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ABSTRACT

McGachey, Philip. M.S., Purdue University, December, 2005. An Improved Generational
Copying Garbage Collector. Major Professor: Antony Hosking.

Garbage collection frees the programmer from the responsibility of tracking dynam-

ically allocated memory. As an increasingly popular element of modern programming

languages, it is essential that garbage collection be performed efficiently. This thesis in-

vestigates a new method by which garbage collection can be performed.

The algorithm described combines a standard generational copying collector with a

mark and compact collector. The result is a generational copying collector that operates

with a smaller copying reserve overhead than traditional Appel-style collectors, while

maintaining correctness in the worst case. When sufficient objects survive a collection, a

compacting collection ensures that all data are accommodated.

We have implemented this new algorithm within the frameworkof Jikes RVM and

MMTk. For most benchmarks examined, our experiments show that performance is com-

parable or better to a standard generational copying collector.



1

1 INTRODUCTION

The run time performance of a generational copying garbage collector can be improved

by reducing the size of the copy reserve.

The recent popularity of managed languages such as Java and C# have led to a great deal

of research into the performance of runtime systems. A majorcomponent of any such

environment is the garbage collector. This document presents a new technique through

which garbage collection performance can be improved.

1.1 Garbage Collection

Garbage collection is the method by which dynamically allocated memory is automat-

ically reclaimed. Programming languages with garbage collection free the programmer

from the responsibility of tracking memory allocation, making code simpler to write. As

well as reducing memory leaks, garbage collection eliminates whole classes of errors, such

as dangling references or double releasing. Finally, garbage collection simplifies software

engineering. In traditional languages such as C, it is necessary for programmers to nego-

tiate which of them has the responsibility for freeing memory passed between modules.

Since garbage collection has a global view of liveness this is no longer necessary.

1.2 A New Algorithm

This document presents a new garbage collection algorithm.It combines elements of a

generational copying collector with a compacting collector. The resulting algorithm takes

advantages of the positive features of a generational copying collector such as improved
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partitioning objects by age, automatically compacting objects for improved spatial locality

and fast allocation.

The new collector is able to reduce the space required for thecopy reserve, alleviating

one of the major drawbacks of the generational copying collector. The copy reserve in

the new algorithm is set significantly smaller than the maximum required reserve. In the

majority of cases, this presents no problem, since relatively few objects survive a garbage

collection. In the rare cases where more objects survive than can fit in the copy reserve,

correctness is maintained by the use of a compacting collector.

1.3 Summary Of Results

The collector was implemented and its performance examined. The results chapter of

this document outlines the findings. In the majority of cases, performance of the new col-

lector with suitable parameters was better than both the standard generational copying col-

lector and the generational mark and sweep collector. When performance was degraded,

it was often the result of an inappropriate copy reserve size. Only on one benchmark was

performance seen to be uniformly poorer than the traditional algorithms.

1.4 Outline

The remainder of this thesis is structured as follows: Chapter 2 outlines the background

upon which the new garbage collection algorithm has been built. Chapter 3 discusses the

design of the collector, while Chapter 4 gives some details on the implementation. Chap-

ter 5 describes some experiments run to measure the performance of the new collector.

Chapter 6 concludes and suggests some possible future research directions resulting from

this work.
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2 BACKGROUND

2.1 Uniprocessor Tracing Garbage Collection

Automatic dynamic memory management, orgarbage collectionhas been a topic of

research for several decades [1]. The recent popularity of managed languages such as Java

and C# has provoked new interest in devising efficient garbage collection algorithms.

While a great many techniques exist for garbage collection they all have the same

high-level specification. Any memory location that can be reached transitively from a set

of root pointers is considered to be live. Any object outsidethe live set is considered to

be garbage, and can be reclaimed. The garbage collection algorithm is responsible for

determining which objects are garbage, and for returning their storage space to the system

to be reused by later allocations.

While many algorithms also exist for parallel garbage collection, this work centers

around single-processor tracing techniques.

2.1.1 Motivation

Garbage collection offers several clear advantages to software engineers over man-

ual dynamic memory management. By reclaiming memory automatically once it is no

longer required, a garbage collected system is immune to whole classes of bugs that have

previously caused havoc in large systems.

Memory leaksresult when programmers allocate memory but forget to release it once

it is no longer necessary. This memory then becomes unavailable to the system. Even if a

series of memory leaks does not cause a program to crash due tomemory exhaustion, they

can have an adverse effect on performance. Chunks of allocated but unused memory cause

fragmentation, which destroys spatial locality. This can result in poor cache performance
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or an increase in paging. A garbage collected system avoids memory leaks by removing

the responsibility of deallocating memory from the programmer. Once a memory location

is determined to be unreachable, it is returned to the system.

Another common source of errors in manually managed memory is that ofdangling

references. If a programmer accidentally frees a region of memory prematurely, any sub-

sequent attempt to access that memory location may produce an error. At best, this error

may cause the system to fail due to a segmentation violation.A worse case would be

if the memory location had been overwritten with other data.Reading or writing to this

location will cause the program execution to be incorrect, but may not cause the program

to terminate.

Dangling reference bugs can be difficult to detect, since memory allocation patterns

may vary from one program execution to another. It may be the case that the memory

location pointed to by a dangling reference is not overwritten immediately, causing some

dereferences to return the intended result. Automatic memory management eliminates

dangling pointer bugs by only deallocating memory once no live reference to it exists.

Since it is guaranteed that any pointer usable by the programmer points to valid memory,

dangling pointer dereferences become impossible.

Garbage collection is also of benefit when constructing large, modular systems. In

manually memory-managed programs, it is necessary for programmers to determine who

has the responsibility for deallocating a piece of memory. This may occur in a different

module from that in which the memory was allocated. Confusion between programmers

can lead to objects being released multiple times, or not at all. The use of garbage collec-

tion alleviates this problem; objects are freed according to a global view of the system. As

such, no programmer is responsible for deallocation.

Additionally, the use of a garbage collector can simplify allocation. When memory is

manually allocated and freed,fragmentationis a common problem. This arises when an

object is deleted from the middle of an allocated region. Unless the allocator is able to

place a new object of equal size in the gap, the space will be wasted. This problem has led

to the use offree list allocatorswhich interleave old and new objects to reduce fragmen-
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tation [2]. While some garbage collected systems require the use of a free list allocator,

many others perform compaction as part of their execution, eliminating the problem of

fragmentation.

2.1.2 Tracing Collectors

Tracing garbage collectors determine which objects are reachable from the program

roots. The roots of a program are defined as the programmer’s entry points to the graph

of dynamically allocated data. Generally, the roots will include pointers held in the stack

or registers, as well as static or global variables. Tracingalgorithms assume that all live

objects can be reached through these roots, or through a chain of objects beginning at a

root.

Reachability offers an approximation of liveness; objectsthat can be reached transi-

tively from the roots are considered to be live, those which cannot be reached are garbage.

It may be that an object determined by this method to be live isactually no longer required.

For example, the program may have finished operating on a datastructure, but a reference

to it still exists through a pointer that has not yet been overwritten. While reachability is a

conservative approximation of liveness, it guarantees that a live object is never considered

to be garbage.

2.1.3 Mark and Sweep Collectors

A mark and sweep collector traces through the heap in order todetermine which ob-

jects are no longer live. These objects are then collected, and the space they occupied can

be reused.

During the tracing phase, every reachable object is marked.Generally this is done

through setting a bit in the object header, although a separate bitmap may also be main-

tained. Once the tracing (or mark) phase has completed, all live objects have been marked,

while all garbage objects have not. The second phase of the collection, the sweep, is then
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performed. The heap is scanned linearly, and all unmarked objects encountered are re-

claimed.

A mark and sweep collector allocates using a free list allocator. This is necessary

since the heap is never compacted, and so will become fragmented over time. Whenever a

memory request is made, the allocator locates space of an appropriate size into which the

new object can be placed. This allocation method can be time-consuming and, in extreme

cases, can fail if a large enough space cannot be found even though sufficient memory

exists in the system. This problem can be alleviated throughthe use of segregated free

lists where multiple free lists sorted by size are maintained, and objects are allocated to

the smallest space available.

Additionally, free list allocators are unable to exploit spatial and temporal locality.

Since objects created at the same time may well be accessed together, it would be prefer-

able for them to be located close together. This way when one of them is loaded into the

cache, the others may be brought in at the same time. However,since the free list allocator

places objects wherever they fit it is unable to take advantage of this property.

2.1.4 Copying Collectors

Copying, orscavengingcollectors separate the heap intospaces, and copy live objects

between them. Once the live objects have been evacuated froma space, all objects re-

maining in that space are garbage, and can be reclaimed. The simplest copying collector

uses two spaces, moving live object from one to the other whenmemory is exhausted; one

of the most commonly used algorithms is due to Cheney [3]. Thechoice of the number of

spaces in the heap influences collection frequency and memory utilization.

When a copying collector is used, memory in the heap can be allocated sequentially

in memory. Each object allocated is placed directly after the previous object, as shown

in Figure 2.1(a). This system has several advantages. First, the allocation sequence is

very simple. In order to allocate space it is necessary only to increment a pointer. When
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copying, objects are again allocated sequentially. As a result, the heap is automatically

compacted on every collection.

(a) Allocation

(b) Start of collection

(c) Copying objects into the to space

(d) Continuing after collection

Figure 2.1. Semispace copying collector

When the first semispace is filled, as shown in Figure 2.1(b), acollection is triggered.

Live objects are discovered by tracing, and are indicated indark gray. The live objects are

then copied from thefrom spaceinto theto space, as in Figure 2.1(c). When all the live

objects have been copied, the roles of the from space and to space are reversed. Figure

2.1(d) shows allocation continuing in the new from space.

An additional benefit with a copying collector is the opportunity to optimize the place-

ment of objects for cache performance. As a simple heuristic, objects that refer to one

another may be referenced within a short period of time. Whenmoving such objects, the

collector may try to place them in the same cache block [4].
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Copying Overheads

While copying collectors have significant advantages due totheir ability to lay out

data, they come with some substantial overheads. The most obvious of these is the need

to move objects. Copying data is an expensive operation and can dominate the pause time

of the garbage collector. This is particularly true for simple copying collectors that move

all live objects on each collection.

In addition, it is necessary to update all references to an object that has moved during

a collection. Failure to do so leads to dangling references and incorrect program behavior.

References are commonly updated through the use offorwarding pointers; when an object

is copied to a different space its original location is overwritten with a pointer to its new

location. This way any subsequent references discovered bythe collector can be updated

with the new address.

Copy Reserve

The major drawback to copying collectors, however, is not the overheads of moving

data or updating references. In the worst case, it is possible for all objects to survive a

garbage collection. In order to accommodate this eventuality, sufficient space must be set

aside to copy objects. This space is referred to as thecopy reserve. In the case of a simple

two-space collector the copy reserve accounts for half the total heap size. In general, the

size of the copy reserve must be equal to the size of the space being collected in case all

objects survive.

The copy reserve reduces the effective size of the heap. As a result, the garbage col-

lector must be triggered more frequently; since objects cannot be allocated to the copy re-

serve, fewer objects can be allocated before available memory is exhausted. A large copy

reserve means that less space is available for allocation, and when the available memory

is decreased, the collector must run more frequently.
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2.1.5 Mark and Compact Collectors

Mark and compact collectors aim to gain the memory layout advantages of a copying

collector while eliminating the need for a copy reserve. Thetracing phase of the mark

and compact collector is the same as in the mark and sweep case. Once it has completed,

all live objects are marked and all garbage objects are not. In the second phase, however,

live objects are compacted as opposed to dead objects collected. All marked objects are

relocated towards the “front” of the heap (where the front ofthe heap is defined as low

memory addresses, while the back is high memory addresses).In this way, garbage objects

are overwritten and live objects retained.

Compacting collectors eliminate the fragmentation found in mark and sweep collec-

tors. Since no gaps are left between live objects it is not necessary to use a free list allo-

cator. A simple bump-pointer instead can be used, allocating the first new object directly

after the final compacted object. Additionally, since objects are slid towards the front of

the heap, allocation order is maintained. This offers better spatial locality than with a free

list allocator.

Since objects are not moved from one space to another, a copy reserve is not necessary.

In the worst case, where all objects survive, a mark and compact collector simply does

not perform any compaction. As a result, the whole heap can beused by the application

without the overhead of the copy reserve. Also, while the copying overhead of the copying

collector remains, it is likely to be present to a lesser degree. Long-lived objects will

cluster towards the start of the space, having been moved there in previous collections. As

a result, portions of the heap may not need to move in some collections.

While the design of a compacting collector would appear to beoptimal, the imple-

mentation offers some difficulties. Since objects move inside the heap, it is necessary to

maintain forwarding pointers, as in a copying collector. However this proves to be more

of a challenge in the compacting case.

In a copying collector, the address to which an object has been moved is stored in its

old location. This way, any subsequent references to that object can be updated. This is
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possible in a copying collector because the old space is guaranteed not to be discarded

before the collection completes. This is not the case in a compacting collector. It is

possible for a forwarded object to be overwritten before allreferences to it have been

updated.

Updating references in a compacting collector without having to maintain a large ex-

ternal data structure has been the focus of some research. Generally these algorithms re-

quire multiple additional passes over the heap, leading to longer pause times which make

compacting collectors impractical.

2.2 Reference Chaining

In [5], Jonkers proposed a technique for managing forwarding pointers during a com-

pacting collection. This algorithm has the advantage over others in that it tracks forward-

ing pointers without allocating additional storage. It is performed through a technique of

reference chaining.

The insight behind reference chaining is that in order to properly update pointers it is

necessary to record either the object being moved or the references to that object. Tradi-

tional approaches track the former, and references are updated in a scan of the heap. The

chaining algorithm instead associates references to an object with that object itself, and

updates pointers as soon as the destination of the object is known.

The algorithm requires that a word of the object be moved, andthat one bit in that

word be available for the algorithm’s use. It involves two passes over the heap: one to

update forward references, the other to move objects and update backward references. An

illustration of the algorithm is shown in Figure 2.2.

Object O is going to be moved as part of the compaction phase. Objects A, B and C

hold references to object O. These are forward pointers, since objects A, B and C are at

lower addresses in the heap than object O. Similarly, objects X, Y and Z hold backward

references to O, since they are located at higher addresses.For this illustration, the space

in which each object is allocated is irrelevant.
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(a) Before chaining

(b) Forward references chained

(c) After first sweep

(d) After completion of chaining

Figure 2.2. Jonkers chaining algorithm
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One field of object O, shown in gray in Figure 2.2(a), is available for use by the algo-

rithm. This may be a word in the header, such as a hash code. Onebit of the available

word must be reserved for the chaining algorithm.

The heap is scanned from low addresses to high addresses. Thefirst object encountered

is object A. Upon tracing the references in A, it is discovered that one points to object O,

which has been marked to move. Once object O has moved, it willbe necessary for the

reference in A to be updated. The available word of O is storedin the field of A that

formerly contained a pointer to O. The available bit is set, indicated by a black square. A

pointer to the field of A is stored in the location of the available word of O. The bottom bit

of the pointer to the field of A is also set.

The next object encountered is object B. Upon discovering the reference to marked

object O, the available word is checked. Since the bottom bitof the word is set, it can be

determined that a chained reference to O already exists. Thepointer to the field in A is

copied to the field in B, with its bottom bit unset. The available word in O is set to point to

the field of B, with its bottom bit set. The same process is applied to object C. The result

of these operations is shown in Figure 2.2(b).

The scan now encounters object O. Since O is marked, the available word is checked.

The set bottom bit indicates that references are chained. Atthis point it is known to which

address object O will be moved, since all objects to be compacted before it have been

scanned. The chain of references can then be traversed, witheach field updated to point

to O′, the location to which O will move. The end of the chain is reached when a field

contains a word with its lowest bit set, which is the data fromthe available word of O.

This data is replaced.

The scan continues, and encounters object X. X is chained to Oin the same way as

before, as are objects Y and Z. At the end of the first scan, the heap is as shown in Figure

2.2(c).

The second scan compacts the objects. Since at this point objects A, B and C no longer

point to object O, the first object of interest is object O. Since it is marked, it is moved to
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locationO′. The chained references to objects X, Y and Z are updated in the same way as

before. The final outcome is shown in Figure 2.2(d).

2.2.1 Generational Collectors

Generational collectors are a class of garbage collector that exploit the age of objects

to improve performance. They are based on thegenerational hypotheses: theweak gen-

erational hypothesisstates that most objects die young [6], while thestrong generational

hypothesisstates that the older an object is, the less likely it is to die. Generational collec-

tors have been shown to generally outperform their non-generational counterparts [7], and

are today the most commonly used type of collector for the majority of systems.

Generational Collector Design

The heap managed by most Generational collectors is dividedinto two or more spaces,

or generations. The simplest generational collectors havea smallnurserywhere object are

allocated, and a largermaturespace where they arepromotedafter surviving a collection.

The nursery space is generally allocated to by a simple bump-pointer. Since the ma-

jority of allocation in the collector is to the nursery, thissimplifies the allocation process.

Once an object has survived a nursery collection, it is promoted to the mature space. Col-

lection within the mature space can be performed using a different algorithm from the

nursery. For example, a Generational Mark Sweep collector allocates objects in the nurs-

ery using a bump pointer, but when they are copied to the mature space uses a free list

allocator. The mature space is then managed by a mark and sweep collector.

Aside from the basic mark and sweep or copying collectors, elaborate mature space

management strategies have been proposed [8] [9] [10]. These may use multiple older

generations in order to better classify objects by age [11].Others attempt to allocate

connected objects together to improve cache performance.

The main benefit of splitting the heap into generations is that it is no longer necessary

to collect the entire heap in a single operation. By collecting only the nursery space,
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garbage collection pauses can be greatly decreased. However since the majority of objects

in the nursery are garbage (due to the minor generational hypothesis), thisminorcollection

frees more space than a collection of an equivalent-sized region of a non-segregated heap.

When performing a minor collection it is desirable to scan aslittle of the heap as

possible. Scanning the mature space would invalidate many of the advantages of collecting

only the nursery. However, it is possible for objects withinthe mature space to refer to

objects in the nursery. Without taking these references into account, live objects may be

considered garbage, leading to dangling references.

To maintain correctness while eliminating the requirementto scan the whole heap, gen-

erational collectors maintainremembered sets. These are lists of the locations of pointers

in the mature spaces to the nursery. If these sets are complete, it is not necessary to scan

the mature space; the collector knows where any relevant pointers are located. Traversing

the remembered sets generally involves inspecting far fewer locations than a scan of the

heap would. While it is possible for references to point fromthe mature space to the nurs-

ery, the common case is for references to go from new objects to old, rather than the other

way.

The data in the remembered sets can be kept accurate through virtual memory mecha-

nisms (trapping page faults), or by use of awrite barrier. This is a small piece of code that

executes whenever a pointer to a location in the heap is overwritten. The barrier is inserted

by the compiler, and is transparent to the programmer. A typical generational barrier will

include a check to determine if the location being written tois inside the mature space, and

if the destination of the pointer is in the nursery. If so, it will record the pointer location in

the remembered set to be scanned by the garbage collector.

Write barriers can be made more efficient by using an inlined “fast path” for the com-

mon case where no remembered set entry is required [12]. Whena pointer crosses the

generational boundary, an out-of-line “slow path” is executed.



15

2.3 Appel’s Generational Copying Collector

Appel’s generational copying collector uses a variable-sized nursery and a single ma-

ture generation [13]. New objects are allocated to the nursery using a bump-pointer allo-

cator. When the nursery is full, a minor collection is triggered in which live objects are

copied to the mature space. When the mature space fills, spaceis reclaimed by a major

copying collection, similar to a semi-space collection.

2.3.1 Heap Layout

(a) Heap overview

(b) Initial heap layout

(c) Allocation

Figure 2.3. Heap layout in an Appel-style collector

The heap layout for Appel’s collector is shown in fig 2.3(a). The copy reserve size is

equal to the sum of the nursery size and the mature space size.

The size of the nursery varies depending on the occupancy of the mature space. Ini-

tially, when there are no objects in the mature space, the nursery takes up half of the heap.

This is all the space available, after taking into account the copy reserve. This is shown in

Figure 2.3(b).

All allocation in the Appel collector is performed in the nursery. As shown in Figure

2.3(c), allocation is performed sequentially by a bump pointer.
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(a) Start of minor collection

(b) Promotion of live objects

(c) Resizing nursery and copy reserve

Figure 2.4. Minor collection in an Appel-style collector

2.3.2 Minor Collections

When the allocation pointer reaches the end of the nursery, aminor collection is re-

quired. In this process, all reachable objects (indicated in dark gray in Figure 2.4(a)) are

located. They are then transferred into the copy reserve, stored sequentially, as in Figure

2.4(b). The space occupied by these objects becomes the mature space. The nursery is

resized to accommodate the mature space, again leaving a copy reserve equal to the sum

of the nursery and mature spaces. The result is shown in Figure 2.4(c).

2.3.3 Major Collections

When it is detected that a minor collection will cause the nursery to shrink below

a predetermined threshold, a collection of the mature spaceis triggered. Figure 2.5(a)

shows the heap layout on triggering of a major collection. Asbefore, live objects are

shown in dark gray. All live objects from both the mature space and nursery are copied

into the reserve, as shown in Figure 2.5(b). The space occupied by these objects becomes

the mature space and is moved to the front of the heap. The nursery is then resized to

account for the new mature space size, as shown in Figure 2.5(c).
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(a) Start of major collection

(b) Copying live objects

(c) Resizing nursery and copy reserve

Figure 2.5. Major collection in an Appel-style collector

2.4 Jikes RVM and MMTk

Jikes Research Virtual Machine [14] is an open-source, highperformance Java virtual

machine. It was initially developed at IBM, before being released to the research commu-

nity. Jikes RVM is written in Java.

The Memory Management Toolkit (MMTk) [15] is a portable memory management

framework written in Java. MMTk handles all memory-relatedoperations within Jikes

RVM. It offers implementations of a series of algorithms, aswell as commonly used com-

ponents designed to facilitate the development of new algorithms. Since all collectors im-

plemented in MMTk share a common underlying framework, performance comparisons

can be made isolated from differences between virtual machine implementations.

2.4.1 Java Language Extensions

Since Jikes RVM and MMTk combine to form a complete virtual machine written

in Java, there is a need for extensions to the Java language tosupport some essential

functions. For example in MMTk it is necessary to access pointers, something which is

not permitted in Java. To overcome these limitations, certain classes are defined that the
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Jikes RVM compilers convert into native operations. Without these extensions, it would

not be possible to write a garbage collector in Java.

2.4.2 Compilation Framework

Jikes RVM uses a variety of compilation strategies depending on the level of optimiza-

tion required. The most aggressive of these is the adaptive framework.

The adaptive compiler determines through sampling which methods are “hot”, that is

which methods are called most often. Based on the result of this sampling, some methods

are optimized further than others [16]. This means, however, that the performance of Jikes

RVM at the highest optimization level is non-deterministic, since differences in sampling

will cause different methods to be optimized.

2.4.3 MMTk Design

MMTk provides a framework of building blocks upon which memory management

algorithms can be implemented. It also supplies implementations of common garbage col-

lection algorithms, allowing comparisons to be made without necessitating re-implementation.

Additionally, since all systems build upon a common framework any measured differences

in performance can be attributed to variations in algorithm, rather than details of underly-

ing implementation.

A garbage collector in MMTk is defined by an implementation ofa plan. This class

determines, among other things, the spaces in the heap, the allocators used for each, and

the strategy by which they are garbage collected. Plans generally build upon a template

which provides basic functionality for a class of collector, such as reference counting,

tracing or generational.

The MMTk heap is divided up into variousspaces, determined by the plan. All im-

plementations share some common spaces: theboot spacestores precompiled classes and

data structures established when the virtual machine is built; the immortal spacestores

objects that are live throughout the execution of the system, and as such is never collected;
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themetadata spaceholds temporary memory management-related objects, and isnot used

in determining liveness inside the heap; and thelarge object space, or LOS, is used to store

objects larger than a certain threshold. The LOS is managed by a free-list allocator. The

advantage of storing large objects separately from the restof the heap is that it removes

the need to move large objects when a copying collector is used.

Further spaces are defined inside the plan. MMTk provides implementations of commonly-

used types of space such as a copying space, mark sweep space or reference counting

space. Thus in order to implement a simple semi-space copying collector, it is necessary

for the plan simply to create two copying spaces and determine the criteria under which

objects are transferred from one to the other.
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3 AN IMPROVED GENERATIONAL COPYING COLLECTOR

Generational collectors are today used in a wide range of settings, from production virtual

machines to C/C++ compilers . They have been shown to offer significant performance

advantages over their non-generational counterparts. In this section a design is presented

for a new generational copying collection algorithm. This collector aims to improve the

performance of a standard copying collector by reducing theoverhead required for the

copy reserve. By reducing the copy reserve overhead it aims to decrease the collection

frequency, thus decreasing execution time. It combines a generational copying collector

with a compacting collector.

3.1 Motivation

When selecting a generational garbage collection algorithm, certain limitations must

be taken into account.

Copying collection algorithms offer improved spatial locality, since data is copied in

traversal order. This can improve cache behavior and lead toreduced paging. Additionally,

fragmentation is not a concern since the heap is compacted whenever objects are copied.

However, copying collectors come with a significant space overhead. Since in the worst

case all objects may have to be copied, a significant portion of the heap must be kept as

a copy reserve. This increases the frequency of collectionsand limits the minimum heap

size in which the collector can operate.

Mark and sweep algorithms do not have the limitation of requiring a copy reserve. As

a result, a mark and sweep collector can run in a smaller heap than a copying collector.

Additionally a mark and sweep collector will require fewer garbage collections when heap

sizes are equal. However, mark and sweep collectors do not gain the spatial locality nor

compaction benefits of a copying collector.
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The collector presented in this work aims to address these limitations, providing the

benefits of a copying collector while avoiding the overhead of the copy reserve. It is based

on the generational copying collector first presented by Appel [13].

3.2 Algorithm Overview

The copy reserve in Appel’s generational copying collectorconsumes half the heap

but, as shown, is rarely fully used. We introduce a method of reducing this space overhead

substantially.

We determine the copy reserve to be a percentage of the maximum possible reserve.

It can be individually specified for the nursery and mature space to allow tailoring for

individual workloads. For example if a benchmark is found tohave an unusually high

nursery survival rate, the nursery copy reserve can be increased to compensate.

In the vast majority of cases, a well-chosen set of copy reserve sizes will accommodate

all surviving objects. However, in all algorithms it is necessary to account for worst-case

performance. In this instance, the worst case is where the survivors during a collection

overflow the allocated copy reserve. In this case, a secondary compaction technique is

used. Rather than copying survivors from the nursery to the mature space, or from the old

mature space to the new mature space in a major collection, objects are instead compacted,

and then moved en-masse. This is performed without allocating further pages of memory.

This fallback mechanism provides correctness in face of worst-case behavior.

3.3 Fallback Technique

Should the copy reserve prove to be insufficient during a collection, a compaction al-

gorithm is activated. Since this compaction phase occurs only during a garbage collection,

and when no further copy reserve space remains, it is vital that no allocation occur until

space can be made available. The compacting algorithm is designed to operate only over

memory already assigned to the process, ensuring that the maximum heap size is never

violated.



22

(a) Initial heap state

(b) Compacted objects

(c) Continuing after compaction

Figure 3.1. Compacting collection

The state of the heap upon entering a compaction phase is shown in Figure 3.1(a). The

black objects in the nursery have been forwarded to the reserve, which is now full. The

remaining dark gray objects in the nursery are live, but haveno place to be copied.

The remaining live objects in the nursery are then compactedto the front of the nursery,

as shown in Figure 3.1(b). The white space in the nursery is now free. The copy reserve

and compacted nursery objects then become part of the maturespace, and the free space

is divided between a new nursery and a new copy reserve, as shown in Figure 3.1(c).

The situation where a compaction is required in the mature space is analogous.

3.4 Related Work

Velascoet al make use of the same observation as in this work [17]. They determine

that the survival rate of collections is far below the space normally allocated as copy

reserve in an Appel style collector.

Their work differs from the present work in several ways. They adopt a strategy of

dynamically tuning the nursery copy reserve size, while this work sets mature and nursery

copy reserves constant during execution. They suggest several simple heuristics to deter-
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mine the optimal copy reserve size. In each case, the prior history of the survival rate

is combined with a “security margin” at each collection to determine the space available

for the next series of allocations. A danger of this approachis that it may lead to over-

estimation of the copy reserve requirement, as a single unusually high survival rate can

poison the heuristic.

Additionally, the work described by Velascoet al reduces only the nursery copy re-

serve. This misses the opportunity to utilize the memory used by the mature space. While

the nursery space is larger shortly after a full collection,as the mature space fills up the

amount of space required as a copy reserve similarly increases. Shortly before a full

garbage collection, the mature space dominates the available memory in the heap, mean-

ing that optimizing only the nursery will have little effect.

The most important difference, however, lies in the recovery strategy in the case of

a missed prediction. While the design outlined in this chapter performs a compacting

collection, the earlier work instead relies on the principal of nepotism. This refers to

garbage objects in the nursery being kept reachable by garbage objects in the mature space.

In Figure 3.2(a), several objects in the mature space are no longer live. However, since the

mature space is not traced during a minor collection, they keep some objects in the nursery,

which are not reachable from the program roots, alive through nepotism. The authors rely

on the fact that by performing a full collection they will notonly free up memory from

the mature space but also reduce the survival rate of the nursery by eliminating these

redundant links.

Figure 3.2(b) shows this strategy. A minor collection has been performed, and the live

objects in the nursery are found to require more space than the copy reserve can supply. In

Figure 3.2(c), the unreachable objects in the mature space have been removed, and so the

objects kept alive through nepotism are no longer seen as reachable. Figure 3.2(d) shows

the successful completion of the collection, since withoutthe additional objects retained

through nepotism, all live objects fit in the copy reserve.

This argument is flawed, as can be seen in Figure 3.2(e). Even if the objects retained

through nepotism were removed, there would still be insufficient space in the copy reserve.
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(a) Objects kept alive through nepotism

(b) Overflowing the copy reserve

(c) Eliminating nepotism

(d) Restarting collection

(e) Insufficient nepotism

Figure 3.2. Reducing survival rate through nepotism

In the worst case, all objects could survive a collection. Inorder to maintain correctness,

an algorithm must be able to perform a collection under thesecircumstances; it is for this

reason that the 100% copy reserve was required in the original generational copying col-

lector design. In the case where most or all objects survive,the algorithm outlined by

Velascoet alwould fail.
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The solution proposed in this chapter is able to handle the worst case safely. Should

all objects survive, those that fit in the copy reserve will bemoved. The remaining objects

will be compacted inside the nursery, requiring no additional space. This is described in

Section 3.3.
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4 IMPLEMENTATION

This chapter describes an implementation of the collector proposed in Section 3. The im-

plementation was based on the Appel-style generational copying collector supplied with

MMTk [15] running with Jikes RVM [18]. It makes use of Jonkers’ reference chaining

algorithm outlined in Section 2.2. Both MMTk and Jikes were modified during the imple-

mentation.

4.1 Heap Layout

Figure 4.1 shows the layout of the heap for this collector. Itfollows a similar design to

that seen in Figure 2.3(a), with additional spaces due to MMTk implementation.

Spaces in MMTk have virtual address ranges fixed at build time. This allows refer-

ences to space limits to be propagated as constants during compilation rather than being

stored and referenced as variables at runtime. However, thefull address space is rarely

used for a given space. The size of a space is managed logically, by maintaining a record

of the number of pages assigned to each space. This way the nursery and mature spaces

can be resized dynamically according to the requirements ofthe algorithm.

Figure 4.1. Generational copy/compact collector’s heap layout
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4.1.1 Boot and Immortal Spaces

The boot space is made up of the classes and data structures generated as part of

the build process. This space is never garbage collected, and does not grow beyond the

original size of the bootimage. By placing the boot space first in the virtual address space,

offsets of code and data structures can be calculated at build time regardless of the layout

of the rest of the heap.

The immortal space is also never garbage collected, and is used to store data that

will exist for the lifetime of the virtual machine. This includes parts of the classloader

and certain garbage collection data structures. Since objects in the immortal space never

move, it is safe to use them during certain phases of garbage collection when data in the

heap must be regarded as inconsistent.

4.1.2 Large Object Space

The large object space is managed by Baker’s treadmill collection algorithm [19]. This

incremental, concurrent collector operates over a free-list allocated space. Objects larger

than a set threshold are allocated in this space, with memoryallocated in a page-sized

granularity.

4.1.3 Mature Space

The mature space comprises two copy spaces. Apart from briefperiods during garbage

collection, only one semispace is active at any time. Allocation to the mature space is

performed only during garbage collection, when objects arecopied from the nursery or

from one semispace to the other. Allocation in the mature space is performed by a bump-

pointer allocator.

The implementation of the mature space in MMTk differs from that described by Ap-

pel in that it does not remap the location of the oldspace. In the algorithm outlined in

Section 2.3, upon evacuation of all nursery and mature spaceobjects into the copy re-
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serve, the memory containing live objects is remapped to thestart of the heap. This is

done in order that the nursery can be resized by simply sliding the location of the copy re-

serve space. Such a mechanism is not necessary in MMTk since the virtual address space

allocated to the nursery is greater than the maximum size to which the nursery can grow.

4.1.4 Nursery Space

The nursery is the space in which all new allocation occurs. It is a copy space, and is

allocated to by a bump pointer. The nursery is placed at the end of the heap in order to

simplify write barrier code. To maintain remembered sets ofall references into the nursery

it is necessary to determine on every pointer store whether the target is in the nursery and

the source outside. By placing the nursery at the end of the heap, only a single comparison

is necessary for each of these tests.

4.2 Triggering Compaction

At the start of a collection, a count is made of the number of copy reserve pages

remaining. This number is calculated as a percentage of the copy reserve required by

Appel’s collector. As pages are allocated to the mature space for surviving objects, this

count is decremented. When it reaches zero the copy reserve is full, and a compacting

collection must be triggered.

4.3 Mark Stage

Upon the triggering of a compacting collection, the behavior of object tracing changes.

Previously, an object, upon being found to be reachable, wascopied to the mature space

and replaced with a pointer to its new location. Under the compacting collector, objects

are instead marked and left in place. Once the tracing phase is complete, an object in a

compacting space can be in one of three states: forwarded, marked or garbage.
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During the mark stage of a major collection, a total of the sizes of live mature object

to be compacted is maintained. This indicates the amount of space required by compacted

mature objects, and is used to determine the final placement of compacted nursery objects.

Section 4.5 details the need for this count.

4.4 Scanning

The compaction follows Jonkers’ algorithm described in Section 2.2. In this imple-

mentation, the word per object used by the algorithm is a pointer inside the header to

per-class metadata. Since this is an aligned pointer, its low-order bit is always zero, and

can thus be overwritten.

Some optimizations to the algorithm are made possible by implementation in MMTk.

The chaining algorithm calls for two complete sweeps over the heap: one to update for-

ward references, the other to compact and update backward references. However, in the

generational system it is not necessary for these sweeps to cover the entire heap.

On a minor collection, there is no need to scan the entire heapfor references to the

nursery. This information has already been logged in the remembered sets maintained

by the write barriers. As a result, the first sweep of the heap requires processing the

remembered sets and scanning the nursery. This is a major improvement over the expense

of scanning every space in the system.

The initial sweep in a major collection, however, requires that the majority of the

heap be scanned. There exists no equivalent to the remembered sets for the mature space,

meaning that pointers may exist anywhere in the heap. As a small optimization, it is not

necessary to sweep the metadata space. This is because the metadata space is only used

by the garbage collector, and is not used to determine liveness in other parts of the heap.

A difficulty arises in sweeping the heap in major collections. The version of MMTk

upon which the implementation is based did not support linear sweeping through mem-

ory. All collection algorithms were implemented using tracing. As a result, the MMTk

implementation had different assumptions from those required for a sweeping collector.
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During a sweep, all objects encountered are scanned and their pointers processed. In

order for this to function correctly, all pointers must be valid. Whether they point to live

or dead objects, all pointers should go to an object header. Pointers that do not resolve

to an object header are dangling references, and can lead to errors as described in Section

2.1.1.

Since the MMTk collectors do not make use of scanning, they donot have this re-

quirement. In a tracing collector is is necessary only that all objects reachable from the

program roots have valid references. Dangling pointers in unreachable objects will never

be seen, since such an object will not be visited by a trace.

(a) Prior to minor collection

(b) Reachable objects

(c) Dangling reference

Figure 4.2. Creation of dangling reference

Within the immortal and boot spaces of MMTk it is possible fordangling references

to be created. Figure 4.2(a) shows part of an object graph that spans the immortal, nursery

and mature spaces. In the mature space, Objects A and B are reachable from a root, while

object C is not. Figure 4.2(b) shows a minor collection; objects A, B and D are reachable,

while objects C and E are not. However, since the immortal space is not collected, objects
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A, B and C do not move. Object D is promoted to the mature space,and B’s pointer

updated. Object E is reclaimed as garbage.

Figure 4.2(c) shows the state of the heap at the start of the next minor collection. New

data has been allocated to the nursery. If this next collection uses the standard tracing

mechanism, the traversal will occur as before. However, should the collection use com-

paction, a sweep of the heap will be required. When the immortal space is swept, objects

A and B will be encountered and their pointers processed. However, when object C is

reached an error will occur. Its pointer is no longer valid since the object it referred to

(object E) no longer exists. Worse, it now points to the middle of object G, meaning that

random data will be interpreted as an object header.

To work around this problem, two arrays are maintained to record liveness of objects

in the immortal and boot spaces. These arrays maintain a bit per addressable word in

these spaces. Upon marking an object, the bit correspondingto that object’s header is set.

Sweeping is performed by traversing these arrays to determine liveness, rather than by

by sweeping the spaces themselves. This solution is not ideal, since it wastes space and

causes a small time overhead in the marking phase. However inthe absence of garbage

collection in the immortal and boot spaces, it is necessary for correctness.

The second sweep, used to compact objects and update backward pointing references,

need only be performed in spaces being compacted. This meansthat in a minor collection,

only a sweep of the nursery is required. In a major collectionboth the mature space and

nursery must be swept. This is because by this point in the algorithm all pointers have

either been chained or updated. Only the objects to be compacted must be scanned in

order to enchain any remaining pointers and to perform the compaction.

4.5 Compaction

The addresses to which objects will be relocated must be calculated during both the

first and second scans in the compaction algorithm. This involves maintaining pointers for

the nursery and, if required, the mature space which are incremented upon scanning an
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object which will be compacted. Care must be taken to ensure that alignment constraints

are maintained, and that compacted objects do not overwriteembedded metadata.

The updated values of references must be adjusted to accountfor the fact that com-

pacted data is remapped in the final stage of the collection. Thus an object compacted to

the front of the nursery space will eventually be relocated to the end of the mature space.

The final address can be easily calculated using the known virtual address ranges of the

spaces, and the current location of the mature space bump pointer.

This calculation is complicated slightly during major collections. This is because two

compacted regions, the nursery and old mature space, require relocation. It is necessary to

know the size of one of the relocated spaces in order to calculate the address to which the

second space will be remapped. The information for this calculation is gathered during

the marking phase, where the total size of marked mature objects is maintained. From this

it is possible to predict the address range required by the compacted mature space, and by

extension the location to which the nursery objects will be remapped.

The compaction is performed in the second scan of the heap. Objects are compacted

within their own spaces. The location to which objects are compacted is determined in

the same way that the pointer was maintained in the previous step, without the adjustment

for remapping to the mature space. This way predicted addresses correspond to actual

addresses.

4.6 Block Copy

Once all objects are compacted within their space, they mustbe block copied to the

appropriate location at the end of the mature space. In the case of minor collections, this

requires only remapping the nursery objects. In major collections, both the nursery and old

mature spaces must be remapped. An additional requirement is that no allocation occur

during the remapping, since this would allocate pages beyond the system’s budget.

Block copying is performed using the mmap system call. By default, MMTk obtains

virtual address pages from the operating system’s scratch file. Modifications to this system
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were made to instead allocate pages from a named heap file. By maintaining information

on the offset in the heap file mapped to a given virtual page it is possible to remap the

data, effectively modifying the virtual address associated with it. In this way, data can be

quickly remapped from one virtual address to another.

The existing MMTk collectors do not incur the overhead of space management, be-

cause they do not unmap pages. When a virtual address range isfirst allocated, MMTk

maps scratch memory to that range. However, when objects areevacuated from that ad-

dress range, MMTk simply stops using the memory, rather thanunmapping it. This saves

the overhead of remapping when the same address range is needed again. As a result, the

standard MMTk collectors will often have more memory mappedthan the maximum heap

size would allow.

This is not possible when remapping is required, as in the case of the generational

copying/compacting collector. In this case it is possible that a new physical address range

will be mapped to a given virtual address range. It is important to ensure that two physical

addresses will not be mapped to a single virtual address. To avoid this, memory is un-

mapped whenever it is not in use. While this adds some overhead to benchmarks elapsed

time, it is a more honest approach, since the amount of memorymapped is never more

than the maximum heap size.
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5 EXPERIMENTS

This chapter presents the results of running the new garbagecollection algorithm with a

series of benchmarks.

5.1 Platform

The algorithm was implemented by modifying the GenCopy collector distributed with

Jikes RVM version 2.3.4. Benchmarks were run using a machinewith an Intel Pentium

4 processor running at 2.26GHz and with 512 Mb of RAM. The Operating System was

Mandrake Linux 9.2, using kernel version 2.4.22-10mdk.

5.2 Benchmarks

The performance of the new garbage collector algorithm was tested using several

benchmarks from the SPECjvm98 suite [20].

Of the full SPECjvm98 suite, several benchmarks were considered to be uninteresting

from the perspective of garbage collection. For example,222 mpegaudio requires virtu-

ally no garbage collection activity, meaning that differences between algorithms would be

insignificant. Several other benchmarks, such as227 mtrt and 209 db have very short

object lifetimes, meaning that only nursery collections are required. The benchmarks out-

lined below have sufficient allocation and garbage collection requirements to make them

interesting candidates for this performance analysis.
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5.3 Metrics

Timing and garbage collection information for each of the selected benchmarks was

gathered. Both generational copying and generational marksweep collectors were ana-

lyzed for comparison with the new generational copying/compacting collector.

5.3.1 Methodology

The methodology used to obtain the numbers was the same for each collector. First,

a VM was built configured with the appropriate collector. Next, each benchmark was run

11 times within a single VM invocation. The first run served asa warm-up, compiling all

necessary methods using Jikes RVM’s optimizing compiler (at opt-level 2). This elimi-

nated the overhead of compilation from subsequent runs. Theresults for the compilation

run were discarded. The remaining ten runs were used as timing runs. A full-heap garbage

collection was performed before each timing run.

In the remainder of this section, the traditional generational copying collector will be

referred to asGenCopy, the generational mark sweep collector asGenMSand the new

generational copying/compacting collector asGenCC.

5.3.2 Traditional Collectors

Data are reported for each interesting benchmark when run using generational copy-

ing and generational mark and sweep collectors. These graphs show a line plotting the

mean elapsed time of the benchmark, and a set of bars showing the number of major and

minor garbage collections. The error bars on the elapsed time graph represent confidence

intervals for a 90% confidence value.

Study of the elapsed time data for GenCopy and GenMS collectors shows that the times

of each collector/benchmark pair tends to stabilize as the heap size grows. The point of

inflection in the generational copying graph at which this begins to occur was chosen as

the heap size for comparison to the new algorithm. The reasoning was that the point of
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inflection was the optimal heap size for the generational copying collector. Comparisons

at this heap size would therefore not unduly disadvantage the existing collectors.

5.3.3 Variable Copy Reserve

Results for GenCC are given for a varying copy reserve size. Here, the heap size

remains constant, having been arrived at as indicated above. Since the copy reserve is

split into mature and nursery components, presentation of this data necessitates several

graphs. Each represents data collected for a fixed heap size,a fixed nursery copy reserve

and a variable mature copy reserve.

On each graph the elapsed time of GenCC is shown as a continuous black line. Each

measurement on the line is accompanied by a set of error bars which represent a 90%

confidence interval. Also shown by red and green continuous lines are the elapsed times

for the traditional GenCopy and GenMS collectors respectively. These lines represent

the times for the traditional collectors at this heap size; they are straight because these

collectors do not allow variable copy reserves. The dashed lines accompanying each of

these lines represent a 90% confidence interval.

The bars at the bottom of each graph show the number of garbagecollections per-

formed by the copying/compacting algorithm. The x-axis forthis data is the same as for

the elapsed time, so the bars directly relate to the data points in the line above. The bars

categorize collections into minor and major, as well as compacting and normal.

Graphs are not presented for all nursery copy reserve sizes on all benchmarks. Gen-

erally the extreme values in the nursery copy reserve scale show very poor performance

since these copy reserves are unreasonable. Efforts have been made to ensure that the

graphs shown are interesting yet representative.

5.3.4 Variable Heap Size

Additional graphs show the performance of all three collectors over a range of heap

sizes. In the variable heap size graphs, nursery and mature copy reserves remain constant.



37

Each is fixed at 20% which the variable copy reserve graphs show to be a reasonable value.

It is low enough that the space benefits of reducing the copy reserve can be seen, while

high enough that compaction is not required. These copy reserve sizes would therefore be

likely to be used in any real-world implementation of the generational copying/compacting

collector.

The variable heap size graphs show the elapsed times for all three collectors. The

x-axis represents the heap size. The black line represents the new collector, while the

red and green lines represent the generational copying and generational mark and sweep

collectors respectively. The error bars represent a 90% confidence interval.

The bar chart below the elapsed time plots shows the number ofgarbage collections

performed by the new algorithm, broken down as in the previous variable copy reserve

graphs.

5.4 Results

5.4.1 201 compress

201 compress performs a modified LZW compression algorithm overa fixed input.

The algorithm scans through the data set in order to identifycommon strings, and replaces

them with codes. It then performs the decompression process.

Traditional Collectors

Of the benchmarks presented, compress has the highest fraction of major collections.

This indicates that it has a low mature mortality rate. The slow rate at which mature

objects are collected forces more frequent major collections.

Figure 5.1(a) shows the elapsed time and number of collections required for compress

when using GenCopy. As can be seen, at small heap sizes almosthalf of the collections

are major. This ratio drops to a quarter at larger heap sizes.A similar trend can be seen in

Figure 5.1(b), where the benchmark is run using GenMS.
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Figure 5.1. 201 compress
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Variable Copy Reserve

Figure 5.2(b) shows the elapsed time and number of garbage collections required for

the benchmark when a 20% nursery copy reserve is used. As can be seen, the performance

of GenCC is poorer than that of the standard generational copying and generational mark

and sweep collectors. The reason for this is the higher garbage collection survival rate,

as described above. The advantage of the copying/compacting algorithm lies in its ability

to manage the available space better than a standard copyingcollector. By doing so it

reduces the number of collections needed. However, if a benchmark’s live set makes

frequent collections unavoidable, the benefit of the copying/compacting scheme is lost.

All that remains in this case is the additional overhead imposed by the algorithm.

When the nursery copy reserve percentage is varied, similarperformance lags are seen.

However, Figure 5.2(a) shows an unusual result. While the elapsed time performance of

the copying/compacting collector is still worse than the traditional collectors, the differ-

ence is less than when the 20% nursery copy reserve is used. Itcan be seen, additionally,

that several nursery compacting collections are performed. Normally, this would be ex-

pected to decrease performance. However, in this case the space saved by the elimination

of the nursery copy reserve leads to fewer major collections. This trade-off improves

performance over situations where the compacting collector is not triggered.

While it might be expected that setting the nursery copy reserve to 0% would lead to

every minor collection requiring compaction, it can be seenthat this is not the case. The

reason for this is that a small minimum copy reserve of eight pages was allocatated as part

of the implementation. This copy reserve guarantees that essential VM data structures and

GC metadata are copied before any compaction is performed. In cases where the copy

reserve is set to 0% yet a compaction is not required, it is simply that all live nursery

objects fit into these eight pages.
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Figure 5.2. 201 compress with 30Mb heap
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Variable Heap

The GenCC algorithm performs particularly poorly at the 30Mb heap size. However,

in general the characteristics of201 compress disadvantage the copying/compacting col-

lector, meaning that the traditional collectors outperform it.

Figure 5.1(c) shows the elapsed time and number of garbage collectors for 201 compress

when the heap size is varied. The nursery and mature space copy reserves for GenCC were

fixed at 20%. As can be seen, the new garbage collection algorithm does not perform as

well as the other two for this benchmark. This is due to the object lifetime behavior de-

scribed above.

It is worth noting that, on average, the new algorithm does not perform substantially

worse than the traditional algorithms. There are several heap sizes around 30Mb, however,

where performance drops significantly. The graphs in this section represent data gathered

at a heap size of 30Mb.

5.4.2 202 jess

202 jess is the Java Expert System Shell – an expert system shell solver. It iteratively

applies a growing set of rules to a problem statement until itreaches a solution.

Traditional Collectors

Figure 5.3(a) shows the elapsed time and number of garbage collections for jess when

run using GenCopy. As can be seen, there are very few full collections. For heap sizes

greater than 30Mb, no full collections are required. Figure5.3(b) shows the same result.

Using GenMS, no full-heap collections are required once theheap size grows beyond

20Mb.

This indicates that very few objects are promoted to the mature space. This is due

to very short life spans of objects; the vast majority are garbage before the first minor

collection. This property would suggest that the copying/compacting algorithm should
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perform well with the jess benchmark. Since the space required for the copy reserve

is smaller, the nursery can grow to be larger. This gives the already short-lived objects

more time in which to become unreachable, and as a result willallow more garbage to be

collected in each minor collection.

Variable Copy Reserve

As expected, the high infant mortality rate of202 jess leads to performance improve-

ments in the new garbage collection algorithm over the traditional methods. This is most

noticeable at small copy reserve sizes, since they allow thenursery to grow to the largest

size.

Figure 5.4(a) shows the performance of GenCC when the minimum nursery copy re-

serve is used. This consists of eight pages, used to copy VM and GC related objects. It

is noticeable that these few pages are often sufficient to perform a minor collection. This

can be seen by the fact that not all minor collections requirecompaction.

For small mature copy reserve sizes (up to 70%), GenCC outperforms both traditional

collectors. It is important to note that this is despite the fact that many of the minor

collections are compactions, meaning that they are less efficient than the normal copying

nursery collection.

Once the nursery copy reserve is increased to 20%, as shown inFigure 5.4(b) there are

no more compacting collections. As before, when the copy reserve for the mature space

is also small, the performance gains achieved by the new algorithm are substantial. Only

when the mature copy reserve grows beyond 70% does the performance degrade to that

of GenMS. This is because the overhead of the copying/compacting algorithm is greater

than that of the other collectors.

As the size of the nursery copy reserve is increased, the advantage gained by using

GenCC diminishes. Once the nursery copy reserve is set at 80%, as in Figure 5.4(c), the

performance advantage at small mature copy reserve sizes becomes statistically insignif-
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Figure 5.4. 202 jess with 22Mb heap
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icant. When both the nursery and mature space copy reserves are large, the performance

gains from effective use of space are outweighed by the overhead of the new algorithm.

Variable Heap Size

Figure 5.3(c) shows a comparison between the three collectors. It can be seen that

when the heap size is large there is little difference between the algorithms’ elapsed times.

This is not surprising, since there are very few garbage collections performed, so the dif-

ferences in collection times are swamped by the elapsed timeof the rest of the benchmark.

At smaller heap sizes (up to 30%) the garbage collector runs frequently enough to

differentiate between the algorithms. Here it can be seen that the generational copy-

ing/compacting algorithm outperforms both traditional algorithms.

5.4.3 209 db

The 209 db benchmark reads an input file and creates a database in memory. It

then performs various actions on this database, including insertions, deletions, sorts and

searches.

Traditional Collectors

Figure 5.5(a) shows the performance of209 db when run with GenCopy. There are

few major collections once the heap size grows beyond 34Mb. Similarly, in Figure 5.5(b),

it can be seen that there are no major collections once the heap size grows beyond 20Mb.

This indicates that much of the data in the benchmark is short-lived.

It is interesting to note that GenCopy runs significantly faster for this benchmark than

GenMS. This may be because of spatial locality effects in theold space. The database

structure is likely to be allocated within a relatively small part of the memory space. Since

the copying collector automatically groups objects by connectivity, the structure is likely

to fit inside the cache.
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Variable Copy Reserve

As seen above, GenCopy greatly outperforms the GenMS for the209 db benchmark.

As such, it would be expected that GenCC, which shares many ofthe characteristics of the

generational copying collector, will do likewise. This supposition is supported by Figure

5.6(a). Here, the benchmark is run using a 38Mb heap and a 20% nursery copy reserve. It

can be seen that the performance of the new algorithm is almost identical to the traditional

generational copying collector.

When the size of the nursery copy reserve is increased to 60%,as in Figure 5.6(a),

there is still very little difference between the algorithms. A slight performance decrease

is seen in Figure 5.6(c), where the nursery copy reserve is equal to the size of the nursery.

The minor differences observed when varying the copy reserve for this benchmark

indicate that allocation and garbage collection do not takeup a significant portion of the

program’s elapsed time. This is supported by the slower performance of the generational

mark and sweep collector. The mark and sweep collector does not lay out related data in

contiguous memory locations. As a result, it is likely that the performance decrease caused

by the loss of spatial locality would outweigh any differences caused by the allocation and

garbage collection times.

Variable Heap Size

Figure 5.5(c) shows the performance of the three collectorswhen the heap size is var-

ied. As might be expected, the performance of GenCC is very similar to GenCopy. How-

ever, as the heap size grows large, the new algorithm runs slightly slower than GenCopy.

This is because the allocation rate is low enough that the overheads of GenCC slightly

outweigh the benefits.
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Figure 5.6. 209 db with 38Mb heap
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5.4.4 213 javac

The 213 javac benchmark runs the Java compiler included with Sun Microsystem’s

JDK 1.0.2. It performs compilation to bytecode on a series ofinput files several times.

Of the benchmarks presented,213 javac exhibits the full effect of the generational

hypothesis most clearly. It has a fairly high infant mortality rate, and those objects that

do survive tend to live for some time afterward. Additionally, the allocation rate is higher

than most of the other benchmarks. It is, from a garbage collection point of view, the most

interesting of the benchmarks.

Traditional Collectors

Figure 5.7(a) shows the performance of213 javac when run with GenCopy. There

are frequent major collections at lower heap sizes. Beyond 54Mb, the number of major

collections drops to three, and then to two beyond 64Mb. Thisrepresents substantially

more major collections than most other benchmarks. In Figure 5.7(b) there are fewer

major collections. This is because GenMS allows more of the mature space to be utilized.

Variable Copy Reserve

Since 213 javac contains interesting behavior from a garbage collection standpoint,

two sets of results are presented here. The first indicates the performance of the new

collector when the heap is relatively small (36Mb), while the second shows performance

for a large heap (74Mb).

Figure 5.8(a) shows the performance of the generational copying/compacting collec-

tor when a minimum copy reserve is used. As might be expected,around half of the

collections are compacting collections, and as a result theperformance suffers. This is

an indication of why it is not advisable to use the copying/compacting collector when

frequent compactions are likely to be necessary.
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Figure 5.7. 213 javac
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Figure 5.8. 213 javac with 36Mb heap
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When a reasonable nursery copy reserve is used, as in Figure 5.8(b), it can be seen that

the copying/compacting collector outperforms both traditional collectors. For all mature

copy reserve sizes below 80% there is a clear advantage to thenew algorithm. As in the

other benchmarks, once the mature copy reserve becomes too large, the benefits of the

new algorithm are outweighed by the performance overheads.It is also useful to note that,

even with a copy reserve as low as 20%, no compacting collections are required.

A larger nursery copy reserve is used in Figure 5.8(c). Here it can be seen that until the

mature copy reserve reaches 50% there is a clear performanceadvantage to GenCopy. This

shows that, even for comparatively large copy reserves, thecopying/compacting algorithm

benefits from its more effective space management.

Finally, Figure 5.8(d) shows that, for small mature copy reserves, a performance ad-

vantage can still be gained when the nursery copy reserve is at 100%. However, it can also

be seen that when both the nursery and mature copy reserves are high (i.e., the collector is

behaving as a traditional generational copying collector), the performance is significantly

worse than the standard collectors. This is to be expected, since the new algorithm comes

with overheads that are not encountered by traditional collectors.

Figure 5.9(a) shows a significant performance gain when the new algorithm is used

with a minimal nursery copy reserve. Since the heap is large,there are no major collec-

tions required. The entire working set can be collected using minor collections over the

expanded nursery. While some of these minor collections involve compaction, the time

saved by avoiding major collections more than compensates for the longer minor collec-

tions. Since there are no major collections, the mature space never grows. This makes

varying the mature copy reserve meaningless, since it is expressed as a percentage of zero.

Figure 5.9(b) shows that with a larger nursery copy reserve of 20% GenCC still out-

performs the traditional collectors. Since the number of collections is still relatively small,

the triggering of an extra full collection can severely affect the elapsed time of the bench-

mark. This is seen when the mature copy reserve is set at 30%. Here the heap layout

causes an additional full GC to be triggered, leading to a substantially slower overall time.
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It is clear from this that the elapsed time of the benchmark isdominated by the muta-

tor rather than the garbage collector. In other benchmarks the inclusion of an additional

collection has not caused such a major change in performance. This would be expected,

since the size of the heap allows the mutator to perform a great deal of allocation without

interruption by the garbage collector.

Finally, Figure 5.9(c) shows that, for large heap sizes, theperformance of GenCC is

comparable to that of the traditional collectors even with large copy reserve sizes. Since

the elapsed time is dominated by the mutator rather than the collector, the cost of the

copying/compacting collector is amortized over longer mutator periods, meaning that it

has a smaller effect on the total time.

Variable Heap Size

Figure 5.7(c) shows that, for the majority of heap sizes, thenew generational copy-

ing/compacting algorithm outperforms both the GenCopy andthe GenMS collectors. This

is particularly noticeable at larger heap sizes where, as the heap size increases, so does the

advantage to the new collector. The reason for this can be seen by comparing Figure

5.7(c) with Figures 5.7(a) and 5.7(b). GenCC performs fewerthan half the number of

minor collections, and does not perform any major collections.

It is also interesting that with 20% nursery and mature copy reserves there are no

compacting collections. This means that the new algorithm gains all the benefits of the

increased usable heap area without the cost of compaction.

5.4.5 228 jack

228 jack is a Java parser generator based on the Purdue Compiler Construction Tool

Set. It is an early version of javacc. The benchmark uses jackto generate the parser for

itself multiple times.



55

Traditional Collectors

As can be seen in Figure 5.10(a),228 jack has many minor collections, but very few

major collections. This indicates that objects tend to die young, with few being promoted

to the mature space. Figure 5.10(b) shows a similar result.

As in the case of202 jess, the high yield of minor collections should work to the

advantage of GenCC. The space available for the nursery willbe larger and, as a result,

objects will have more time to become garbage.

Variable Copy Reserve

In Figure 5.11(a) it can be seen that the performance of the generational copying/compacting

algorithm is better than the traditional collectors for small copy reserve sizes. When the

nursery copy reserve is set at 20% and the mature copy reserveis less than 60% GenCC

clearly outperforms the generational copying collector. When the mature copy reserve is

larger, the performance is comparable to that of the generational copying algorithm, while

still outperforming GenMS.

Figure 5.11(b) shows the performance improvement when the nursery copy reserve

is larger. As would be expected, the improvement is less. However, for small mature

copy reserves (those smaller than 30%) GenCC still outperforms both traditional collec-

tors. However, the performance difference between the new collector and the generational

copying collector is minimal. Only at mature copy reserve sizes larger than 90% does the

performance become comparable to the GenMS collector.

Variable Heap Size

In Figure 5.10(c), it can be seen that GenCC outperforms the two traditional collectors

for almost all heap sizes. At larger heap sizes (those greater than 60Mb) the elapsed times

of the three collectors converge. A this point the heap has become large enough that the

time spent in garbage collection is no longer significant.
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As seen before, there are no compacting collections required when the nursery and

mature copy reserves are both set to 20%.

5.5 Summary of Results

In general, the results show that the generational copying/compacting collector with

well-chosen parameters performs well when compared to the traditional collectors. In the

majority of benchmarks, GenCC has elapsed time similar to, or better than, both GenCopy

and GenMS.

It can be seen from the variable copy reserve graphs that whenthe copy reserve size

is too small the compacting collector is triggered too frequently. This leads to a perfor-

mance loss, since the overhead of the compaction is far higher than a normal collection.

Similarly, when the copy reserve size is too large, the benefit gained by freeing up space

is insufficient to account for the additional implementation overheads of the GenCC algo-

rithm. Therefore, it can be seen that an optimal copy reservesize is as small as possible,

while still preventing frequent compacting collections. The experiments have shown that

this size is 20% for these benchmarks.

It can also be observed that the GenCC collector shows the most improvement over

the GenCopy and GenMS collectors when there is a high rate of allocation and when the

object lifetimes obey the weak generational hypothesis. Inthis case, the additional time

taken for the larger nursery space to fill allows longer for objects to die. As a result, fewer

objects are promoted to the mature space, and there is more space available to the nursery

on subsequent allocation cycles.
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6 CONCLUSIONS

The run time performance of a generational copying garbage collector can be improved

by reducing the size of the copy reserve.

6.1 Summary

This thesis presented the design, implementation and measurement of an a new gen-

erational copying garbage collection algorithm, in which atraditional Appel-style collec-

tor was improved by reducing the necessary copy reserve. Correctness was maintained

through the use of a compacting collector in the rare occasions that the smaller copy re-

serve was insufficient. The thesis outlined the foundationsupon which the work was

based, detailed the reasoning behind the design, outlined some interesting features of the

implementation and presented experimental results.

Through the implementation and measurement of the garbage collector, the thesis has

been proven to be correct. By reducing the copy reserve overhead of a generational copy-

ing collector the overall performance can be improved. There follow some conclusions

drawn through the evaluation of the experimental results.

6.2 Copy Reserve Size

While it is important to minimize the space used for the copy reserve, it is not always

beneficial to eliminate it completely. The experimental results shown in Chapter 5 indicate

that if the copy reserve is too small performance suffers. This is understandable, since the

compacting collection takes significantly longer than a normal collection, and so too many

compactions will hurt performance.
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Similarly, the performance of the collector suffers if the copy reserve is too large.

While in theory a collector with nursery and mature copy reserves set to 100% should per-

form exactly as a traditional Appel-style collector the results show that this is not the case.

The implementation adds overheads such as increased complexity in the space manage-

ment in order to allow the block copy mechanism and additional work performed during

the scanning stage. These overheads are necessary for proper space management in the

presence of remapping; the traditional collectors are ableto avoid them by mapping a vir-

tual address range once and then never releasing it. When thecopy reserve is too large,

these overheads outweigh any performance improvement.

From the results in the previous chapter, it can be seen that in all benchmarks exam-

ined, a 20% nursery and mature copy reserve will accommodateall live objects without

compaction. This copy reserve size generally allows enoughspace to be repartitioned

over the traditional generational collector to show a performance improvement, while not

suffering the overhead of compaction.

6.3 Mutator Effects

It can be seen from the results presented that the characteristics of the benchmark

have a large effect on the performance of the collector. Thisis demonstrated even for the

relatively simple benchmarks shown.

As described in201 compress benchmark (Section 5.4.1), the new collector doesnot

perform as well on benchmarks with a high survival rate as it does on those with a low

survival rate. Even when the survival rate does not trigger compaction it leaves less space

for the collector to use. In these cases the savings gained byreducing the copy reserve are

smaller, and the implementation overheads dominate.

Benchmarks such as213 javac, however, allow the advantages of the new algorithm

to be exploited. In this case, the object lifespans closely conform to the generational

hypothesis. Few nursery objects are promoted, meaning thatthe mature space does not
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grow quickly. This increases the space available for the collector, and maximizes the

improvement seen by reducing the copy reserve.

6.4 Future Work

There remain several avenues of research that could be performed after this work.

An adaptive system could be implemented. This would measurethe survival rate of a

benchmark over the course of its execution and tune the copy reserve appropriately. The

design of the algorithm allowed for this possibility by separating the mature and nursery

copy reserves. This would allow flexibility in tailoring each copy reserve in response to the

benchmark. It would be interesting to see how great an improvement would be measured

in performance over the current system with fixed 20% copy reserves.

It would also be of interest to run larger benchmarks using this system. The stability

of Jikes RVM at the time of writing meant that it was not possible to run large benchmarks

for enough iterations to gain a statistically significant result. However, it may be that

improvements in Jikes RVM make this possible in the future.
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