
Reducing Generational Copy Reserve Overhead with Fallback
Compaction

Phil McGachey Antony L. Hosking
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, USA

phil@cs.purdue.edu hosking@cs.purdue.edu

Abstract
As programming languages with managed runtimes become in-
creasingly popular, it is essential that virtual machines are imple-
mented efficiently. The performance of the memory management
subsystem can be a defining factor in the performance of the vir-
tual machine as a whole. We present a technique by which garbage
collector performance can be improved.

We describe an algorithm that combines a standard generational
copying collector with a mark and compact collector. We observe
that, since most objects do not survive a garbage collection, it
is not necessary to reserve space to copy them all. The result
is a generational copying collector that operates with a smaller
copy reserve overhead than traditional Appel-style collectors. We
maintain correctness in the worst case through the use of mark and
compact collection. When the reduced copy reserve overflows, a
compacting phase ensures that all data are accommodated.

We have implemented this algorithm within the framework of
Jikes RVM and MMTk. For most benchmarks examined, our ex-
periments show that performance is comparable to or better than a
standard generational copying collector.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—memory management (garbage collection)

General Terms Algorithms, Design, Performance, Experimenta-
tion

Keywords Java, garbage collection, generational collector, copy-
ing collector, mark and compact

1. Introduction
With the current popularity of VM-based languages such as Java
or C# comes the need for high-performance virtual machines. A
vital component of any such system is the garbage collector; its
efficiency can determine the speed of the system as a whole. This
paper presents a technique through which garbage collection per-
formance can be improved.

The advantages and disadvantages of many popular uniproces-
sor garbage collection techniques have been widely discussed [1].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’06 June 10–11, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-221-6/06/0006. . . $5.00.

Generational copying collectors have been shown to improve cache
performance through spatial locality, but suffer the space overhead
of a copy reserve. Generational mark and sweep collectors are able
to use all available space, but can lead to a fragmented heap. Com-
pacting collectors provide both spatial locality and good heap uti-
lization, but require multiple sweeps of the heap, leading to poor
performance.

The algorithm outlined in this paper combines the positive fea-
tures of generational copying and compacting collectors. It behaves
as a generational copying collector, but uses a far smaller copy re-
serve. When that copy reserve is found to be insufficient, it falls
back on a compacting collector to copy all remaining objects. Since
the compacting collector is rarely used, the performance penalty re-
lated to compaction is seldom encountered. However, the reduced
copy reserve allows garbage collections to occur less frequently,
leading to less time spent in garbage collection, and higher overall
throughput.

All garbage collection algorithms must account for the worst
case in order to maintain correctness. The worst case behavior
of a copying garbage collector occurs when all objects survive
a collection. In this case, every object must be copied from the
old space to the new, leading to long collection pauses. More
significant, however, is the space required by those objects. Space
must be reserved to receive these objects should the worst case
arise.

In practice, however, the worst case virtually never occurs. In-
deed, the survival rate of objects in the nursery of a generational
collector is very low – we observe it to be frequently below 10%.
As a result, 90% of the space allocated as a copy reserve is wasted.
Clearly this is unsatisfactory; less space available to the allocator
means that fewer objects can be allocated between collections. As
a consequence, the space wasted by the copy reserve leads to more
frequent collections, using processor time that could be assigned
to the mutator. Additionally, these frequent collections give objects
less time to die, meaning that short-lived objects are copied into
the mature space. Not only does this add to the copying overhead,
but it fills the mature space faster, leading to more frequent major
collections.

The algorithm we propose eliminates the need for this wasted
space. Since the vast majority of collections do not require the
full copy reserve, we provide only what is needed in the common
case. In doing so, we reduce the collection frequency, and improve
performance.

However, the worst case behavior remains, and must be ac-
counted for. In our system, we do not aim for high performance
in the worst case - we simply require correctness. As such, when
our estimate of the required copy reserve is too low, and the copied
objects overflow, we switch to a compacting collector. This allows

17

us to rearrange the objects in their current space, without allocat-
ing any further memory. We aim to set aside sufficient space for
the copy reserve as to make expensive compacting collections rare.
Indeed, in the vast majority of cases it is not necessary to fall back
on the compacting collector at all, meaning that the only difference
between our algorithm and a traditional generational copying col-
lector is that of space utilization.

The remainder of this paper is structured as follows: Section 2
provides an overview of the work upon which we build. Section
3 details the design of our collection algorithm, while Section 4
discusses closely related work. Section 5 outlines some of the more
interesting points of our implementation, for which experimental
results are given in Section 6. Finally, Section 7 concludes.

2. Background
The algorithm presented in this paper combines a generational
copying collector with a mark compact collector. This section out-
lines the background upon which this work builds.

2.1 Generational Collectors

Generational collectors are a class of garbage collector that exploit
the age of objects to improve performance [2]. They are based
on the generational hypotheses: the weak generational hypothesis
states that most objects die young [3], while the strong generational
hypothesis states that the older an object is, the less likely it is to
die.

The heap managed by a generational collector is divided into
two or more spaces, or generations [4]. The simplest generational
collectors have a small nursery where objects are allocated, and
a larger mature space where they are promoted after surviving a
collection.

The nursery space is generally allocated to by a simple bump-
pointer. Since all allocation is to the nursery, this simplifies the allo-
cation process. Once an object has survived a nursery collection, it
is promoted to the mature space. Collection within the mature space
can be performed using a different algorithm from the nursery. For
example, a generational mark sweep collector allocates objects in
the nursery using a bump pointer, but when they are copied to the
mature space uses a free list allocator. The mature space is then
managed by a mark and sweep collector.

The main benefit of splitting the heap into generations is that
it is no longer necessary to collect the entire heap in a single
operation. By collecting only the nursery space, garbage collection
pauses can be greatly decreased. However since the majority of
objects in the nursery are garbage (due to the weak generational
hypothesis), this minor collection also frees more space than a
collection of an equivalent-sized region of a non-segregated heap.

2.2 Appel’s Generational Copying Collector

Appel’s generational copying collector uses a variable-sized nurs-
ery and a single mature generation [5]. The mature space is man-
aged by a semi-space copying collector. New objects are allocated
to the nursery using a bump-pointer allocator. When the nursery is
full, a minor collection is triggered in which live objects are copied
to the mature space. When the mature space fills, space is reclaimed
by a major copying collection.

The size of the nursery varies depending on the occupancy of
the mature space. Initially, when there are no objects in the mature
space, the nursery takes up half of the heap. This is all the space
available, after taking into account the copy reserve.

When it is detected that a minor collection will cause the nursery
to shrink below a predetermined threshold, a major collection,
which includes the mature space, is triggered. During a major
collection, all reachable objects in either the nursery or mature
from-space are copied into the mature to-space.

2.3 Copy Reserves

The major drawback to Appel’s algorithm, as with most copying
collectors, is the overhead of the copy reserve. In the worst case, it
is possible for all objects to survive a garbage collection. In order
to accommodate this eventuality, sufficient space must be set aside
to copy all objects. This space is referred to as the copy reserve. In
the case of a simple semi-space collector the copy reserve accounts
for half the total heap size. In general, the size of the copy reserve
must be equal to the size of the space being collected in case all
objects survive.

The copy reserve reduces the effective size of the heap. As a
result, the garbage collector must be triggered more frequently;
since objects cannot be allocated to the copy reserve, fewer objects
can be allocated before available memory is exhausted. A large
copy reserve means that less space is available for allocation, and
when the available memory is decreased, the collector must run
more frequently.

2.4 Mark and Compact Collectors

Mark and compact collectors aim to gain the memory layout ad-
vantages of a copying collector while eliminating the need for a
copy reserve. In a mark and compact collector, all live objects are
marked by a tracing phase [6]. All marked objects are then relo-
cated towards the “start” of the heap (where the start of the heap
is defined as low memory addresses, and the end is high memory
addresses). In this way, garbage objects are overwritten and live
objects retained.

Since objects are not moved from one space to another, a copy
reserve is not necessary. In the worst case, where all objects sur-
vive, a mark and compact collector simply does not perform any
compaction. As a result, the whole heap can be used by the appli-
cation without the overhead of the copy reserve. Also, while the
copying overhead remains, it is likely to be present to a lesser de-
gree. Long-lived objects will cluster towards the start of the space,
having been moved there in previous collections. As a result, por-
tions of the heap may not need to move in some collections.

While the design of a compacting collector would appear to be
optimal in terms of space usage, the implementation offers some
difficulties. Since objects move inside the heap, it is necessary to
maintain forwarding pointers, as in a copying collector. However
this proves to be more of a challenge in the compacting case.

In a copying collector, the address to which an object has been
moved can be stored in its old location. This way, any subsequent
references to that object can be updated. This is possible in a
copying collector because the old space is guaranteed not to be
discarded before the collection completes. This is not the case in
a compacting collector. It is possible for a forwarded object to be
overwritten before all references to it have been updated.

Updating references in a compacting collector without having
to maintain external data structures has been the focus of some
research [7, 8]. Generally these algorithms require multiple addi-
tional passes over the heap, leading to longer pause times which
make compacting collectors impractical.

3. Design
This section presents the design of the hybrid generational copy-
ing/compacting collector.

3.1 Algorithm Overview

The key observation underlining this work is that the full copy
reserve in an Appel-style collector is very rarely required. Indeed,
it has been observed in that the majority of cases, only a tiny
percentage of the copy reserve is used [9]. We introduce a method
of reducing this space overhead substantially.

18

Rather than allocating half of the available heap to the copy
reserve, we instead set aside a smaller percentage. We refer to the
copy reserve size as the percentage of the maximum copy reserve
required, so a 10% copy reserve would actually occupy 5% of the
total heap.

In the vast majority of cases, a well-chosen copy reserve size
will accommodate all surviving objects. However, in all algorithms
it is necessary to account for worst-case performance. In this in-
stance, the worst case is where the survivors during a collection
require more space than the allocated copy reserve provides. This
is possible because the space from which objects are being copied
can be larger than the copy reserve.

In this case, a compacting collection is triggered. Rather than
copying survivors from the nursery to the mature space, or from
the mature from-space to the mature to-space in the case of a
major collection, objects are instead compacted, and then moved
en-masse. This is performed without allocating further pages of
memory. This fallback mechanism provides correctness in face of
worst-case behavior.

3.2 Fallback Technique

Should the copy reserve prove to be insufficient during a collection,
a compaction algorithm is activated. The collection can switch from
copying to compacting without having to restart. This is because
both copying and compacting collectors require a trace of the live
objects; in the copying case this is combined with copying, while
in the compacting case it is a separate phase.

3.2.1 Switching Collectors

When it is observed that no space remains in the copy reserve, the
tracing routine switches from copying objects to simply marking
them. This way, the trace can continue uninterrupted. When the
trace is complete, an object can be in one of three states: unreach-
able (and hence garbage), copied or marked. This situation is illus-
trated in figure 1(a). Here the black objects have been evacuated
into the copy reserve, filling it. The dark gray objects have subse-
quently been marked, and the light gray objects are unreachable.

(a) Initial heap state

(b) Compacted objects

(c) Continuing after compaction

Figure 1. Compacting collection
The compaction algorithm involves several linear sweeps of the

heap, as described in Section 3.2.2. During the first of these scans,
all references to copied objects are updated. This eliminates the
need for copied objects to be retained for their forwarding data.
As a result, the only important data remaining in the nursery is
contained inside marked objects.

The remaining live objects in the nursery are then compacted to
the front of the nursery, as shown in Figure 1(b). The white space in
the nursery now contains no live objects, and so can be reclaimed.
The copy reserve and compacted nursery objects then become part
of the mature space, and the free space is divided between a new
nursery and a new copy reserve, as shown in Figure 1(c).

The situation where a compaction is required in the mature
space is analogous.

3.2.2 Compaction Algorithm

Since the compaction phase occurs only when no further copy
reserve space remains, it is vital that no allocation occur until space
can be made available. This means that the compaction algorithm
itself must not perform any allocation. The compacting algorithm
is designed to operate only over memory already assigned to the
process, ensuring that the maximum heap size is never violated.

The key difficulty in designing a non-allocating compacting col-
lector is that of forwarding pointers. In a copying collector, it is pos-
sible to overwrite copied objects with forwarding pointers, since the
contents already exist in the copy reserve. However this is not pos-
sible with a compacting collector. If a forwarding pointer were to
be installed in an object which was then itself later overwritten dur-
ing compaction, subsequent reads of that pointer would be invalid.
Forwarding pointers could be maintained in a separate data struc-
ture, but such a solution would require allocation. Alternatively, an
additional header word could be added to each object to store for-
warding pointers. However, since the compacting collector is used
infrequently in this algorithm, it would be wasteful to add extra
space overhead to every object.

Jonkers proposed a technique for managing forwarding pointers
during a compacting collection [10]. This algorithm has the advan-
tage over others in that it tracks forwarding pointers without allo-
cating additional storage. It is performed through the technique of
reference chaining.

The insight behind reference chaining is that in order to prop-
erly update pointers it is necessary to record either the object being
moved or the references to that object. Traditional approaches track
the former, and references are updated in a scan of the heap. The
chaining algorithm instead associates references to an object with
that object itself, and updates pointers as soon as the destination
of the object is known. This solves the problem of managing for-
warded pointers, and does not require allocation.

In order to identify objects with chained references, the use of
one word per object is required by the algorithm. The location of
this word is used to point to the head of the reference chain from
that object. The contents of the word is moved to the referring
object, and replaced upon completion of the algorithm, with the
exception of one bit that indicates whether the current contents of
the word refers to a reference chain. Thus, the only space overhead
of the algorithm is that one bit.

In order to identify objects with chained references, the com-
paction algorithm requires two complete sweeps of the heap: one
to update forward references, the other to update backward refer-
ences, and to compact objects. While linear sweeping is more ef-
ficient than tracing (due to improved spatial locality), these addi-
tional operations make compacting collections far more expensive
than standard copying collections. This is particularly true during
minor collections, where a full trace of the heap is not normally
required.

4. Related Work
There are several pieces of work that use a reduced copy reserve
in order to improve generational copying collector performance.
Additionally, some research has been performed in dynamically
switching between multiple collection techniques in order to ex-
ploit the best properties of each.

4.1 Reduced Copy Reserve

The parallel copying collector implemented in Sun Microsystem’s
Hotspot virtual machine [11] makes use of a similar technique to

19

minimize copy reserve overhead. However, Hotspot uses a fixed-
size nursery, rather than an Appel-style variable-sized nursery. We
believe that the variable-sized nursery reduces the space wasted in
workloads with a low nursery survival rate.

Velasco et al make use of the same observation as this work
[12]. They determine that the survival rate of collections is far
below the space normally allocated to the copy reserve in an Appel
style collector.

Their work differs from ours in several ways. They adopt a strat-
egy of dynamically tuning the nursery copy reserve size, while we
set the copy reserve as constant during execution. They suggest sev-
eral simple heuristics to determine the optimal copy reserve size. In
each case, the prior history of the survival rate is combined with a
“security margin” at each collection to determine the space avail-
able for the next series of allocations. A danger of this approach is
that it may lead to over-estimation of the copy reserve requirement,
as a single unusually high survival rate can poison the heuristic.

Additionally, the work described by Velasco et al reduces only
the nursery copy reserve. This misses the opportunity to utilize
the memory used by the mature space. While the nursery space
is larger shortly after a full collection, as the mature space fills up
the amount of space required as a copy reserve similarly increases.
Shortly before a full garbage collection, the mature space domi-
nates the available memory in the heap, meaning that optimizing
only the nursery will have little effect.

The most important difference, however, lies in the recovery
strategy in the case of a missed prediction. While the design out-
lined in this paper performs a compacting collection, the earlier
work instead relies on the principle of nepotism. This refers to
garbage objects in the nursery being kept reachable by garbage ob-
jects in the mature space. In Figure 2(a), several objects (outlined
in black) in the mature space are no longer live. However, since
the mature space is not traced during a minor collection, they keep
some objects in the nursery, which are not reachable from the pro-
gram roots, alive through nepotism. Velasco et al rely on the fact
that by performing a full collection they will not only free up mem-
ory from the mature space but also reduce the survival rate of the
nursery by eliminating these redundant links.

Figure 2(b) shows this strategy. A minor collection has been
performed, and the live objects in the nursery are found to require
more space than the copy reserve can supply. In Figure 2(c), the
unreachable objects in the mature space have been removed, and
so the objects kept alive through nepotism are no longer seen
as reachable. Figure 2(d) shows the successful completion of the
collection, since without the additional objects retained through
nepotism, all live objects fit in the copy reserve.

This argument is flawed, as can be seen in Figure 2(e). Even if
the objects retained through nepotism were removed, there would
still be insufficient space in the copy reserve. In the worst case, all
objects could survive a collection. In order to maintain correctness,
an algorithm must be able to perform a collection under these
circumstances; it is for this reason that the 100% copy reserve was
required in the original generational copying collector design. In
the case where most or all objects survive, the algorithm outlined
by Velasco et al would fail.

The solution proposed in this paper is able to handle the worst
case safely. Should all objects survive, those that fit in the copy
reserve will be moved. The remaining objects will be compacted
inside the nursery, requiring no additional space.

The MC2 collector produced by Sachindran et al [13] divides
the mature space of a generational collector into frames, each of
which can be collected separately. The result of this is that the copy
reserve required by the collector is limited by the frame size; only
one frame is needed, since in the worst case the data copied is a
complete frame.

(a) Objects kept alive through nepotism

(b) Overflowing the copy reserve

(c) Eliminating nepotism

(d) Restarting collection

(e) Insufficient nepotism

Figure 2. Reducing survival rate through nepotism

The MC2 collector is primarily aimed at memory-constrained
situations, such as embedded processors, cell phones or PDAs. The
work described in this paper does not necessarily aim to reduce the
minimum heap size necessary to run programs (although such an
improvement is often observed), rather to increase total throughput
by making better use of the memory available. As will be shown
in Section 6, the copying/compacting algorithm performs best with
larger heap sizes, where the benefits of its space management make
the most impact.

Additionally, MC2 uses an incremental approach to the marking
phase. This technique interleaves small amounts of marking dur-
ing allocation, rather than performing a single monolithic marking
trace over the heap. While this strategy reduces pause times (since
less work is required during a collection), it increases the complex-
ity of the allocation sequence, and requires a mechanism to fall
back upon in case the incremental marking is unable to keep up
with the allocation rate. Since the generational copying/compacting
collector does not aim to make real-time guarantees, we chose to
emphasize simplicity over pause times.

Indeed, the primary advantage of the copying/compacting col-
lector over MC2 is its simplicity. In the vast majority of cases,
the collector behaves as a more efficient version of Appel’s orig-
inal generational copying collector. On the rare occasions that the
copying collector runs out of space, it falls back on a mark and
compact collector. This hybrid approach takes advantage of two
well-understood algorithms, making implementation less complex.

4.2 Dynamic Collector Switching

A major part of our algorithm is the ability to switch seamlessly be-
tween generational copying and compacting collectors. Some pre-
vious work has used a similar technique in order to determine at run
time the most appropriate collector algorithm. While the collector
proposed in this work switches algorithm only as a fallback mech-
anism, it is clear that such a mechanism can be used in isolation to
improve performance.

20

Figure 3. Generational copy/compact collector’s heap layout

Printezis proposes an algorithm that switches between using a
mark and sweep and a mark and compact collector to manage a
generation in a generational collector [14]. He observes that each
collector performs differently under different workloads; a mark
and sweep collector offers faster old generation collection times,
while the mark and compact collector performs nursery allocation
more efficiently, and avoids the problem of fragmentation.

Based on this observation, the author describes a system which
observes the current workload and hot swaps depending on which
algorithm is more appropriate. If a program is observed to perform
a large number of old-space collections it is more appropriate
to use a mark and sweep approach. Conversely, if a workload
performs frequent nursery collections with few survivors, a mark
and compact collector will provide better performance.

Soman et al make use of a similar switching technique [15].
They observe that, since modern server environments may involve a
number of different applications with different memory behaviors,
a single collection algorithm is unlikely to perform best in all cases.
Given this fact, they propose a system of application-specific GC
that can use the most appropriate collector for the algorithm.

Soman et al differ from Printezis in several ways. They make
use of Jikes RVM’s many implemented collector algorithms, al-
lowing them the flexibility to choose the most appropriate from a
large pool. Additionally, their system uses annotations based on ex-
ecution profiles in order to guide the selection of algorithm. As a
result, their system does not incur a warm-up penalty while the ap-
propriate collector is chosen.

5. Implementation Details
This section describes some of the interesting features of an imple-
mentation of the collector proposed in Section 3. The implemen-
tation was based on the Appel-style generational copying collector
supplied with MMTk [16] running with Jikes RVM [17].

5.1 Heap Layout

Figure 3 shows the layout of the heap for our hybrid collector. It
follows a similar design to that described by Appel, with additional
spaces due to MMTk’s implementation.

Spaces in MMTk have virtual address ranges fixed at build time.
This allows references to space limits to be propagated as constants
during compilation rather than being stored and referenced as vari-
ables at runtime. However, the full address range is rarely used for a
given space. The size of a space is managed logically, by maintain-
ing a record of the number of pages assigned to each space. This
way the nursery and mature spaces can be resized dynamically ac-
cording to the requirements of the algorithm.

The boot space is made up of the classes and data structures
generated as part of the build process. This space is never garbage
collected, and does not grow beyond the original size of the boot-
image. By placing the boot space first in the virtual address space,
offsets of code and data structures can be calculated at build time
regardless of the layout of the rest of the heap.

The immortal space is also never garbage collected, and is used
to store data that will exist for the lifetime of the virtual machine.
This includes parts of the classloader and certain garbage collection
data structures. Since objects in the immortal space never move, it
is safe to use them during certain phases of garbage collection when
data in the heap must be regarded as inconsistent.

The large object space is managed by Baker’s treadmill collec-
tion algorithm [18]. This incremental, concurrent collector operates
over a free-list allocated space. Objects larger than a set threshold
are allocated in this space, with memory allocated in a page-sized
granularity.

The mature space comprises two copying semi-spaces. Apart
from brief periods during garbage collection, only one semi-space
is active at any time. Allocation to the mature space is performed
only during garbage collection, when objects are copied from the
nursery or from one semi-space to the other. Allocation in the
mature space is performed by a bump-pointer allocator.

The implementation of the mature space in MMTk differs from
that described by Appel in that it does not remap the location of
the old-space. In the algorithm outlined by Appel, upon evacuation
of all nursery and mature space objects into the copy reserve, the
memory containing live objects is remapped to the start of the heap.
This is done to allow the nursery to be resized by simply sliding
the location of the copy reserve space. Such a mechanism is not
necessary in MMTk since the virtual address space allocated to the
nursery is greater than the maximum size to which the nursery can
grow.

The nursery is the space in which all new allocation occurs. It is
a copy space, and is allocated to by a bump pointer. The nursery is
placed at the end of the heap in order to simplify write barrier code.
To maintain remembered sets of all references into the nursery it is
necessary to determine on every pointer store whether the target is
in the nursery and the source outside. By placing the nursery at the
end of the heap, only a single comparison is necessary for each of
these tests.

5.2 Mark Stage

At the start of a collection, a count is made of the number of copy
reserve pages remaining. This number is calculated as a percentage
of the copy reserve required by Appel’s collector. As pages are
allocated to the mature space for surviving objects, this count is
decremented. When it reaches zero the copy reserve is full, and a
compacting collection must be triggered.

Upon the triggering of a compacting collection, the behavior
of object tracing changes. Previously, when an object was found
to be reachable, it was copied to the mature space and replaced
with a pointer to its new location. Under the compacting collector,
objects are instead marked and left in place. Once the tracing phase
is complete, an object in a compacting space can be in one of three
states: forwarded, marked or garbage.

During the mark stage of a major collection, a total of the
sizes of live mature space objects to be compacted is maintained.
This indicates the amount of space required by compacted mature
objects, and is used to determine the final placement of compacted
nursery objects.

5.3 Sweeping

Compaction follows Jonkers’ algorithm described in Section 3.2.2.
The algorithm requires the temporary use of one word per object,
and must be able to overwrite one bit. In this implementation, the
word per object used by the algorithm is a pointer inside the header
to per-class metadata. Since this is an aligned pointer, its low-order
bit is always zero, and can thus be overwritten.

Some optimizations to the algorithm are made possible by im-
plementation in MMTk. The chaining algorithm calls for two com-
plete sweeps over the heap: one to update forward references, the
other to compact and update backward references. However, in the
generational system it is not necessary for these sweeps to cover
the entire heap.

On a minor collection, there is no need to sweep the entire heap
for references to the nursery. This information has already been

21

logged in the remembered sets maintained by the write barriers. As
a result, the first sweep of the heap requires processing the remem-
bered sets and sweeping the nursery. This is a major improvement
over the expense of sweeping every space in the system.

The initial sweep in a major collection, however, requires that
the majority of the heap be swept. There exists no equivalent to
the remembered sets for the mature space, meaning that pointers
may exist anywhere in the heap. As a small optimization, it is
not necessary to sweep the metadata space. This is because the
metadata space is only used by the garbage collector, and is not
used to determine liveness in other parts of the heap.

A difficulty arises in sweeping the heap during major collec-
tions. The version of MMTk upon which the implementation is
based did not support linear sweeping through memory. All col-
lection algorithms were implemented using tracing. As a result, the
MMTk implementation had different assumptions from those re-
quired for a sweeping collector.

During a sweep, all objects encountered are scanned and their
pointers processed. In order for this to function correctly, all point-
ers must be valid. Whether they point to live or dead objects, all
pointers should refer to an object header. Pointers that do not re-
solve to an object header are dangling references, and can lead to
errors.

Sweeping an immortal space is susceptible to this kind of error.
By definition, an immortal space is never garbage collected. How-
ever, occasionally objects in an immortal space become unreach-
able from the program roots. In a tracing collector is is necessary
only that all objects reachable from the program roots have valid
references. Dangling pointers in unreachable objects will never be
seen, since such an object will not be visited by a trace. However, a
sweeping collector will encounter such references.

To work around this problem, two arrays are maintained to
record liveness of objects in the immortal and boot spaces. These
arrays maintain a bit per addressable word in these spaces. Upon
marking an object, the bit corresponding to that object’s header is
set. Sweeping is performed by traversing these arrays to determine
liveness, rather than by by sweeping the spaces themselves. This
solution is not ideal, since it wastes space and causes a small
time overhead in the marking phase. However in the absence of
garbage collection in the immortal and boot spaces, it is necessary
for correctness.

5.4 Block Copy

The compacting phase of the algorithm requires that objects be
moved en-masse from one memory space to another. Once all
objects are compacted within their space, they must be block copied
to the appropriate location at the end of the mature space. In the
case of minor collections, this requires only remapping the nursery
objects. In major collections, both the nursery and old mature
spaces must be remapped. As the block copy mechanism is used
during a compacting collection, it has the additional requirement
is that no allocation occur during the remapping. Doing so would
allocate pages beyond the system’s budget.

Block copying is performed using the mmap system call. By
default, MMTk obtains virtual address pages from the operating
system’s scratch file. Modifications to this system were made to
instead allocate pages from a named heap file. By maintaining
information on the offset in the heap file mapped to a given virtual
page it is possible to remap the data, effectively modifying the
virtual address associated with it. In this way, data can be quickly
remapped from one virtual address to another.

This implementation adds some run-time overhead, due to the
need for additional system calls. The existing MMTk collectors
do not incur the overhead of space management, because they do
not unmap pages. When a virtual address range is first allocated,

MMTk maps scratch memory to that range. However, when objects
are evacuated from that address range, MMTk simply stops using
the memory, rather than unmapping it. This saves the overhead
of remapping when the same address range is needed again. As a
result, the standard MMTk collectors will often have more memory
mapped than the maximum heap size would allow.

This is not possible when remapping is required, as in the case
of the generational copying/compacting collector. In this case it is
possible that a new physical address range will be mapped to a
given virtual address range. It is important to ensure that no two
physical addresses are mapped to the same virtual address. To avoid
this, memory is unmapped whenever it is not in use.

6. Experimental Results
This section presents the results of running the new garbage col-
lection algorithm with a series of benchmarks. The algorithm was
implemented by modifying the GenCopy collector distributed with
Jikes RVM version 2.3.4. Benchmarks were run using a machine
with an Intel Pentium 4 processor running at 2.26GHz and with
512 Mb of RAM. The Operating System was Mandrake Linux 9.2,
using kernel version 2.4.22-10mdk.

6.1 Methodology

Timing and garbage collection information for each of the selected
benchmarks was gathered. Both generational copying and genera-
tional mark sweep collectors were analyzed for comparison with
the new generational copying/compacting collector.

The methodology used to obtain the numbers was the same for
each collector. First, a VM was built configured with the appropri-
ate collector. Next, each benchmark was run 11 times within a sin-
gle VM invocation. The first run served as a warm-up, compiling all
necessary methods using Jikes RVM’s optimizing compiler (at opt-
level 2). This eliminated the overhead of compilation from subse-
quent runs. The results for the compilation run were discarded. The
remaining ten runs were used as timing runs. A full-heap garbage
collection was performed before each timing run.

6.2 Measurements

The total elapsed time (both mutator and GC) was measured for
each benchmark. Additionally, a count was maintained of both
major and minor collections. In the case of the GenCC algorithm,
the number of nursery and mature compactions was also noted.

In the remainder of this section, the traditional generational
copying collector will be referred to as GenCopy, the generational
mark sweep collector as GenMS and the new generational copy-
ing/compacting collector as GenCC.

6.3 Benchmarks

Benchmarks from the SPECjvm98 suite [19] were used to exam-
ine the performance of the generational copying/compacting algo-
rithm. All benchmarks were run in the default configuration (input
size 100). Figure 4 shows a comparison between the total runtimes
of GenCopy and GenCC for each benchmark.

Of the benchmarks, 202 jess, 213 javac and 228 jack ex-
hibit the most interesting garbage collection behavior, and will
be examined in Section 6.4. Of the remaining benchmarks, it can
be seen that 222 mpegaudio shows only a minor improvement,
201 compress and 227 mtrt show larger improvements, while
209 db shows a performance decrease.

It would be expected that 222 mpegaudio would see little
improvement through an improved garbage collection algorithm.
Since the amount of garbage collection activity is very low in
this benchmark, any improvement in the collector will offer little
speedup overall. 227 mtrt and 201 compress demonstrate some

22

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Heap Size Relative to GenCopy Minimum

-10

-5

0

5

10

15

20

Sp
ee

du
p

V
s.

 G
en

C
op

y
(%

)

(a) 201 compress

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Heap Size Relative to GenCopy Minimum

-10

-5

0

5

10

15

20

Sp
ee

du
p

V
s.

 G
en

C
op

y
(%

)

(b) 202 jess

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Heap Size Relative to GenCopy Minimum

-10

-5

0

5

10

15

20

Sp
ee

du
p

V
s.

 G
en

C
op

y
(%

)

(c) 209 db

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Heap Size Relative to GenCopy Minimum

-10

-5

0

5

10

15

20

Sp
ee

du
p

V
s.

 G
en

C
op

y
(%

)

(d) 213 javac

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Heap Size Relative to GenCopy Minimum

-10

-5

0

5

10

15

20

Sp
ee

du
p

V
s.

 G
en

C
op

y
(%

)

(e) 222 mpegaudio

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Heap Size Relative to GenCopy Minimum

-10

-5

0

5

10

15

20

Sp
ee

du
p

V
s.

 G
en

C
op

y
(%

)

(f) 227 mtrt

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Heap Size Relative to GenCopy Minimum

-10

-5

0

5

10

15

20

Sp
ee

du
p

V
s.

 G
en

C
op

y
(%

)

(g)) 228 jack

Figure 4. All SPECjvm98 benchmarks, 10% copy reserve

0 20 40 60 80
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

E
la

ps
ed

 ti
m

e
(m

s)

0 10 20 30 40 50 60 70 80
Heap Size (Mb)

0

50

100

150

200

250

300

350

400

450

500

N
um

be
r

of
 G

C
s

Minor GCs
Major GCs

(a) GenCopy

0 20 40 60 80
Heap Size (Mb)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

E
la

ps
ed

 T
im

e
(m

s)

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

500

N
um

be
r

of
 G

C
s

Minor GCs
Major GCs

(b) GenMS

Figure 5. 202 jess when run with traditional collectors

improvement. Both of these benchmarks have relatively low nurs-
ery survival rates. This means that the new algorithm allows more
objects to become unreachable between collections, and so triggers
fewer major collections. This is particularly apparent at larger heap
sizes.

The remaining benchmark, 209 db, shows a minor decrease
in performance. The reason for this is that it has frequent major
collections, indicating a high nursery survival rate. This in turn
causes the compacting collector to be called more often, leading
to a performance degradation. It is worth noting, however, that the
performance drop is less than 5%, while the performance gained by
the other benchmarks is substantially higher.

6.4 Results

For the remainder of this section, we will look in detail at 202 jess,
213 javac and 228 jack. Figures 5 to 10 show the results.

Each graph shows the elapsed time for a benchmark run using
a given configuration on the left y-axis, plotted as a line with 90%
confidence intervals, and show the number of collections on the
right y-axis, plotted as stacked bars. Using Figures 5 and 8 as
examples, Figure 5(a) and Figure 5(b) show the performance over
various heap sizes of 202 jess using the GenCopy and GenMS
collectors. Figures 8(a) to 8(c) show the results over a range of
heap sizes when a copy reserve of 5%, 10% and 80% is used. The
remaining graphs (Figure 8(d), 8(e) and 8(f)) show a varying copy
reserve percentage for a fixed heap size.

Figures 5(a) and 5(b) show that the performance of 202 jess
is better using GenCopy than it is using GenMS. Additionally,

23

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

E
la

ps
ed

 T
im

e
(m

s)

0 10 20 30 40 50 60 70 80
Heap Size (MB)

0

50

100

150

200

250

300

350

400

450

500

N
um

be
r

of
 G

C
s

Minor GCs
Major GCs

(a) GenCopy

0 10 20 30 40 50 60 70 80
Heap Size (Mb)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

E
la

ps
ed

 T
im

e
(m

s)

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

500

N
um

be
r

of
 G

C
s

Minor GCs
Major GCs

(b) GenMS

Figure 6. 213 javac when run with traditional collectors

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

E
la

ps
ed

 ti
m

e
(m

s)

0 10 20 30 40 50 60 70 80
Heap Size (Mb)

0

50

100

150

200

250

300

350

400

450

500

N
um

be
r

of
 G

C
s

Minor GCs
Major GCs

(a) GenCopy

0 10 20 30 40 50 60 70 80
Heap Size (Mb)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
E

la
ps

ed
 ti

m
e

(m
s)

0 20 40 60 80
0

50

100

150

200

250

300

350

400

450

500

N
um

be
r

of
 G

C
s

Minor GCs
Major GCs

(b) GenMS

Figure 7. 228 jack when run with traditional collectors

neither collector performs many major collections, indicating that
the survival rate in the nursery is low. GenCopy benefits from this,
since it uses a variable-sized nursery, while GenMS uses a fixed
size. As a result, the nursery is able to take up more of the heap
under GenCopy, leading to fewer collections.

It can be seen from Figure 8 that the performance of GenCC is
almost always better than GenMS. This is to be expected, since
GenCC takes advantage of the low nursery survival rate, and is
able to perform far fewer collections. Additionally, GenCC’s per-
formance is almost always comparable to or better than GenCopy.
The improvement is most noticeable at small copy reserve sizes.

Very little compaction is performed when running 202 jess.
since the nursery survival rate is low. The compacting collector is
only initiated when the copy reserve is set to its minimum. Since
the minimum copy reserve consists of eight pages used to copy
VM and GC data, Figures 8(d) to 8(e) show that, in most cases, the

survivors of a nursery collection fit entirely inside that minimum
space.

Figures 6(a) and 6(b) show that there are significantly more ma-
jor collections in 213 javac than in 202 jess. This indicates that
the nursery survival rate is higher. Of the benchmarks presented,
213 javac exhibits the effects of the generational hypotheses most

clearly and is, as a result, the most interesting of the SPECjvm98
benchmarks from a garbage collection perspective.

It can be seen in Figure 9(a) that when the 213 javac bench-
mark is run using a small copy reserve, several compacting col-
lections are triggered. However, despite the additional overhead of
these collections, GenCC outperforms GenCopy. This is particu-
larly noticeable at larger heap sizes, where more space is available
for the collector to manage. Additionally, in the majority of cases,
GenCC outperforms GenMS.

The performance advantage becomes smaller once the copy re-
serve percentage is increased. Figure 9(f) shows an 80% copy re-

24

0
10

20
30

40
50

60
70

80
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

0
10

20
30

40
50

60
70

80
H

ea
p

Si
ze

 (
M

B
)

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(a
)

5%
co

py
re

se
rv

e

0
10

20
30

40
50

60
70

80
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

0
10

20
30

40
50

60
70

80
H

ea
p

Si
ze

 (
M

B
)

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(b
)

10
%

co
py

re
se

rv
e

0
10

20
30

40
50

60
70

80
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

0
10

20
30

40
50

60
70

80
H

ea
p

Si
ze

 (
M

B
)

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(c
)

80
%

co
py

re
se

rv
e

0
10

20
30

40
50

60
70

80
90

10
0

C
op

y
R

es
er

ve
 (

%
)

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(d
)

30
M

B
he

ap

0
10

20
30

40
50

60
70

80
90

10
0

C
op

y
R

es
er

ve
 (

%
)

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(e
)

55
M

B
he

ap

0
10

20
30

40
50

60
70

80
90

10
0

C
op

y
R

es
er

ve
 (

%
)

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(f
)

80
M

B
he

ap

F
ig

ur
e

8.
20

2
je

ss

25

0
10

20
30

40
50

60
70

80
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

0
10

20
30

40
50

60
70

80
H

ea
p

Si
ze

 (
M

B
)

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(a
)

5%
co

py
re

se
rv

e

0
10

20
30

40
50

60
70

80
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

0
10

20
30

40
50

60
70

80
H

ea
p

Si
ze

 (
M

B
)

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(b
)

10
%

co
py

re
se

rv
e

0
10

20
30

40
50

60
70

80
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

0
10

20
30

40
50

60
70

80
H

ea
p

Si
ze

 (
M

B
)

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(c
)

80
%

co
py

re
se

rv
e

0
10

20
30

40
50

60
70

80
90

10
0

C
op

y
R

es
er

ve
 (

%
)

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(d
)

30
M

B
he

ap

0
10

20
30

40
50

60
70

80
90

10
0

C
op

y
R

es
er

ve
 (

%
)

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0
Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(e
)

55
M

B
he

ap

0
10

20
30

40
50

60
70

80
90

10
0

C
op

y
R

es
er

ve
 (

%
)

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(f
)

80
M

B
he

ap

F
ig

ur
e

9.
20

2
ja

va
c

26
26

0
10

20
30

40
50

60
70

80
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

0
10

20
30

40
50

60
70

80
H

ea
p

Si
ze

 (
M

B
)

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(a
)

5%
co

py
re

se
rv

e

0
10

20
30

40
50

60
70

80
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

0
10

20
30

40
50

60
70

80
H

ea
p

Si
ze

 (
M

B
)

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(b
)

10
%

co
py

re
se

rv
e

0
10

20
30

40
50

60
70

80
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

0
10

20
30

40
50

60
70

80
H

ea
p

Si
ze

 (
M

B
)

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(c
)

80
%

co
py

re
se

rv
e

0
10

20
30

40
50

60
70

80
90

10
0

C
op

y
R

es
er

ve
 (

%
)

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(d
)

30
M

B
he

ap

0
10

20
30

40
50

60
70

80
90

10
0

C
op

y
R

es
er

ve
 (

%
)

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(e
)

55
M

B
he

ap

0
10

20
30

40
50

60
70

80
90

10
0

C
op

y
R

es
er

ve
 (

%
)

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

Elapsed Time (ms)

G
en

C
C

G
en

C
op

y
G

en
M

S

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Number of GCs

M
in

or
 G

C
s

M
in

or
 C

om
pa

ct
io

ns
M

aj
or

 G
C

s
M

aj
or

 C
om

pa
ct

io
ns

(f
)

80
M

B
he

ap

F
ig

ur
e

10
.

20
2

ja
ck

27

serve, where it can be seen that the performance of GenCC de-
grades to similar to or worse than GenCopy. This is expected since,
while theoretically the GenCC algorithm with 100% copy reserve
should be identical to GenCopy, the implementation adds some
overheads that lead to performance degradation. For example, the
implementation of the block copying mechanism relies on main-
taining additional state regarding mapped pages, and can require
additional system calls to manage the memory space correctly. Ad-
ditionally, support for the reference chaining technique requires
that a check be made on some memory accesses during GC. For
large heaps, this is a minor effect, as can be seen in Figures 9(e)
and 9(f). However, when a smaller heap is used in Figure 9(d) these
overheads can lead to significant performance loss at higher copy
reserve sizes. It is expected that a production version of the GenCC
algorithm would generally be used with the copy reserve set at a
suitable value (determined experimentally or dynamically). As a
result, these overheads would not be an issue.

Figures 7 and 10 show performance data for 228 jack. It can be
seen in Figures 7(a) and 7(b) that the traditional collectors perform
few major collections. As in the case of 202 jess, this indicates
that the nursery survival rate is low.

Figure 10(a) shows that, even with a copy reserve of 5%, the
compacting collector is not triggered. This is a result of the low
nursery survival rate. The GenCC collector here outperforms both
the GenCopy and GenMS collectors. As the copy reserve increases,
the performance of GenCC converges with that of the traditional
collectors.

Figures 10(d), 10(e) and 10(f) indicate that compaction occurs
only when the copy reserve is at its minimum. If these extreme
cases are discounted, it can be seen that the performance of GenCC
is comparable to or better than both GenCopy and GenMS for all
three heap sizes.

7. Conclusions
We have presented a generational copying algorithm that makes use
of a reduced copy reserve to improve performance. On the rare oc-
casion when the reduced copy reserve is insufficient, our collector
falls back on a compaction technique. This ensures correctness in
the worst case.

We have provided details of our implementation, and shown
an evaluation of the collector. We found that the choice of copy
reserve size is critical to the performance of the algorithm. If this
reserve is set too high, the benefits of improved space utilization
are lost. If, on the other hand, the copy reserve is too small, overall
performance is hurt by the frequent use of the compacting collector.

Our experiments show that, when a reasonably-sized copy re-
serve is used, our collector outperforms both the traditional gen-
erational copying and generational mark sweep collectors in most
cases. Using a 10% copy reserve, we observe an average speedup
of 4% over a standard generational copying collector, with a maxi-
mum speedup of almost 20%.

Acknowledgments
This work is supported by the National Science Foundation un-
der grants Nos. CCR-0085792, CNS-0509377, CCF-0540866, and
CNS-0551658, and by IBM and Microsoft. Any opinions, findings
and conclusions expressed herein are the authors and do not neces-
sarily reflect those of the sponsors.

References
[1] JONES R., LINS. R. Garbage Collection: Algorithms for Automatic

Dynamic Memory Management. Wiley, 1996

[2] LIEBERMAN, H., HEWITT, C. A Real-Time Garbage Collector Based
on the Lifetimes of Objects. In Commun. ACM 26, 6 (Jun. 1983),
419-429.

[3] UNGAR, D. Generation Scavenging: A Non-Disruptive High
Performance Storage Reclamation Algorithm. In Proceedings of the
ACM Symposium on Practical Software Development Environments, pp
157–167, 1984.

[4] BLACKBURN, S. M., JONES, R., MCKINLEY, K. S., AND MOSS,
J. B.. Beltway: Getting Around Garbage Collection Gridlock. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation (Berlin, Germany, June 17 - 19,
2002). PLDI ’02. ACM Press, New York, NY, 153-164.

[5] APPEL, A. W. Simple Generational Garbage Collection and Fast
Allocation. In Software – Practice And Experience, 19(2):171–183,
February 1989.

[6] COHEN, J., NICOLAU, A. Comparison of Compacting Algorithms for
Garbage Collection. In ACM Trans. Program. Lang. Syst., 5, 4 (Oct.
1983), 532-553.

[7] HADDON, B. K., WAITE, W. M. A Compaction Procedure for
Variable Length Storage Elements. In The Computer Journal, 10:162–
165, August 1967

[8] FISHER, D. A. Bounded Workspace Garbage Collection in an Address
Order Preserving List Processing Environment. In Communications of
the ACM, 18(5):251–252, May 1975.

[9] WILSON, P. R. Uniprocessor Garbage Collection Techniques.
Technical Report, University of Texas, January 1995

[10] JONKERS, H. B. M. A Fast Garbage Collection Algorithm. In
Information Processing Letters, 9(1):25–30, July 1979.

[11] The Java Hotspot Virtual Machine v1.4.1. White Paper. http://java.sun.com/
products/hotspot/index.html

[12] VELASCO, J. M., ORTIZ, A., OLCOZ, K. AND TIRADO, F. Adaptive
Tuning of Reserved Space in an Appel Collector. In Proceedings of
the European Conference on Object Oriented Programming (Oslo,
Norway). vol 3086 of Lecture Notes in Computer Science. Springer-
Verlag, 2004.

[13] SACHINDRAN, N., MOSS, J. E. B. AND BERGER, E. D.
MC2: High-Performance Garbage Collection for Memory-Constrained
Environments. In Proceedings of the 19th annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (Vancouver, BC, Canada). pp 81–98. ACM Press.

[14] PRINTEZIS, T. Hot-Swapping Between a Mark&Sweep and a
Mark&Compact Garbage Collector in a Generational Environment. In
Java Virtual Machine Research and Technology Symposium, USENIX
2001

[15] SOMAN, S., KRINTZ, C., BACON, D. F. Dynamic Selection of
Application-Specific Garbage Collectors. In Proceedings of the 4th
International Symposium on Memory Management (Vancouver, BC,
Canada, October 24 - 25, 2004). ISMM ’04. ACM Press, New York, NY,
49-60.

[16] BLACKBURN, S. M., CHENG, P. AND MCKINLEY, K. S. Oil and
Water? High Performance Garbage Collection in Java with MMTk. In
ICSE ’04: Proceedings of the 26th International Conference on Software
Engineering (Washington, DC, USA). pp 137–146. IEEE Computer
Society.

[17] ALPERN, B., ATTANASIO, C. R., BARTON, J. J., COCCHI, A.,
HUMMEL, S. F, LIEBER, D., NGO, T. MERGEN, M., SHEPHERD, J.
C. AND SMITH, S. Implementing Jalapeño in Java. In Proceedings
of the ACM Conference on Object Oriented Programming Systems,
Languages and Applications (Denver, CO, USA). pp 314–324. ACM
Press.

[18] BAKER, H. G. The Treadmill: Real-Time Garbage Collection
Without Motion Sickness. In ACM SIGPLAN Notices, 27(3):66-70,
March 1992.

[19] SPEC. SPECjvm98 Benchmarks, 1998. http://www.spec.org/osg/jvm98.

28

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

