
BYTECODE-LEVEL ANALYSIS AND OPTIMIZATION OF JAVA CLASSES

A Thesis

Submitted to the Faculty

of

Purdue University

by

Nathaniel John Nystrom

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 1998

ii

For my parents.

iii

ACKNOWLEDGMENTS

Thanks to my parents and to my brother Mark for their support. Thanks also go to my

advisor Tony Hosking for letting me work for him, and to the other members of my thesis

committee, Jens Palsberg and Aditya Mathur. I would also like to thank Steve Lennon and

Quintin Cutts at the University of Glasgow for their input and bug reports and the rest of the

PJama group at Glasgow and SunLabs. Thank you to Kumar Brahnmath for using BLOAT

and for finding many of the bugs. Finally, thanks to Aria, Gustavo, Raghu, Mike, Anshul,

and Shaogang.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . x

1 INTRODUCTION . 1

1.1 Optimization framework. 1

1.2 Measurements . 2

1.3 Overview . 2

2 BACKGROUND . 3

2.1 Control flow graphs . 3

2.1.1 Dominators 3

2.1.2 Loops 4

2.2 Static single assignment form . 6

2.2.1 Construction . .. 7

2.2.2 Destruction 11

2.3 Partial redundancy elimination 12

2.3.1 SSAPRE 12

2.4 Other optimizations 14

2.5 Type based alias analysis . 15

2.5.1 Terminology and notation . .. 16

v

Page

2.5.2 TBAA . 18

2.5.3 Analyzing incomplete programs 19

3 THE ANALYZER . 21

3.1 Design . 21

3.1.1 Java constraints on optimization 21

3.1.2 Class editing interface 23

3.1.3 Control flow graph and expression trees 23

3.2 Implementation . 25

3.2.1 Array initializer compaction .. 26

3.2.2 Loop transformations 26

3.2.3 SSA construction. 27

3.2.4 PRE of access expressions . .. 31

3.2.5 Constant and copy propagation. 36

3.2.6 Liveness analysis. 37

3.2.7 SSA destruction. 37

3.2.8 Code generation. 39

4 EXPERIMENTS . 40

4.1 Platform . 40

4.2 Benchmarks . 40

4.3 Execution environments . 40

4.3.1 JDK. 41

4.3.2 JIT . 41

4.3.3 Toba. 42

4.4 Metrics . 43

4.5 Results . 44

4.5.1 JDK. 45

4.5.2 JIT . 47

vi

Page

4.5.3 Toba. 48

5 RELATED WORK . 59

6 CONCLUSIONS AND FUTURE WORK . 61

BIBLIOGRAPHY . 62

vii

LIST OF TABLES

Table Page

2.1 Access expressions 17

2.2 FieldTypeDecl(AP 1;AP 2) . 19

3.1 Type Constraints . 32

4.1 Benchmarks . 41

4.2 Results for crypt . 50

4.3 Results for huffman . 51

4.4 Results for idea . 52

4.5 Results for jlex . 53

4.6 Results for jtb . 54

4.7 Results for linpack . 55

4.8 Results for lzw . 56

4.9 Results for neural . 57

4.10 Results for tiger. 58

viii

LIST OF FIGURES

Figure Page

2.1 An example program . 4

2.2 Loop transformations . 5

2.3 A program and its SSA form . 6

2.4 ComputingDF(x) . 8

2.5 ComputingDF+(S) . 8

2.6 Detecting non-local variables. 9

2.7 SSA renaming . 10

2.8 φ replacement with critical edges 11

2.9 Example of PRE . 12

2.10 PRE for access paths 16

3.1 Exceptions and critical edges . 24

3.2 An array initializer 27

3.3 Exceptions and SSA . 29

3.4 A Javafinally block . 30

3.5 φr example . 31

3.6 Type inference algorithm . 33

3.7 PRE can produce longer bytecode 35

3.8 φc-nodes and copy propagation 36

4.1 JDK metrics . 45

4.2 Replacingloads andstores by shorter bytecodes 46

4.3 Memory access bytecodes .. 47

ix

Figure Page

4.4 JIT metrics . 48

4.5 Toba metrics . 49

x

ABSTRACT

Nystrom, Nathaniel John. M.S., Purdue University, August 1998. Bytecode-Level Analy-
sis and Optimization of Java Classes. Major Professor: Antony Hosking.

The Java virtual machine specification provides the interface between Java compilers

and Java execution environments. Its standard class file format is a convenient target for

optimization of Java applications, even in environments where source code for both li-

braries and application is unavailable. Java bytecode can be optimized independently of

the source-language compiler and virtual machine implementation. To explore the po-

tential of bytecode-to-bytecode optimization frameworks, we have built a Java class file

optimization tool called BLOAT and measured its impact on the performance of several

benchmark programs. Our results demonstrate significant improvement in the execution of

Java classes optimized by BLOAT, especially on an interpreted virtual machine, but indi-

cate that more aggressive optimizations, particularly those enabled by interprocedural anal-

ysis will provide more benefit. We also consider execution in more performance-conscious

environments such as just-in-time and off-line compilation.

1

1 INTRODUCTION

The JavaTM virtual machine (VM) specification [Lindholm and Yellin 1996] is intended

as the interface between Java compilers and Java execution environments. Its standard class

file format and instruction set permit multiple compilers to interoperate with multiple VM

implementations, enabling cross-platform delivery of applications. Conforming class files

generated byanycompiler will run inanyJava VM implementation, no matter if that imple-

mentation interprets bytecodes, performs dynamic “just-in-time” (JIT) translation to native

code, or precompiles Java class files to native object files. As the only constant in a sea

of Java compilers and virtual machines, targeting the Java class files for analysis and opti-

mization has several advantages. First, program improvements accrue even in the absence

of source code, and independently of the compiler and VM implementation. Second, Java

class files retain enough high-level type information to enable many recently-developed

type-based analyses and optimizations for object-oriented languages. Finally, analyzing

and optimizing bytecode can be performed off-line, permitting JIT compilers to focus on

fast code generation rather than expensive analysis, while also exposing opportunities for

fast low-level JIT optimizations.

1.1 Optimization framework

To explore the potential of bytecode optimization we have implemented a framework

for analysis and optimization of standard Java class files. We use this framework to evaluate

bytecode-level partial redundancy elimination (PRE) [Morel and Renvoise 1979] of both

arithmetic expressions and access path expressions [Larus and Hilfinger 1988] and the con-

sequent impact of these optimizations on execution in three execution environments: the

interpreted VM of the standard Java Development Kit, the Solaris 2.6 SPARC JIT, and the

2

Toba system for translating Java classes into C [Proebsting et al. 1997]. PRE automatically

removes global common subexpressions and moves invariant computations out of loops.

While PRE over arithmetic expressions is certainly valuable, PRE over access path ex-

pressions has significant potential for further improvements since it eliminates redundant

memory references, which are often the source of large performance penalties incurred in

the memory subsystem of modern architectures.

1.2 Measurements

We have measured both the static and dynamic impact of bytecode-level PRE optimiza-

tion for a set of Java benchmark applications, including static code size, bytecode execution

counts, native-instruction execution counts, and elapsed time. The results demonstrate gen-

eral improvement on all measures for all execution environments, although some individ-

ual benchmarks see performance degradation in specific environments. Naturally, absolute

improvements are more dramatic for execution environments that are able to exploit the

bytecode-level transformations performed by PRE. In particular, substitution of cheaper

bytecodes for more expensive equivalents and elimination of array load, getstatic, and get-

field bytecodes through PRE of access path expressions has biggest impact in environments

where the bytecodes are interpreted.

1.3 Overview

The rest of this thesis is organized as follows. In Chapter 2 we introduce some def-

initions and describe the static single assignment (SSA) program representation, partial

redundancy elimination (PRE), and type-based alias analysis (TBAA). Chapter 3 describes

the basic framework for bytecode-to-bytecode analysis and optimization and the imple-

mentation of the analyses and optimizations introduced earlier for Java bytecode. Chap-

ter 4 outlines the experimental methodology we used to evaluate the impact of BLOAT’s

optimizations, followed by presentation of the results of those experiments. We conclude

with a discussion of related work and directions for future work.

3

2 BACKGROUND

2.1 Control flow graphs

The instructions of a program can be divided into a set ofbasic blocks, where the flow

of control enters a block only at its first instruction and exits only at its last instruction.

A control flow graph(CFG) is a directed graph where the nodes are the basic blocks of

the program and the edges represent branches from one block to another. The graph also

contains two additional nodes: anentrynode and anexit node. There is an edge from entry

node to any block at which the program can be entered, and there is an edge from any block

at which the program can be exited to the exit node. To represent the possibility that the

program is not run, there is an additional edge from the entry node to the exit node. A

program and its corresponding control flow graph are shown in Figure 2.1. For node,x,

Succ(x) is the set of all successors ofx; that is,fyj(x! y) is an edgeg. Pred(x) is the set

of all predecessors ofx.

2.1.1 Dominators

We sayx dominates y, written x� y [Purdom and Moore 1972; Lengauer and Tarjan

1979], if all paths from the entry node toy containx. We sayx strictly dominates y, or

x� y, if x dominatesy andx 6= y. The immediate dominatorof x, denotedidom(x), is the

closest strict dominator ofx; that is the strict dominator that is not dominated by any other

dominator ofx. The entry node has no immediate dominator. All other nodes have a single

immediate dominator. We can thus define thedominator treeas the tree rooted at the entry

node where the parent of a node is its immediate dominator. We denote the children of

nodex in the dominator tree byDomChildren(x). Figure 2.1c shows the dominator tree

4

a 1

while (a< 10) do
a a+1
f (a)

return g(a)

(a) A program

if (a< 10)

returng(a) a a+1
f (a)

Exit

a 1

Entry

false true

(b) Its control flow graph

Entry

Exit a 1

if (a< 10)

returng(a) a a+1
f (a)

(c) Its dominator tree

Figure 2.1: An example program

for the CFG in Figure 2.1b. For a CFG withV nodes andE edges, the dominator tree can

be constructed inO(Eα(E;V)) time using the algorithm of Lengauer and Tarjan [1979],

whereα is the inverse of Ackermann’s function [Ackermann 1928].

2.1.2 Loops

Transformations that move conditionally executed code are safe only if that code ex-

ecutes under exactly the same conditions after the transformation. Thus, transformations

that hoist loop-invariant code of certain loops must move it to a position where it will be

executed only if the loop is executed. Certain loop transformations restructure programs to

provide safe places to hoist code. These require first that the loops in the control flow graph

be identified. Aloop is a strongly connected component of the CFG. Theloop headeris

the block within the loop that dominates all other blocks in the loop. Many loop transfor-

mations apply only to loops that arereducible. A loop is said to be reducible if its only

entry is at the loop header. Havlak [1997] presents an algorithm that identifies loop headers

and classifies them as either reducible or irreducible.

5

if (c)

X
a+b

Y

Z

(a) Original loop

if (c)

Z

Empty

X
a+b

Y
if (c)

(b) Loop inversion

if (c)

X
a+b

Y

if (c)

X
a+b

Y

Z

(c) Loop peeling

Figure 2.2: Loop transformations

Loop inversion

Loop inversion [Wolfe 1996; Muchnick 1997] is a transformation that provides a place

to insert code above a loop so that the code executes only if the loop is executed at least

once. Intuitively, the transformation amounts to converting awhile loop into ado-while or

repeat loop. For example, in the program in Figure 2.2a we wish to hoist the expression

a+b out of the loop. However, the program only evaluatesa+b if the loop is entered at

least once, so it cannot simply be moved out of the loop. Inverting the loop produces the

program in Figure 2.2b in whicha+b can be safely hoisted into the empty preheader block.

Loop inversion requires a unique loop entry point and thus cannot be used on irreducible

loops.

Loop peeling

If the expression for hoisting out of the loop has side effects we can only evaluate

the expression in the same context in which it originally occurred. For example, if the

expression might throw an exception we must guarantee that any other expression that

could also throw an exception is evaluated first. Loop peeling [Wolfe 1996] pulls out the

first iteration of the loop by copying the loop body and fixing up the edges in the new

6

a

a a

(a) A program

a3 φ(a1;a2)

a1 a2

a3

(b) Its SSA form

Figure 2.3: A program and its SSA form

control flow graph. To fix the edges, the copied back edges are replaced with edges to

the original loop header and edges from outside the loop are made to point to the new

loop header. Figure 2.2c demonstrates peeling of the loop in Figure 2.2a. Like inversion,

peeling cannot be used on irreducible loops. Peeling subsumes loop inversion, but can lead

to exponential growth in the size of the program. Thus, in practice only the innermost loops

of a program are peeled since they are the most frequently executed. We can also restrict

the transformation to only peel loops which contain code that has side effects and can be

hoisted.

2.2 Static single assignment form

Static single assignment (SSA) is a program representation useful for performing opti-

mizations [Cytron et al. 1991]. SSA provides a compact representation of the use-definition

relationships among program variables. In SSA form, each use of a variable in the program

has only one definition. To distinguish between the definitions of a variablev, we use the

SSA namefor the variable, denoted with a subscript, e.g.vi . If multiple definitions reach a

use, a special definition node, called aφ-function, is inserted at the point in the program’s

control flow graph where the values merge. Theφ-node has operands for each path into the

merge point and serves as a definition for any uses dominated by the merge point. For ex-

ample, in Figure 2.3, we see a simple program and its SSA form. Efficient global optimiza-

tions can be constructed based on this form, including dead store elimination [Cytron et al.

1991], constant propagation [Wegman and Zadeck 1991], value numbering [Alpern et al.

1988; Rosen et al. 1988; Cooper and Simpson 1995; Simpson 1996; Briggs et al. 1997],

7

induction variable analysis [Gerlek et al. 1995] and global code motion [Click 1995]. Opti-

mization algorithms based on SSA all exploit its sparse representation for improved speed

and simpler coding of combined local and global optimizations.

2.2.1 Construction

The SSA construction algorithm consists of two phases:

1. Insertφ-nodes at the control flow merge points.

2. Transform the program to uniquely identify the definition of each variable occur-

rence.

To help identify the points in the CFG where control flow paths merge, we define the

dominance frontier[Cytron et al. 1991] of a nodex as

DF(x) = fzj9y1;y2 2 Pred(z) such thatx� y1^x 6� y2g

that is,z is in DF(x) if x dominates some, but not all, predecessors ofz. The dominance

frontier of a node can be found inO(E+V2) time using the algorithm in Figure 2.4 [Cytron

et al. 1991]. In practice, this algorithm is usually linear. The dominance frontier of a set of

nodesS is

DF(S) =
[

x2S

DF(x):

The iterated dominance frontierof S, denotedDF+(S) [Cytron et al. 1991], is the limit of

the sequence

X1 = DF(S)

Xi+1 = DF(Xi [S)

DF+(S) is often computed using the worklist driven algorithm in Figure 2.5 [Cytron et al.

1991].

Minimal SSA form [Cytron et al. 1991] places aφ for a variable at the beginning of

each block in the iterated dominance frontier of the set of blocks containing a definition of

the variable. This placement may introduce some unnecessaryφ-nodes. If aφ for a variable

8

input:
A CFG,G= (V;E), with entry node,entry

output:
DF(x) for all x2V

do
computeDF(entry)

with
procedurecomputeDF(x) begin

DF(x) /0

for eachy2 Succ(x) do
if (idom(y) 6= x) then

DF(x) DF[fyg

for eachz2DomChildren(x) do
computeDF(z)

for eachy2 DF(z) do
if (idom(y) 6= x) then

DF(x) DF(x)[fyg

Figure 2.4: ComputingDF(x)

input:
A CFG,G= (V;E), with entry node,entry
DF(x) for all x2V
A set of nodes,S�V

output:
Output:DF+(S)

worklist S
inWorklist S

while (worklist 6= /0) do
select and delete a nodex from worklist

for eachy2 DF(x) do
DF+(S) DF+(S)[fyg

if (y 62 inWorklist) then
inWorklist inWorklist[fyg
worklist worklist[fyg

Figure 2.5: ComputingDF+(S)

9

input:
A CFG,G= (V;E)

output:
NonLocals, the set of non-local variables inG

NonLocals /0

for eachblockb2V do
Killed /0

for each instruction,v x
y, in b do
if (x2 Killed) then

NonLocals NonLocals[fxg
if (y2 Killed) then

NonLocals NonLocals[fyg
Killed Killed[fvg

Figure 2.6: Detecting non-local variables

is placed outside the live range of a variable, it will not be used by any real occurrence of

the variable and can be eliminated.PrunedSSA form [Cytron et al. 1991] only placesφ-

nodes for a variable within the variable’s live range, but it requires that liveness analysis be

performed first. A variation on this which does not require liveness analysis issemi-pruned

form [Briggs et al. 1997]. This form insertsφ-nodes only for variables that are live in more

than one basic block, thus ignoring many short-lived temporaries. Such variables can be

detected with the algorithm in Figure 2.6 [Briggs et al. 1997]. Theφ placement algorithm

can then simply ignore any variables not in theNonLocalset.

After φ-nodes are inserted, SSA construction proceeds to transform the program so

that each variable has the single-assignment property. To distinguish between different

definitions of each variable, the SSA construction algorithm of Cytron et al. [1991] assigns

a version number to each occurrence of the variable. If two occurrences have the same

version number they share the same definition. We present the SSA renaming algorithm in

Figure 2.7. We denote an occurrence of variablev by hvi. The algorithm processes variable

occurrences in a pre-order traversal of the dominator tree. The current version number for

each variable is maintained using a stack. At an assignment or aφ-node, the definition is

assigned a new version and the version number is pushed onto the stack. At a use of a

variable the version number is fetched from the top of the stack. After processing a basic

10

input:
A CFG,G, afterφ-nodes are placed

output:
The SSA form ofG

do
for eachvariablev do

Stack(v) /0
Counter(v) 1

renameBlock(entry)
with

procedure renameBlock(block) begin
for eachvariablev do

TopOfStack(v) top(Stack(v))

for each φ-node,hvi φ(: : :), in blockdo
Version(hvi) Counter(v)
pushCounter(v) ontoStack(v)
Counter(v) Counter(v)+1

for each instruction,hvi hxi
hyi, in blockdo
Version(hxi) top(Stack(x))
Version(hyi) top(Stack(y))
Version(hvi) Counter(v)
pushCounter(v) ontoStack(v)
Counter(v) Counter(v)+1

for eachsucc2 Succ(block) do
for each φ-node,hvi φ(: : :), in succdo
hvi theblock-operand ofφ(: : :)
Version(hvi) top(Stack(v))

for eachchild2 DomChildren(block) do
renameBlock(child)

for eachvariablev do
popStack(v) until top(Stack(v)) = TopOfStack(v)

Figure 2.7: SSA renaming

11

a1

a2 φ(a1;a3)
a3 a2+1

returna2

critical

returna2

a2 a1

a1

a3 a2+1
a2 a3

a2 a1

a1

a3 a2+1

returna2 a2 a3

(a) A program with a
critical edge

(b) Incorrectφ
replacement without

splitting critical edges

(c) Correctφ replacement
with splitting critical edges

Figure 2.8:φ replacement with critical edges

block the stack is popped, so that its siblings in the dominator tree can use the version

numbers live at the end of the parent block. Stoltz et al. [1994] introduce the factored

use-def (FUD) chain representation, in which each use of a variable has a pointer back

to its definition. This representation is more space efficient than version numbering. The

construction of FUD chains is nearly identical to traditional SSA construction

2.2.2 Destruction

To translate from SSA form back into real codeφ-nodes must be removed. Aφ is

removed by placing copy statements in the predecessors of the block containing theφ. To

ensure that there is a safe place to insert the copiescritical edgesin the flow graph must

first be removed. A critical edge is an edge from a block with more than one successor

to a block with more than one predecessor. A critical edge can be removed by splitting

it; that is, by placing an empty block along the edge. In Figure 2.8a we see an example

program with a critical edge. If the edge is not split beforeφ replacement, the program in

Figure 2.8b results. Note that the incorrect value ofa2 is returned becausea2 a3 was

evaluated before the loop exited. In Figure 2.8c the copies are inserted correctly.

Since optimizations potentially move code, we cannot assume that the renamed variable

vi maps back to its original namev. Again using the example program in Figure 2.8b, we

see that the live range ofa2 overlaps that ofa3. Therefore,a2 anda3 must be assigned

12

a+b

a+b

b
b a
a

(a) Before PRE

t a+bt a+b

t

b
a a

b

(b) After PRE

Figure 2.9: Example of PRE

different names during code generation. A graph coloring algorithm [Chaitin 1982] can be

used to assign a new name to each version of the variables in the program.

2.3 Partial redundancy elimination

Partial redundancy elimination (PRE) [Morel and Renvoise 1979] is a powerful global

optimization technique that subsumes the more standard common subexpression elimina-

tion (CSE). Unlike CSE, PRE eliminates computations that are only partially redundant;

that is, redundant on some, but not all, paths to some later reevaluation. By inserting evalu-

ations on those paths where the computation does not occur, the later reevaluation is made

fully redundant and can be eliminated and replaced instead with a use of the precomputed

value. This is illustrated in Figure 2.9. In Figure 2.9a, botha andb are available along both

paths to the merge point, where expressiona+ b is evaluated. However, this evaluation

is partially redundant sincea+b is available on one path to the merge but not both. By

hoisting the second evaluation ofa+b into the path where it was not originally available,

as in Figure 2.9b,a+b need only be evaluated once along any path through the program,

rather than twice as before.

2.3.1 SSAPRE

Prior to the work of Chow et al. [1997], PRE lacked an SSA-based formulation. As

such, optimizers that used SSA were forced to convert to a bit-vector representation for

13

PRE and back to SSA for subsequent SSA-based optimizations. Chow et al. [1997] re-

moved this impediment with an approach (SSAPRE) that retains the SSA representation

throughout PRE. For a program withn lexically-distinct expressions, SSAPRE’s total time

is O(n(E+V)).

The algorithm makes separate passes over the program for each lexically-distinct, first-

order expression. An expression isfirst-order if all of its subexpressions have no subex-

pressions and no side effects. All subexpressions of a first-order expression are thus local

variables or constants. The algorithm assumes that each occurrence of the expression will

be saved to or reloaded from a temporaryt. Partially redundant occurrences of the expres-

sion are eliminated while simultaneously constructing the SSA form fort. The algorithm

insertsφ-nodes for eachexpressionon which it is performing PRE. Theseφ-nodes are de-

notedΦ to distinguish them from theφ-nodes for localvariablesin the program. Code is

hoisted into non-redundant paths by inserting code at the predecessors of blocks containing

Φ-nodes. We present a summary of the algorithm. For further details, consult Chow et al.

[1997].

1. For each lexically-distinct, first-order expression in the program, insert a list of the

occurrences of that expression, sorted by their pre-order positions in the CFG, onto

a worklist.

2. If the worklist is empty, stop. Otherwise, select and remove from the worklist a list

of occurrences, say for the expressionE.

3. PlaceΦ-nodes forE. Since we cannot immediately determine if an occurrence of

E is reloaded from or saved to the temporaryt, we assume that all occurrences will

be saved tot and thus insertΦ-nodes at the iterated dominance frontier of the set of

blocks containing occurrences ofE.

4. Build the SSA form for the occurrences ofE. We mark with a version number each

occurrence, includingΦ-nodes and their operands, so that if two occurrences have the

same version number, they evaluate to the same value. The renaming step is similar

to the SSA renaming step presented in Section 2.2 in that it processes occurrences of

14

the expression in a pre-order traversal of the dominator tree, saving versions of the

occurrences onto a renaming stack. A new version of the expression is created and

pushed onto the stack when an occurrence is encountered whose local variables have

different SSA versions than those of the expression on top of the renaming stack.

5. Determine whichΦ-nodes aredown safe; that is, theΦ-nodes that will be used at

least once on all paths from theΦ-node to the exit node.

6. Determine at whichΦ-nodes the expression will be available after code insertions

are performed. Code can be inserted safely only at the end of the predecessor blocks

of theseΦ-nodes. Code will be inserted in a predecessor if theΦ will be available

and if there is no occurrence with the same version as theΦ-operand that dominates

the predecessor.

7. Determine which occurrences ofE should be saved to a temporary and which should

be reloaded. Determine at whichΦ-operands code should be inserted to evaluate the

expression on non-redundant paths.

8. Perform the code motion. If an occurrence ofE is replaced by a temporaryt and

the parent oft is now a first-order expression, insert a list of the occurrences of the

parent into the worklist.

9. Goto step 2.

2.4 Other optimizations

SSA form can also be used to construct other global optimizations, including dead

code elimination [Cytron et al. 1991], constant propagation [Aho et al. 1986; Wegman and

Zadeck 1991; Wolfe 1996], value numbering [Alpern et al. 1988; Rosen et al. 1988; Cooper

and Simpson 1995; Simpson 1996; Briggs et al. 1997], and constant folding and algebraic

simplification [Aho et al. 1986; Simpson 1996]. Optimization algorithms based on SSA all

exploit its sparse representation for improved speed and simpler coding of combined local

and global optimizations.

15

Constant propagation [Aho et al. 1986; Wegman and Zadeck 1991; Wolfe 1996] re-

places uses of a variable defined by a constant, saya 1, with the constant expression,

in this case 1. Copy propagation [Aho et al. 1986] replaces uses of a variable defined

by another variable, saya b, with the source variable. After propagation, the original

assignment can be eliminated. In SSA form, these optimizations are simply a matter of

replacing all variables with the same version with the right hand side of the assignment.

Constant propagation can enable other optimizations such as constant folding, which

replaces an arithmetic expression with constant operands, say 1+2, with its value, in this

case 3. Constant folding can also fold a conditional branch, such asif 0 < 1, into an

unconditional branch, potentially making code unreachable and subject to elimination. Al-

gebraic simplification takes advantage of algebraic identities, such asa+0= a, to replace

arithmetic expressions with simpler expressions. Both constant folding and algebraic sim-

plification can be combined with value numbering for better results. Value numbering

maps each expression in a program to a number such that if two expressions have the same

number they must have the same value. An expression can then be considered constant if

it has the same value number as a constant and if it has no side effects.

Dead code elimination [Cytron et al. 1991] eliminates code which is either unreachable

or has no effect on the program’s behavior. The standard SSA-based dead code elimination

algorithm first marks as live any expression with a side effect. Any definition of a variable

used in a live expression and any code which could affect the reachability of a live expres-

sion is also marked live, and so on, recursively. Any expressions not marked live can be

eliminated from the program.

2.5 Type based alias analysis

An access path[Larus and Hilfinger 1988; Diwan et al. 1998] is a non-empty sequence

of memory references, as specified by some pointer expression in the source program, for

example, the Java expressiona:b[i]:c. Traversing the access path requires successively

loading the pointer at each memory location along the path and traversing it to the next

location in the sequence. Since there could exist more than one pointer to the same object,

16

a:b[i]:c

x:b a:b[i]:c
a:b[i]:c
a

a

(a) Before PRE

t a:b[i]:c

t

x:b
t a:b[i]:c

a
a

(b) After PRE

Figure 2.10: PRE for access paths

before eliminating redundant access path expressions, one must first disambiguate memory

references sufficiently to be able to safely assume that no memory location along the access

path can be aliased, and so modified, by some lexically distinct access path in the program.

Consider the example in Figure 2.10. The expressiona:b[i]:c will be redundant at some

subsequent reevaluation so long as no store to any ofa, a:b, i, a:b[i], ora:b[i]:coccurs on the

code path between the first evaluation of the expression and the second. In other words, if

there are potential aliases to any of the locations along the access path through which those

locationsmaybe modified between the first and second evaluation of the expression, then

that second expression cannot be considered redundant. In the example,x:b might alias the

same location asa:b, so we cannot reusea:b along the right edge since the assignment to

x:b could change the value ofa:b. If further analysis proved thatx:b did not alias the same

location asa:b, then we could perform PRE to arrive at the program in Figure 2.10b.

2.5.1 Terminology and notation

The following definitions paraphrase the Java specification [Gosling et al. 1996]. An

object in Java is either aclass instanceor an array. Reference values in Java arepointers

to these objects, as well as the null reference. Both objects and arrays are created by

expressions that allocate and initialize storage for them. The operators on references to

objects are field access, method invocation, casts, type comparison (instanceof), equality

operators and the conditional operator. There may be many references to the same object.

Objects have mutable state, stored in the variable fields of class instances or the variable

elements of arrays. Two variables may refer to the same object: the state of the object can

17

Table 2.1: Access expressions

Notation Name Variable accessed

p:f Field access Field f of class instance to whichp
refers

p[i] Array access Component with subscripti of array
to which p refers

be modified through the reference stored in one variable and then the altered state observed

through the other.Access expressionsrefer to the variables that comprise an object’s state.

A field access expressionrefers to a field of some class instance, while anarray access

expressionrefers to a component of an array. Table 2.1 summarizes the two kinds of access

expressions in Java. Without loss of generality, our notation will assume that distinct fields

within an object have different names.

A variable is a storage location and has an associated type, sometimes called itscompile-

time type. Given an access pathp, then the compile-time type ofp, written Type(p), is

simply the compile-time type of the variable it accesses. A variable always contains a

value that isassignment compatiblewith its type. A value of compile-time class typeS is

assignment compatible with class typeT if S andT are the same class orS is a subclass

of T. A similar rule holds for array variables: a value of compile-time array typeS[] is

assignment compatible with array typeT[] if type S is assignable to typeT. Interface types

also yield rules on assignability: an interface typeS is assignable to an interface typeT

only if T is the same interface asSor a superinterface ofS; a class typeS is assignable to

an interface typeT if S implementsT. Finally, array types, interface types and class types

are all assignable to class typeObject.

For our purposes we say that a typeS is asubtypeof a typeT if S is assignable toT.1

We writeSubtypes(T) to denote all subtypes of typeT. Thus, an access pathp can legally

access variables of typeSubtypes(Type(p)).

1The term “subtype” is not used at all in the official Java language specification [Gosling et al. 1996],

presumably to avoid confusing the type hierarchy induced by the subtype relation with class and interface

hierarchies.

18

2.5.2 TBAA

Alias analysisrefines the set of possible variables to which an access path may refer.

Two distinct access paths are said to be possiblealiasesif they may refer to the same vari-

able. Without alias analysis the optimizer must conservatively assume that all access paths

are possible aliases of each other. In general, alias analysis in the presence of references

is slow and requires the code for the entire program to work.Type-based alias analy-

sis (TBAA) [Diwan et al. 1998] offers one possibility for overcoming these limitations.

TBAA assumes a type-safe programming language such as Java, since it uses type declara-

tions to disambiguate references. It works in linear time and does not require that the entire

program be available. Rather, TBAA uses the type system to disambiguate memory refer-

ences by refining thetypeof variables to which an access path may refer. In a type-safe

language such as Java, only type-compatible access paths can alias the same variable. The

compile-time type of an access path provides a simple way to do this: two access pathsp

andq may be aliases only if the relationTypeDecl(p;q) holds, as defined by

TypeDecl(AP 1;AP 2)� Subtypes(Type(AP 1))\Subtypes(Type(AP 2)) 6= /0

A more precise alias analysis will distinguish accesses to fields that are the same type

yet distinct. This more precise relation,FieldTypeDecl(p;q), is defined by induction on the

structure ofp andq in Table 2.2. Again, two access pathsp andq may be aliases only if

the relationFieldTypeDecl(p;q) holds. It distinguishes accesses such ast:f and t:g that

TypeDeclmisses. The cases in Table 2.2 determine that:

1. Identical access paths are always aliases

2. Two field accesses may be aliases if they access the same field of potentially the same

object

3. Array accesses cannot alias field accesses

4. Two array accesses may be aliases if they may access the same array (the subscript

is ignored)

19

Table 2.2:FieldTypeDecl(AP 1;AP 2)

Case AP 1 AP 2 FieldTypeDecl(AP 1;AP 2)

1 p p true
2 p:f q:g (f = g)^FieldTypeDecl(p;q)
3 p:f q[i] false
4 p[i] q[j] FieldTypeDecl(p;q)
5 p q TypeDecl(p;q)

5. All other pairs of access expressions are possible aliases if they have common sub-

types

2.5.3 Analyzing incomplete programs

Java dynamically links classes on demand as they are needed during execution. More-

over, Java permits dynamic loading of arbitrary named classes that are statically unknown.

Also, code for native methods cannot easily be analyzed. To maintain class compatibility,

no class can make static assumptions about the code that implements another class. Thus,

alias analysis must make conservative assumptions about the effects of statically unavail-

able code. Fortunately, bothTypeDeclandFieldTypeDeclrequire only the compile-time

types of access expressions to determine which of them may be aliases. Thus, they are

applicable to compiled classes in isolation and optimizations that use the static alias infor-

mation they derive will not violate dynamic class compatibility.

Diwan et al. [1998] further refine TBAA forclosed worldsituations: those in which

all the code that might execute in an application is available for analysis. The refinement

enumerates all the assignments in a program to determine more accurately the types of

variables to which a given access path may refer. An access path of typeT may yield a

reference to an object of a given subtypeS only if there exist assignments of references

of typeS to variables of typeT. Unlike TypeDecl, which always merges the compile-time

type of an access path with all of its subtypes, Diwan’s closed world refinement merges a

20

typeT with a subtypeSonly if there is at least one assignment of a reference of typeS to

a variable of typeT somewhere in the code.

In general, Java’s use of dynamic loading, not to mention the possibility of native meth-

ods hiding assignments from the analysis, precludes such closed world analysis. Of course,

it is possible to adopt a closed world model for Java if one is prepared to restrict dynamic

class loading only to classes that are known statically, and to support analysis (by hand or

automatically) of the effects of native methods. Note that a closed world model may require

re-analysis of the entire closure if any one class is changed to include a new assignment.

21

3 THE ANALYZER

To explore the potential of bytecode-to-bytecode optimization frameworks we have

built a Java class file optimization tool called BLOAT (Bytecode-Level Optimization and

Analysis Tool). The analysis and optimization framework implemented in BLOAT uses

SSA form as the basic intermediate representation [Cytron et al. 1991; Stoltz et al. 1994;

Briggs et al. 1997]. On this foundation we have built several standard optimizations such

as dead-code elimination and copy/constant propagation, and SSA-based value numbering

[Simpson 1996], as well as type-based alias analysis [Diwan et al. 1998] and the SSA-based

algorithm for partial redundancy elimination of Chow et al. [1997].

3.1 Design

BLOAT is intended to support not only bytecode optimization but also to provide a

platform on which to build other Java class editing tools. As such, a generic interface was

constructed to edit class files. This interface has been used as the basis for tools to insert

profiling code, to strip debugging information from class files, and to instrument bytecode

with an extended opcode set to support persistence [Brahnmath 1998]. While the initial

implementation recognizes only classfiles, we plan to add facilities to edit classes from

any source, notably classes residing within a persistent store [Cutts and Hosking 1997].

3.1.1 Java constraints on optimization

The Java virtual machine specification [Lindholm and Yellin 1996] enumerates the re-

quirements for a Java class to be supported portably in multiple execution environments.

Each Java class is compiled into a class file. This class file contains a description of the

22

names and types of the class’s fields and methods, the bytecode for each method, and

ancillary information. A method’s bytecode is executed with an operand stack. The byte-

code consists of approximately 200 opcodes for such operations as pushing constants on

the stack, loading and saving to local variables, object and array access, arithmetic, control

flow, and for synchronization and exception handling. When the Java virtual machine loads

a class the class is passed through a bytecode verifier to ensure that it conforms to structural

constraints and that the code for each method is safe. We assume that the classes we are

optimizing verify successfully.

Each local variable and stack temporary is typed and different opcodes are used to ma-

nipulate values of different types. The precise types of the values on the stack and in local

variables are not explicitly given, but can be computed using a simple data flow analy-

sis over the lattice of object types augmented with primitive types. With one exception,

the types depend only on the program point and not on the path taken to that point. This

exception deals with verification of thejsr and ret opcodes and is described in detail in

Section 3.2.3.

Java’s thread and exception models impose several constraints on optimization. First,

exceptions in Java areprecise: when an exception is thrown all effects of statements prior

to the throw-point must appear to have taken place, while the effects of statements after the

throw-point must not. This imposes a significant constraint on code-motion optimizations

such as PRE, since code with side-effects (including possible exceptions) cannot be moved

relative to code that may throw an exception.1

Second, the thread model prevents movement of access expressions across synchro-

nization points. Threads act independently on their own working copy of memory and are

synchronized with themonitorenter andmonitorexit opcodes. Without interprocedural

control-flow analysis every method invocation represents a possible synchronization point,

since the callee, or a method invoked inside the callee, may be synchronized. Thus, calls

1Of course an optimizing Java implementationcouldsimulate precise exceptions, even while performing

unrestricted code hoisting, by arranging to hide any such speculative execution from the user-visible state of

the Java program (see page 205 of Gosling et al. [1996]).

23

and synchronization points are places at which TBAA must assume all non-local variables

may be modified, either inside the call or through the actions of other threads. When enter-

ing a synchronized region, the working copy of memory is reloaded from the JVM’s master

copy. When exiting the region, the working copy is committed back to the master copy.

These semantics allow movement of access expressions within a synchronized region but

force reevaluation of those expressions when entering and exiting the region. Common

access expressions cannot be considered redundant across these synchronization points.

3.1.2 Class editing interface

The class editing interface provides access to the methods and fields of a Java class.

The interface is similar to the Java core reflection API [JavaSoft 1997], which provides

read-only access to the public interface of a class. We extend the reflection API to allow

access to private and protected members, access to the bytecode of methods and to the

class’s constant pool. We also add the ability to edit these attributes and generate new class

files incorporating the changes.

When the bytecode for a method is edited, it is first converted into a list of instructions

and branch labels. We represent branch targets with labels rather than offsets from the

branch instruction to allow code to be more easily inserted and removed between the branch

and its target. Labels are also used to keep track of the instructions protected by exception

handlers, and any line number or local variable debug information in the class file. In

addition, similar opcodes, such as those for pushing integers stored in local variables onto

the operand stack,2 are consolidated. When changes made to the class are written out to a

class file, branches are resolved and new constants are inserted into the class file’s constant

pool if necessary.

3.1.3 Control flow graph and expression trees

Once we have converted the bytecode into a list of instructions, we can perform our

analyses and optimizations on the method. On top of the list of instructions and labels we

2iload, iload 0, iload 1, iload 2, iload 3.

24

B

E

C D

catch(x)F

try

A

G

Figure 3.1: Exceptions and critical edges

construct a control flow graph. An expression tree is created for each basic block in the

graph, encapsulating the operand stack behavior for the block.

The control flow graph is constructed with a recursive depth-first traversal of the in-

struction list, following branches to their corresponding targets within the list. Edges are

also inserted from the blocks within and just before each protected region (i.e.,try blocks)

to its exception handler. This ensures that the dominance relation holds correctly from an

exception throw-point to its handler, if any. We also remove critical edges in the graph by

inserting empty basic blocks on such edges. Critical edge removal is required to provide a

place to insert code during partial redundancy elimination and when translating back from

SSA form. As shown in Figure 3.1, the edges inserted for exception handlers are often criti-

cal edges. These edges cannot be split without having to create a new exception handler for

each such edge; instead they are given special treatment during PRE and SSA destruction.

The expression trees are constructed through a simulation of the operand stack. To pre-

serve the evaluation order of the original bytecode and to save the stack across basic blocks,

we insert saves and loads of expressions to stack variables. These variables are treated just

25

as local variables except that because of their effect on the stack, our optimizations must

be more judicious when moving or eliminating them.

Our expression trees contain two node types: statements and expressions. Expressions

are typed and can be nested. Statements cannot be nested and thus can only access the

operand stack below the incoming height using stack variables. The bytecode verifier en-

sures that for all paths to a given point in the program, the operand stack is the same height

and contains the same types.3 Therefore, by only inserting, removing, or relocating state-

ment nodes which do not contain stack variables, we can maintain this property throughout

our transformations.

3.2 Implementation

Most of the analysis and optimization passes are performed on the CFG; however, some

transformations operate directly on the instruction list before CFG construction and after

conversion back to an instruction list. BLOAT implements the following analyses and

optimizations:

1. Array initializer compaction

2. CFG construction

3. Loop peeling

4. Loop inversion

5. SSA construction

6. Type inference of locals

7. Value numbering

8. PRE of arithmetic and access path expressions

9. Constant/copy propagation

10. Constant folding and algebraic simplification

3Again, this is violated by thejsr andret opcodes.

26

11. Dead code elimination

12. Liveness analysis

13. SSA destruction

14. Bytecode generation

15. Peephole optimizations

3.2.1 Array initializer compaction

The Sun JDK compiler,javac, generates code for array initializers using a straight-line

sequence of array stores, as shown in Figure 3.2. For classes such asjava.lang.Character,

which have large static arrays, this array initialization code can be tens or even hundreds of

kilobytes. In JDK versions prior to 1.1.5, many classes provided with the JDK which con-

tained such initializers failed to pass bytecode verification because they violated the 64K

limit on method size. Before CFG construction we translate such initializers into a loop

which fills the array from a string inserted in the class’s constant pool. This transformation

eliminates the unnecessarily large basic blocks for such code and significantly reduces the

time for later analysis of these initializers.

3.2.2 Loop transformations

After construction the CFG, we identify loops using Havlak [1997] and perform loop

peeling [Wolfe 1996] and loop inversion [Wolfe 1996; Muchnick 1997] transformations.

We restrict peeling to the innermost loops in the CFG to prevent the potential exponential

growth in code size. Inversion is performed on all other loops, providing a convenient

place immediately after the loop iteration condition is tested to hoist loop-invariant code

out of the loop body. Code that is loop-invariant and does not throw exceptions can be

recognized by PRE and hoisted out of inverted loops. Loop-invariant code which throws

exceptions will be made redundant by loop peeling and can then be hoisted by PRE. The

loop transformations are performed before SSA construction so that we do not have to

maintain SSA form during the transformations.

27

static int[] a = new int[] {
4, 3, 2, 1, 0

};

0 bipush 10 // push the array size
2 newarray int // create the array
4 dup // push a copy of the array
5 iconst_0 // index 0
6 bipush 4 // value 4
8 iastore // store into the array
9 dup // push a copy of the array

10 iconst_1 // index 1
11 bipush 3 // value 3
13 iastore // store into the array
14 dup // . . .
15 iconst_2
16 bipush 2
18 iastore
19 dup
20 iconst_3
21 bipush 1
23 iastore
24 dup
25 iconst_4
26 iconst_0
27 iastore
28 putstatic #5 // save the array in int a[]
31 return

(a) Java code (b) Bytecode

Figure 3.2: An array initializer

3.2.3 SSA construction

After the control flow graph is constructed we convert the local and stack variables

to SSA form. This requires computation of the dominator tree and dominance frontier

of the control flow graph [Cytron et al. 1991]. We use the algorithm of Lengauer and

Tarjan [1979]. We also identify critical edges and split them to provide a place to insert

code during PRE and translation back from SSA form. To reduce the number ofφ-nodes

inserted, we construct the semi-pruned form of SSA [Briggs et al. 1997].

Exceptions

Performing optimizations in the presence of exception handling requires the control

flow graph be transformed to indicate the possible effects of explicit and implicit exception

throws [Hennessy 1981]. If a variable is used after an exception is caught at an exception

28

handler, the value of the variable could be any of the values of the variable live within the

protected region for that handler. An exception handler could be entered with any of the

possible local variable states that occur within its protected region. Using standard SSA

form to factor these values together requires inserting edges in the CFG to the exception

handler from before and after each store of a local variable within the protected region.4

In addition, if a new variable is introduced into the program, say to store the value of an

expression eliminated by PRE, then the CFG must be adjusted to include an edge before

and after the store to that variable. Adding these edges results in basic blocks containing

only a store to a variable, which limits the effectiveness of local optimizations.

Rather than use traditional SSA form, we extend SSA to include a specialφ-node,

which we denoteφc, to factor all values of a variable live within the protected region. These

φc-nodes are inserted during theφ placement step of SSA construction at the beginning of

each exception handler block. During renaming, when a block in a protected region is

entered or when a version number is assigned to a variable within the protected region,

an operand with that version number is added to theφc for the variable at the protected

region’s handler. For example, in Figure 3.3,a1, a2, anda3 are live within the protected

region and their definitions are used to define the operands of theφc in the handler.

Whenφ-nodes are replaced with copies before code generation, for eachφc-operand, we

locate the operand’s definition and insert a copy from the operand to theφc target just after

the definition. Note that if the definition is above the try block we could potentially have a

long path from the definition to the beginning of the protected region where theφc target is

not used but must be live. To alleviate this problem, before SSA construction we split the

live range of variables entering the protected region by inserting just before the protected

region copies from each variable defined at that point to itself (e.g.,a a). This forces

SSA to assign a new version to the variable immediately before entering the protected

region andφc replacement will later insert its copies for these operands immediately before

the protected region rather than higher up in the CFG.

4The values of stack variables need not be propagated along these edges since the operand stack is cleared

when an exception is thrown.

29

a1

a3 φ(a2;a1)

a2 a1

catch(x)a3

try

a4 φc(a1;a2;a3)

a1

Figure 3.3: Exceptions and SSA

Subroutines

Java compilers translatefinally blocks into method-local subroutines [Gosling et al.

1996; Lindholm and Yellin 1996]. Subroutines are formed with thejsr andret bytecodes.

The jsr bytecode pushes the current program counter, a value of typereturnAddress,

onto the operand stack and branches to the subroutine. Theret bytecode loads a saved

returnAddress from a local variable and resumes control at that code location. As shown

in the Java program in Figure 3.4, afinally block can be entered from several places within

a method. Before every instruction that exits thetry block, such as areturn or a throw

or simply falling off the end, ajsr to thefinally block is placed. To permit verification of

this construct, the Java VM specification allows any local variable that is not referenced

between thejsr and the correspondingret to retain its type across the subroutine. The

consequence of this for SSA is that two variables with incompatible types could be factored

together with aφ-node at thejsr target and then used again after theret.

A simple solution to this problem is to inline the subroutine at eachjsr. However,

inlining could result in a substantial growth in code size. Rather than inlining, we modify

30

try {
tryIt();

}
catch (Exception e) {

handleIt();
}
finally {

finishIt();
}

0 aload_0
1 invokevirtual #7 // tryIt()
4 goto 15 // jump over the handler
7 pop // pop the exception
8 aload_0
9 invokevirtual #6 // handleIt()

12 goto 15
15 jsr 25 // go to the finally block
18 return
19 astore_1 // save the exception to local 1
20 jsr 25 // go to the finally block
23 aload_1 // reload the exception . . .
24 athrow // . . . and throw it
25 astore_2 // save the return address
26 aload_0
27 invokevirtual #5 // finishIt()
30 ret 2 // return from the subroutine

Exception table:
From To Target Type

0 4 7 java.lang.Exception
0 15 19 any

(a) Java code (b) Bytecode

Figure 3.4: A Javafinally block

the SSA construction algorithm so that if a variable is not redefined within a subroutine,

the version number used on entry to the subroutine is propagated back through theret to

the instruction after thejsr. To achieve this, we insert a specialφ-node, which we will

denote byφr , at eachjsr’s return site, as illustrated by the example program in Figure 3.5a.

Since the return site has only one incoming edge (because we removed critical edges), the

φr has only one operand. The version number of thisφr is used as usual to define the uses it

dominates. If a variable has different versions at each of thejsr sites for a given subroutine,

there will be aφ for the variable at the subroutine entry block. During the SSA renaming

step, when we arrive at aret, we locate theφr -nodes for the correspondingjsr instructions.

If there is aφ at the subroutine entry and the version defined by thatφ is the version on

top of the renaming stack when we reach theφr , we assign theφr ’s operand the version of

the entryφ’s operand for theφr ’s jsr. Otherwise we assign the version at theret to theφr ’s

operand. Once the renaming step is complete, since theφr have only one operand, we can

31

a φ(a;a)

jsr jsr
b
a

b
a

b φ(b;b)
b

b
ret

a φr(a)a φr (a)
b φr (b)

a
b

b φr(b)
a
b

(a) φr placement

a3 φ(a1;a2)

jsr jsr
b1
a1

b2
a2

b3 φ(b1;b2)
b3

b4
ret

a4 φr(a3)
b5 φr(b4)

a4
b5

b6 φr(b4)
a5
b6

a5 φr(a3)

(b) After φr renaming

jsr jsr
b1
a1

b2
a2

a1
b4

a2
b4

ret
b4

b3

b3 φ(b1;b2)

(c) Final SSA form

Figure 3.5:φr example

rename the uses defined by eachφr to use the version of theφr ’s operand. Theφr -nodes

can then be removed.

3.2.4 PRE of access expressions

To reduce the overhead of pointer traversals within Java we extend partial redundancy

elimination to access path expressions. Doing so requires disambiguating memory refer-

ences sufficiently using alias analysis to be able to detect redundancies among access paths.

We combine the SSA-based PRE of Chow et al. [1997] with type based alias analysis [Di-

wan et al. 1998].

TBAA with Java bytecode

TBAA relies on the declared types of variables in the program. Unfortunately, local

variables and operand stack slots in Java bytecode do not have declared types; therefore we

must infer them. Since we are only interested in types used in access path expressions we

limit ourselves to inference of reference types only.

We use a simplification of the type inference algorithm of Palsberg and Schwartzbach

[1994]. Each expression in the program, sayx, has an associated type variable, denoted

32

Table 3.1: Type Constraints

Expression Example Constraints

formal parameter x fThe declared type ofxg � [[x]]
assignment x y [[y]] � [[x]]
φ-node x φ(y;z; : : :) [[y]] � [[x]]; [[z]] � [[x]]; : : :
stack manipulation (x;y) dup(z) [[z]] � [[x]]; [[z]] � [[y]]
exception handler x catch(C) fCg � [[x]]
array reference x[i] [[x[i]]]� fThe element type ofxg
virtual method call x:m(y) [[x:m(y)]]� fThe return type ofmg
static method call C:m(y) [[C:m(y)]]� fThe return type ofmg
cast (C)x [[(C)x]]� fCg
string literal “string” fjava.lang.Stringg � [[“string”]]
field reference x: f fThe declared type offg � [[x: f]]
static field reference C: f fThe declared type offg � [[C: f]]
object allocation newC fCg � [[newC]]

array allocation newT[i] fArray of Tg � [[newT[i]]]
multi-dimensional array allocation newT[i][j] fArray of array ofTg � [[newT[i][j]]]

[[x]]. Constraints are derived relating the type variables with each other and with sets of

types. The constraints for Java bytecode are shown in Table 3.1. The constraints are then

solved using the algorithm in Figure 3.6, resulting in a set of types associated with each

expression. The type of an expression is the common supertype of its associated set of

types. Since we are only interested in the types for a single method, we remove those parts

of the algorithm of Palsberg and Schwartzbach [1994] that insert and solve constraints for

calls and instead use the declared return type and parameter types.

Value numbering

There is a cyclic dependency between copy propagation and PRE. PRE operates by

recognizing lexically equivalent subexpressions. If a common expression on the right hand

side of an assignment is eliminated and so replaced with a local variable, a copy will

be created. Further copy or constant propagation could enable another round of PRE by

replacing a variable within an expression with a constant or another variable and so make

the expression redundant.

33

input:
A method with set of expressionsX

output:
A set of typesTypes(e) for all e2 X

do
for eachexpression,e2 X do

if (there is a constraint fore, c, as defined in Table 3.1) then
insert(c)

with
procedure insert(constraint) begin

if (constraintis a start constraint,C2 v) then
propagate(C;v)

else if(constraintis a propagation constraint,v�w) then
add edgev!w
for eachC2 Types(v) do

propagate(C;w)

procedurepropagate(C;v) begin
if (C 62 Types(v)) then

Types(v) Types(v) [C
for eachedgev! w do

propagate(C;w)

Figure 3.6: Type inference algorithm

Using value numbering [Cooper and Simpson 1995; Simpson 1996; Briggs et al. 1997]

avoids the need for repetitive iteration of PRE interleaved with constant/copy propagation.

Value numbering assigns a number to each expression in a program such that if two expres-

sions have the same number they must have the same value. Rather than basing equivalence

of expressions purely on their lexical equivalence, we use the value numbering approach of

Simpson [1996]. Then during SSAPRE renaming, rather than comparing the SSA version

of variables within two expressions, we compare their value numbers.

Extending SSAPRE

To extend SSAPRE to recognize access paths, we identifyalias definition points: those

code locations where potentially aliased variables may be modified. These include not only

explicit assignment to possible aliases, but also calls and monitor synchronization points.

Because we do no interprocedural analysis, we cannot assume a call will not modify an

expression through an alias. We include monitor synchronization points in order to satisfy

34

Java’s thread model: at synchronization points any changes made to a variable in another

thread must be made visible to the current thread.

In addition, to prevent hoisting of code which can throw exceptions out of protected

regions, we identify those edges in the control flow graph which go from a block not in

a protected region to a block in the region. We call both these edges and alias definition

pointskill points since they kill any previous definition of expressions outside before the

point.

Having identified kill points, we can perform SSAPRE as summarized in Section 2.3.1

by interleaving alias definition points with each pre-order list of occurrences of access path

expressions and by interleaving protected region entry points with each list of occurrences

of exception throwing expressions. DuringΦ placement for an expression, we place aΦ

at any block in the iterated dominance frontier of the set of blocks containing either an

occurrence of the expression or a kill point for the expression. During the renaming step,

when a kill point for the expression is encountered, we kill the definition at the top of the

renaming stack as if defining a new version of the expression.

PRE and Java bytecode

There are two special cases for performing PRE on access paths in Java. Fields that

are declaredvolatile must be reloaded from the program’s master copy of memory each

time they are accessed. Therefore they cannot be eliminated at all. Fields declaredfinal,

however, cannot be redefined at all, much less through an alias, so we are free to move

them across alias definition points.

One difficulty encountered with PRE in Java bytecode is the addition of extra loads

and stores. Because the bytecode is executed on an operand stack and we save and reload

expressions from local variables, PRE can sometimes produce longer, and consequently

slower, bytecode. Consider the code in Figure 3.7a. PRE transforms this to the code in

Figure 3.7b. Because of the added overhead of the extra stores and reloads fort1 andt2,

the shortest path through the program, returning 0, is four instructions longer after PRE

than before. The paths toreturn 1 and toreturn 2 are also longer than before PRE, by

35

if (a:x[0] 6= b:x[0])

return 0 if (a:x[1] 6= b:x[1])

return 1 return 2

if (t1[0] 6= t2[0])

return 0 if (t1[1] 6= t2[1])

return 1 return 2

t1 a:x
t2 b:x

0 aload_1 // push a
1 getfield #14 // get a.x
4 iconst_0
5 iaload // load a.x[0]
6 aload_2 // push b
7 getfield #14 // get b.x

10 iconst_0
11 iaload // load b.x[0]
12 if_icmpeq 17
15 iconst_0
16 ireturn
17 aload_1 // push a
18 getfield #14 // get a.x
21 iconst_1
22 iaload // load a.x[1]
23 aload_2 // push b
24 getfield #14 // get b.x
27 iconst_1
28 iaload // load b.x[1]
29 if_icmpeq 34
32 iconst_1
33 ireturn
34 iconst_2
35 ireturn

0 aload_1 // push a
1 getfield #14 // get a.x
4 astore_3 // save a.x to t1
5 aload_2 // push b
6 getfield #14 // get b.x
9 astore 4 // save b.x to t2

11 aload_3 // push t1
12 iconst_0
13 iaload // load t1[0]
14 aload 4 // push t2
16 iconst_0
17 iaload // load t2[0]
18 if_icmpeq 23
21 iconst_0
22 ireturn
23 aload_3 // push t1
24 iconst_1
25 iaload // load t1[1]
26 aload 4 // push t2
28 iconst_1
29 iaload // load t2[1]
30 if_icmpeq 35
33 iconst_1
34 ireturn
35 iconst_2
36 ireturn

Path toreturn 0:
0;1;4;5;6;7;10;11;12;15;16

Path toreturn 0:
0;1;4;5;6;9;11;12;13;14;16;17;18;21;22

(a) Before PRE (b) After PRE

Figure 3.7: PRE can produce longer bytecode

36

b1

a1

possible throw
a2 b1

b1
a2

a3

try

catch(x)
a4 φc(a1;a2)

(a) Before copy propagation

a1

a3

try

catch(x)
a4 φc(a1;b1)

b1
b1

possible throw
b1

(b) After incorrect copy propagation

Figure 3.8:φc-nodes and copy propagation

two instructions. This problem could be remedied by more careful analysis of the cost of

eliminating an expression and by attempting to cache the value of a redundant expression

on the operand stack rather than in a local variable. JIT translation of the bytecode can

eliminate these extra loads and stores since both local variables and operand stack slots are

transformed into native variables subject to register allocation.

3.2.5 Constant and copy propagation

The constant/copy propagation algorithm is based on standard techniques [Aho et al.

1986; Wolfe 1996]. Because exceptions in Java are precise, we cannot propagate copies

to φc-nodes. Doing so could result in an assignment to a variable before an exception is

thrown that, before copy propagation, occurred after the exception was thrown. Consider

Figure 3.8. In Figure 3.8a, there is a copy fromb1 to a2 after the possible throw. After copy

propagation,b1 is an operand to theφc-node in Figure 3.8b. When theφc is removed, the

copy expressiona4 b1 will be placed at the definition ofb1, before the possible throw.

In the original code,a4 was equal toa1 until the assignment after the throw.

37

3.2.6 Liveness analysis

Following optimizations, standard liveness analysis [Aho et al. 1986] is used to build

an interference graph: an undirected graphG = (V;E), whereV is the set of variables in

the program andE is a set of edges, such that if variablesv andw are simultaneously live,

there is an edge fromv to w. A variable islive if it could be needed later, i.e.,v is live at a

program pointp if there is a path in the CFG starting atp that usesv.

The interference graph is constructed by tracing backward through the CFG from each

use of a variable,v, along all paths to its definition. If the definition of another variable,w,

is encountered, an edge is added betweenv andw.

Interference graph construction is complicated by exception handling. In order to insert

code forφc-nodes, we must ensure that the target of theφc is live throughout the protected

region as well as after its definition. However, we do not want theφc target to conflict with

its operands. Our solution is to make theφc target conflict with all variables that conflict

with its operands. This solution could be overly conservative in that it could make the live

range of theφc target unnecessarily long, introducing edges in the interference graph that do

not represent an actual live range conflict in the program. This problem is solved, in part, by

inserting self-copies just before entering the protected region, as described in Section 3.2.3.

This prevents the live range of theφc target from extending above the protected region, but

does not keep the live range from extending below the protected region. However,φc

operand conflicts below the protected region occur rarely in practice because there is often

a φ just below the protected region factoring theφc target back into the mainline of the

program.

3.2.7 SSA destruction

After computing the interference graph, graph coloring with coalescing [Chaitin 1982;

Briggs et al. 1994] maps different SSA versions of each local variable back to a single hard

local variable. Our coloring algorithm favors placing commonly used variables, such as

those nested within loops, in the lower four local variable indices, since these indices are

accessed through a one-byte bytecode instruction rather than through a two-byte instruction

38

containing the local variable index. These lower four indices may also be candidates for

special treatment as registers by na¨ıve VM implementations.

The algorithm first attempts to coalesce nodes in the interference graph to eliminate

copies. Each node in the graph is given a weight based on the number and position of the

occurrences of the variables the node represents. Letd(u) denote the loop-nesting depth of

variable occurrenceu. d(u) is the number of surrounding loops containingu. The weight

of nodev is then given by

weight(v) = ∑
u2occurrences(v)

10d(u)

The weight represents the number of loads or stores of the variable assuming each loop

body is executed 10 times.

Now letdeg(v) be the degree of nodev. For all copies in the program,v w, including

the copies that would be generated whenφ-nodes are replaced, we select the copy with the

maximum
weight(v)

deg(v)
+

weight(w)
deg(w)

where there is no edge fromv to w in the interference graph. The nodes forv andw are

then coalesced into one node, adjusting the edges so thatv andw together conflict with

the union of the nodes they conflicted with individually. We divide by the degree of the

node to favor those nodes that have a shorter live range, so the coalesced node will conflict

with a fewer number of other nodes. This process repeats until no copies can be found to

consolidate.

Once nodes are coalesced, the graph is colored by first pre-coloring any formal param-

eters for the method, then repeatedly selecting the nodev with the maximumweight(v) and

assigning it the lowest local variable index for which there is not a conflicting node already

colored. In this stage, variables of typelong anddouble have half their original weight

since they take up two local variable indices rather than just one.

39

3.2.8 Code generation

Each expression tree is converted back to stack code by a pre-order traversal of the tree.

Once in instruction list form, we perform peephole optimization of redundant loads and

stores and for better utilization of the operand stack.

40

4 EXPERIMENTS

To evaluate the impact of our optimization framework we took several Java programs

as benchmarks, optimized them with BLOAT and compared the results of the optimization

with their unoptimized counterparts, using several static and dynamic performance metrics.

4.1 Platform

Our experiments were run under Solaris 2.5.1 on a Sun Ultra 2 Model 2200, with

256MB RAM, and two 200MHz UltraSPARC-I processors, each with 1MB external cache

in addition to their on-chip instruction and data caches. The UltraSPARC-I data cache is a

16KB write-through, non-allocating, direct-mapped cache with two 16-byte sub-blocks per

line. It is virtually indexed and physically tagged. The 16KB instruction cache is 2-way

set-associative, physically indexed and tagged, and organized into 512 32-byte lines.

4.2 Benchmarks

The benchmarks are summarized in Table 4.1.

4.3 Execution environments

We took measurements for three different Java execution environments: the standard

Java Development Kit (JDK) version 1.1.6, the Solaris 2.6 SPARC JDK with JIT version

1.1.3 (JIT) and Toba version 1.0 (Toba) [Proebsting et al. 1997; Toba 1998]. In each envi-

ronment we ran both unoptimized and optimized versions of each benchmark. Where Java

source code for a benchmark was available, it was compiled using the standard JDK 1.1.6

41

Table 4.1: Benchmarks

Name Description Sizea

crypt Java implementation of the Unix crypt utility 650
huffman Huffman encoding 435
idea File encryption tool 2284
jlex Scanner generator 7287
jtb Abstract syntax tree builder 22317
linpack Standard Linpack benchmark 584
lzw Lempel-Ziv-Welch file compression utility 314
neural Neural network simulation 1227
tiger Tiger compiler [Appel 1998] 19018

aLines of source code (including comments).

javac compiler, without the-O optimization flag since in many cases this generates incor-

rect code. Informal observation indicates that this flag has little impact on the performance

of our benchmarks.

4.3.1 JDK

JDK is the standard Java virtual machine. It uses a portable threads package rather than

the native Solaris threads and the bytecode interpreter loop is implemented in assembler.

We optimized the class files of each benchmark against the JDK version 1.1.6 core Java

classes [Gosling et al. 1996], to form the closure of optimized classes necessary to execute

the benchmark in JDK. Similarly the unoptimized benchmark classes were run against the

unoptimized core classes.

4.3.2 JIT

JIT performs on-demand dynamic translation of Java bytecode to native SPARC in-

structions. It uses non-native threads and includes the following optimizations:

1. elimination of some array bounds checking

2. elimination of common subexpressions within blocks

42

3. elimination of empty methods

4. some register allocation for locals

5. no flow analysis

6. limited inlining

Interestingly, programmers are encouraged to perform the following optimizations by hand

[SunSoft 1997]:

1. move loop invariants outside the loop

2. make loop tests as simple as possible

3. perform loops backwards

4. use only local variables inside loops

5. move constant conditionals outside loops

6. combine similar loops

7. nest the busiest loop, if loops are interchangeable

8. unroll loops, as a last resort

9. avoid conditional branches

10. cache values that are expensive to fetch or compute

11. pre-compute values known at compile time

These suggestions likely reveal deficiencies in the current JIT compiler which our opti-

mizations may address prior to JIT execution.

We used the same sets of class files as for JDK for execution in the JIT environment.

4.3.3 Toba

Toba compiles Java class files to C, and thence to native code using the host system’s

C compiler. The Toba run-time system supports native Solaris threads, and garbage collec-

tion using the Boehm-Demers-Weiser conservative garbage collector [Boehm and Weiser

43

1988]. Since Toba only works with the JDK version 1.0.2 core classes, we optimized

the benchmarks for execution in the Toba environment against the JDK version 1.0.2 core

classes, to form the closure of optimized classes necessary to execute the benchmark in

Toba. Similarly, the closure of unoptimized core classes was also formed for unoptimized

benchmark execution.

These class files were then compiled to native code using the SunPro C compiler version

4.0, with the-O2 compiler optimization flag. C optimization level 2 performs basic local

and global optimization, including induction variable elimination, algebraic simplification,

copy propagation, constant propagation, loop-invariant optimization, register allocation,

basic block merging, tail recursion elimination, dead code elimination, tail call elimination

and complex expression expansion. Using this optimization level provides an opportunity

to see optimizations that BLOAT misses.

4.4 Metrics

For each benchmark we took measurements for both the optimized and unoptimized

classes. Our metrics include:

� static code size: this is the size in bytes of the benchmark-specific (non-library) class

files (excluding debug symbols) for JDK/JIT, and static executables for Toba

� bytecodes executed: dynamic per-bytecode execution frequencies obtained from an

instrumented version of the JDK version 1.1

� native instructions executed: dynamic per-instruction execution frequencies using

the Shade performance analysis toolkit [Cmelik and Keppel 1994]

� counts of significant performance-related events:

– processor cycles to measure elapsed time

– instruction buffer stalls due to instruction cache misses

– data cache reads

44

– data cache read misses

using software [Enbody 1998] that allows user-level access to the UltraSPARC hard-

ware execution counters

For the dynamic measurements each run consists of two iterations of the benchmark within

a given execution environment. The first iteration is to prime the environment: loading

class files, JIT-compiling them and warming the caches. The second iteration is the one

measured.

The physically addressed instruction cache on the UltraSPARC means that programs

can exhibit widely varying execution times from one invocation to the next, since each

invocation process will have different mappings from virtual to physical addresses result-

ing in randomized instruction cache placement. Thus, the elapsed time and cache-related

metrics were obtained for 10 separate runs and the results averaged.

4.5 Results

The results are reported in Tables 4.2-4.10, one per benchmark. For each metric we

give raw counts only for the unoptimized classes, and then only for the totals. All other

counts are expressed as a percentage of this unoptimized total. Thus, if the total count

for a metric obtained using the unoptimized classes isT, all other results for that metricc

are reported as the percentage 100c=T. This includes the breakdowns of total instruction

counts (both bytecode and native). Reporting the results in this way enables the relative

effect of optimization on specific instructions to be gauged more easily. We report only

those native instructions whose execution frequencies change noticeably with optimization.

In the graphs accompanying the text, we show the relative change in each benchmark

from the unoptimized execution to the optimized; that is, if the unoptimized count for given

metric isc1 and the optimized count isc2, the graph showsc2=c1. The error bars in the

graphs represent 90% confidence intervals.

As expected, we see an increase in dynamic bytecode execution counts for many of the

benchmarks. As discussed earlier, these overheads are mainly due to introduction of extra

45

crypt huffman idea jlex jtb linpack lzw neural tiger

Benchmark

0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

1.02
1.08

1.00
1.07 1.07

0.96
1.01

0.96

1.12

(a) Bytecodes executed

crypt huffman idea jlex jtb linpack lzw neural tiger

Benchmark

0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

0.97

1.06
0.98

0.87

1.05
1.00 1.01 0.99

1.08

(b) Time (cycles)

Figure 4.1: JDK metrics

loads from and stores to temporaries introduced by PRE for partially-redundant expres-

sions whose values are not used on all paths. There are several interesting bytecode-level

optimization effects:

� Coloring of locals significantly reduces the number of extended length load and store

bytecodes, replacing them with their shorter forms

� PRE over access paths can significantly reduce the number ofarrayload, getfield

andgetstatic bytecodes

� Constant propagation via value numbering permits sometimes significant conversion

of conditional jumps from two-operand (ifcmp) to single-operand (if).

As expected, we see significant variation in the instruction cache metric, resulting in vari-

ation in the number of cycles.

In the following discussion we consider each execution environment in turn: JDK, then

JIT, and lastly Toba.

4.5.1 JDK

The JDK results are best appreciated by first considering the Java bytecode distribution

for optimized and unoptimized classes. All the benchmarks, except linpack and lzw, see an

increase in the number of bytecodes executed for optimized code, as shown in Figure 4.1a.

The increase is significant for huffman, jlex, jtb, and tiger (7–12%) due mostly to insertion

46

crypt huffman idea jlex jtb linpack lzw neural tiger

Benchmark

0.0

0.5

1.0
O

pt
 c

ou
nt

 /
U

no
pt

 c
ou

nt

loadn
load

1.
00 1.

03

1.
00

1.
10

1.
00

0.
93 1.

00
0.

96 1.
00

0.
97 1.

00
0.

91

1.
00

0.
95 1.

00
0.

97 1.
00

0.
99

(a) load vs. loadn

crypt huffman idea jlex jtb linpack lzw neural tiger

Benchmark

0

2

4

6

8

10

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

storen
store

1.
00 1.
14

1.
00

2.
78

1.
00

1.
00

1.
00

1.
86

1.
00

1.
89

1.
00

9.
94

1.
00 1.
15

1.
00 1.

42

1.
00

2.
35

(b) store vs. storen

Figure 4.2: Replacingloads andstores by shorter bytecodes

of additionalload, store, anddup bytecodes to hold commonly used value in local vari-

ables and operand stack slots. Figure 4.1b demonstrates that, somewhat surprisingly, an

increase in number of bytecodes executed does not always translate into a decline in per-

formance for JDK, since the effects of coloring for allocation of local variables are strong,

with many of the longer load and store bytecodes being replaced with their short forms.

Figure 4.2 shows this change in the mix of bytecodes. The effect is most notable with lzw

where the frequency of theload bytecodes decreases from 11% to 1% of the total bytecode

count and the frequency ofloadn increases from 19% to 28%. This results in less overhead

in the interpreter’s bytecode dispatch loop. The large increase in stores for linpack is due

to PRE’s elimination of redundant arithmetic expressions. Those benchmarks which show

an increase in the frequency ofstore versusstoren bytecodes have formal parameters oc-

cupying several of the lower four local variable indices which prevent these indices from

being allocated for other variables.

A similar, but less pronounced, effect results from conversion of two-operandifcmp

bytecodes to one-operandif bytecodes with constant propagation and folding.

As Figure 4.3a shows, all benchmarks see a decrease, often significant, in the frequency

of getfield bytecodes due to elimination of redundant access path expressions. The jtb,

neural, and tiger benchmarks, which have a high initial frequency ofgetfield bytecodes

(12%, 9%, and 13%, respectively), show a 13–46% decrease in the number ofgetfield

47

crypt huffman idea jlex jtb linpack lzw neural tiger

Benchmark

0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

0.99
0.96

0.85
0.91

0.85

0.57

0.95

0.54

0.87

(a)getfield bytecodes

crypt huffman idea jlex jtb linpack lzw neural tiger

Benchmark

0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

1.00
0.96

1.00 0.99 1.00
0.93

1.00
0.96

1.00

(b) arrayload bytecodes

Figure 4.3: Memory access bytecodes

bytecodes executed. Linpack executes 43% fewergetfield bytecodes, but these bytecodes

represent only 0.02% of the total bytecodes executed.

The relative change inarrayload bytecodes is shown in Figure 4.3b. The huffman,

linpack, and neural benchmarks, which have heavy array use (9%, 4%, and 11%, respec-

tively), see an elimination of 4–7% of thearrayload bytecodes. Fewarrayload bytecodes

are eliminated in any of the other benchmarks, primarily due to the restrictions on move-

ment imposed by Java’s precise exception model. Further improvement would accrue if

array subscripts could be disambiguated via range analysis on the subscript expressions for

use during array alias analysis.

For most benchmarks the increase in the number of bytecodes executed did not sig-

nificantly impact execution time. The speedups we do see can be attributed mostly to our

optimizations, with some uncontrollable effects due to perturbation in instruction cache

behavior.

4.5.2 JIT

The JIT environment is not influenced by conversion of long bytecode forms to their

shorter variants, since JIT eliminates the bytecode dispatch overhead that we were able

to reduce significantly for JDK. Rather, the biggest impact on performance comes from

changes in the number of expensive instructions such as loads and stores.

48

crypt huffman idea jlex jtb linpack lzw neural tiger

Benchmark

0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt 0.84

1.01
1.03

1.03
0.99

1.08

0.93 1.00 1.01

(a) Time (cycles)

crypt huffman idea jlex jtb linpack lzw neural tiger

Benchmark

0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

0.76

0.95 0.96 0.98 0.97

1.07

0.99 0.96 0.97

(b) Data reads

Figure 4.4: JIT metrics

Crypt exhibits the most significant improvement with optimization for JIT execution.

Total time (cycles), shown in Figure 4.4a, is reduced by 16%, with much of this coming

from the 24% reduction in data reads and the 96% decrease in data read misses. The

elimination of 29% of allstw instructions also plays a significant part.

Of the remaining benchmarks, all but linpack and neural reveal improvements of up to

5% in data reads, as shown in Figure 4.4b. Despite this improvement, most benchmarks

show no execution time speedup as a result of this reduction, mostly because they suffer

from a significant increase in instruction fetch stalls. This is likely to be an artifact of

the particular instruction cache configuration for this machine, and we would expect to

see execution time improvement for idea under a more favorable instruction cache regime.

Linpack suffers from increases in both load and store instructions, despite good instruction

cache locality.

4.5.3 Toba

There is little correlation between reduction due to optimization in static class file size

and reduction in Toba native executable size. Nevertheless, optimization does result in

reduced code size of up to 3% for all benchmarks except crypt, which exhibits a slight

increase.

Figure 4.5b shows that all benchmarks show reductions in data reads, with crypt a clear

winner at 13% fewer reads. Combined with much improved data cache miss rates, huffman,

49

crypt huffman idea jlex jtb linpack lzw neural tiger

Benchmark

0.0

0.5

1.0

1.5

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

1.00

1.01
0.97 0.97 0.97 0.97

0.91 0.94

1.00

(a) Time (cycles)

crypt huffman idea jlex jtb linpack lzw neural tiger

Benchmark

0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

0.87
0.95 0.98 0.99 1.00

0.96 0.97 0.95
1.00

(b) Data reads

Figure 4.5: Toba metrics

idea, linpack, lzw, and neural see significant speedups, shown in Figure 4.5a. Thus, our

optimizations expose opportunities that the C compiler cannot exploit on its own.

Crypt is unable to exploit a reduction in data reads in the face of an uncooperative

instruction cache, which stalls fetches from the instruction buffer almost 3 times more

frequently as unoptimized code, and a doubling in the number of data read misses. Huffman

suffers from the same problems as crypt, but to a lesser degree.

50

Table 4.2: Results for crypt

Metric JDK JIT Toba
Unopt Opt Unopt Opt Unopt Opt

Static code size 11864 43100
% 100.00 100.00 100.00 100.15

Java bytecode 260627636
% TOTAL 100.00 101.83

arrayload 12.01 12.01
getfield 0.45 0.44
getstatic 5.36 0.63
dup 0.02 4.73
goto 0.08 0.49
if 0.49 0.49
ifcmp 0.74 0.68
invoke 0.87 0.87
load 15.26 5.31
loadn 10.33 21.05
store 4.68 2.09
storen 1.21 4.62

Cycles 3567613744 585236746 440842396
% 100.00 97.42 100.00 84.23 100.00 100.05
�% 0.48 0.23 0.10 0.52 3.45 56.99
Instruction fetch stalls 5984573 2097866 8951370
% 100.00 87.60 100.00 128.76 100.00 276.62
�% 146.95 6.11 5.42 44.20 88.28 322.08
Data reads 881810632 143689032 93774629
% 100.00 93.34 100.00 76.05 100.00 86.84
�% 0.00 0.00 0.00 0.00 0.00 0.00
Data read misses 8792878 21214232 1384580
% 100.00 48.25 100.00 5.95 100.00 211.60
�% 0.21 0.39 0.02 0.35 17.05 161.15

SPARC instructions 2825007945 488834596 448208169
% TOTAL 100.00 96.40 100.00 89.18 100.00 95.00

add 15.31 15.14 2.25 2.25 9.45 7.25
jmpl 9.35 9.52 1.63 1.63 1.99 1.99
or 1.45 1.45 9.74 11.63 7.27 7.32
orcc 1.80 1.83 0.41 0.41 3.20 0.46
sethi 0.48 0.48 4.53 2.01 4.22 4.15
sll 14.01 12.18 5.01 5.01 5.39 5.39
srl 1.71 1.71 9.55 7.44 3.39 3.39
subcc 1.86 1.86 9.01 8.98 13.52 16.24
bgu 0.00 0.00 0.01 0.01 2.70 0.52
ldub 13.94 12.13 0.00 0.00 0.07 0.07
lduw 16.76 16.45 28.98 21.94 20.65 17.90
stw 10.14 10.27 4.74 3.37 1.86 1.85

(Interval confidence is 90%)

51

Table 4.3: Results for huffman

Metric JDK JIT Toba
Unopt Opt Unopt Opt Unopt Opt

Static code size 7672 66364
% 100.00 100.00 100.00 99.81

Java bytecode 27609468
% TOTAL 100.00 108.33

arrayload 3.80 3.63
getfield 11.46 10.98
getstatic 5.76 0.78
dup 1.53 6.90
goto 0.47 2.41
if 3.35 3.37
ifcmp 6.10 6.09
invoke 6.75 6.75
load 5.02 3.11
loadn 30.72 36.23
store 0.52 2.59
storen 1.87 4.03

Cycles 672765181 301698428 357131368
% 100.00 106.28 100.00 101.48 100.00 100.59
�% 2.28 0.28 0.17 0.14 0.07 5.25
Instruction fetch stalls 18092553 8733698 16284714
% 100.00 158.05 100.00 138.58 100.00 136.08
�% 43.26 1.58 3.68 3.76 2.87 54.34
Data reads 161575042 44151040 36558181
% 100.00 99.98 100.00 94.65 100.00 94.63
�% 0.00 0.00 0.00 0.00 0.00 0.01
Data read misses 8153108 2065790 2535091
% 100.00 115.48 100.00 138.76 100.00 80.75
�% 0.25 0.25 0.61 0.85 17.85 15.15

SPARC instructions 571054371 246599706 224955140
% TOTAL 100.00 101.16 100.00 99.14 100.00 98.22

add 12.03 12.42 6.32 6.31 10.01 9.99
jmpl 5.86 6.26 4.36 4.36 6.62 6.62
or 3.15 3.15 7.36 7.90 6.87 6.80
sethi 2.59 2.59 6.45 5.90 12.82 12.56
srl 0.92 0.86 2.11 1.85 0.32 0.32
sub 2.14 2.33 1.82 1.82 0.55 0.55
subcc 5.44 5.44 10.35 10.32 9.42 9.70
be 2.95 2.92 3.09 3.24 1.92 1.91
bne 2.80 2.74 3.33 3.19 3.72 3.72
lduw 17.08 17.01 16.41 15.45 15.29 14.42
stw 9.08 9.39 7.29 7.29 7.85 7.76

(Interval confidence is 90%)

52

Table 4.4: Results for idea

Metric JDK JIT Toba
Unopt Opt Unopt Opt Unopt Opt

Static code size 22107 148096
% 100.00 100.00 100.00 97.64

Java bytecode 16348617
% TOTAL 100.00 100.43

arrayload 2.99 2.99
getfield 2.40 2.05
getstatic 0.00 0.00
dup 0.31 2.84
goto 0.48 1.30
if 2.83 2.87
ifcmp 3.15 3.07
invoke 2.36 2.36
load 15.67 9.45
loadn 23.12 26.78
store 5.12 3.50
storen 7.05 8.70

Cycles 261303208 61395862 40287627
% 100.00 98.04 100.00 102.63 100.00 96.66
�% 1.49 2.25 4.90 6.42 1.05 3.87
Instruction fetch stalls 11281294 7127667 6409337
% 100.00 102.87 100.00 124.36 100.00 107.87
�% 31.06 55.19 41.60 46.10 6.86 19.49
Data reads 59121998 7848375 2358299
% 100.00 98.16 100.00 96.22 100.00 97.53
�% 0.00 0.00 0.41 0.11 0.00 0.00
Data read misses 1909038 374480 116420
% 100.00 61.36 100.00 138.50 100.00 91.68
�% 5.59 3.95 32.17 3.51 9.85 40.77

SPARC instructions 195788934 35154852 28379966
% TOTAL 100.00 99.16 100.00 100.51 100.00 100.06

or 1.74 1.74 9.05 10.17 8.19 8.35
sethi 1.42 1.42 4.49 4.49 6.58 6.76
sll 12.62 12.03 1.80 1.80 2.77 2.77
be 1.42 1.39 2.99 2.99 2.59 2.77
bne 1.27 1.27 2.25 2.25 3.34 2.95
ldub 12.65 12.13 0.15 0.15 0.00 0.00
lduw 16.03 15.93 20.17 19.32 6.97 6.76
stw 9.97 9.95 7.07 6.61 0.46 0.46

(Interval confidence is 90%)

53

Table 4.5: Results for jlex

Metric JDK JIT Toba
Unopt Opt Unopt Opt Unopt Opt

Static code size 71961 473596
% 100.00 100.00 100.00 94.71

Java bytecode 62750646
% TOTAL 100.00 107.31

arrayload 3.35 3.33
getfield 13.68 12.42
getstatic 0.00 0.00
dup 0.90 7.11
goto 0.36 0.72
if 2.49 3.18
ifcmp 9.00 8.31
invoke 5.15 5.15
load 9.20 5.87
loadn 30.24 31.83
store 2.62 2.27
storen 2.69 7.58

Cycles 1664584041 781102454 934714659
% 100.00 87.48 100.00 102.76 100.00 97.00
�% 0.08 4.05 0.21 0.15 2.45 1.05
Instruction fetch stalls 5894510 7800247 35382354
% 100.00 217.26 100.00 196.58 100.00 72.83
�% 7.76 289.03 1.55 0.49 28.56 28.78
Data reads 331146695 118270464 128538823
% 100.00 101.40 100.00 97.72 100.00 99.48
�% 0.00 0.00 0.00 0.00 0.00 0.00
Data read misses 21657098 1954337 2419713
% 100.00 46.19 100.00 156.95 100.00 106.04
�% 4.15 0.24 0.09 0.13 1.86 3.52

SPARC instructions 1183017726 599372744 587556599
% TOTAL 100.00 102.07 100.00 100.06 100.00 99.64

add 11.91 12.51 5.12 5.10 8.52 8.52
jmpl 6.87 7.26 6.47 6.47 6.52 6.52
or 2.16 2.16 7.30 7.82 7.12 7.19
sll 8.95 9.08 0.69 0.69 0.79 0.79
sub 2.33 2.57 1.73 1.74 0.96 0.96
subcc 5.47 5.43 7.84 7.83 8.64 8.51
ldub 9.00 9.15 0.00 0.00 0.00 0.00
lduw 17.10 17.33 18.03 17.58 21.84 21.73
stw 9.62 9.99 8.13 8.14 11.81 11.81

(Interval confidence is 90%)

54

Table 4.6: Results for jtb

Metric JDK JIT Toba
Unopt Opt Unopt Opt Unopt Opt

Static code size 368287 2755812
% 100.00 100.00 100.00 100.07

Java bytecode 49058483
% TOTAL 100.00 107.37

arrayload 2.21 2.21
getfield 11.59 9.86
getstatic 0.08 0.07
dup 3.38 8.74
goto 1.95 2.20
if 2.70 3.38
ifcmp 6.67 5.99
invoke 3.00 3.00
load 14.95 11.90
loadn 22.23 24.05
store 4.47 5.16
storen 0.94 5.10

Cycles 983063809 421146724 472530144
% 100.00 104.58 100.00 98.69 100.00 97.44
�% 0.34 0.46 0.88 0.84 3.65 3.34
Instruction fetch stalls 24886398 34482858 66802677
% 100.00 132.18 100.00 104.54 100.00 77.61
�% 10.22 9.40 10.16 9.55 27.83 21.35
Data reads 213196107 52127654 47121000
% 100.00 101.48 100.00 96.84 100.00 100.20
�% 0.00 0.00 0.00 0.00 0.02 0.01
Data read misses 11518789 3909725 3185467
% 100.00 109.97 100.00 99.75 100.00 112.86
�% 0.65 0.61 0.74 1.17 5.99 4.21

SPARC instructions 787770334 317604663 236446136
% TOTAL 100.00 102.44 100.00 100.25 100.00 100.14

add 14.59 15.32 9.98 9.97 8.88 8.87
jmpl 6.89 7.35 3.31 3.31 6.65 6.65
or 2.08 2.09 5.76 6.44 7.01 7.34
sethi 1.62 1.63 4.28 4.29 11.63 11.36
sll 10.58 10.79 1.31 1.31 0.69 0.74
sub 2.38 2.68 1.29 1.29 0.69 0.69
subcc 5.71 5.67 13.44 13.44 9.11 8.81
be 2.38 2.27 2.45 2.44 1.94 1.93
bl 0.55 0.51 1.40 1.29 0.52 0.52
bne 3.68 3.68 7.17 7.18 4.01 3.90
ldub 10.74 10.96 0.09 0.09 0.29 0.29
lduw 14.60 14.79 15.00 14.47 18.71 18.83
stw 10.39 10.84 10.64 10.68 11.21 11.58

(Interval confidence is 90%)

55

Table 4.7: Results for linpack

Metric JDK JIT Toba
Unopt Opt Unopt Opt Unopt Opt

Static code size 3834 37516
% 100.00 100.00 100.00 95.36

Java bytecode 9733541
% TOTAL 100.00 95.51

arrayload 9.13 8.51
getfield 0.02 0.01
getstatic 0.00 0.00
dup 0.00 6.45
goto 0.12 1.48
if 0.43 0.49
ifcmp 1.90 1.84
invoke 0.12 0.12
load 39.10 27.25
loadn 6.07 13.72
store 0.72 6.77
storen 0.00 0.40

Cycles 138498459 15152824 14956369
% 100.00 100.29 100.00 108.08 100.00 96.71
�% 1.04 1.20 0.10 0.45 1.47 1.50
Instruction fetch stalls 30907 58417 148240
% 100.00 187.16 100.00 84.56 100.00 93.26
�% 15.12 13.52 8.93 15.83 68.75 77.78
Data reads 35186863 3298217 3688269
% 100.00 95.09 100.00 107.49 100.00 96.19
�% 0.00 0.00 0.00 0.26 0.01 0.00
Data read misses 398002 223725 388542
% 100.00 654.43 100.00 92.12 100.00 99.17
�% 0.07 0.02 0.05 0.08 0.38 3.92

SPARC instructions 107641162 12383949 15758277
% TOTAL 100.00 94.81 100.00 107.56 100.00 97.31

add 17.45 16.13 16.51 9.86 14.46 14.14
jmpl 9.09 8.68 0.14 0.30 0.22 0.22
or 1.08 0.61 0.54 4.63 3.48 3.36
sll 14.49 13.63 10.50 10.28 5.73 5.73
srl 1.47 1.42 3.17 3.86 0.15 0.15
sub 3.25 3.01 0.32 0.39 0.33 0.33
subcc 1.83 1.77 12.27 12.41 18.78 17.89
tcc 9.91 9.79
bcs 0.43 0.43 0.01 0.01 7.54 7.75
lddf 0.00 0.00 6.40 6.24 3.26 3.26
ldf 2.99 2.99 3.65 3.98 10.52 10.26
ldub 13.37 12.68 0.00 0.00 0.00 0.00
lduw 15.96 14.92 16.56 18.60 9.53 8.89
stf 1.46 1.46 0.83 1.16 5.37 5.37
stw 9.85 9.36 1.62 3.68 1.21 1.21

(Interval confidence is 90%)

56

Table 4.8: Results for lzw

Metric JDK JIT Toba
Unopt Opt Unopt Opt Unopt Opt

Static code size 4047 41452
% 100.00 100.00 100.00 101.05

Java bytecode 28009228
% TOTAL 100.00 100.96

arrayload 5.98 5.98
getfield 14.00 13.36
getstatic 0.00 0.00
dup 0.19 2.31
goto 0.57 1.07
if 5.18 6.17
ifcmp 2.36 1.37
invoke 7.01 7.01
load 11.02 1.27
loadn 19.55 27.91
store 5.94 1.32
storen 0.81 6.47

Cycles 544150042 193650000 151030549
% 100.00 100.92 100.00 93.40 100.00 91.49
�% 1.66 1.27 0.97 3.98 2.40 0.56
Instruction fetch stalls 16697542 12299277 22230129
% 100.00 156.95 100.00 112.29 100.00 48.69
�% 43.51 23.58 10.60 36.94 17.42 2.00
Data reads 144244856 26335439 15462242
% 100.00 97.39 100.00 98.64 100.00 96.52
�% 0.00 0.00 0.04 0.12 0.00 0.00
Data read misses 6052882 5647087 2472050
% 100.00 87.92 100.00 79.16 100.00 103.56
�% 3.68 4.14 0.95 2.20 3.65 2.49

SPARC instructions 440093811 84259742 68856767
% TOTAL 100.00 98.61 100.00 100.19 100.00 96.78

or 2.58 2.60 9.63 9.80 7.43 5.70
sll 11.69 10.84 2.38 2.38 2.45 2.46
subcc 2.71 2.65 7.16 7.16 16.09 15.79
be 2.46 2.42 1.31 1.33 2.15 0.20
bne 2.54 2.48 3.84 3.82 4.58 6.52
ldub 11.70 10.89 0.06 0.06 1.96 1.96
lduw 18.87 18.80 30.19 29.76 20.07 19.29
stw 10.83 10.86 6.95 6.94 3.90 3.61

(Interval confidence is 90%)

57

Table 4.9: Results for neural

Metric JDK JIT Toba
Unopt Opt Unopt Opt Unopt Opt

Static code size 15522 143284
% 100.00 100.00 100.00 97.08

Java bytecode 17898283
% TOTAL 100.00 96.37

arrayload 10.96 10.49
getfield 8.73 4.68
getstatic 0.46 0.23
dup 1.00 2.04
goto 0.47 3.02
if 0.23 0.64
ifcmp 3.94 3.53
invoke 3.26 3.26
load 8.87 4.87
loadn 26.14 29.20
store 0.50 0.11
storen 1.35 2.53

Cycles 398062740 239905427 184637033
% 100.00 98.58 100.00 99.57 100.00 93.76
�% 0.42 1.49 0.41 0.38 3.16 0.32
Instruction fetch stalls 7173133 3681935 5666500
% 100.00 134.95 100.00 106.79 100.00 87.90
�% 10.77 39.44 14.21 8.50 65.27 7.18
Data reads 89151848 36563097 19406875
% 100.00 95.90 100.00 96.37 100.00 94.79
�% 0.00 0.00 0.01 0.00 0.01 0.01
Data read misses 2154458 3537800 1745887
% 100.00 105.76 100.00 109.72 100.00 80.82
�% 0.30 0.31 0.27 0.24 3.97 4.91

SPARC instructions 373903754 231568134 148125611
% TOTAL 100.00 97.67 100.00 99.50 100.00 97.63

jmpl 6.00 5.83 3.31 3.31 4.95 4.95
or 3.98 3.93 6.61 6.66 7.89 7.32
sll 8.50 8.03 2.65 2.56 1.87 1.87
subcc 5.60 5.53 10.03 9.92 11.41 10.82
bcs 0.28 0.28 0.25 0.25 1.55 1.44
be 2.56 2.31 2.98 2.98 1.36 1.31
ldub 7.21 6.89 1.15 1.15 0.29 0.29
lduw 14.80 14.02 13.04 12.44 10.72 10.04
stw 9.01 8.64 4.78 4.77 5.20 5.37

(Interval confidence is 90%)

58

Table 4.10: Results for tiger

Metric JDK JIT Toba
Unopt Opt Unopt Opt Unopt Opt

Static code size 203584 1492852
% 100.00 100.00 100.00 99.76

Java bytecode 47945748
% TOTAL 100.00 112.08

arrayload 1.31 1.31
getfield 13.10 11.42
getstatic 0.07 0.06
dup 2.28 9.34
goto 1.76 2.10
if 4.34 4.78
ifcmp 4.90 4.46
invoke 4.44 4.44
load 11.49 9.02
loadn 27.83 29.77
store 3.96 5.43
storen 1.28 6.91

Cycles 937644876 434716771 236941544
% 100.00 108.12 100.00 101.11 100.00 99.94
�% 1.18 0.07 0.14 0.14 11.36 8.10
Instruction fetch stalls 15767832 13236768 16400467
% 100.00 160.43 100.00 166.02 100.00 122.41
�% 41.33 1.37 2.21 2.46 83.34 58.54
Data reads 221033626 62746891 21215154
% 100.00 103.81 100.00 97.01 100.00 100.08
�% 0.00 0.00 0.00 0.01 0.00 0.00
Data read misses 9887470 3092349 1247393
% 100.00 114.57 100.00 93.95 100.00 92.27
�% 0.21 0.11 0.08 0.26 1.08 20.29

SPARC instructions 780587970 332842011 137192464
% TOTAL 100.00 104.50 100.00 100.47 100.00 99.99

add 12.85 13.99 5.48 5.46 9.50 9.48
jmpl 7.01 7.76 5.03 5.02 7.34 7.34
or 2.66 2.66 8.04 9.01 8.29 8.50
sethi 2.28 2.27 6.10 6.10 12.91 12.73
sll 10.45 11.03 1.38 1.38 1.11 1.11
sub 2.43 2.85 1.82 1.82 0.49 0.49
subcc 4.24 4.21 9.32 9.31 9.76 9.48
be 2.78 2.67 3.18 3.16 2.08 2.07
ldub 10.47 11.07 0.08 0.08 0.16 0.16
lduw 16.08 16.55 17.49 16.91 14.96 14.97
stw 9.38 10.10 7.13 7.15 8.48 8.65

(Interval confidence is 90%)

59

5 RELATED WORK

Budimlic and Kennedy [1997] describe a bytecode-to-bytecode optimization approach

very similar to ours. They recover and optimize an SSA-based representation of each class

file, much as we do, performing dead code elimination and constant propagation on the

SSA, local optimizations on the control flow graph (local CSE, copy propagation, and “reg-

ister” allocation of locals), followed by peephole optimization. They do nothing like our

PRE over access path expressions. Their performance results are similar to ours, showing

significant improvements for JDK and JIT execution. In addition, they consider the effects

of two new interprocedural optimizations:object inliningandcode duplication. Similar

in some respects to the cloning and inlining approaches most prominently demonstrated

in Self [Chambers and Ungar 1989; Chambers et al. 1989; Chambers and Ungar 1990;

1991; Chambers 1992], these optimizations yield factors of two to five in performance

improvement. Such results are consistent with that earlier work on optimizations for Self.

Cierniak and Li [1997] describe another similar approach to optimization from Java

class files, involving recovery of sufficient high-level program structure to enable essen-

tially source-level transformations of data layouts to improve memory hierarchy utilization

for a particular target machine. Their results are also convincing, with performance im-

provements in a JIT environment of up to a factor of two.

Our reading of Cierniak and Li [1997] and Budimlic and Kennedy [1997] is unable to

determine to what extent they respect Java’s precise exception semantics and its constraints

on code motion. Still, both of these prior efforts are much more aggressive than us in the

transformations they are willing to apply. We hope that TBAA-based PRE for access ex-

pressions will produce results as spectacular as theirs when combined with more aggressive

interprocedural analyses, such as they describe.

60

Added evidence for this comes from Diwan et al. [1998] in their work with elimination

of common access expressions for Modula-3. Their results indicate that accesses are often

only partially-redundant across calls, while their optimizer only eliminates fully redundant

access expressions. Of course, our PRE-based approach eliminates partial redundancies by

definition. Diwan’s results for elimination of fully redundant accesses without interproce-

dural analysis are broadly consistent with ours.

61

6 CONCLUSIONS AND FUTURE WORK

Our results reveal the promise of optimization of Java classes independently of the

source-code compiler and the runtime execution engine. In particular, we have demon-

strated substantial improvements based on PRE over access path expressions, with some-

times dramatic reductions in memory accesses. Applying interprocedural analyses and

optimizations should yield even more significant gains as the context for PRE is expanded

across procedure boundaries, especially since Java programming style promotes the use of

many small methods whose intraprocedural context is severely limited.

We also plan to explore the impact of Java’s precise exception model and the associated

constraints on code motion. Relaxing the constraints may provide more opportunities for

optimization. If that is so, then a strong argument can be made that the precise exception

model unnecessarily restricts optimizers from obtaining useful performance improvements

for Java.

The implementation of further analyses and optimizations to BLOAT is under way and

we expect to make the tool publicly available as soon as it becomes stable. One applica-

tion domain we are now focusing on is analysis and optimization of Java programs in a

persistent environment [Atkinson et al. 1996]. The structure access optimizations we have

explored here should prove particularly fruitful in a persistent setting, where loads and

stores carry additional semantics, acting not just on virtual memory, but also on persistent

storage [Cutts and Hosking 1997].

BIBLIOGRAPHY

62

BIBLIOGRAPHY

ACKERMANN, W. 1928. Zum Hilbertschen Aufbau der reellen Zahlen.Math. Ann. 99,
118–133.

AHO, A. V., SETHI, R., AND ULLMAN , J. D. 1986.Compilers: Principles, Techniques,
and Tools. Addison-Wesley.

ALPERN, B., WEGMAN, M. N., AND ZADECK, F. K. 1988. Detecting equality of values
in programs. See POPL [1988], 1–11.

APPEL, A. W. 1998. Modern Compiler Implementation in Java. Cambridge University
Press.

ATKINSON, M. P., DAYN ÈS, L., JORDAN, M. J., PRINTEZIS, T., AND SPENCE, S. 1996.
An orthogonally persistent Java.ACM SIGMOD Record 25,4 (Dec.), 68–75.

BOEHM, H.-J. AND WEISER, M. 1988. Garbage collection in an uncooperative environ-
ment.Software: Practice and Experience 18,9 (Sept.), 807–820.

BRAHNMATH , K. J. 1998. Optimizing orthogonal persistence for Java. M.S. thesis,
Purdue University.

BRIGGS, P., COOPER, K. D., HARVEY, T. J., AND SIMPSON, L. T. 1997. Practical
improvements to the construction and destruction of static single assignment form.
Submitted for publication.

BRIGGS, P., COOPER, K. D., AND SIMPSON, L. T. 1997. Value numbering.Software:
Practice and Experience 27,6 (June), 701–724.

BRIGGS, P., COOPER, K. D., AND TORCZON, L. 1994. Improvements to graph coloring
register allocation.ACM Trans. Program. Lang. Syst. 16,3 (May), 428–455.

BUDIMLIC , Z. AND KENNEDY, K. 1997. Optimizing Java: Theory and practice.Soft-
ware: Practice and Experience 9,6 (June), 445–463.

CHAITIN , G. J. 1982. Register allocation and spilling via graph coloring. In Proceedings
of the ACM Symposium on Compiler Construction (Boston, Massachusetts, June).
ACM SIGPLAN Notices 17,6 (June), 98–105.

63

CHAMBERS, C. 1992. The design and implementation of the SELF compiler, an opti-
mizing compiler for object-oriented programming languages. Ph.D. thesis, Stanford
University.

CHAMBERS, C. AND UNGAR, D. 1989. Customization: Optimizing compiler technology
for SELF, a dynamically-typed object-oriented programming language. In Proceed-
ings of the ACM Conference on Programming Language Design and Implementation
(Portland, Oregon, June).ACM SIGPLAN Notices, 146–160.

CHAMBERS, C. AND UNGAR, D. 1990. Iterative type analysis and extended message
splitting: Optimizing dynamically-typed object-oriented programs. In Proceedings of
the ACM Conference on Programming Language Design and Implementation (White
Plains, New York, June).ACM SIGPLAN Notices 25,6 (June), 150–164.

CHAMBERS, C. AND UNGAR, D. 1991. Making pure object oriented languages practical.
In Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (Phoenix, Arizona, Oct.).ACM SIGPLAN Notices 26,11
(Nov.), 1–15.

CHAMBERS, C., UNGAR, D., AND LEE, E. 1989. An efficient implementation of Self,
a dynamically-typed object-oriented language based on prototypes. In Proceedings
of the ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications (New Orleans, Louisiana, Oct.).ACM SIGPLAN Notices 24,10 (Oct.),
49–70.

CHOW, F., CHAN, S., KENNEDY, R., LIU, S.-M., LO, R., AND TU, P. 1997. A new
algorithm for partial redundancy elimination based on SSA form. In Proceedings of
the ACM Conference on Programming Language Design and Implementation (Las
Vegas, Nevada, June).ACM SIGPLAN Notices 32,5 (May), 273–286.

CIERNIAK , M. AND LI, W. 1997. Optimizing Java bytecodes.Concurrency: Practice
and Experience 9,6 (June), 427–444.

CLICK , C. 1995. Global code motion/global value numbering. In Proceedings of the
ACM Conference on Programming Language Design and Implementation (La Jolla,
California, June).ACM SIGPLAN Notices 30,6 (June), 246–257.

CMELIK , B. AND KEPPEL, D. 1994. Shade: A fast instruction-set simulator for execution
profiling. In Proceedings of the ACM Conference on the Measurement and Modeling
of Computer Systems(May). 128–137.

COOPER, K. AND SIMPSON, L. T. 1995. SCC-based value numbering. Tech. Rep.
CRPC-TR95636-S, Rice University. Oct.

CUTTS, Q. AND HOSKING, A. L. 1997. Analysing, profiling and optimising orthogonal
persistence for Java. InProceedings of the Second International Workshop on Persis-
tence and Java(Half Moon Bay, California, Aug.), M. P. Atkinson and M. J. Jordan,
Eds.

64

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K.
1991. Efficiently computing static single assignment form and the program depen-
dence graph.ACM Trans. Program. Lang. Syst. 13,4 (Oct.), 451–490.

DIWAN , A., MCKINLEY, K. S., AND MOSS, J. E. B. 1998. Type-based alias analy-
sis. In Proceedings of the ACM Conference on Programming Language Design and
Implementation (Montr´eal, Canada, June).ACM SIGPLAN Notices 33, To appear.

ENBODY, R. 1998. Perfmon User’s Guide. Michigan State University.
http://web.cps.msu.edu/�enbody/perfmon/index.html.

GERLEK, M. P., STOLTZ, E., AND WOLFE, M. 1995. Beyond induction variables:
detecting and classifying sequences using a demand-driven SSA form.ACM Trans.
Program. Lang. Syst. 17,1 (Jan.), 85–122.

GOSLING, J., JOY, B., AND STEELE, G. 1996. The Java Language Specification.
Addison-Wesley.

GOSLING, J., YELLIN , F., AND THE JAVA TEAM. 1996.The Java Application Program-
ming Interface. Vol. 1: Core Packages. Addison-Wesley.

HAVLAK , P. 1997. Nesting of reducible and irreducible loops.ACM Trans. Program.
Lang. Syst. 19,4 (July), 557–567.

HENNESSY, J. 1981. Program optimization and exception handling. InConference
Record of the ACM Symposium on Principles of Programming Languages(Williams-
burg, Virginia, Jan.). 200–206.

JAVA SOFT. 1997.Java Core Reflection API and Specification.

LARUS, J. R. AND HILFINGER, P. N. 1988. Detecting conflicts between structure ac-
cesses. In Proceedings of the ACM Conference on Programming Language Design
and Implementation (Atlanta, Georgia, June).ACM SIGPLAN Notices, 21–34.

LENGAUER, T. AND TARJAN, R. E. 1979. A fast algorithm for finding dominators in a
flowgraph.ACM Trans. Program. Lang. Syst. 1,1 (July), 121–141.

LINDHOLM , T. AND YELLIN , F. 1996.The Java Virtual Machine Specification. Addison-
Wesley.

MOREL, E. AND RENVOISE, C. 1979. Global optimization by suppression of partial
redundancies.Communications of the ACM 22,2 (Feb.), 96–103.

MUCHNICK, S. S. 1997.Advanced Compiler Design and Implementation. Morgan Kauf-
mann.

PALSBERG, J.AND SCHWARTZBACH, M. I. 1994.Object-Oriented Type Systems. Wiley.

65

POPL 1988.Conference Record of the ACM Symposium on Principles of Programming
Languages(San Diego, California, Jan.).

PROEBSTING, T. A., TOWNSEND, G., BRIDGES, P., HARTMAN , J. H., NEWSHAM, T.,
AND WATTERSON, S. A. 1997. Toba: Java for applications – a way ahead of time
(WAT) compiler. InProceedings of the Third USENIX Conference on Object-Oriented
Technologies and Systems(Portland, Oregon, June). USENIX.

PURDOM, P. W. J.AND MOORE, E. F. 1972. Algorithm 430: Immediate predominators
in a directed graph.Communications of the ACM 15,8 (Aug.), 777–778.

ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1988. Global value numbers and
redundant computations. See POPL [1988], 12–27.

SIMPSON, L. T. 1996. Value-driven redundancy elimination. Ph.D. thesis, Rice Univer-
sity, Houston, Texas.

STOLTZ, E., GERLEK, M. P., AND WOLFE, M. 1994. Extended SSA with factored use-
def chains to support optimization and parallelism. InProceedings of the 27th Annual
Hawaii International Conference on System Sciences. 43–52.

SUNSOFT. 1997.Java On Solaris 2.6: A White Paper.

TOBA. 1998. Toba: A Java-to-C translator. http://www.cs.arizona.edu/sumatra/toba.

WEGMAN, M. N. AND ZADECK, F. K. 1991. Constant propagation with conditional
branches.ACM Trans. Program. Lang. Syst. 13,2 (Apr.), 181–210.

WOLFE, M. 1996. High Performance Compilers for Parallel Computing. Addison-
Wesley.

