2 4 4 8 128 460 768 2048
Object size

0

5

1 0

1 5

2 0

2 5

3 0

%
 L

iv
e

O
bj

ec
ts

0 250 500 750 1,000 1,250 1,500 1,750
Time (MB of allocation)

 0

 5

 10

 15

 20

 25

 30

 35

O
bj

ec
ts

 (K
)

(a) Allocated (above) and Live (below) Object Size Histograms and Time-series

0 250 500 750 1,000 1,250 1,500 1,750

Time (MB of allocation)

0

1

2

3

4

5

6

7

8

9

1 0

1 1

H
ea

p
Vo

lu
m

e
(M

B)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2

-12 .5
-10 .0

- 7 . 5
- 5 . 0
- 2 . 5

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Po
in

te
rs

 (%
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

D
is

ta
nc

es
 (%

)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5

Time (millions of pointer mutations)

0

1

2

3

4

5

6

7

8

9

1 0

1 1

H
ea

p
Vo

lu
m

e
(M

B)

(b) Heap Composition Time-series, in Allocations (above) and Mutations (below)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2

Log_2 of Mutation Distance (Bytes)

- 3 5

- 3 0

- 2 5

- 2 0

- 1 5

- 1 0

- 5

0

5

M
ut

at
io

ns
 (%

)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5

Time (millions of pointer mutations)

- 8 0

- 7 0

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0

3 0

D
is

ta
nc

es
 (%

)

(c) Snapshot (above) and Mutation (below) Pointer Distance Histograms and Time-series

Figure 12. Benchmark Characteristics: lusearch

188

Be
nc
hm

ar
k
D
es
cr
ip
tio
n
an
d
O
rig
in

Sh
or
tD
es
cr
ip
tio
n

A
so
ur
ce
co
de
an
al
yz
er
fo
rJ
av
a

Lo
ng
D
es
cr
ip
tio
n

pm
d
an
al
yz
es
a
lis
to
fJ
av
a
cl
as
se
sf
or
a

ra
ng
e
of
so
ur
ce
co
de
pr
ob
le
m
s

Th
re
ad
s

Si
ng
le
th
re
ad
ed

Re
pe
at
s

Si
ng
le
ite
ra
tio
n
ch
ec
ks
a
sin
gl
e
la
rg
e

so
ur
ce
fil
e
ag
ai
ns
t1
8
co
di
ng
ru
le
s

Ve
rs
io
n

1.
8

Co
py
rig
ht

Co
py
rig
ht
(c
)2
00
3,
In
fo
Et
he
r,
LL
C

A
ut
ho
r

To
m
Co
pe
la
nd

Li
ce
ns
e

BS
D
-s
ty
le

Be
nc
hm

ar
k
Ch
ar
ac
te
ris
tic
s

To
ta
lA
llo
ca
tio
n
(M
B)

77
9.
7

(O
bj
)

34
,1
37
,7
22

M
ax
im
um

Li
ve
(M
B)

13
.7

(O
bj
)

41
9,
78
9

Po
in
te
rM

ut
at
io
ns
(M
)

10
5.
52

Cl
as
se
sL
oa
de
d

32
5

4
24

48
12

8
46

0
76

8
20

48
0.

0
2.

5
5.

0
7.

5
10

.0
12

.5
15

.0
17

.5
20

.0
22

.5
25

.0
27

.5

% Allocated Objects

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

025507510
0

12
5

15
0

17
5

20
0

22
5

Objects (K)

4
24

48
12

8
46

0
76

8
20

48
O

bj
ec

t s
iz

e

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

22
.5

25
.0

27
.5

% Live Objects

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

Ti
m

e
(M

B
of

 a
llo

ca
tio

n)

 0

50

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

Objects (K)

(a
)
A
llo
ca
te
d
(a
bo
ve
)a
nd
Li
ve
(b
el
ow
)O
bj
ec
tS
iz
e
H
ist
og
ra
m
sa
nd
Ti
m
e-
se
rie
s

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

Ti
m

e
(M

B
of

 a
llo

ca
tio

n)

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

Heap Volume (MB)

0
4

8
12

16
20

24
28

32

-1
5.

0

-1
2.

5

-1
0.

0

-7
.5

-5
.0

-2
.50.
0

2.
5

Pointers (%)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
10

0
11

0

-7
5

-5
0

-2
502
5

5
0

Distances (%)

0
10

20
30

40
50

60
70

80
90

10
0

11
0

Ti
m

e
(m

ill
io

ns
 o

f p
oi

nt
er

 m
ut

at
io

ns
)

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

Heap Volume (MB)

(b
)
H
ea
p
Co
m
po
sit
io
n
Ti
m
e-
se
rie
s,
in
A
llo
ca
tio
ns
(a
bo
ve
)a
nd
M
ut
at
io
ns
(b
el
ow
)

0
4

8
12

16
20

24
28

32

Lo
g_

2
of

 M
ut

at
io

n
D

is
ta

nc
e

(B
yt

es
)

-2
2.

5
-2

0.
0

-1
7.

5
-1

5.
0

-1
2.

5
-1

0.
0

-7
.5

-5
.0

-2
.50.
0

2.
5

5.
0

7.
5

Mutations (%)

0
10

20
30

40
50

60
70

80
90

10
0

11
0

Ti
m

e
(m

ill
io

ns
 o

f p
oi

nt
er

 m
ut

at
io

ns
)

-1
00-7

5

-5
0

-2
50255075

Distances (%)

(c
)
Sn
ap
sh
ot
(a
bo
ve
)a
nd
M
ut
at
io
n
(b
el
ow
)P
oi
nt
er
D
ist
an
ce
H
ist
og
ra
m
sa
nd
Ti
m
e-
se
rie
s

Fi
gu
re
13
.
Be
nc
hm
ar
k
Ch
ar
ac
te
ris
tic
s:
pm

d

189

Benchmark Description and Origin
Short Description An XSLT processor for transforming

XML documents
Long Description Xalan transforms an XML document

(either a test case or the works of Shake-
speare) and transforms the document
into html

Threads Single threaded
Repeats 8 iterations, each transforms a single

large XML document (the works of
Shakespeare)

Version 2.4.1
Copyright Copyright (C) 1999-2003 The Apache

Software Foundation
Author Apache Software Foundation
License Apache Software License

Benchmark Characteristics
Total Allocation (MB) 60,235.6

(Obj) 161,069,019
Maximum Live (MB) 25.5

(Obj) 168,921
Pointer Mutations (M) 278.20

Classes Loaded 244

4 2 4 4 8 128 460 768 2048
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

%
 A

llo
ca

te
d

O
bj

ec
ts

0 10,000 20,000 30,000 40,000 50,000 60,000
0

100

200

300

400

500

600

700

800

900

O
bj

ec
ts

 (K
)

4 2 4 4 8 128 460 768 2048
Object size

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

%
 L

iv
e

O
bj

ec
ts

0 10,000 20,000 30,000 40,000 50,000 60,000
Time (MB of allocation)

 0

 25

 50

 75

 100

 125

 150

 175

O
bj

ec
ts

 (K
)

(a) Allocated (above) and Live (below) Object Size Histograms and Time-series

0 10,000 20,000 30,000 40,000 50,000 60,000

Time (MB of allocation)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

H
ea

p
Vo

lu
m

e
(M

B)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2

-15 .0

-12 .5

-10 .0

- 7 . 5

- 5 . 0

- 2 . 5

0.0

2.5

5.0

7.5

Po
in

te
rs

 (%
)

0 2 5 5 0 7 5 100 125 150 175 200 225 250 275
- 1 0 0

- 7 5

- 5 0

- 2 5

0

2 5

5 0

D
is

ta
nc

es
 (%

)

0 2 5 5 0 7 5 100 125 150 175 200 225 250 275

Time (millions of pointer mutations)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

H
ea

p
Vo

lu
m

e
(M

B)

(b) Heap Composition Time-series, in Allocations (above) and Mutations (below)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2

Log_2 of Mutation Distance (Bytes)

-12 .5

-10 .0

- 7 . 5

- 5 . 0

- 2 . 5

0.0

2.5

M
ut

at
io

ns
 (%

)

0 2 5 5 0 7 5 100 125 150 175 200 225 250 275

Time (millions of pointer mutations)

- 9 0

- 8 0

- 7 0

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0

D
is

ta
nc

es
 (%

)

(c) Snapshot (above) and Mutation (below) Pointer Distance Histograms and Time-series

Figure 14. Benchmark Characteristics: xalan

190

