
Purdue University Department of Computer Sciences Technical Report 95-084

Lightweight write detection and checkpointing for

�ne-grained persistence

Antony L. Hosking

Purdue University

and

J. Eliot B. Moss

University of Massachusetts at Amherst

Many systems must dynamically track writes to cached data, for the purpose of reconciling those
updates with respect to the permanent or global state of the data. For example, distributed
systems employ coherency protocols to ensure a consistent view of shared data. Similarly, database
systems log updates both for concurrency control and to ensure the resilience of those updates in
the face of system failures. Here, we measure and compare the absolute performance of several

alternative mechanisms for the lightweight detection of writes to cached data in a persistent

system, and the relative overhead to log those writes to stable storage in the form of a checkpoint.
A checkpoint de�nes a consistent state to which the system will be restored in the event of any
subsequent failure. The e�cient detection and logging of updates is critical to the performance
of persistent systems that embody a �ne-grained data model, since per-object overheads are
typically very low. Our results reveal a wide range of performance for the alternatives, indicating
that the right choice of mechanism is important. They also demonstrate that software write
detection mechanisms can signi�cantly outperform approaches that rely solely on the hardware
and operating system.

Categories and Subject Descriptors: []:

General Terms:

Additional Key Words and Phrases:

1. INTRODUCTION

A persistent system [Atkinson et al. 1982; Atkinson et al. 1983; Atkinson et al.
1983; Atkinson and Buneman 1987] maintains data independently of the transitory
programs that create and manipulate that data|data may outlive their creators,
and be manipulated by yet other programs. To achieve this, persistent systems
provide an abstraction of persistent storage, which programmers view as a stable

This work has been supported by the National Science Foundation under grants CCR-9211272,
CCR-8658074 and DCR-8500332, and by the following companies and corporations: Sun Mi-
crosystems, Digital Equipment, Apple Computer, GTE Laboratories, Eastman Kodak, General
Electric, ParcPlace Systems, Xerox, and Tektronix.
Name: Antony L. Hosking
A�liation: Purdue University
Address: Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398,
hosking@cs.purdue.edu
Name: J. Eliot B. Moss
A�liation: University of Massachusetts at Amherst
Address: Department of Computer Science, University of Massachusetts, Amherst, MA 01003-
4610, moss@cs.umass.edu

1

2 �

(i.e., disk-resident) extension of memory in which they can dynamically allocate new
data, but which persists from one program invocation to the next. A persistent

programming language allows traversal and manipulation of the persistent data
to be programmed transparently : i.e., without explicit calls to transfer the data
between volatile main memory and stable persistent storage. Rather, the language
implementation and run-time system contrive to make persistent data available in
memory on demand, much as non-resident pages are automatically made resident
in a paged virtual memory system. Moreover, a persistent program can modify
persistent data and commit the modi�cations so that the updates are permanently
recorded in persistent storage.

As in traditional database systems, persistent systems typically treat memory
as a relatively scarce resource (at least with respect to the size of the database),
maintaining a cache of frequently-accessed persistent data in volatile memory for
e�cient manipulation. Updates can be made cheaply in place, in memory, but
ultimately must propagate back to stable storage for them to become permanent.
Thus, every operation that modi�es persistent data requires some immediate or
subsequent action to commit the update to disk. While the system might write
the modi�cations straight through to disk on every update, such an approach is
likely to be unnecessarily expensive if updates are frequent or otherwise incur very
little overhead. Moreover, applications exhibiting locality of update may bene�t
from an approach that groups related updates together for e�cient batch trans-
fer to disk, deferring writes until absolutely necessary, such as when the program
issues an explicit checkpoint operation. While this approach reduces per-update
overhead, checkpoint latencies should also be minimized so as to have the smallest
possible impact. For example, in interactive environments checkpoints should not
noticeably delay response times. Such overheads to manage updates to persistent
data constitute a write barrier that can signi�cantly impact the performance of
persistent systems.

Adding persistence to conventional programming languages, such as those in
the Algol family (including Pascal, C, Modula-2, and their object-oriented cousins
C++, Modula-3, and even Smalltalk), is complicated by their �ne-grained view of
data|they provide fundamental data types and operations that correspond very
closely to the ubiquitous primitive types and operations supported by all machines
based on the von Neumann model of computation. This close correspondence means
that many operations supported in the language can be implemented directly with
as little as one instruction of the target machine. Integrating persistence with such
languages poses new problems of performance arising out of the �ne granularity of
the types and operations supported by the language.

The principle of orthogonality mandates that even data values as �ne-grained as
a single byte (the smallest value typically addressable on current machines) ought
to persist independently. Clearly, this situation is signi�cantly di�erent from that of
traditional database systems [Date 1983; Date 1986], where the unit of persistence
is the record, usually consisting of many tens, if not hundreds, of bytes. Where a
relational database system can spend hundreds or even thousands of instructions
implementing relational operators, an Algol-like persistent programming language
must take an approach to persistence that does not swamp otherwise low-overhead
and frequently-executed operations. Thus, implementations of the write barrier

� 3

for such languages must be su�ciently lightweight as to represent only marginal
overhead to frequently-executed operations on �ne-grained persistent data. Perfor-
mance of the write barrier for persistence can be broken down into two components:
the run-time overhead to track updates as they occur, and the checkpoint overhead
required to
ush those updates to disk. We explore the relative performance of a
comprehensive set of alternative low-overhead write barrier implementations within
a prototype persistent system. We precisely measure both run-time and checkpoint
overheads for each alternative and characterize their tradeo�s. Our results show
that the alternatives exhibit a wide range of performance, implying that the right
choice of mechanism is important. Moreover, the results are somewhat counter-
intuitive, because they reveal that write barrier mechanisms implemented in soft-
ware can signi�cantly outperform alternative approaches that rely on support from
the hardware and operating system to track updates. The results also have general
implications for the choice of write barrier mechanism in domains other than persis-
tence, such as garbage collection and distributed systems. In addition to the direct
performance results, we also o�er our experimental methodology as representing
a unique blend of performance measurement and simulation in characterizing the
low-level behavior of a complex software system.
The remainder of the paper is organized as follows. Section 2 covers background

material about persistent systems. Section 3 presents the methodology we use
for the performance evaluation, including a description of the prototype imple-
mentation and the write detection mechanisms compared, and the benchmarks,
experimental con�guration, and performance metrics used. Section 4 presents the
performance results, along with an analysis based on the simulations. Section 5
discusses related work. Section 6 suggests directions for future work, and section 7
o�ers �nal conclusions.

2. BACKGROUND

Persistent systems were born out of a fundamental convergence of programming
language and database technology, integrating the data manipulation features of
programming languages with the storage management features of databases. The
following sections review the important architectural features of persistent program-
ming languages and systems, and describe our particular architecture for persistence
and its rationale.

2.1 Persistent programming languages

Persistent programming languages place the full type system of the language at the
programmer's disposal in de�ning persistent data. Early on, Atkinson et al. [1983]
characterized persistence as \an orthogonal property of data, independent of data
type and the way in which data is manipulated." This particular characterization
encourages the view that a language can be extended to support persistence with
minimal disturbance of its existing syntax. As such, most persistent programming
languages represent an attempt to extend the address space of programs beyond
that which can be addressed directly by the available hardware, just as virtual
memory represents the extension of the memory address space of a program beyond
that of physical memory (virtual address translation allows transparent access to
data regardless of its physical memory location; the operating system and hardware

4 �

cooperate to trap references to pages that are not yet resident in physical memory).
They provide an abstraction of persistent storage in terms of a persistent dynamic
allocation heap: data in the heap are referred to by language-supported pointers.
If the entire heap can �t in virtual memory then it can be mapped directly,

with pointers represented as direct virtual memory addresses. However, this limits
the size of the heap to that of the virtual address space. Extended addressability
requires pointers that are not necessarily virtual memory addresses, as well as a
mechanism to perform translation of pointers to virtual addresses to allow the
program to manipulate the data.
Either way, a persistent program may refer to both resident and non-resident

persistent objects. Ideally, a memory-resident persistent object will be referred
to by its virtual address, so that accessing the object can be as fast as accessing
a non-persistent object. If the program traverses a reference to a non-resident
object then it must be made available to the program in memory: we call this an
object fault. Thus, persistent objects are faulted into memory on demand much as
non-resident pages are automatically made resident by the virtual memory system.
Several implementations of object faulting are possible, driven by software checks
on pointer dereferences supported by the language implementation, or through user-
level virtual memory primitives supported by the operating system and hardware
[Appel and Li 1991; Hosking and Moss 1993a].

2.2 Storage management

Architectures for persistence typically have one component in common: a stor-

age manager, responsible for maintaining data in some inexpensive stable storage
medium such as magnetic disk and for �elding requests to retrieve and save speci�ed
data. Object-oriented storage managers allow retrieval of a data object based on
its identi�er (id); such systems are called persistent object stores. Object-oriented
database systems also support this style of access, but they are distinguished from
persistent object stores by additionally providing full database functionality, in-
cluding concurrency control, recovery, transactions, distribution, data access via
associative queries, and languages for data de�nition and manipulation.
Our implementation uses the Mneme persistent object store [Moss 1990] to man-

age the storage and retrieval of objects, which are grouped into segments for e�cient
transfer to and from disk. Mneme is intended for tight integration with persistent
programming languages through a procedural interface. Its primary abstraction
is the persistent store as a persistent heap: objects persist so long as they are
reachable from designated root objects.

2.3 An architecture for persistence: object caching

Our architecture for persistence is not that unusual. For example, it bears a close re-
semblance to the object caching architectures of White and DeWitt [1992], Kemper
and Kossman [1994] and Napier88 [Brown et al. 1991; Brown et al. 1990]. However,
the architecture's realization is unique in that it allows the language implementa-
tion maximum control over all objects being manipulated by a program, without
having to pass through a restrictive interface to the underlying storage manager.
Much of this
exibility comes as a result of using Mneme, since it allows direct
access to the objects in its bu�ers via virtual memory pointers.

� 5

Segments
Log

Records

Application
Memory Space

Server
(possibly remote)

Objects
Old

New
Objects

Local Disk

LogSegment

Segment

Client Buffer Pool
In−memory Mneme

Swizzle

Unswizzle

Unswizzle

Disk

Fig. 1. System architecture

The architecture is illustrated in Figure 1. A Mneme client maintains a bu�er
of segments containing persistent objects in main memory as necessary. Object
faults trigger the copying of objects from this client bu�er pool into the virtual
memory address space of the application program. The copying includes any trans-
lation needed to convert the objects into a form acceptable to the program. In
particular, since Mneme uses object identi�ers to refer to objects while the pro-
gram uses virtual memory pointers, object references may be converted to direct
memory pointers for manipulation by the program, in a process known as swizzling.
The architecture permits standard programming language techniques for memory
management, including those of garbage collection, to manage the objects resident
in the program's virtual address space.
When an object is made resident its pointer �elds are swizzled according to

the mechanism being employed for triggering object faults. All �elds referring to
other resident objects can be converted to point directly to those objects|Mneme
supports this mapping e�ciently with a hash table. Otherwise, the reference must
be converted to a form that will trigger an object fault when it is traversed.

2.4 Checkpoints

Our notion of recovery is dictated by speci�c assumptions about the behavior of
persistent programs. We assume that a program will invoke a checkpoint operation
at certain points throughout its execution to make permanent all modi�cations
it has made to persistent objects. In the event of a system crash the recovery
mechanism must restore the state of the persistent store to that of the most recent
checkpoint. Moreover, we assume that checkpoint latencies should be minimized
so as to have the smallest possible impact on the running time of the program.
This last point is important in interactive environments where checkpoints may
noticeably delay response times.
A checkpoint operation consists of copying and unswizzling modi�ed and newly-

created objects (or modi�ed subranges of objects) back to the client bu�er pool
and generating log records describing the range and values of the modi�ed regions
of the objects. Log records are generated only if there are di�erences between an
object and its original in the client bu�er pool. Since persistence in our system is
based on reachability the unswizzling operation may encounter pointers to objects
newly created since the last checkpoint. Each such object is assigned a persistent

6 �

identi�er and unswizzled in turn, perhaps dragging further newly-created objects
into the persistent store, and a log record describing the new object is generated.

The precise format of the log records is not relevant to this study, since we are
interested only in the mechanisms used to detect and log updates. However, we
note that each log record is tagged by the persistent identi�er of the modi�ed
object and encodes a range of modi�ed bytes. Recovery involves applying these
log records to the objects to which they pertain, in the order in which they occur
in the log. Although alternative log-record formats might yield a more compact
log, or allow more e�cient recovery, our log is minimal in the sense that it records
just enough information to reconstruct each modi�ed object. Moreover, di�erence-
based logging minimizes disk tra�c at the cost of computing the di�erences. In
preliminary performance studies we determined that the tradeo� is worthwhile.
This result has also been con�rmed in other settings [White and DeWitt 1995].

2.5 Extensions to the basic architecture

As described so far, the architecture supports single-user access with recovery. We
now argue that the architecture can be extended to provided additional function-
ality such as bu�er management and concurrency control.

2.5.1 Bu�er management. To integrate bu�er management with the recovery
model, we guarantee that a modi�ed segment is
ushed to disk only after the log
records associated with those modi�cations have been written. Outside of that
constraint, the bu�er manager is free to use any appropriate bu�er replacement
policy. Management of swizzled objects in the application's virtual memory must
rely on techniques similar to garbage collection to determine which objects are
subject to replacement [Hosking 1991]; this is compatible with the recovery model,
since modi�ed objects that have been selected for replacement will be unswizzled
and logged to disk for inclusion in the next checkpoint.

2.5.2 Concurrency control. The recovery model is indi�erent to concurrency,
which can be introduced to the architecture in two ways. First, separate appli-
cations can share the same persistent store, arbitrated by a server. Locking is
managed by the server and the application's view of recovery is unchanged, modulo
some additional information required in a log entry to identify its owner. Second,
a single application may be multi-threaded. Additional locks must be managed
within the application if data is shared among threads. Again, the recovery model
remains essentially unchanged, modulo some additional log entry information to
identify the owner of the entry.

The recovery model and support for concurrency provide the foundation for any
transaction model. The incorporation of transaction models in persistent program-
ming languages remains an open topic of research. We are not directly concerned
with that issue here, and merely remark that our recovery model could be extended
to incoporate transactions similarly to the database cache [Elhardt and Bayer 1984],
for which several transaction models exist. Like our system, the database cache was
designed for fast transaction commit and rapid recovery after a crash.

� 7

3. METHODOLOGY

We evaluate the performance of several alternative write barrier implementations
within a single prototype persistent system. Di�erent instantiations of the proto-
type use di�erent implementations of the low-level write barrier mechanism. All
other aspects of the implementation are kept constant for each instantiation of the
prototype. This allows a head-to-head comparison of alternative implementations
where only the particular mechanism under study varies across all the instances of
the prototype. In this respect, the prototype is a novel experimental test-bed for
the exploration of persistent systems implementation, allowing direct comparison
of alternatives.
Our experiments encompass measurements of elapsed time, as well as cache simu-

lation and instruction pro�ling to obtain counts of both cache misses and execution
frequency, per instruction address. Combined, these measurements allow precise
determination of both absolute run-time overheads in terms of cycles per update,
and relative checkpoint overheads, for each alternative write barrier implementa-
tion.

3.1 A prototype implementation: Persistent Smalltalk

The prototype persistent system used for this study is an implementation of the
Smalltalk programming language and environment [Goldberg and Robson 1983],
extended for persistence. The implementation has two components: a virtual ma-

chine and a virtual image.
The virtual machine implements the bytecode instruction set to which Smalltalk

source code is compiled, along with certain primitives whose functionality is built
directly into the virtual machine. These typically provide low-level access to the
underlying hardware and operating system on which the virtual machine is im-
plemented. For example, low-level
oating point and integer arithmetic, indexed
access to the �elds of objects, and object allocation, are all supported as primi-
tives. Notable features of our implementation of the Smalltalk virtual machine are
its use of direct 32-bit object pointers, an improved scheme for managing Smalltalk
stack frames (i.e., activation records) [Moss 1987], generation scavenging garbage
collection [Ungar 1984; Ungar 1987], and dynamic translation of compiled methods
from bytecodes to threaded code [Bell 1973]. Threaded code signi�cantly improves
the performance of the virtual machine by replacing an expensive decode-and-
branch overhead for every bytecode instruction cycle with a straightforward indirect
branch. The result is an interpreted Smalltalk system that exhibits performance
around three times faster on the sparcstation 2 than an equivalent implementation
in which bytecode instructions are microcoded on the Xerox Dorado [McCall 1983].
The virtual image is derived from Xerox parc's Smalltalk-80 image, version 2.1,

of April 1, 1983, with minor modi�cations. It implements (in Smalltalk) all the
functionality of a Smalltalk development environment, including editors, browsers,
a debugger, the bytecode compiler, class libraries, etc.{all are �rst-class objects
in the Smalltalk sense. Bootstrapping a (non-persistent) Smalltalk environment
entails loading the entire virtual image into memory for execution by the virtual
machine.
The persistent implementation of Smalltalk places the virtual image in the persis-

8 �

tent store, and the environment is bootstrapped by loading just that subset of the
objects in the image su�cient for resumption of execution by the virtual machine.
We retain the original bytecode instruction set and make only minor modi�cations
to the virtual image. Rather, our e�orts focus on the virtual machine, which is
carefully augmented to fault objects into memory as they are needed by the exe-
cuting image. The precise mechanism used for object faulting is not relevant to this
study, except to say that we use a software approach that is kept constant across
all variations of write barrier mechanism. Moreover, object faulting overheads are
very low and restricted solely to the method invocation sequence|bytecode dis-
patch and execution are entirely free of object faulting overheads. Comparisons
of alternative schemes for object faulting within the prototype appear elsewhere
[Hosking and Moss 1993a; Hosking and Moss 1993b; Hosking 1995].

3.2 Implementing the write barrier: detecting and logging updates

Our lightweight mechanisms are inspired by similar solutions to the write barrier
problem in garbage collection: the act of storing a pointer in an object is noted
in order to minimize the number of pointer locations examined by the collector
[Hosking et al. 1992]. Similarly, e�cient logging requires keeping track of all updates
to objects, to minimize the number of locations unswizzled when generating the log
(recall that a log record is generated only if there are di�erences between the new
version of an object and the original in the client bu�er pool).
This study examines several implementations of the write barrier, including three

approaches previously used in garbage collection and now applied for the �rst time
to the problem of detecting and logging updates to persistent data. Note that
since the log consists of di�erence information obtained by comparing old and new
versions of objects, all schemes end up generating exactly the same log information.
The schemes vary mostly in the granularity of the update information they record,
and hence in the amount of unswizzling and comparison required to generate the
log.

3.2.1 Object-based schemes. The �rst two schemes record updates at the logical
level of objects. One approach is to mark updated objects by setting a bit in the
header of the object when it is modi�ed. The checkpoint operation must scan
all cached objects to discover those marked as updated. A marked object must
be unswizzled and compared to its original in the bu�er pool to determine any
di�erences to be logged. The drawback of this approach is the additional checkpoint
overhead required to scan the cached objects to �nd those that are marked.
To avoid scanning, the second scheme uses a data structure called a remembered

set [Ungar 1984] to record modi�ed persistent objects. A checkpoint need only pro-
cess the entries in the remembered set to locate the objects that must be unswizzled
and possibly logged. The remembered set is implemented as a dynamic hash table.
So that the remembered set does not become too large, an inline �lter is applied

to record only updates to persistent objects, as opposed to newly-created transient
objects|Smalltalk is a prodigious allocator, so the vast majority of updates are to
transient objects. This requires a check to see that the updated object is located in
the separately managed persistent area of the volatile heap, determined by taking
the high bits of its address to index a table that contains such information. If the

� 9

updated object is indeed persistent then a subroutine is invoked to hash the object's
pointer into the remembered set.
Remembered sets have the advantage of being both concise and accurate, at the

cost of �ltering and hashing to keep the sets small|repeated updates to the same
object result in just one entry in the remembered set, but incur repeated overhead
to �lter and hash.

3.2.2 Card-based schemes. Object-based schemes concisely represent just those
objects that have been modi�ed, and so need to be unswizzled on checkpoint.
However, updates to larger objects may su�er from poor locality with respect to the
object size, resulting in unnecessary unswizzling and comparison upon checkpoint,
bounded solely by the size of the object. An alternative is to record updates based
on �xed-size units of the virtual memory space, by dividing the memory into aligned
logical regions of size 2k bytes|the address of the �rst byte in the region has k low
bits zero. These regions are called cards after Sobalvarro [1988]. Each card has a
corresponding entry in a card table indicating whether the card contains updated
locations. Mapping an address to an entry in this table is simple: shift the address
right by k bits and use the result as an index into the table. Whenever an object
is modi�ed, the corresponding card is dirtied.
One of the most attractive features of card marking is the simplicity of the write

barrier. Ignoring cache e�ects, the per-update overhead is constant. Keeping this
overhead to a minimum is highly desirable. By implementing the card table as a
byte array (rather than a bitmap), and interpreting zero bytes as dirty entries and
non-zero bytes as clean, a store can be recorded with just three sparc instructions:
a shift, index, and byte store of zero [Wilson and Moher 1989a; Wilson and Moher
1989b].1

The checkpoint operation scans only the dirty cards containing persistent objects,
to perform unswizzling and obtain di�erences for logging. Unswizzling requires
locating all pointers within the card. Moreover, the log records must be generated
with respect to the modi�ed objects in the card, recording the object identi�er and
contiguous ranges of modi�ed bytes. Since the formats of the objects in the card
are encoded in their object headers, the header of the �rst object within a given
card must be located to start the scan. For this purpose, a table of card o�sets
parallel to the dirty card table records the location of the last (highest address)
object header within each card. Thus, given a card for scanning, the header of the
�rst object in the card can be found at the end of the last object in the previous
card.
Dirty cards are marked clean after scanning. To reduce the overhead of scanning,

contiguous dirty cards are scanned as a batch, running from the �rst to the last in
one scan. Also, the implementation takes great pains to avoid unnecessary memory
accesses when scanning the card table to locate a run of dirty cards, by loading an
entire memory word of the table at a time.
The size of the cards is an important factor in
uencing checkpoint costs, since

1Some modern risc architectures either do not provide a byte store instruction, or implement
it by reading a full word, modifying the appropriate byte, and writing back the modi�ed word.
On such machines, it may be cheaper to code the read-modify-write explicitly as a sequence of
instructions, or even revert to a bitmap implementation of the dirty card table.

10 �

large cards mean fewer cards and smaller tables. However, larger cards imply
unnecessary checkpoint overhead to perform unswizzling and comparison of objects
that are unmodi�ed, but just happen to lie in a dirty card. Thus, an interesting
question arises as to whether there exists an optimal card size that minimizes
the sum of these competing overheads. Our performance evaluation answers this
question for the program behaviors we consider.

3.2.3 Page-protection schemes. A variant of the card-based approach uses the
hardware-supported page protection primitives of the operating system to detect
stores into clean cards. A card in this scheme corresponds to a page of virtual
memory. All clean pages are protected from writes. When a write occurs to a
protected page, the trap handler dirties the corresponding entry in the card table
and unprotects the page. Subsequent writes to the now dirty page incur no extra
overhead.2 Because the dirty page table is updated out of line in the trap handler
it is probably less important that dirtying an entry in the page table incur minimal
overhead, than that the dirty page table be kept as small as possible. Thus, one
might prefer to reimplement the dirty page table as a bitmap instead of a byte-map,
so reducing the table's size by a factor of eight. Here, we continue to use a byte
table, for more direct comparison with the page-sized card scheme.

3.3 Benchmarks

The performance evaluation draws on the oo1 object operations benchmarks [Cat-
tell and Skeen 1992] to compare the alternative implementation approaches. These
benchmarks are retrieval-oriented and operate on substantial data structures, al-
though the benchmarks themselves are simple, and so easily understood. Their
execution patterns include phases of intensive computation so that memory resi-
dence is important. Although the oo1 benchmarks are relatively low-level, they are
su�cient for an exhaustive exploration of the behavior of our minimal write barrier
mechanisms.

3.3.1 Benchmark database. The oo1 benchmark database consists of a collection
of 20,000 part objects, indexed by part numbers in the range 1 through 20,000,
with exactly three connections from each part to other parts. The connections are
randomly selected to produce some locality of reference: 90% of the connections are
to the \closest" 1% of parts, with the remainder being made to any randomly chosen
part. Closeness is de�ned as parts with the numerically closest part numbers. We
implement the part database and the benchmarks entirely in Smalltalk, including
the B-tree used to index the parts.
The database, including the base Smalltalk virtual image as well as the parts

data is around 6mb. Newly created objects are clustered into Mneme segments
only as they are encountered when unswizzling, using an essentially breadth-�rst
traversal similar to that of copying garbage collectors [Cheney 1970]. The part
objects are 68 bytes in size (including the object header). The three outgoing
connections are stored directly in the part objects. The string �elds associated

2An operating system could more e�ciently supply the information needed in the page protection
scheme by o�ering appropriate calls to obtain the page dirty bits maintained by most memory
management hardware [Shaw 1987].

� 11

with each part and connection are represented by references to separate Smalltalk
objects of 24 bytes each. Similarly, a part's incoming connections are represented
as a separate Smalltalk Array object containing references to the parts that are the
source of each incoming connection. The B-tree index for the 20,000 parts consumes
around 165kb.

3.3.2 Benchmark operations. The oo1 benchmarks comprise three separate op-
erations and measure response time for execution of each operation. The �rst two
operations are read-only, leaving the permanent database untouched. Since they
are retrieval-oriented, and involve no modi�cation to the database, they are not
relevant to our study of write barrier mechanisms. We describe them merely for
completeness:

|Lookup fetches 1,000 randomly chosen parts from the database. A null proce-
dure is invoked for each part, taking as its arguments the x, y, and type �elds of
the part.

|Traversal fetches all parts connected to a randomly chosen part, or to any
part connected to it, up to seven hops (for a total of 3,280 parts, with possible
duplicates). Similar to the Lookup benchmark, a null procedure is invoked for
each part, taking as its arguments the x, y, and type �elds of the part.3

The third operation requires updating the permanent database, and so is more
appropriate for comparing write barrier mechanisms:

|Insert allocates 100 new parts in the database, each with three connections to
randomly selected parts as described in Section 3.3.1 (i.e., applying the same
rules for locality of reference). The index structure must be updated, and the
entire set of changes committed to disk.

Although this operation is a reasonable measure of update overhead, it is hampered
by a lack of control over the number and distribution of the locations modi�ed, and
its mixing of updates to parts and the index. A more controlled benchmark is the
following:

|Update [White and DeWitt 1992] operates in the same way as the Traversal
measure, but instead of calling a null procedure it performs a simple update to
each part object encountered, with some �xed probability. The update consists
of incrementing the x and y scalar integer �elds of the part. All changes must
be committed to disk.

Here, the probability of update can vary from one run to the next to change the
frequency and density of updates.
These benchmarks are intended to be representative of the data operations in

many engineering applications. The Lookup benchmark emphasizes selective re-

3oo1 also speci�es a reverse Traversal operation, swapping \from" and \to" directions. This
reverse Traversal operation is of minimal practical use because the random nature of connections
means that the number of \from" connections varies among the parts|while every part has
three outgoing connections, the number of incoming connections varies randomly. Thus, di�erent
iterations of the reverse Traversal vary randomly in the number of objects they traverse, and so
the amount of work they perform.

12 �

trieval of objects based on their attributes, while the Traversal benchmark illumi-
nates the cost of raw pointer traversal. The Update variant measures the costs of
modifying objects and making those changes permanent. Additionally, the Insert
benchmark measures both update overhead and the cost of creating new persistent
objects.
oo1 calls for each benchmark measure to be iterated ten times, the �rst when

the system is cold, with none of the database cached (apart from any schema or
system information necessary to initialize the system). Thus, before each run of
ten iterations we execute a \chill" program on the client to read a 32mb �le from
the server, scanning �rst forward then backward; this
ushes the operating system
kernel bu�er cache on both client and server, so that the �rst iteration is truly
cold. Each successive iteration accesses a di�erent set of random parts. Still,
there may be some overlap in the parts accessed by di�erent iterations, in which
case implementations that cache data from one iteration to the next will exhibit a
warming trend, with improved performance for later warm iterations that access
data cached by earlier iterations.
In addition to the ten cold through warm iterations, it is useful to measure

performance for hot iterations of the benchmarks, by beginning each hot iteration
at the same initial part used in the last of the warm iterations. The hot runs are
guaranteed to access only resident objects, and so are free of any overheads due to
the handling of object faults.

3.4 Experimental con�guration

We ran our experiments on a sparcstation 2 (Cypress Semiconductor cy7c601
integer unit clocked at 40mhz) running Sunos 4.1.3.4 The sparcstation 2 has a
64kb uni�ed cache (instruction and data) with a line size of 32 bytes. Read misses
cost 24-25 cycles. On a hit, writes update both cache and memory|a 16-byte write
bu�er reduces this overhead, though if the bu�er is full the processor will stall for
4-5 cycles for the completion of one slow memory cycle. Write misses invalidate,
but do not allocate, the corresponding cache line.
The system has 32mb of main memory (dram), su�cient for the entire bench-

mark database to be cached in memory. Thus, bu�er management policies can be
ignored when interpreting the experimental results. The log �le is written locally to
an internal sun0424 scsi disk (414,360kb unformatted capacity, 2.5-3.0mb/s peak
data rate, �2.9mb/s sustained data rate,5 14ms average seek time). The log records
are bu�ered and written as a batch, using calls to write followed immediately by a
call to fsync to force the log data to the local disk before the checkpoint completes.
Thus, checkpoints break down into two phases, unswizzling and writing, which are
measured separately.
The database is stored locally (i.e., the client is its own server), for the simple

4sparcstation is a trademark of sparc International, licensed exclusively to Sun Microsystems.
Sunos is a trademark of Sun Microsystems.
5The data rate varies because the disk has a constant linear density for all tracks, with outer
tracks yielding a faster bit rate than inner tracks. Peak data rate is the data rate possible for
a single sector. Sustained data rate is calculated as the number of 512-byte sectors per track
multiplied by the angular velocity|because the number of sectors per track decreases from outer
to inner tracks this calculation is only approximate.

� 13

reason that the experimental apparatus is thus easier to obtain and control, and
also because results for a remote database would di�er only in the network latency
for retrieval of objects from a remote server's disk. Local disk latencies are suf-
�ciently high to demonstrate the caching e�ects inherent in the implementation.
The database resides on an external sun1.3g scsi disk (1,336,200kb unformatted
capacity, 3.25-4.5mb/s peak data rate, �3.5mb/s sustained data rate, 11ms average
seek time).

3.5 Metrics

We measure elapsed time for the execution of the benchmark operations using a
version of the Smalltalk virtual machine instrumented with calls to the Sunos sys-
tem call gettimeofday. This directly accesses the system hardware clock, which
has a resolution of 1�s for the sparcstation 2. Such �ne-grained accuracy permits
each phase of execution (running, swizzling, disk retrieval, logging, etc.) to be
measured separately with minimal disturbance of the results due to measurement
overheads. Moreover, benchmarks are run with the client in single-user mode and
disconnected from the network, to minimize interference from network tra�c, vir-
tual memory paging, and other operating system activity. All times are reported in
seconds (unless stated otherwise), and exclude the time to initialize the Smalltalk
system prior to beginning the benchmark.
A benchmark run consists of the ten cold through warm iterations, plus a sin-

gle hot iteration. To guarantee repeatability, the permanent database is kept en-
tirely static (updates are written only to the log, never propagated to the perma-
nent database) so that di�erent runs are always presented with the same physical
database. Moreover, every run begins with the same random number seed, so the
nth iteration of any given benchmark run always accesses the same parts as the
nth iteration within any other benchmark run. In other words, although a di�erent
set of random parts are accessed from one cold/warm iteration to the next within
a run, corresponding iterations from di�erent runs always access the same set of
parts, so they are directly comparable.
Nevertheless, there may be other uncontrollable variations in system behavior

from one run to the next. For example, variations in the disk state (track and block
position of the disk read/write arm) may a�ect read performance. To get an idea of
the signi�cance of this variation in the comparison of di�erent implementations we
repeat the runs for each implementation and calculate the results as 90% con�dence
intervals for the mean elapsed time.
As well as measuring elapsed time we also use the Shade instruction-set simulator

[Cmelik and Keppel 1994] to obtain precise execution pro�les for each run. Using
modi�ed versions of Shade's tools for cache simulation and instruction pro�ling
we obtain precise counts, per instruction address, of both execution frequency and
cache misses (for the sparcstation 2 cache con�guration described above).

4. RESULTS AND ANALYSIS

Our experiments use the Insert and Update benchmarks, with update probabilities
of 0.00, 0.05, 0.10, 0.15, 0.20, 0.50, and 1.00, to measure the performance of ob-
ject marking (objects), remembered sets (remsets), access-protected virtual memory
pages (pages), and card marking (cards-n, where n = 4k bytes is the card size, for

14 �

Table I. Schemes compared

Scheme On update On checkpoint

scan do nothing scan all objects

objects set bit in header of
changed object

scan for changed objects

remsets enter object reference
into update set

iterate over update set

cards-n
16 � n = 4k � 4096 bytes

dirty card table entry scan dirty table for dirty cards
(process objects/fragments in cards)

pages
4096 bytes

dirty and unprotect page scan dirty table for dirty pages
(process objects/fragments in pages)

All schemes write only di�erences, for minimal log volume.

k = 2; 3; 4; 5; 6). As a \worst-case" scenario, we also include a scheme (scan) which
does not track individual updates at all, but simply scans the entire set of resident
persistent objects on checkpoint, and compares each object with its unmodi�ed
copy in the bu�er cache. The virtual memory page size on the sparcstation 2 is
4096 bytes. These schemes are summarized in Table I.
In addition to the cold through warm and hot iterations, which perform one

update traversal per checkpoint, we also measure the performance for longer trans-
actions, varying the number of hot update traversals performed as a single trans-
action. This allows the derivation of a precise estimate of the run-time overheads
(excluding swizzling and disk accesses for retrieval) for the di�erent write barrier
mechanisms. We measure the total elapsed time for 5, 10, 15, 20, 50, 100, and 500
iterations per checkpoint.

4.1 Insert

Results for Insert are plotted in Figure 2, and summarized in Table II. The
baseline non-persistent implementation treats a checkpoint as a null operation.
For cold transactions, the results for the pages scheme reveal the high cost of calls

to the operating system to manage page protections. Only as the system warms up
does performance for pages fall below the \worst-case" scan approach, which pays
consistently high overhead to scan the entire set of resident objects on checkpoint.
The hot transaction makes insertions to the same set of objects as the last of the

warm transactions. Thus, the hot transaction includes no object faults or swizzling,
so the page protection scheme is no longer penalized for having to manipulate page
protections during swizzling, and therefore achieves performance closer to that of
the other schemes|it still incurs page traps when clean pages are modi�ed, and
must manipulate page protections at every checkpoint. For the other schemes,
there is little to distinguish one from another in Figure 2 for the cold through warm
transactions.
Di�erences are better discerned by considering the raw elapsed times given in

Table II. For the cold Insert, the pages scheme is signi�cantly more expensive
(even than scan) because of the overhead to manage page protections as objects
are made resident. Best is remsets closely followed by objects, since neither of
these schemes incur any overhead as the resident set of objects grows, whereas

� 15

0

2

4

6

8

10

12

14

16

cold 2 3 4 5 6 7 8 9 warm hot

el
ap

se
d

tim
e

(s
)

iteration

scan
pages

objects
remsets

cards-4096
cards-1024

cards-256
cards-64
cards-16

non-persistent

Fig. 2. Insert

Table II. Insert

Scheme Cold Warm Hot

non-persistent 0.2426�90%0.0001 0.26014�90%0.00009 0.19914�90%0.00006

scan 7.942 �90%0.008 2.333 �90%0.005 1.993 �90%0.001

objects 7.161 �90%0.007 0.887 �90%0.003 0.562 �90%0.002

remsets 7.10 �90%0.02 0.766 �90%0.004 0.436 �90%0.002

cards-16 7.61 �90%0.02 0.673 �90%0.003 0.345 �90%0.003

cards-64 7.55 �90%0.01 0.646 �90%0.003 0.511 �90%0.003

cards-256 7.327 �90%0.009 0.794 �90%0.003 0.454 �90%0.003

cards-1024 7.189 �90%0.009 0.766 �90%0.003 0.425 �90%0.004

cards-4096 7.24 �90%0.01 0.764 �90%0.004 0.436 �90%0.005

pages 14.03 �90%0.02 1.722 �90%0.002 0.585 �90%0.005

Running Old New Write Other

el
a
p
se
d
ti
m
e
(s
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no
n-

pe
rs

is
te

nt
sc

an

ob
je

ct
s

re
m

se
ts

ca
rd

s-
16

ca
rd

s-
64

ca
rd

s-
25

6

ca
rd

s-
10

24

ca
rd

s-
40

96

pa
ge

s

Fig. 3. Insert: Hot breakdown

16 �

the card schemes must grow their tables to cover the expanding set of resident
objects. For warmer iterations, checkpoint cost is more important, so the smaller
granularity schemes that require no scanning are to be preferred since they focus
the unswizzling e�ort. Notice how these two factors in
uence the results among the
card schemes: moderately large cards (cards-1024) are better when the system is
cold, and the resident set of objects grows frequently, since growing the card tables
is cheaper; smaller cards are better for the warm (cards-64) and hot (cards-16)
iterations where checkpoint overheads dominate.
For a better understanding of the behavior of the hot results, Figure 3 shows the

breakdown of the elapsed time for each phase of execution of the benchmark:

|running : time spent in the interpreter executing the program, as opposed to
unswizzling old and new objects to generate di�erences and writing those di�er-
ences to the log (note that running includes the cost of noting modi�cations as
they occur);

|old : time to unswizzle old modi�ed objects and generate log entries for them;

|new : time to unswizzle new objects and generate log entries for them;

|write: time to
ush the log entries to disk; and

|other : time for any remaining bookkeeping activities, such as modifying page
protections, and scavenging free transient memory space.

The most interesting feature of Figure 3 is the old component, which re
ects
the amount of scanning required to determine the di�erences between a cached
object and its original in the client bu�er pool. For the card-based schemes there
is an evident tradeo� between the size of the card table and the card size: small
cards require more overhead to scan the card table but less overhead in scanning
the cards themselves; larger cards have a smaller table, but more overhead to
scan the larger cards. Variation among the schemes in the other components is
due less to the intrinsic costs of the schemes than to subtle underlying hardware
cache e�ects: that the other component exhibits such variation is a result of the
scavenging of transient space having markedly di�erent cache performance across
schemes. Thus, we refrain from further discussion of the results for Insert, and
move on to those for the Update benchmark, which a�ords more precise control of
benchmark parameters.

4.2 Update

Comparison of the results for the implementation alternatives is easier if we consider
the key cold, warm, and hot results separately.

4.2.1 Cold Update. Figure 4 presents the elapsed time for the �rst (cold) itera-
tion at each of the update probabilities; Figure 4(b) repeats the plot at an expanded
scale omitting the results for pages and scan. There is little variation with update
probability, since the cold times are dominated by i/o and swizzling costs. Nev-
ertheless, pages is signi�cantly more expensive (worse even than scan) due to the
overheads of page protection management, both to trap updates to protected pages
and to manipulate page protections during swizzling. Best overall is objects, closely
followed by remsets|neither of these schemes incurs any additional overhead as the

� 17

4

4.5

5

5.5

6

6.5

7

7.5

8

0.0 0.2 0.4 0.6 0.8 1.0

el
ap

se
d

tim
e

(s
)

actual fraction of parts modified

pages
scan

cards-4096
cards-1024

cards-256
cards-64
cards-16
remsets
objects

(a) all schemes

4.2

4.3

4.4

4.5

4.6

4.7

4.8

0.0 0.2 0.4 0.6 0.8 1.0

el
ap

se
d

tim
e

(s
)

actual fraction of parts modified

cards-4096
cards-1024

cards-256
cards-64
cards-16
remsets
objects

(b) expanded scale

Fig. 4. Cold Update

resident set of objects grows; in contrast, the card schemes must grow their tables
to cover the expanding cache of resident objects.

4.2.2 Warm Update. At the tenth (warmest) iteration (Figure 5), checkpoint
cost becomes more important. Worst overall is scan, since it must unswizzle all
resident objects to generate the log. Next worst is pages, again because of the
overhead to manage page protections. The card schemes are ranked by size, with
smaller cards providing more precise information as to which objects are modi�ed.
The remsets scheme has performance very close to that of the smaller card schemes,
because it concisely records just those objects that are modi�ed.

4.2.3 Hot Update. The hot transaction traverses exactly the same parts as the
tenth (warm) iteration, by beginning at the same part. Thus, the hot transaction
incurs no object faults or swizzling. The hot results (Figure 6) are similar to those
for the warm transaction, except that with all objects needed by the traversal
having already been cached, no fetching and swizzling of objects occurs. Thus,
the page protection scheme is no longer penalized for having to manipulate page
protections during swizzling, and therefore achieves performance closer to that of
the page-sized card scheme. The remaining di�erence between these schemes is

18 �

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.0 0.2 0.4 0.6 0.8 1.0

el
ap

se
d

tim
e

(s
)

actual fraction of parts modified

scan
pages

objects
cards-4096
cards-1024

cards-256
cards-64
cards-16
remsets

(a) all schemes

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.2 0.4 0.6 0.8 1.0

el
ap

se
d

tim
e

(s
)

actual fraction of parts modified

objects
cards-4096
cards-1024

cards-256
cards-64
cards-16
remsets

(b) expanded scale

Fig. 5. Warm Update

explained by the need to manipulate the protection of dirty pages on checkpoint.
The breakdowns of the elapsed time for the hot Update at each update prob-

ability (p) are plotted in Figures 7(a)-(g) (note that the scale changes as update
probability increases), omitting the results for scan and non-persistent. As we saw
with Insert, checkpoint latency dominates, with the old component being the de-
cisive di�erence among schemes, particularly at larger update probabilities. The
tradeo� between card table size and card size is once again evident. For lower up-
date probabilities the cost of scanning the card table exerts more in
uence; schemes
with small cards but a larger card table fare worse than larger cards. At higher
update probabilities there are more dirty cards to process, so unswizzling overheads
dominate those of scanning the card table, with larger cards requiring more unswiz-
zling to generate di�erences than smaller cards. The tradeo� is most pronounced
for the 16-byte cards, which are substantially smaller than the average object size,
so that unswizzling costs outweigh card table scanning costs only at the higher
update probabilities. Overall, remembered sets o�er the most concise record of up-
dates, allowing modi�ed objects to be unswizzled without scanning. The scanning
overhead is clearly evident for the object marking scheme, especially at low update
probabilities, where objects has the worst performance.

� 19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0

el
ap

se
d

tim
e

(s
)

actual fraction of parts modified

scan
pages

objects
cards-4096
cards-1024

cards-256
cards-64
cards-16
remsets

(a) all schemes

0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0

el
ap

se
d

tim
e

(s
)

actual fraction of parts modified

objects
cards-4096
cards-1024

cards-256
cards-64
cards-16
remsets

(b) expanded scale

Fig. 6. Hot Update

Apart from the pages scheme, variation among the schemes in the running com-
ponent is not signi�cant, indicating that checkpoint overheads are the dominating
in
uence for this short transaction benchmark. The pages scheme does incur sig-
ni�cant run-time overhead because of the high cost of the traps to note updates.
Note that although no part objects are modi�ed for p = 0:0, some updates do occur
to other objects in the system, which cause page traps.

20 �

elapsedtime(s)

0

0.
1

0.
2

0.
3

objects

remsets

cards-16

cards-64

cards-256

cards-1024

cards-4096

pages

(a
)
p
=
0
:0
0

0

0.
1

0.
2

0.
3

0.
4

objects

remsets

cards-16

cards-64

cards-256

cards-1024

cards-4096

pages

(b
)
p
=
0
:0
5

0

0.
1

0.
2

0.
3

0.
4

0.
5

objects

remsets

cards-16

cards-64

cards-256

cards-1024

cards-4096

pages

(c
)
p
=
0
:1
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

objects

remsets

cards-16

cards-64

cards-256

cards-1024

cards-4096

pages

(d
)
p
=
0
:1
5

elapsedtime(s)

0

0.
1

0.
2

0.
3

0.
4

0.
5

objects

remsets

cards-16

cards-64

cards-256

cards-1024

cards-4096

pages

(e
)
p
=
0
:2
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

objects

remsets

cards-16

cards-64

cards-256

cards-1024

cards-4096

pages

(f
)
p
=
0
:5
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

objects

remsets

cards-16

cards-64

cards-256

cards-1024

cards-4096

pages

(g
)
p
=
1
:0
0

O
th

er

W
rit

e

N
ew

O
ld

R
un

ni
ng

F
ig
.
7
.

U
p
d
a
te
:
H
o
t
b
re
a
k
d
ow
n

� 21

4.2.4 Long transactions. Run-time overheads come into play only when transac-
tions are long enough for computation to dominate checkpoint overhead. The �nal
set of results concerns the experiments in which multiple hot update traversals are
performed as a single transaction. We generalize the results, by obtaining linear
regression �ts for each scheme, for the model y = a+bx, where y is the total elapsed
time, and x the number of update traversals per transaction. As expected, since a
hot traversal will have constant cost no matter how many times it is performed, the
�ts are excellent. The y-axis intercept, a, approximates the checkpoint latency, and
has the familiar form we have seen for short-running transactions (see Figure 8).
The slope b is a measure of the per-traversal run-time costs of each scheme, plot-

ted in Figure 9(a). The remsets scheme has the highest overhead to note updates.
The card schemes are clustered together in the mid-range of overhead, while objects
has the least measured overhead apart from scan. Curiously, pages has the second
worst measured overhead per update, even though it incurs no additional cost for
subsequent updates to modi�ed pages. The overhead to �eld these page protection
traps is thus constant for each value of x in the regression, so the trap overhead is
extracted as a component of the a coe�cient.
As it turns out, the pages scheme is the victim of anomalous hardware cache

behavior. Indeed, taking per-traversal instruction references as our measure (plot-
ted in Figure 9(b)), pages has overhead equivalent to that of scan. The anomaly
is revealed in Figures 9(c) and (d), where we see that there is contention between
data and instructions for cache lines in the uni�ed instruction and data cache of
the sparcstation 2. Subsequent inspection of the cache simulation results indicates
that the contention is restricted to a single instruction and data location, both of
which are accessed for each part modi�ed in the Update traversal|the slopes of
the lines for pages in Figures 9(c) and (d) are approximately 1 miss per modi�ed
part. There is a similar anomaly for remsets, but only at update probabilities 0.15
and 0.2|because the remembered set data structure grows dynamically, contention
between code and data also varies dynamically.
Taking linear regressions for the per-traversal elapsed time and instruction ref-

erences, versus the actual number of parts modi�ed (i.e., the slopes of the lines
in Figures 9(a) and (b)), we obtain a measure of the run-time overhead for each
scheme per part modi�ed, given in Table III. Taking the non-persistent/scan re-
sults as the base level of overhead required to perform an unrecorded update, we
calculate the net update overhead that can be attributed to each of the schemes as:

net overhead per update =
overhead per part� scan overhead per part

2

The division by 2 re
ects the fact that modifying a part actually consists of two
updates: one to increment the x attribute, and one to increment the y attribute.
The net overhead per update is also given in Table III. The adjusted pages result
is obtained by subtracting 25 cycles to correct for the two anomalous read misses
per modi�ed part incurred by the pages scheme (2�25

2
= 25 cycles).

As validation of these results, the observed instruction overheads for the di�erent
schemes correspond to the actual instruction overheads revealed upon inspection
of the code generated by the compiler. Indeed, the cards-256 scheme requires only
three instructions instead of the four used for the other card sizes because it shares

22 �

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.2 0.4 0.6 0.8 1.0

ch
ec

kp
oi

nt
 la

te
nc

y
(s

)

actual fraction of parts modified

objects
pages

cards-4096
cards-1024

cards-256
cards-64
cards-16
remsets

Fig. 8. Long-running Update: checkpoint latency

30

35

40

45

50

55

0.0 0.2 0.4 0.6 0.8 1.0

tr
av

er
sa

l e
la

ps
ed

 ti
m

e
(m

s)

actual fraction of parts modified

remsets
pages

cards-4096
cards-1024
cards-256
cards-64
cards-16

objects
scan

(a) Elapsed time

0.7

0.8

0.9

1

1.1

0.0 0.2 0.4 0.6 0.8 1.0

tr
av

er
sa

l i
ns

tr
uc

tio
n

re
fe

re
nc

es
 (

m
ill

io
ns

)

actual fraction of parts modified

remsets
cards-4096/-1024/-64/-16/objects

cards-256
pages/scan

(b) Instruction references

0

0.5

1

1.5

2

2.5

3

3.5

4

0.0 0.2 0.4 0.6 0.8 1.0

tr
av

er
sa

l i
ns

tr
uc

tio
n

m
is

se
s

(t
ho

us
an

ds
)

actual fraction of parts modified

pages
remsets

scan
objects

cards-4096
cards-1024
cards-256
cards-64
cards-16

(c) Instruction misses

2

2.5

3

3.5

4

4.5

5

5.5

6

0.0 0.2 0.4 0.6 0.8 1.0

tr
av

er
sa

l d
at

a
re

ad
 m

is
se

s
(t

ho
us

an
ds

)

actual fraction of parts modified

pages
remsets
objects

cards-16
cards-64

cards-256
cards-1024
cards-4096

scan

(d) Data read misses

Fig. 9. Run-time overheads

� 23

Table III. Long-running Update: run-time overheads

per part modi�ed Net (per update)

Scheme Time (cycles) Instructions Time (cycles) Instructions

non-persistent 159�90%0 81�90%0 0�90%0 0�90%0

scan 159�90%1 81�90%0 0�90%1 0�90%0

objects 173�90%1 89�90%0 7�90%1 4�90%0

remsets 249�90%4 139�90%1 45�90%2 29�90%1

cards-16 188�90%2 89�90%0 15�90%1 4�90%0

cards-64 185�90%1 89�90%0 13�90%1 4�90%0

cards-256 183�90%2 87�90%0 12�90%1 3�90%0

cards-1024 184�90%1 89�90%0 13�90%1 4�90%0

cards-4096 185�90%2 89�90%0 13�90%1 4�90%0

pages (raw) 219�90%1 81�90%0 30�90%1 0�90%0

pages (adjusted) 169�90%1 81�90%0 5�90%1 0�90%0

net overhead per update =
overhead per part� scan overhead per part

2

code with the write barrier for the generation scavenging garbage collector, which
also uses 256-byte cards.
These results precisely measure the run-time overheads of each of the schemes.

The page protection scheme (pages) o�ers the least overhead per update of all the
schemes that record updates (i.e., apart from scan and non-persistent), since each
transaction entails many repeated updates to the same locations, so that only the
�rst update to a location causes a page trap. Remaining updates proceed with no
additional overhead. Note that the remaining 5 cycles overhead for pages is probably
anomalous, unless it indicates lingering cache disturbance due to page protection
traps. Meanwhile, the software-mediated card schemes show only marginally higher
overhead, while the remsets scheme incurs the high cost of a call to hash the updated
location into the remembered set on every update.
Lastly, we also determine the break-even point between pages and cards-4096 for

the hot Update benchmark, as the number of Update traversals, t, required for the
up-front cost of pages (incurred in managing page protections at checkpoints as well
as the per-transaction run-time cost of the page traps) to equal the per-update run-
time costs of cards-4096. This is calculated by taking their di�erence in checkpoint
latency (as plotted in Figure 8), say p� c, and dividing by the cards-4096 net cost
per update (from Table III), 13 cycles

40mhz
, times the number of updates per traversal,

2m where m is the number of parts modi�ed per traversal:

t =
p� c

13
40000000

�m� 2

The calculations are summarized in Table IV. Note how the frequency/density of
update a�ects the tradeo� between the high per-transaction cost of pages versus the
run-time costs of cards-4096: amortization of the up-front per-transaction overheads
occurs with fewer Update traversals for higher update probabilities. The high break-
even points show that pages is preferable only in extreme cases, when transactions
are particularly long or updates extremely frequent and dense.
Maintaining the card table base in a register will shift the breakeven points

24 �

Table IV. Long-running Update: break-even points for cards-4096 versus pages

update checkpoint latency (seconds) parts modi�ed break-even point
probability pages (p) cards-4096 (c) per traversal (m) (traversals, t)

0.00 0.152�90%0.006 0.077�90%0.006 0 1

0.05 0.282�90%0.008 0.135�90%0.004 98 2308�90% 366

0.10 0.358�90%0.009 0.184�90%0.005 252 1062�90% 167

0.15 0.42 �90%0.01 0.221�90%0.008 490 625�90% 105

0.20 0.43 �90%0.01 0.229�90%0.005 632 489�90% 74

0.50 0.60 �90%0.01 0.350�90%0.004 1577 244�90% 32

1.00 0.744�90%0.008 0.455�90%0.003 3280 136�90% 16

t =
p� c

13

40000000
�m� 2

even more in favor of cards, by eliminating the two instructions to load the base,
leaving just two instructions to index and store to the appropriate table location.
Eliminating the load also removes the possibility of a read miss on the data cache,
so it is reasonable to expect that the ratio of cycles to instructions per update will
also improve.

4.3 Summary

The results show a clear ranking among the alternative schemes, with approaches
that record updates at smaller granularities having a signi�cant advantage when the
transactions are short and the update locality is poor, since they greatly reduce the
checkpoint overheads of unswizzling and generation of di�erences for the log. For
short transactions, the remembered set scheme is best over all update probabilities,
since it provides a very concise summary of just those objects that have been
modi�ed. Still, small granularity cards also o�er robust performance across a range
of update probabilities, and have the advantage of lower and precisely bounded
run-time overhead.
For longer transactions, the run-time costs of update detection come into play.

Thus, the remembered set scheme loses its appeal due to the relatively high expense
of managing the remembered set. The page protection scheme has the advantage
that detection overhead is paid for up front in the page protection violation trap
on the �rst write to a clean page, and subsequent updates proceed without cost.
Meanwhile, the overheads of the card and object marking schemes change very
little as update probability varies, with any di�erence being due to hardware cache
e�ects. Even so, the di�erences in run-time overheads of the schemes are slight
when compared to checkpoint overheads.
The transaction length is an important factor because of this tension between the

run-time and checkpoint overheads of the various schemes. Long transactions are
likely to produce correspondingly more updates, increasing the checkpoint latency.
Only when the volume of modi�ed data is small with respect to the length of
transaction should the run-time costs of the schemes be permitted to guide the
choice of update detection mechanism. The overwhelming in
uence of unswizzling
and generation of log records indicates that the general bias should be towards the
more accurate smaller granularities than to schemes with low run-time overheads.

� 25

With respect to the hardware approach embodied in the page protection scheme
we have seen that it can involve substantial extra overhead for \typical" operations
as represented by the benchmarks. In the abstract, the hardware approach is
an attractive one. However, current realizations which must use expensive calls
to the operating system seem to be limited in their e�ectiveness. Moreover, the
large page size remains the most serious de�ciency of this scheme, even if improved
operating system support can succeed in lowering the costs of managing the update
information through access to page dirty bits (Hosking and Moss [1993b] explore
the rami�cations of such support in more detail).
We o�er three guidelines for the generation of recovery information in persistent

systems:

|Avoid large granules of update detection, to minimize checkpoint latency.

|Choose a checkpoint frequency corresponding to the rate of generation of new
update information, so that checkpoint delays are tolerable. Long-running appli-
cations that perform few updates need infrequent checkpoints.

|Use page protection mechanisms only where update locality is good and check-
points are infrequent.

5. RELATED WORK

White and DeWitt [1992] compare the overall performance of various object faulting
and pointer swizzling schemes for C++, as supported by several di�erent persistent
object stores. While our basic architecture is similar to the object caching scheme
of White and DeWitt, the thrust of our study is signi�cantly di�erent. Instead of
comparing several di�erent architectures for persistence we keep the architecture
�xed, while varying the mechanisms to generate log information. The representa-
tions we use for references to non-resident objects are much more lightweight than
those of White and DeWitt, as are our mechanisms to support generation of the
log.
Nevertheless, White and DeWitt's results do suggest that the method used to

generate recovery information can have a signi�cant impact on the performance
of the system, with �ne-grained update information being most bene�cial when
transactions are short and there is poor update locality. We have explored this
issue directly here, addressing the speci�c question of which mechanisms are best,
and what factors determine a method's e�ectiveness, within the �xed framework of
a single persistent programming language implementation.
In a subsequent study, White and DeWitt [1994] speculate on the advantages to

be gained in augmenting the language implementation to generate log information
instead of relying on memory mapping mechanisms to generate per-page di�erence
records. This is precisely what we have done here with our studies of di�erent
mechanisms for noting updates for logging.
Most recently, White and DeWitt [1995] consider several approaches to gener-

ating recovery information in a client-server environment with full-blown database
concurrency control mechanisms. Their system places the log at the server, for
increased availability in the case that a client crashes|the server can continue
to process the log requests of other clients. With the log placed at the database
server network transmission times tend to dominate, swamping any di�erences in

26 �

the mechanisms used to track updates and generate log information. Rather, White
and DeWitt focus on the actual log information generated and its e�ect on per-
formance, where we produce the same simple di�erence log for all write detection
mechanisms under consideration. There is nothing to prevent us using similar tech-
niques to those of White and DeWitt to reduce the amount of information actually
written to the log.
Zekauskas et al. 1994 explore the performance of software approaches to the de-

tection of writes to �ne-grained data for the maintenance of cache coherency in a
distributed shared memory system. Their results show that software write detec-
tion can support such sharing with lower overhead than a corresponding trap-based
scheme. Moreover, they con�rm our own experience that page-sized granularities
incur unnecessary overhead when processing the writes, which is the dominant fac-
tor a�ecting performance in their system. In their case, �ne-grained update infor-
mation minimizes the amount of data that must be transferred at synchronization
points to maintain consistency of the distributed shared memory.
Thekkath and Levy [1994] describe an approach to performing e�cient handling

of synchronous exceptions by user-level code. Their implementation reduces the
overhead of exception handling by an order of magnitude, which may be su�cient
to make a hardware trap-based approach to update detection more acceptable.
Nevertheless, the issue of page-sized granularity is still of concern, since this is
the critical factor a�ecting checkpoint latencies. Thekkath and Levy discuss the
possibility of sub-page protection mechanisms driven by the paging hardware. In
their proposed implementation, accessing an unprotected sub-page that lies in the
same page as some protected sub-page still causes an exception, whereupon the
kernel must emulate the o�ending instruction before returning. It is unclear if this
additional overhead will degrade performance to unacceptable levels.

6. FUTURE WORK

Several avenues of research deserve further exploration: expanding the range of
processors and operating systems measured, to see if there are any shifts in behavior;
comparing the tradeo�s between the byte-map used here for the card marking and
page trap approaches with a more compact bit-map implementation; keeping a
pointer to the base of the bit-/byte-map in a register to reduce indexing overhead;
and obtaining similar measurements in a compiled language setting.
The fact that the results have been obtained for an interpreted language cannot

be taken lightly, since run-time overheads for interpretation are several times higher
than those of compiled programs. Nevertheless, we see no reason why the results will
not carry over to a compiled setting. We acknowledge that compilation will shrink
the running-time portion of total execution, so that the overheads of write detection
will become more pronounced relative to total execution time. However, the various
mechanisms should retain their rankings with respect to one another, since their
absolute costs will remain the same (modulo shifting and possibly spurious hardware
cache e�ects).
Moreover, compile-time derivation of control-
ow information may reveal oppor-

tunities for the merging or elimination of explicit write barrier code, For example,
where several updates to a given object occur within one basic block, just one opera-
tion to note the update is necessary. Such optimizations will reduce the importance

� 27

of the run-time overheads of the software schemes, so that checkpoint overheads
become the dominant factor in
uencing the choice of write detection scheme. We
are exploring the e�ects of compile-time optimization in our implementation of
Persistent Modula-3 [Hosking and Moss 1990; Hosking and Moss 1991; Moss and
Hosking 1994].

7. CONCLUSIONS

We have explored several lightweight implementations of the write barrier for �ne-
grained persistence. Our experiments used established benchmarks to compare
the performance of alternative realizations of these mechanisms within a prototype
persistent programming language. Most importantly, we have demonstrated that
software-mediated techniques can be a competitive alternative to hardware-assisted
techniques.
The results have implications beyond the realm of persistence. At a general

level, the results are an indictment of the performance of operating system virtual
memory primitives. Both the overhead to �eld page protection violations within
user-level signal handlers, and the high cost of calls to the operating system to
modify page protections mean that applications relying on these primitives pay
unnecessarily high overheads. However, much of the problem lies with the large
granularity (relative to �ne-grained objects) of virtual memory pages in modern
operating systems and architectures, which signi�cantly a�ects overall performance.
As processor speeds improve, and physical memories grow, page sizes are likely to
become larger, further degrading the performance of virtual memory solutions in
applications that have a naturally smaller granularity.
It is worthwhile noting that similar results have been obtained in other domains,

such as e�cient implementation of data breakpoints for debuggers [Wahbe 1992]
and generational garbage collection [Hosking et al. 1992; Hosking and Moss 1993b].
We concede that sub-page protection and dirty bits, along with appropriate operat-
ing system interfaces, might somewhat overcome the performance disadvantages we
observed [Thekkath and Levy 1994]. However, it is clear that while user level vir-
tual memory primitives o�er transparent solutions to various memory management
problems, requiring no modi�cation of the programming language implementation
(except in the run-time to handle protection violations) they do not necessarily

o�er the best performance.
In this particular setting, the overhead required for software write detection is

more than made up for with the precision of the information obtained. Additionally,
the card marking approaches have other advantages: bounded overhead per write,
and elimination of conditional code at the update site. These advantages are sure
to become more important if the current trend in architectural advances continues.

REFERENCES

Appel, A. W. and Li, K. 1991. Virtual memory primitives for user programs. In Proceedings of

the ACM International Conference on Architectural Support for Programming Languages

and Operating Systems, Santa Clara, California, pp. 96{107.

Atkinson, M., Chisolm, K., and Cockshott, P. 1982. PS-Algol: an Algol with a persistent
heap. ACM SIGPLAN Notices 17, 7 (July), 24{31.

Atkinson, M. P., Bailey, P. J., Chisholm, K. J., Cockshott, P. W., and Morrison, R.

28 �

1983. An approach to persistent programming. The Computer Journal 26, 4 (Nov.), 360{

365.

Atkinson, M. P. and Buneman, O. P. 1987. Types and persistence in database programming
languages. ACM Computing Surveys 19, 2 (June), 105{190.

Atkinson, M. P., Chisholm, K. J., Cockshott, W. P., and Marshall, R. M. 1983. Algo-
rithms for a persistent heap. Software: Practice and Experience 13, 7 (March), 259{271.

Bell, J. R. 1973. Threaded code. Commun. ACM 16, 6 (June), 370{372.

Brown, A. L., Dearle, A., Morrison, R., Munro, D. S., and Rosenberg, J. 1990. A layered
persistent architecture for Napier88. Technical report (May), University of St Andrews,
Bremen, Germany.

Brown, A. L., Mainetto, G., Matthes, F., Mueller, R., and McNally, D. J. 1991. An
open system architecture for a persistent object store. Research Report CS/91/9, University
of St Andrews.

Cattell, R. G. G. and Skeen, J. 1992. Object operations benchmark. ACM Transactions on

Database Systems 17, 1 (March), 1{31.

Cheney, C. J. 1970. A nonrecursive list compacting algorithm. Commun. ACM 13, 11 (Nov.),
677{678.

Cmelik, B. and Keppel, D. 1994. Shade: A fast instruction-set simulator for execution pro�l-
ing. In Proceedings of the ACM Conference on the Measurement and Modeling of Computer

Systems, pp. 128{137.

Date, C. J. 1983. An Introduction to Database Systems, Volume II. Addison-Wesley.

Date, C. J. 1986. An Introduction to Database Systems (Fourth ed.), Volume I. Addison-
Wesley. Corrected in 1987.

Elhardt, K. and Bayer, R. 1984. A database cache for high performance and fast restart in
database systems. ACM Transactions on Database Systems 9, 4 (Dec.), 503{525.

Goldberg, A. and Robson, D. 1983. Smalltalk-80: The Language and its Implementation.
Addison-Wesley.

Hosking, A. L. 1991. Main memory management for persistence. Position paper presented at
the OOPSLA'91 Workshop on Garbage Collection.

Hosking, A. L. 1995. Lightweight Support for Fine-Grained Persistence on Stock Hardware.
Ph.D. thesis, University of Massachusetts at Amherst. Available as Department of Com-
puter Science Technical Report 95-02.

Hosking, A. L., Brown, E., and Moss, J. E. B. 1993. Update logging for persistent program-
ming languages: A comparative performance evaluation. In Proceedings of the International
Conference on Very Large Data Bases, Dublin, Ireland, pp. 429{440. Morgan Kaufmann.

Hosking, A. L. and Moss, J. E. B. 1990. Towards compile-time optimisations for persistence.
In A. Dearle, G. M. Shaw, and S. B. Zdonik (Eds.), Proceedings of the International

Workshop on Persistent Object Systems, Martha's Vineyard, Massachusetts, pp. 17{27.
Implementing Persistent Object Bases: Principles and Practice, Morgan Kaufmann, 1990.

Hosking, A. L. and Moss, J. E. B. 1991. Compiler support for persistent programming. Tech-
nical Report 91-25 (March), Department of Computer Science, University of Massachusetts
at Amherst.

Hosking, A. L. and Moss, J. E. B. 1993a. Object fault handling for persistent programming
languages: A performance evaluation. In Proceedings of the ACM Conference on Object-

Oriented Programming Systems, Languages, and Applications, Washington, DC, pp. 288{

303.

Hosking, A. L. and Moss, J. E. B. 1993b. Protection traps and alternatives for memory
management of an object-oriented language. In Proceedings of the ACM Symposium on

Operating Systems Principles, Asheville, North Carolina, pp. 106{119.

Hosking, A. L., Moss, J. E. B., and Stefanovi�c, D. 1992. A comparative performance
evaluation of write barrier implementations. In Proceedings of the ACM Conference on

Object-Oriented Programming Systems, Languages, and Applications, Vancouver, Canada,
pp. 92{109.

� 29

Kemper, A. and Kossman, D. 1994. Dual-bu�ering strategies in object bases. In Proceed-

ings of the International Conference on Very Large Data Bases, Santiago, Chile. Morgan
Kaufmann.

McCall, K. 1983. The Smalltalk-80 benchmarks. In G. Krasner (Ed.), Smalltalk-80: Bits of
History, Words of Advice, Chapter 9, pp. 153{173. Addison-Wesley.

Moss, J. E. B. 1987. Managing stack frames in Smalltalk. In Proceedings of the ACM Sympo-

sium on Interpreters and Interpretive Techniques, St. Paul, Minnesota, pp. 229{240.

Moss, J. E. B. 1990. Design of the Mneme persistent object store. ACM Transactions on

Information Systems 8, 2 (April), 103{139.

Moss, J. E. B. and Hosking, A. L. 1994. Expressing object residency optimizations using
pointer type annotations. In M. Atkinson, D. Maier, and V. Benzaken (Eds.), Proceed-
ings of the International Workshop on Persistent Object Systems, Workshops in Comput-
ing, Tarascon, France, pp. 3{15. Springer-Verlag, 1995.

Shaw, R. A. 1987. Improving garbage collector performance in virtual memory. Technical
Report CSL-TR-87-323 (March), Stanford University.

Sobalvarro, P. G. 1988. A lifetime-based garbage collector for LISP systems on general-
purpose computers. B.S. Thesis, Dept. of EECS, Massachusetts Institute of Technology,
Cambridge.

Thekkath, C. A. and Levy, H. M. 1994. Hardware and software support for e�cient exception
handling. In Proceedings of the ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, San Jose, California, pp. 110{119.

Ungar, D. 1984. Generation scavenging: A non-disruptive high performance storage reclama-
tion algorithm. In Proceedings of the ACM Symposium on Practical Software Development

Environments, Pittsburgh, Pennsylvania, pp. 157{167.

Ungar, D. M. 1987. The Design and Evaluation of a High Performance Smalltalk System.
ACM Distinguished Dissertations. MIT Press, Cambridge, Massachusetts.

Wahbe, R. 1992. E�cient data breakpoints. In Proceedings of the ACM International Confer-

ence on Architectural Support for Programming Languages and Operating Systems, Boston,
Massachusetts, pp. 200{212.

White, S. J. and DeWitt, D. J. 1992. A performance study of alternative object faulting and
pointer swizzling strategies. In Proceedings of the International Conference on Very Large

Data Bases, Vancouver, Canada, pp. 419{431. Morgan Kaufmann.

White, S. J. and DeWitt, D. J. 1994. QuickStore: A high performance mapped object store.
In Proceedings of the ACM International Conference on Management of Data, Minneapolis,
Minnesota, pp. 395{406.

White, S. J. and DeWitt, D. J. 1995. Implementing crash recovery in QuickStore: A per-
formance study. In Proceedings of the ACM International Conference on Management of

Data, San Jose, California, pp. 187{198.

Wilson, P. R. and Moher, T. G. 1989a. A \card-marking" scheme for controlling intergenera-
tional references in generation-based garbage collection on stock hardware. ACM SIGPLAN

Notices 24, 5 (May), 87{92.

Wilson, P. R. and Moher, T. G. 1989b. Design of the opportunistic garbage collector. In
Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages,

and Applications, New Orleans, Louisiana, pp. 23{35.

Zekauskas, M. J., Sawdon, W. A., and Bershad, B. N. 1994. Software write detection for
a distributed shared memory. In Proceedings of the USENIX Symposium on Operating

Systems Design and Implementation, Monterey, California, pp. 87{100.

