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SUMMARY

Partial redundancy elimination (PRE) is a program transformation that identifies and eliminates
expressions that are redundant on at least one (but not necessarily all) execution paths of a program without
increasing any path length. Chow, Kennedy and co-workers devised an algorithm (SSAPRE) for performing
partial redundancy elimination on intermediate representations in static single assignment (SSA) form.
The practicality of that algorithm is limited by the following concerns: (1) it makes assumptions about the
namespace that are stronger than those of SSA form and that may not be valid if other optimizations have
already been performed on the program; (2) if redundancies occur in nested expressions, the algorithm
may expose but not eliminate them (requiring a second pass of the algorithm); (3) it misses cases covered
by the state of the art in PRE; and (4) it is difficult to understand and implement. We present an algorithm
(A-SSAPRE) structurally similar to SSAPRE that uses anticipation rather than availability; this algorithm
is simpler than SSAPRE, covers more cases, eliminates nested redundancies on a single pass, and makes no
assumptions about the namespace. Copyright c© 2004 John Wiley & Sons, Ltd.

KEY WORDS: partial redundancy elimination; static single assignment form; machine-independent program
transformations

INTRODUCTION

Partial redundancy elimination (PRE) is a machine-independent optimizing program transformation,
pioneered by Morel and Renvoise [1]. PRE identifies computations that may have been performed
at an earlier point in the program and replaces such computations with reloads from temporaries.
We say ‘may have been performed’ because PRE considers computations that were performed on
some, but not necessarily all, control flows paths to that point—in other words, computations that
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are partially redundant. In such cases, a computation must be inserted along paths to that program
point that do not already compute that value, and care must be taken so that the length of no path is
ever increased and no execution of the optimized program performs a computation that an execution
of the unoptimized program does not. The net effect is to hoist code to earlier program points.
This transformation subsumes common subexpression elimination and loop-invariant code motion.

OUR CONTRIBUTION

In this paper, we present a new algorithm for PRE on intermediate representations in static single
assignment (SSA) form. An earlier SSA-based algorithm, SSAPRE, by Chow, Kennedy and co-
workers [2,3], was weak in several ways. First, it made stronger assumptions about the form of the
program (particularly the live ranges of variables) than are true for the traditional definition of SSA.
Other SSA-based optimizations that are considered to preserve SSA may break these assumptions;
if these other optimizations are performed before SSAPRE, the result may be incorrect. Moreover, the
SSAPRE algorithm did not handle nested expressions and missed optimization opportunities that are
covered by more recent redundancy-elimination algorithms [4,5]. Finally, from a software engineering
perspective, the earlier PRE algorithm for SSA was difficult to understand and implement.

In this paper, after discussing preliminaries about the representation of the program to be optimized,
we briefly describe SSAPRE and illustrate its shortcomings. Next we present our main contribution: a
new algorithm for PRE that assumes and preserves SSA, called A-SSAPRE. It is structurally similar
to, though simpler than, SSAPRE. The key difference is that it discovers redundancy by searching
backwards from later computations that can be eliminated to earlier computations, rather than searching
forward from early computations to later. Our running example will demonstrate that our new algorithm
addresses the concerns about SSAPRE. Finally, we present performance results for A-SSAPRE and
comment on directions for future work.

PRELIMINARIES

Throughout this paper, we will discuss transformations as they would be performed on an intermediate
representation (IR) that uses a control flow graph (CFG) over basic blocks. Using standard
terminology [6], a basic block is a code segment that has no unconditional jump or conditional branch
statements except for possibly the last statement, and none of its statements, except possibly the first,
is a target of any jump or branch statement. A CFG is a graph representation of a procedure that has
basic blocks for nodes and whose edges represent the possible execution paths determined by jump
and branch statements. In this paper, blocks are identified by numbers; paths in the graph (including
edges) are identified by a parenthesized list of block numbers. We assume that all critical edges—
edges from blocks with more than one successor to blocks with more than one predecessor [7]—have
been removed from the CFG. Such an edge can be eliminated by inserting an empty block between the
two blocks connected by the critical edge. We further assume that the instructions of the intermediate
representation that interest us are in three-address form, saving their result to a variable or temporary.
Another useful abstraction for control flow is the dominator tree. A node dominates another node if all
paths to the second node must pass through the first. The nodes in the dominator tree are the same as
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3
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t ← a + b
c ← t
t ← a + b
a ←

d ← t

a ←

1 2

3

a2 ←a1 ←
c ← a1 + b

d ← a3 + b
a3 ← φ(a1, a2)

(a) (b) (c)

Figure 1. Basic example (a) before PRE; (b) after PRE; (c) in SSA form.

the nodes of the CFG, but the children of a given node are the nodes that are immediately dominated
by that node; that is, nodes that are dominated by it and are not dominated by any other node also
dominated by it (note that this excludes the node itself). The dominance frontier of a basic block is the
set of blocks that are not dominated by that block but have a predecessor that is [8].

Having described the basics of program representation, we now consider an example of PRE
performed on a code fragment in that representation. In the unoptimized version of this fragment in
Figure 1(a), the expression a+b is redundant when the control flow path (1,3) is taken, being computed
twice without any change to the operands. However, the same computation is not redundant if the
control flow path (2,3) is taken; even if it were computed some time earlier in the program, block 2
modifies one of the operands. Thus the expression is partially redundant in block 3. To remove the
partially redundant computation, we insert a copy of it into block 2, since the value of the computation
is unavailable along the incoming edge from it. This insertion makes the expression in block 3
fully redundant. By allocating a fresh temporary t and saving each early computation to it, the later
computation can be replaced by that temporary, producing the optimized code found in Figure 1(b).

Notice that PRE does not reduce code size. Both the optimized and unoptimized versions in this
example contain two occurrences of the computation. Moving the code, however, decreases the length
of the left execution path. The length of the right execution path is unchanged.

Static single assignment form

Static single assignment (SSA) form [8] is an intermediate representation having the property that
each variable—whether representing source-level variables chosen by the programmer or temporaries
generated by the compiler—has exactly one definition point. Even though definitions in reentrant code
may be visited many times in the course of execution, statically each SSA variable is assigned exactly
once. If several distinct assignments to a variable occur in the source program, the building of SSA form
splits that variable into distinct versions, one for each definition. In basic blocks where execution paths
merge (such as the bottom block in our example) the consequent merging of variables is represented
by a phi function. Phi functions occur only in instructions at the beginning of a basic block (before all
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non-phi instructions) and have the same number of operands as the block has predecessors in the CFG,
each operand corresponding to one of the predecessors. The result of a phi function is the value of the
operand associated with the predecessor from which control has come. A phi function is an abstraction
for moves among temporaries that would occur at the end of each predecessor. SSA form does not
allow such explicit moves since all would define the same variable. For simplicity we refer to phi
functions and the instructions that contain them as φs. Figure 1(c) shows the SSA form of the original
program considered above.

SSA is desirable for many transformations and analyses because it implicitly provides def-use
information [8]. A def is a definition point of a variable. We say that the variable being defined is
the target of that def. A use is any other occurrence of the variable in the program. For any given use
of a variable, the definition relevant to that use is known immediately because a variable (by which
we mean an SSA version of a variable) has a unique def; a given definition’s set of uses is simply all
places where the target of the definition is used. SSA also relieves the optimizer from depending on
the programmer’s choice of variable names and the way variables are reused in the program, since a
transformation may regard each version of a variable as a completely different variable.

As a final preliminary, we explain the distinction between availability and anticipation (sometimes
called anticipability) [1,5]. In general, we say that an expression is available at a program point if it has
been computed on all paths to that point, and that an expression is anticipated at a point if it is computed
on all paths from that point to program exit. There may be more restrictions based on such things as
a programming language’s memory model, but these definitions will suit our purposes. In Figure 1(c),
a3 + b is anticipated at the beginning of block 3. Since a3 is the same as a1 on the edge (1,3), a1 + b
is anticipated at the end of block 1. Because of the computation of a1 + b in block 1, that expression is
also available at the end of the block. Since no equivalent expression is available at the end of block 2,
a3 +b is not available at the beginning of block 3. Since the equivalent a1 +b is available from block 1,
we say that a3 + b is partially available at the beginning of block 3. Similarly we can speak of partial
anticipation if an expression is anticipated at the beginning of some but not all successors of a block.

SSAPRE

In this section, we explain the SSAPRE algorithm of Chow, Kennedy and co-workers [2,3], giving
part of the motivation for the present work. First, we summarize the concepts and describe the
algorithm’s phases with an example. Second, we demonstrate weaknesses of the algorithm to show
where improvements are necessary.

Summary

One useful tool when arranging any set of optimizations is a suitable, common program representation.
If all optimizations use and preserve the same IR properties, then the task of compiler construction
is simplified, optimization phases are easily reordered or repeated, and expensive IR rebuilding is
avoided. Despite SSA’s usefulness as an IR, prior work on PRE not only had not used SSA, but in the
case of Briggs and Cooper [9], explicitly broke SSA before performing PRE. The principle motivation
for SSAPRE is to do PRE while taking advantage of and maintaining SSA form.

SSAPRE associates expressions that are lexically equivalent when SSA versions are ignored.
For example, a1 + b3 is lexically equivalent to a2 + b7. We take a + b as the canonical expression
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EXIT

b3 ← φ(b1, b2)

3

c ← a/b1

b1 ← b2 ←

21

d ← a/b3

4 5

EXIT

b3 ← φ(b1, b2)

3

c1 ← a/b1

b1 ← b2 ←

21

c4 ← c3

4 5

c ← a/b2

c3 ← φ(c1, c2)

(a) (b)

Figure 2. Unsafe code motion (a) unoptimized, (b) incorrectly ‘optimized’.

and expressions like a1 + b3 as versions of that canonical expression; lexically equivalent expressions
are assigned version numbers analogous to the version numbers of SSA variables. A chi statement‡

(or simply χ) merges versions of expressions at CFG merge points just as φs merge variables. The χs
can be thought of as potential φs for a hypothetical temporary that may be used to save the result of the
computation if an opportunity for performing PRE is found. Just as a φ stores its result in a new version
of the variable, so χs are considered to represent a new version of an expression. The operands of a χ
(which correspond to incoming edges just as φ operands do) are given the version of the expression
that is available most recently on the path they represent. If the expression is never computed along that
path, then there is no version available, and the χ operand is denoted by ⊥. χs and χ operands are also
considered to be occurrences of the expression; expressions that appear in the code are differentiated
from them by the term real occurrences.

For a code-moving transformation to be correct, it must never add a computation to a control path.
(Since PRE does not alter the structure of the CFG, control flow paths in the optimized program
correspond to paths in the unoptimized program.) In other words, it is incorrect to insert a computation
if there exists a path from the insertion point to program exit along which the computation is not
used. Not only would this lengthen an execution path (defying optimality), but it might also cause the
optimized code to throw an exception that the unoptimized code would not. Consider the programs
in Figure 2. When unoptimized, the computation of a/b3 in block 4 is partially redundant. If we
‘optimize’ it by inserting a computation of a/b2 in block 2 and eliminating a/b3 in block 4, we shorten
the control flow path (1,3,4,Exit), but lengthen the path (2,3,5,Exit). What is more, if b2 is zero, the

‡In the original description of SSAPRE [2,3], χs are called Phis (distinguished from phis by the capitalization) and denoted in
code by the capital Greek letter #.
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path (2,3,5,Exit) will now raise an exception. The property that a computed expression will not be
introduced to a control flow path is called downsafety. A χ is downsafe if its value is used on all
paths to procedure exit. This and other properties of χs and χ operands are summarized in Table I.
Details about their use and how to compute them are discussed later.

SSAPRE has six phases. We will discuss these while observing the running example in Figure 3.
The unoptimized program is in Figure 3(a). The expression b + c in block 4 is partially redundant
because it is available along the right incoming edge.

1. χ Insertion For any real occurrence of a canonical expression on which we wish to perform
SSAPRE, insert χs at blocks on the dominance frontier of the block containing the real
occurrence and at blocks dominated by that block that have a φ for a variable in the canonical
expression. (These insertions are made if a χ for that canonical expression is not there already.)
These χs represent places that a version of an expression reaches but where it may not be valid
on all incoming edges and hence should be merged with the values from the other edges. In our
example, a χ is inserted at the beginning of block 4 for canonical expression b + c.

2. Rename Assign version numbers to all real expressions, χs, and χ operands. This algorithm
is similar to that for renaming SSA variables given in Cytron et al. [8]. While traversing the
dominator tree of the CFG in preorder, maintain a renaming stack for each canonical expression.
The item at the top of the stack is the defining occurrence of the current version of the expression.
For each block in the traversal, inspect its χs, its real instructions, and its corresponding χ

operands in the χs of its successors, assigning a version number to each. If an occurrence is
given a new version number, push it on the stack as the defining occurrence of the new version.
When the processing of a block is finished, pop the defining occurrences that were added while
processing that block. Table II explains how to assign version numbers for various types of
occurrences depending on the defining occurrence of the current version (this table is expanded
from Table 1 of Kennedy et al. [3]). Note that χ operands cannot be defining occurrences.
Figure 3(b) shows our example after Rename. The occurrence in block 3 is given the version 1.
Since block 4 is on its dominance frontier, a χ for this expression is placed there to merge the
versions reaching that point, and the right χ operand is given version 1. Since the expression
is unavailable from the left path, the corresponding χ operand is ⊥. The χ itself is assigned
version 2. Since that χ will be on top of the renaming stack when b + c in block 4 is inspected
and since the definitions of its variables dominate the χ , it is also assigned version 2.

3. Downsafety Compute downsafety with another dominator tree preorder traversal, maintaining
a list of χs that have not been used on the current path. When program exit is reached, mark
the χs that are still unused (or used only by operands to other χs that are not downsafe) as not
downsafe. In our example, the χ is clearly downsafe.

4. WillBeAvail Compute canBeAvail for each χ by considering whether it is downsafe and, if it
is not, whether its operands have versions that will be available at that point. Compute later by
setting it to false for all χs with an operand that has a real use for its version or that is defined
by a χ that is not later. Compute willBeAvail by setting it true for all χs for which canBeAvail
is true and later is false. Compute insert for each χ operand by setting it to true for any operand
in a χ for which willBeAvail is true and either is ⊥ or is defined by a χ for which willBeAvail
is false. Since the χ in Figure 3(b) is downsafe, it can be available. Since its right operand has a
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Table I. χ and χ operand properties.

Properties for χs

downsafe The value of the χ is used on all paths to program exit.
canBeAvail None of the χ’s operands are ⊥ or the χ is downsafe (i.e. the value has been computed on

all paths leading to this point or insertions for it can be made safely).
later Insertions for the χ can be postponed because they will not be used until a later program

point.
willBeAvail The value of the χ will be available at this point after the transformation has been made; it

can be available and cannot be postponed.

Property for χ operands

insert An insertion needs to be made so that this χ operand’s value will be available.

version defined by a real occurrence, it cannot be postponed. Therefore, willBeAvail is true for
the χ .

5. Finalize Using a table to record what use, if any, is available for versions of canonical
expressions, insert computations for χ operands for which insert is true (allocating new
temporary variables to store their value), insert φs in place of χs for which willBeAvail is
true, and mark real expressions for reloading that have their value available at that point in a
temporary. In Figure 3(c), we have inserted a computation for its ⊥ χ operand and a φ in the
place of the χ to preserve the value in a new temporary.

6. CodeMotion Replace all real expressions marked for reloading with a move from the temporary
available for its version. A move from the new temporary added in the previous step can then
replace the real occurrence in block 4, as Figure 3(c) displays.

Counterexamples

SSAPRE’s concept of redundancy is based on source-level lexical equivalence. Thus it makes a
stronger assumption about the code than SSA form: from what source-level variable an SSA variable
comes. This dependence weakens SSAPRE’s ability to find all redundancies. In the example above,
since the definition of c is a move from a1, b + c has the same value as b + a1 in block 2. This means
inserting b + c in block 2 is not optimal; although it is not redundant lexically, it clearly computes the
same value. Situations like this motivate research for making (general) PRE more effective, such as in
Briggs and Cooper [9]. In our example, all we need is a simple constant copy propagation to replace
all occurrences of c with a1, as shown in Figure 4(a). Now the expression in block 4 is fully redundant
even in the lexical sense. SSAPRE is fragile when used with such a transformation because it assumes
that no more than one version of a variable may be simultaneously live. Copy propagation breaks this
condition here, since both a1 and a2 are live at the exit of block 3, and, assuming a3 is used later in the
program, both a1 and a3 are live in block 4. In this case, b + a1 is given the same version in blocks 2

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:1413–1439



1420 T. VANDRUNEN AND A. L. HOSKING

b ←
c ← a1

a1 ←

a3 ← φ(a1, a2)

g ← b + c

1

4

f ← b + a2

e ← b + c

a2 ←

3

d ← b + a1
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b ←
c ← a1

a1 ←

a3 ← φ(a1, a2)

g ← b + c

χ(⊥, 1)[2]

[2]

1

4

3

a2 ←
e ← b + c

f ← b + a2

[1]

d ← b + a1

2

b ←
c ← a1

a1 ←

a3 ← φ(a1, a2)

t2 ← φ(t1, e)

g ← t2

1

4

f ← b + a2

e ← b + c

a2 ←

3

d ← b + a1
t1 ← b + c

2

(a) (b) (c)

Figure 3. PRE example 1.

Table II. How to determine what version to assign to an occurrence of an expression.

Occurrence being inspected

Definition real χ χ operand

real Assign the old version if
all corresponding variables
have the same SSA version;
otherwise assign a new ver-
sion and push the item on
the stack.

Assign a new version and
push the item on the stack.

Assign the old version if the
defining occurrence’s vari-
ables have SSA versions
current at the point of the
χ operand; otherwise as-
sign ⊥.

χ Assign the old version if all
the definitions of the vari-
ables dominate the defining
χ ; otherwise assign a new
version and push the item on
the stack.

Assign a new version and
push the item on the stack.

Assign the old version if
the definitions of the current
versions of all relevant vari-
ables dominate the defining
χ ; otherwise assign ⊥.
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b ←
a1 ←

a3 ← φ(a1, a2)

g ← b + a1

1

4

d ← b + a1

2

f ← b + a2

e ← b + a1

a2 ←

3

b ←
a1 ←

a3 ← φ(a1, a2)

g ← b + a1

χ(1, 2)[3]

[3]

1

4

a2 ←
e ← b + a1
f ← b + a2[2]

[1]

d ← b + a1

2

[1]

3

b ←
a1 ←

a3 ← φ(a1, a2)

t ← φ(d, f)

g ← t

1

4

a2 ←
e ← b + a1
f ← b + a2

32

d ← b + a1

(a) (b) (c)

Figure 4. PRE example 1 after copy propagation.

and 3, while b + a2 in block 3 is given its own version, since it does not match the current version
b + a1. See Figure 4(b).

What version should be given to the right operand of the χ in block 4? Version 2 (b + a2) is the
current defining occurrence, and Table II suggests that its version should be used if its operands are
the current versions of the variables. Since a2 is the corresponding operand to the φ at block 4, it can
be considered current, and we give the χ operand version 2. However, this produces incorrect code.
In the optimized program in Figure 4(c), g has value b + a2 on the right path, not b + a1 as it should.
Chow, Kennedy and co-workers [2,3] give an alternative Rename algorithm called Delayed Renaming
which might avoid producing wrong code. In that algorithm, the ‘current’ variable versions for a χ

operand are deduced from a later real occurrence that has the same version as the χ to which the
operand belongs, adjusted with respect to the φs at that block. In this case, the χ has the same version
as g ← b + a1. Since neither b nor a1 are assigned by φs, they are the current versions for the χ

operand, and are found to mismatch b + a2; thus the χ operand should be ⊥. However, this would still
miss the redundancy between e ← b + a1 and g ← b + a1.

The entry in Table II for processing real occurrences when a χ is on the stack is also fragile.
Figure 5 displays another program before, during, and after SSAPRE. Since two canonical expressions
(b + a and b + c) are being processed, we distinguish their χs and version labels with α and β,
respectively. The same program, before SSAPRE but after constant copy propagation, is shown in
Figure 6(a). There is now only one canonical expression. χ Insertion and Rename produce the version
in Figure 6(b). The right χ operand is ⊥ because a1 in b + a1 is not ‘current’ on that edge, not being
the corresponding operand to the φ. Such a χ represents the correct value for f ← b + a3. However,
g ← b + a1 is also assigned the same version: the χ is the definition of the current version, and the
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b ←
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a1 ←

a3 ← φ(a1, a2)
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f ← b + a3
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4

e ← b + c

a2 ←
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d ← b + a1

b ←
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a1 ←

a2 ←
e ← b + c

a3 ← φ(a1, a2)

g ← b + c

f ← b + a3

χα(1, ⊥)

χβ(⊥, 1)

[2]α

[2]β

[2]α

[2]β

1

4

3

[1]β
d ← b + a1[1]α

2

b ←
c ← a1

a1 ←

a3 ← φ(a1, a2)

g ← t4

f ← t3

t3 ← φ(t1, e)

t4 ← φ(d, t2)

1

4

t2 ← b + a2

e ← b + c

a2 ←

3

d ← b + a1
t1 ← b + c

2

(a) (b) (c)

Figure 5. PRE example 2.

definitions of all the operands of g ← b + a1 dominate it, which are the conditions prescribed by
Table II. Consequently, the optimized version assigns an incorrect value to g in (c).

In both cases, the problem comes from the algorithm assuming that only one version of a variable
can be live at a given time. Simple fixes are conceivable, but not without liabilities. Renaming variables
to make SSAPRE’s assumption valid will merely undo the optimizations intended to make PRE more
effective. The rules in Table II could be made more strict; for example, we could associate versions of
variables with each χ and make sure all versions match before assigning a real occurrence the same
version as a χ . This would prevent the incorrect result in Figure 6, but since b + a1 in the original is
indeed partially redundant, ignoring it would not be optimal.

Another case when SSAPRE misses redundancy is when a redundant computation has
subexpressions. Consider the program in Figure 7(a). The expression a + b in block 4 is clearly
partially redundant; c3 + d2 is also partially redundant, since d1 and d2 have the same value on that
path. Essentially, it is the complex expression c + a + b that is redundant.

Figure 7(b) shows the program after χ Insertion and Rename. As before, version numbers and χs for
the two different expressions are distinguished by Greek letters. d2 ← a+b is given the same version as
the corresponding χ and will be removed by later SSAPRE phases. However, f ← c3 +d2 contains d2,
whose definition does not dominate the χβ . According to Table II, we must assign the real occurrence
a new version, even though the χ represents the correct value on the right path. The optimality claim
of Chow, Kennedy and co-workers [2,3] assumes that a redundancy exists only if there is no non-φ
assignment to a variable in the expression between the two occurrences; this example frustrates that
assumption, and comparing this with the running example in Briggs and Cooper [9] demonstrates that
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b ←
a1 ←

a3 ← φ(a1, a2)

g ← b + a1

f ← b + a3

1

4

a2 ←
e ← b + a1

3

d ← b + a1

2

b ←
a1 ←

g ← b + a1

f ← b + a3

χ(1, ⊥)[2]

[2]

[2]

1

4

a3 ← φ(a1, a2)

a2 ←
e ← b + a1

3

[1]

d ← b + a1[1]

2

b ←
a1 ←

a3 ← φ(a1, a2)

g ← t2

t2 ← φ(d, t1)

f ← t2

1

4

t1 ← b + a2

e ← b + a1

a2 ←d ← b + a1

2 3

(a) (b) (c)

Figure 6. PRE example 2 after copy propagation.

a1 ←

c3 ← φ(c1, c2)

1

4

b ←

c2 ←
d1 ← a + b

e ← c2 + d1

3

c1 ←

2

f ← c3 + d2
d2 ← a + b

a1 ←

c3 ← φ(c1, c2)

1

4

b ←

f ← c3 + d2

d2 ← a + b

χα(⊥, 1)

χβ(⊥, 1)

3

c2 ←
d1 ← a + b

e ← c2 + d1

[2]α

[2]β

[2]α

[3]β

[1]α

[1]β

c1 ←

2

a1 ←

c3 ← φ(c1, c2)

1

4

b ←

f ← t4

d2 ← t3

t3 ← φ(t1, d)

t4 ← φ(t2, e)

c2 ←
d1 ← a + b

e ← c2 + d1

3

c1 ←
t1 ← a + b

t2 ← c2 + t1

2

(a) (b) (c)

Figure 7. Nested redundancy.
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b3 ← φ(b1, b2)

d ← b2 + a

e ← c2 + ac1 ← f

g ← b3 + a

4

3

21

5

b1 ← f

c3 ← φ(c1, c2)

h ← c3 + a

b3 ← φ(b1, b2)

d ← b2 + a

e ← c2 + ac1 ← f

g ← s

4

3

21

5

b1 ← f

c3 ← φ(c1, c2)

h ← u

t ← f + a

s ← φ(t, d)

u ← φ(t, e)

(a) (b)

Figure 8. Redundancy eliminated by Bodı́k et al. [4,5].

this situation is not unrealistic when PRE is used with other optimizations. The optimized form we
desire is in Figure 7(c), which would result if SSAPRE were run twice. (This situation is not just a
product of our three-address representation, since it is conceivable that d has independent uses in other
expressions.)

Finally, consider the example in Figure 8(a). The computations b3 + a and c4 + a in blocks 4
and 5, respectively, are partially redundant, since they are each computed in block 2. Thinking strictly
lexically, we cannot insert computations in block 1 for either expression, because such a computation
would not be downsafe, as it has a path to exit on which the expression is not computed. However,
note that in block 1, b2 and c2 have the same value, and therefore b2 + a and c2 + a will also have the
same value. Accordingly, only one computation need be inserted for both b + a and c + a, and that
computation would be downsafe because (if we think in terms of values and not just lexical expressions)
it is used in both block 4 and block 5. The optimized version appears in Figure 8(b). Being blinded by
lexical equivalence is only half the problem; we also need a way to recognize that the χs for expressions
b + a and c + a have parameters from block 1 which need to be considered to be the same parameter
for the sake of computing downsafety. Cases like this are discovered and eliminated by the path-based
value-numbering of Bodı́k et al. [4,5].

A-SSAPRE

The problems with SSAPRE stem from assumptions about lexical equivalence. From this point on, we
will abandon all notions of lexical equivalence among distinct SSA variables. We will ignore the fact
that some SSA variables represent the same source-level variables and consider any variable to be an
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independent temporary whose scope is all instructions dominated by its definition. We will feel free
to generate new temporaries as much as we need, since copy propagation and good register allocation
should be able to clean up afterwards.

As already noted, SSAPRE is characterized by availability: χs are placed at the dominance frontier
of a computation and thus indicate where a value is (at least partially) available. In this section,
we present a new algorithm, Anticipation-SSAPRE (A-SSAPRE), which searches backward from
computations and places χs at merge points where a value is anticipated. If the algorithm discovers the
definition of a variable in the expression for which it is searching, it will alter the form of that expression
appropriately; for example, if it is searching for t3 + t7 and discovers the instruction t7 ← t1, then from
that point on it will look for t3 + t1. (We do not need also to look for t3 + t7 since t7 is out of scope at any
program point prior to its definition.) When a χ is created, it is allocated a fresh hypothetical temporary,
which will be the target of the φ that will be placed there if the χ is used in a transformation. The result
of this phase is that instructions are assigned temporaries that potentially store earlier computations of
the instructions’ values. The instructions may be replaced by moves from those temporaries.

Since all variables are distinct, so are all expressions. This obviates the need for the notion of
canonical expressions and the need for version numbers. Thus our algorithm has no renaming phase.
Not only do the problems in SSAPRE come from ambiguities in the specification of Rename, but
also our implementation experience has found Rename to be particularly prone to bugs [10]. Next, the
algorithm analyzes the χ operands that are ⊥ to determine which ones represent downsafe insertions
and analyzes the χs to determine which ones can be made available, which ones can be postponed,
and, from these, which ones should be made into φs. This happens in the two phases Downsafety and
WillBeAvail. Finally, where appropriate, insertions are made for χ operands, φs are put in the place of
χs, and redundant computations are replaced with moves from temporaries. This phase, CodeMotion,
subsumes the Finalize phase in SSAPRE. Thus, A-SSAPRE has four phases from SSAPRE’s six.

The following subsections describe the four phases of A-SSAPRE in detail. We clarify each step by
observing what it does on a running example. The unoptimized version is in Figure 9. Assignments
with no right-hand side are assumed to come from sources we cannot use in A-SSAPRE. For example,
t1, t2, and t3 in block 1 may be parameters to the procedure, and t9 in block 5 could be the result of a
function call.

χ Insertion

χs, χ operands, and instructions

χ Insertion is the most complicated of the phases, and it differs greatly from the equivalent phase in
SSAPRE. A χ is a potential φ or merge point for a hypothetical temporary, and it has an expression
associated with it, for which the hypothetical temporary holds a pre-computed value. The hypothetical
temporary is allocated at the time the χ is created, so it is in fact a real temporary from the temporary
pool of the IR; it is hypothetical only in the sense that we do not know at the time it is allocated
whether or not it will be used in the output program. The hypothetical temporary also provides a
convenient way of referring to a χ , since the χ is the hypothetical definition point of that temporary.
In the examples, a χ will be displayed with its operands in parentheses followed by its hypothetical
temporary in parentheses. The expression it represents is written in the margin to the left of its basic
block (see Figure 10).
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t1 ←

1

t2 ←
t3 ←

2 3

t4 ← t1 + t3
t5 ← t2 + t3
t6 ← t1 − t5

4

t7 ← φ(t1, t2)

t10 ← t7 + t2

t9 ←
t8 ← t1 + t3

t13 ← t7 + t2

t12 ← t3

t11 ← t7 + t3

t14 ← φ(t9, t12)

t15 ← φ(t10, t1)

t16 ← φ(t9, t11)

t17 ← t7 + t14
t18 ← t15 + t16

5 6

7

Figure 9. Unoptimized.

A χ operand is associated with a CFG edge and either names a temporary or is ⊥. They are
represented in the examples accordingly, listed from left to right in the same order as their respective
CFG edges appear. However, an important feature of our algorithm is that χs at the same block can
share χ operands. Assume that if two χ operands are in the same block, are associated with the same
CFG edge, and refer to the same temporary, then they are the same. χ operands that are ⊥ are numbered
to distinguish them. The temporary to which a χ operand refers is called the definition of that χ
operand, and if the χ operand is ⊥, we say that its definition is null. χ operands also have expressions
associated with them, as explained below, but to reduce clutter, they are not shown in the examples.

Real occurrences of an expression (ones that appear in the code and are saved to a temporary) also
have definitions associated with them, just as χ operands do. This is the nearest temporary (possibly
hypothetical) found that contains the value computed by the instruction. If no such temporary exists,

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:1413–1439



ANTICIPATION-BASED SSAPRE 1427

t1 ←

1

t2 ←
t3 ←

2 3

t4 ← t1 + t3
t5 ← t2 + t3
t6 ← t1 − t5

4

t7 ← φ(t1, t2)

t10 ← t7 + t2

t9 ←
t8 ← t1 + t3

t13 ← t7 + t2

t12 ← t3

t11 ← t7 + t3

t14 ← φ(t9, t12)

t15 ← φ(t10, t1)

χ( , )(t19)

χ( , )(t20)

χ( , )(t21)

t18 ← t15 + t16

t17 ← t7 + t14

χ( , )(t23)

χ( , )(t22)

t16 ← φ(t9, t11)

t1 + t3
t7 + t2
t7 + t3

[⊥]

[⊥]

[⊥]

[t19]

[t20]

[t21]

[t20]

t7 + t14
t15 + t16

[t22]

[t23]

5 6

7

t1 ←

1

t2 ←
t3 ←

2 3

t4 ← t1 + t3
t5 ← t2 + t3
t6 ← t1 − t5

4

t7 ← φ(t1, t2)

t10 ← t7 + t2

t9 ←
t8 ← t1 + t3

t13 ← t7 + t2

t12 ← t3

t11 ← t7 + t3

t14 ← φ(t9, t12)

t15 ← φ(t10, t1)

χ(⊥2,⊥3)(t20)

χ(⊥1, t5)(t21)

t18 ← t15 + t16

t17 ← t7 + t14

χ(t24, t25)(t23)

χ(⊥4, t11)(t22)

t16 ← φ(t9, t11)

[⊥]

[⊥]

[⊥]

[t19]

[t20]

[t21]

[t20]

t7 + t14
t15 + t16

[t22]

[t23]

5 6

7

χ(⊥1, t4)(t19)

χ(⊥5,⊥6)(t24)

χ(⊥7, t6)(t25)

t20 − t19
t1 − t21

t1 + t3
t7 + t2
t7 + t3

(a) (b)

Figure 10. During χ Insertion.

then the definition is ⊥. In the examples, this temporary is denoted in brackets in the margin to the
left of its instruction. This notion of definition induces a relation among real instructions, χs, and χ

operands and is equivalent to the factored redundancy graph of Chow, Kennedy and co-workers [2,3]

Searching from instructions

χ Insertion performs a depth-first, preorder traversal over the basic blocks of the program. In each basic
block, it iterates forward over the instructions. For each instruction on which we wish to perform PRE
(in our case, binary arithmetic operations), the algorithm begins a search for a definition. During the
search, it maintains a search expression e, initially the expression computed by the instruction where
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it starts. It also maintains a reference to the original instruction, i. Until it reaches the preamble of the
basic block (which we assume includes the φs and χs), the algorithm inspects an instruction at each
step.

The current instruction being inspected is either a computation of e, the definition point of one of the
operands of e, or an instruction orthogonal to e. In practice, we expect that this last case will cover the
majority of the instructions inspected, and such instructions are simply ignored. If the instruction is a
computation of e (that is, the expression computed exactly matches e), then the search is successful, and
the temporary in which the current expression stores its result is given as the definition of i. When the
current expression defines one of e’s operands, then what happens depends on the type of instruction.
If it is not itself a candidate for PRE or a simple move (for example, a function call), then nothing
can be done; the search fails, and i’s definition is null. If the current instruction is a move, then we
emend e accordingly: the occurrences in e of the the target of the move are replaced by the move’s
source. The search then continues with the new form of e. If a copy propagation has been performed
immediately before A-SSAPRE, then this should not be necessary, since moves will be eliminated.
However, we make no assumptions about the order in which optimizations are applied, and in our
experience such moves proliferate under many IR transformations.

If the current instruction stores the result of a PRE-candidate computation to an operand of e, then
we can conjecturally emend the search expression; that is, we assume the instruction will be replaced
by a move, and emend e as if that move were already in place. Since blocks are processed in depth-
first preorder and instructions processed by forward iteration, we know that the instruction being
inspected has already been given a definition. If that definition is not null, then we can conjecture
that the instruction will be replaced by a move from the temporary of its definition to the temporary
being written to, and we emend e as if that move were already present. From a software engineering
standpoint, such conjectural emendations may be skipped during early development stages. However,
they are necessary for optimality, since they take care of the situation in Figure 7. Without them,
A-SSAPRE would require multiple runs to achieve optimality, especially in concert with the enabling
optimizations described in Briggs and Cooper [9]. If the instruction’s definition is null (or if conjectural
emendations are turned off), such an instruction must be treated the same way as non-PRE candidates,
and the search fails.

When the search reaches the preamble of a block, there are three cases, depending on how many
predecessors the block has: zero (in the case of the entry block), one (for a non-merge point), or many
(for a merge point). At the entry block, the search fails. We also do not hoist past an exception-handler
header (we assume a factored control flow graph for representing exceptional control flow [20]). At a
non-merge point, the search can continue starting at the last instruction of the predecessor block with
no change to i or e. At a merge point, the algorithm inspects the expressions represented by the
χs already placed in that block. If one is found to match e, then that χ (or more properly, that χ’s
hypothetical temporary) is given as i’s definition. If no suitable χ is found, the algorithm creates one;
a new temporary is allocated (which becomes i’s definition), and the χ is appended to the preamble
and to a list of χs whose operands need to be processed, as will be described below. In either case, the
search is successful.

Consider the program in Figure 9. From the instruction i ≡ t4 ← t1 + t3 in block 3, we search
for an occurrence of e ≡ t1 + t3 and immediately hit the preamble of the block. Since it is not a
merge point, the search continues in block 1. The write to t3 is relevant to e, but since that instruction
is not a move or a PRE candidate, the search fails and i is assigned ⊥. Similarly, the searches from
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t5 ← t2 + t3 and t6 ← t1 − t5 fail. For i ≡ t8 ← t1 + t3, e ≡ t1 + t3, the search takes us to the
preamble of block 4. Since it is a merge point, we place a χ there with expression t1 + t3 and allocate
t19 as its hypothetical temporary, which also becomes the definition of t8 ← t1 + t3. Similarly for
i ≡ t10 ← t7 + t3, we place a χ , allocating the temporary t20; and for i ≡ t11 ← t7 + t3, a χ with
temporary t21. For i ≡ t13 ← t7 + t2, e ≡ t7 + t2, when the preamble of block 4 is reached, we
discover that a χ whose expression matches e is already present, and so its temporary (t20) becomes i’s
definition. Finally, searches from the two real instructions in block 7 produce the χs with temporaries
t22 and t23, which serve as the real instructions’ definitions. Figure 10(a) displays the program at this
point.

Searching from χ operands

When all basic blocks in the program have been visited, the algorithm creates χ operands for the χs
that have been made. Since χ operands have definitions just like real instructions, this involves a search
routine identical to the one above. The only complications are χ-operand sharing among χs at the same
block and emendations with respect to φs and other χs. For each χ c in the list generated by the search
routine and for each in-coming edge η at that block, the algorithm determines an expression for the χ

operand for that edge. To do this, we begin with the χ’s own expression, e, and inspect the φs at the
block and the χs that have already been processed. If any write to an operand of e (that is, if one of e’s
operands is the target of a φ or the hypothetical temporary of a χ), then that operand must be replaced
by the operand of the φ that corresponds to η or the definition of the χ operand that corresponds to η.
(If such a χ operand is ⊥, then we can stop there, knowing that the χ operand we wish to create
will be ⊥, and that it is impossible to make an expression for it.) For example, if e ≡ t4 + t6 and
the current block contains t6 ← φ(t1, t2), the left χ operand will have the expression t4 + t1 and the
right will have t4 + t2. We call the revised expression e′. Once an expression has been determined, the
algorithm inspects the χ operands corresponding to η of all the χs at that block that have already been
processed; if any such χ operand has an expression matching e′, then that χ operand also becomes an
operand of c. This sharing of χ operands is necessary to discover as many redundancies as Bodı́k [4],
as the examples will show. If no such χ operand is found, the algorithm creates a new one with e′ as
its expression, and it searches for a definition for it in the same manner as it did for real instructions,
in this case i referring to the χ operand. Note that this may also generate new χs, and the list of χs
needing to be processed may lengthen.

So far, this phase has generated the five χs in Figure 10(a). The search for definitions for their
operands is more interesting. In block 4, the t19 χ has expression e ≡ t1 + t3. Since none of e’s
operands are defined by φs, e also serves as the expression for the χ’s operands. Search from the left
operand fails when it hits the write to t3 in block 1. Search from the right operand, however, discovers
t4 ← t1 + t3, which matches e; so t4 becomes its definition. The t20 χ has expression e ≡ t7 + t2.
Since t7 ← φ(t1, t2) writes to one of e’s operands, the two χ operands will have the expressions t1 + t2
and t2 + t2. Since neither have occurred in the program, two ⊥ χ operands are created. The t21 χ has
expression e ≡ t7 + t3. The φ changes this to t1 + t3 for the left edge and to t2 + t3 for the right edge.
The former is identical to the expression for the left operand of the t19 χ , so that operand is reused.
Searching from the right χ operand discovers t5 ← t2 + t3.

Turning to block 7, the t22 χ has expression t7 + t14, which the φs change to t7 + t9 for the left
edge and t7 + t12 for the right. On the left side, a search for a definition for the χ operand halts at the
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non-PRE candidate write to t9 in block 5. The right hand search discovers t11 ← t7 + t3. The left and
right χ operands for the t23 χ (e ≡ t15 − t16) have expressions t10 − t8 and t1 − t11, respectively. On the
left, t10 ← t7 + t2 and t8 ← t1 + t3 in block 5 affect the search expression, which we conjecturally
emend to t20 − t19. When the preamble of block 4 is reached, a new χ must be placed, allocating the
temporary t24. On the right, t11 ← t7 + t3 causes the search expression to be emended to t1 − t21, which
also requires a new χ at block 4. Finally, we search for definitions for the χ operands of the two χs
recently placed in block 4. The program at the end of the χ Insertion phase is shown in Figure 10(b).

Termination

Since the search for a definition for a χ operand may traverse a back edge, we now convince ourselves
that the algorithm will terminate on loops; indeed, one qualification needs to be made for conjectural
emendations in order to ensure termination. Consider the case when the search from a χ operand
brings us back to the merge point of its χ . If the search expression has not changed, then the χ itself
is the definition, and the search ends; otherwise, if no χ at that merge matches the current search
expression, a new χ will be made. If operands in the search expression have been replaced only by
other temporaries or constants in the input program (i.e. no conjectural emendations), then this process
cannot go on forever, because there are only a finite number of temporaries or constants in the code.
The danger lies when a temporary has been replaced by a hypothetical temporary. We say that a χ is
complete if searches from all of its χ operands have been finished, and none refer to χs that are not
complete. We say that a χ c depends on a χ operand ω if ω is an operand of c or if ω is an operand
to a χ that in turn is referred to by a χ operand on which c depends. Supposing, as above, that e′ is
the search expression when searching for a definition of χ operand ω, then if the current instruction
being inspected writes to an operand of e′ but is defined by a χ c that does not depend on ω, then this
search does not prolong the sequence of searches that make c complete. If c does depend on ω, we
have no such guarantee. For example, if the expression in question is the increment of a loop counter,
the algorithm would attempt to insert a χ for each iteration—an infinite number. To see this illustrated,
consider Figure 11. t1, t2, and t3 represent a loop-counter in the source code. If we search for an earlier
occurrence of t2 +1, we will place a χ for it at the top of the block. Searching, then, for the χ operands,
we emend the search expression to t3+1 because of the φ. This leads us back to the original occurrence,
t2 + 1, with target t3. If we were to conjecturally emend the search expression, we would replace t3
with t4, the occurrence’s definition. Placing a χ , then for t4 + 1, we search for an operand for the
expression t5 + 1, since the previous χ merges t5 into t4. Continuing like this would place χs at this
point indefinitely. Thus, when searching from a χ operand ω, conjectural emendations are forbidden
if the current instruction is defined by a χ that depends on ω.

Downsafety

Recall that an inserted computation is downsafe only if the same computation is performed on all
paths to exit. Avoiding inserting computations that are not downsafe prevents lengthening computation
paths and causing exceptions that would not be thrown in the unoptimized program. Since χ operands
represent potential insertions, we consider downsafety to be a property of χ operands rather than of
χs as in Chow, Kennedy and co-workers [2,3] and Table I. The second phase of A-SSAPRE is a static
analysis that determines which χ operands are downsafe. We are interested only in χ operands that are
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......

χ( , t6)(t5)

t3 ← t2 + 1

χ( , t5)(t4)

χ( , )(t6)

[t4]

t2 ← φ(t1, t3)

Figure 11. Unterminated χ Insertion.

⊥ or defined by a χ ; if a χ operand’s definition is the result of a real instruction, no insertion would ever
need to be made for it. The question of whether a χ operand’s value is used on all paths to program exit
is akin to liveness analysis for variables and can be determined by a fixed-point iteration. At the entry
to a block that is a merge-point, the χ operands of its χs become ‘live’. A use of their value—which
happens if a real instruction has the hypothetical temporary of the χ as a definition—‘kills’ them. All χ
operands that are not killed in that block are ‘live out’, and must be considered ‘live in’ for the block’s
successors.

The fact that χs share χ operands complicates downsafety, since if a χ operand is an operand
to several χs, a use of any of their hypothetical temporaries will kill it. Moreover, the use of a
χ’s hypothetical temporary will kill all of that χ’s χ operands. To handle this, in addition to a set
of live χ operands, we must maintain on entry and exit of every block a mapping from temporaries to
sets of χ operands which a use of the temporaries will kill.

What if a χ operand’s value is used as the definition to another χ operand? We could consider that
χ operand to be a use occurring at the end of the corresponding predecessor block (not in the block
that contains its χ). That would complicate things because if the χ operand was the only killer for the
first χ operand on a path to exit, then the downsafety of the first would depend on the downsafety of
the second. SSAPRE handled this by propagating a false value for downsafety from χs already found
to be false to χs that depended on them. We can handle this with our map structure: if a use of t1 will
kill χ operand ω1, χ operand ω2 has t1 as its definition, and a use of t2 will kill ω2, then we say that
t2 will also kill ω1. The effect this has is that the use of a temporary as the definition of a χ operand
cannot itself kill another χ operand, but that the fate of both χ operands are linked on subsequent paths
to exit. One thing should be noted, though: if a χ appears at the beginning of a loop and is the definition
of another χ there, its operand will have the temporaries or both χs as killers. If the second χ turns
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Table III. Downsafety for the running example.

⊥1 downsafe: killed by t8 ← t1 + t3 on the left path and t11 ← t7 + t3 on the right
t4 Irrelevant: defined by real instruction
⊥2 downsafe: killed by t10 ← t7 + t2 on the left path and t13 ← t7 + t2 on the right
⊥3 downsafe: killed by t10 ← t7 + t2 on the left path and t13 ← t7 + t2 on the right
t5 Irrelevant: defined by real instruction
⊥5 Not downsafe
⊥6 Not downsafe
⊥7 Not downsafe
t6 Irrelevant: defined by real instruction
⊥4 downsafe: killed by t17 ← t7 + t14
t11 Irrelevant: defined by real instruction
t24 downsafe: killed by t18 ← t15 + t16
t25 downsafe: killed by t18 ← t15 + t16

out not to be inserted but is the definition of a real occurrence in the block, a χ operand in the first χ

may be killed and the χ erroneously thought downsafe. To correct this, when a χ operand is new at the
beginning of a basic block, only the χs that have it as an operand should define a kill for it.

Suppose live in(b), live out(b), map in(b), and map out(b) are the live in and out sets and mappings
in and out, respectively, for a block b, and that Def(i) finds the definition of instruction i. Then to
compute downsafety, we must solve the following data flow equations:

live in(b) =
( ⋃

p∈pred(b)

live out(p)

) ⋃
{χ operands at b}

map in(b) = clearb

( ⋃

p∈pred(b)

map out(p)

)

⋃
{t )→ σ | χ at b with temporary t and set of χ operands σ }

live out(b) = live in(b) − {ω | Def(i) = t and map in(t) = ω for some instruction i ∈ b

or for some corresponding χ operand i in a successor}
map out(b) = map in(b)

clearbm = {t )→ σ | t )→ σ ′ ∈ m and σ = σ ′ − ) where ) is the set of χ operands at b}

Table III lists what χ operands are downsafe in our example and why. As in the figures, χ operands
are identified by their definition. Of particular interest is ⊥1 because it is downsafe only because it is
shared—it is killed on the left path because it belongs to the t19 χ and on the right because it belongs to
the t21 χ . If these were considered separate χ operands, then an opportunity to eliminate a redundancy
would be missed.
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WillBeAvail

The WillBeAvail stage computes the remaining properties for χs and χ operands, namely, canBeAvail,
later, and willBeAvail for χs and insert for χ operands. The most important of these is willBeAvail
because it characterizes χs that will be turned into φs for the optimized version.

We first determine whether it is feasible and safe for a χ to be made into a φ. If all of a χ’s operands
either have a real use or are downsafe, then that χ is canBeAvail. A χ is also canBeAvail if all of its
χ operands that are not downsafe are defined by χs which also are canBeAvail, since, even though an
insertion for that χ operand would not be safe, no insertion is needed if the value will be available from
the defining χ .

To this end, after initializing canBeAvail to true for all χs in the program, we iterate through all χs.
If a χ c has a χ operand that is not downsafe and is ⊥ (and if canBeAvail has not already been proven
false for c), we set canBeAvail to false for c. Then we make an inner iteration over all χs; for any χ that
has an operand defined by c, if it has a non-downsafe χ operand but is still marked canBeAvail, then its
canBeAvail should be cleared in the same manner. In our example, all χs are canBeAvail except for the
ones with temporaries t24 and t25, since they each have at least one ⊥ χ operand that is not downsafe.

Next, we compute later, which determines if a χ can be postponed. This will prevent us from making
insertions that have no benefit and would only increase register pressure. later is assumed true for all χs
that are canBeAvail. Then we iterate through all χs, and if a χ c is found for which later has not been
proved false and which has an operand defined by a real occurrence, we reset later for it. To do this, we
not only set later to false, but, similarly to how canBeAvail was propagated, we also iterate through all
χs; if any is found that has an operand with c as a definition, that χ’s later is reset recursively. The idea
is that if the definitions of any of a χ’s variables are available (either because they are real occurrences
or because they are χs that cannot be postponed), the χ itself cannot be postponed. In our example the
t20 χ is later because both of its operands are ⊥. The t23 χ is also later because both of its operands
come from χs for which canBeAvail is false. These computations can be postponed.

At this point, computing willBeAvail is straightforward. A χ will be available if it can be made
available and there is no reason for it not to be—that is, if it is canBeAvail and not later. In our
example, all χs are willBeAvail except for the ones associated with t20, t24, and t25. From this we
also can compute insert, which characterizes χ operands that require a computation to be inserted. A χ
operand is insert if it belongs to a willBeAvail χ and is either ⊥ or defined by a χ for which willBeAvail
is false. Being in a willBeAvail χ implies that such a χ operand is downsafe. In our example, χ operands
⊥1 and ⊥4 are insert. willBeAvail and insert can be computed on demand when they are needed in the
next phase.

CodeMotion

The earlier phases having gathered information, the final stage, CodeMotion, transforms the code by
inserting φs and anticipated computations and eliminating redundant computations. The net effect is to
hoist code to earlier program points.

If willBeAvail is true for a χ , then the value it represents should be available in a temporary in
the optimized program; a φ needs to be put in its place to merge the values on the incoming paths.
The operands to this new φ will be the temporaries that hold the values from the various predecessors.
If insert is true for any of its operands (indicating that the value it represents is not available, that is,
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has not been computed and stored in a temporary), then a computation for that value must be inserted
at the end of the predecessor block it represents. Any real occurrence whose definition is another real
occurrence or a willBeAvail χ is redundant, and can be replaced with a move from the temporary
holding its value—if it is defined by a χ , the temporary is the target of the φ put in place of the χ ; if it
is defined by a real occurrence, the temporary is the one for the result of that occurrence.

Four steps complete the changes to the code: inserting appropriate computations, creating new φs,
and eliminating fully redundant computations.

To do the insertions, we iterate over all χ operands. If any is marked insert, then we allocate a new
temporary, manufacture an instruction which computes the χ operand’s expression and stores the result
in the fresh temporary, append that instruction at the end of the corresponding basic block, and set the
fresh temporary to be the χ operand’s definition. In our example, ⊥1 requires us to insert t26 ← t1 + t3
in block 2, where t26 is fresh. Similarly, we insert t28 ← t7 + t9 at block 5 for ⊥4.

We then iterate over all χs. For a χ c that willBeAvail, we insert a φ at the end of the list of
φs already present at the block. That φ merges the temporaries that define c’s χ operands into c’s
hypothetical temporary. Because insertions have been made, all valid χ operands will have temporaries
for definitions by this point. In our example, we create t19 ← φ(t26, t4) and t21 ← φ(t26, t5) in block 4
and t22 ← φ(t28, t11) in block 7.

Finally, we iterate over all instructions. If any is defined by the target of another real instruction or
of a willBeAvail χ (which by this time has been made into a φ), it is replaced with a move instruction
from its definition to its target. In our example, t11 ← t7 + t3 in block 6 is replaced with t11 ← t21, and
t17 ← t7 + t14 in block 7 is replaced with t17 ← t22.

Final program

Figure 12 displays the final program. The improvement can be seen by comparing the number of
computations on each possible execution path: (1,2,4,5,7), (1,3,4,5,7), (1,2,4,6,7), and (1,3,4,6,7).
In the unoptimized program, the number of computations are four, four, seven, seven, respectively;
in the optimized program, they are four, three, six, five. The benefit varies among the possible paths,
but never is a path made worse.

Chow, Kennedy and co-workers claim that the running time of their algorithm is linear in the size
of the program multiplied by the sum of the edges and nodes in the CFG [2,3]. One caveat with
A-SSAPRE is that under certain conditions, the number of χs can explode—if a basic block has a
large number of in-edges and a variable in one of that block’s expressions has a different definition
on each in-edge, the number of variant search expressions (and consequently χs) could become very
large. While this is rare, we have seen some real code examples of methods with large and complicated
CFGs where this algorithm is slow and space-hungry. We are addressing this concern in a successor
algorithm to A-SSAPRE.

Other implementation concerns

There are two remaining implementation concerns we would like to address. First, extra care needs to
be taken when applying this optimization to a language that supports precise handling of exceptions,
such as Java. Instructions that could throw an exception (like any division where the denominator
could be zero) must not be reordered, which could happen by the insertions and eliminations done by
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t1 ←

1

t2 ←
t3 ←

2 3

t4 ← t1 + t3
t5 ← t2 + t3
t6 ← t1 − t5

4

t7 ← φ(t1, t2)

t10 ← t7 + t2

t9 ←
t8 ← t1 + t3

t13 ← t7 + t2

t12 ← t3

t11 ← t21

t14 ← φ(t9, t12)

t15 ← φ(t10, t1)

t18 ← t15 + t16

t17 ← t7 + t14

t22 ← φ(t28, t11)

t16 ← φ(t9, t11)

5 6

7

t19 ← φ(t26, t4)

t21 ← φ(t26, t5)

t26 ← t1 + t3

t28 ← t7 + t9

Figure 12. Optimized.

this algorithm. We solve this elegantly by extending our downsafety algorithm. If we are checking
the downsafety of a χ operand that represents an expression that could except, a use that occurs
after another potentially excepting instruction should not make the χ operand considered downsafe.
So when a potentially excepting instruction is encountered during downsafety, all potentially excepting
χ operands should be marked not downsafe. The second concern is using this algorithm on object and
array instructions. Including object references and array loads in the set of PRE instructions greatly
increases the potency of A-SSAPRE, but care must be taken because objects and arrays can have
aliases that make it difficult to know when two expressions are equivalent. In that case, it is best to rely
on an underlying global value numbering, such as one that uses Array SSA form [11]. The search in
χ-Insertion is for an expression (either a load or a store) that is definitely the same as the instruction
from which we started. The search fails if we cross a store to something that is not definitely different,
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Figure 13. Static results for the benchmarks.

since that could represent a change in the expression’s value. If reads kill [12], then this is true also for
loads that are not definitely different.

EXPERIMENTS

Our experiments use JikesRVM [13,14], a virtual machine that executes Java classfiles. We have
implemented the algorithm described here as a compiler phase for the optimizing compiler and
configured JikesRVM version 2.2.0 to use the optimizing compiler only and a semi-space garbage
collector.

The optimizing compiler performs a series of code transformations on both SSA and non-SSA
representations. Before converting to SSA form, it performs branch optimizations, tail recursion
elimination, dead code elimination, and constant folding. In SSA form, it performs local copy and
constant propagation, Array SSA load elimination [11], global value numbering, and redundant branch
elimination. After SSA form, it repeats earlier stages and performs common subexpression elimination
and code reordering for better I-cache locality and branch prediction. We placed A-SSAPRE at the
beginning of the SSA-based sequence. Our implementation performs the full optimization described in
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this paper and operates over not only arithmetic expressions but also null checks and array and object
loads and stores.

We use three sets of benchmarks in our experiments: eight from the SPECjvm98 suite [15], four
from SciMark [16], and 12 from the sequential benchmarks of the Java Grande Forum [17]. The runs
were executed on a 733 MHz Power Macintosh with 32K I cache, 32 Kb D cache, and 256 Kb L2
cache running Mandrake Linux 8.2. Each benchmark run consists of 11 iterations, the first so that it
will be fully compiled by the dynamic compiler and then (without restarting the virtual machine, so
as to avoid recompiling the benchmark) run ten times, with the elapsed time measured for each run.
The time is reported in milliseconds by Java’s System.currentTimeMillis() call. Thus we
avoid including compilation time in the measurement since compilation takes place in the initial,
untimed run of each benchmark, since this experiment’s goals were to show the effects of the
transformation rather than to fine tune its implementation. We report the best of the final nine runs
with garbage collection time subtracted out. We do this to isolate program performance and because
we have found that heavy optimizations such as A-SSAPRE left the heap in such a state that later
garbage collection times were greater during the run of the program than if the optimizations had not
been performed.

Since A-SSAPRE is an expensive optimization, we study its effects on JikesRVM optimization level
O2. We were particularly interested in how it competes against other optimizations that do code motion
or eliminate computations. Accordingly, the four optimization phases we are concerned with are local
common subexpression elimination (Local CSE), global code placement (Global CP, which includes
global common subexpression elimination and loop invariant code motion), load elimination (Load
Elimination), and the optimization presented here (A-SSAPRE). Given these optimization phases, we
define the following three optimization levels.

O2: To mark our competition, we run the benchmarks at the pre-defined O2 level, which includes
Local CSE, Global CP, and Load Elimination, but not A-SSAPRE.

PRE: To measure the effect of A-SSAPRE directly, we run A-SSAPRE without the other phases
listed except for Local CSE (to clean up a few superfluous checks generated by our hoisting
potentially excepting exceptions).

BOTH: To observe synergies, we run all four phases.

Figure 13 presents the static results of the optimization by giving the number of instructions
eliminated by each optimization at each level. The bars for each benchmark from left to right
represent the number of instructions eliminated at O2, PRE, and BOTH, respectively. The numbers
are normalized so that the total number of instructions eliminated at O2 sum to 1. These results should
be used only to give a feel for how much motion is being done, since this ignores the fact that at the
same time instructions are also being inserted for hoisting. Therefore, each eliminated instruction, at
least in the case of A-SSAPRE, should be considered as at least one execution path being shortened
by one instruction. We feel that giving percentages of instructions eliminated would not provide more
illumination, since many IR instructions do not map easily to machine instructions, and it would still
hide the fact that some code is executed more frequently than other code. We see that A-SSAPRE can
eliminate a larger number of instructions than Global CP and Load Elimination and subsumes much of
what they do. In most cases, the number of instructions Load Elimination removes at the BOTH level
is negligible. However, Load Elimination and Global CP were not completely subsumed. One reason
for this, we found, was that in some cases (particularly for loop invariant code motion) an instruction
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Figure 14. Speedup on benchmarks.

was being moved earlier or later in the loop without any redundant computation being eliminated or
that loop invariant code motion was doing speculative motion that was not downsafe. The optimizations
also had different constraints on what methods they could be applied to—since the optimizing compiler
inlines very aggressively, some methods became too large to apply these optimizations practically, and
there were some methods Global CP could run on that A-SSAPRE could not and vice versa. Inlining
is a very important optimization because it eliminates many method calls and it has been found to be
effective in improving run time [18].

We also considered impact on performance. Figure 14 shows speedups for the three optimization
levels over a fourth level: O2 with all four optimizations turned off. Removing redundant instructions
does not always significantly impact performance. However, on certain benchmarks we achieved
speedups of up to 1.6. A-SSAPRE does about as well as global code placement and load elimination
combined, and in many cases slices off a little more execution time. On two benchmarks (SciMark’s
SparseCompRow and Grande’s MolDyn), it performs significantly better than its rivals.

In summary, we have demonstrated that A-SSAPRE is a complete PRE algorithm which competes
with common subexpression elimination, loop invariant code motion, and load elimination, both
statically and dynamically.
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CONCLUSIONS AND FUTURE WORK

The contribution of this work is a simpler version of SSAPRE that makes fewer assumptions and
covers more cases. The error-prone Rename phase has been eliminated, downsafety has been recast
as a version of a standard data flow problem, the algorithm no longer makes assumptions about the
namespace, and a wider range of redundancies are eliminated. It is now fit to be used in conjunction
with other optimizations. By removing the dependence of SSAPRE on source-level lexical equivalence,
we have moved it one step closer to Global Value Numbering (GVN). While PRE and GVN by
themselves are not completely comparable (see section 12.4 of [19]), we are currently working on
an algorithm that uses both availability and anticipation to make a hybrid of the two, covering the cases
of both.
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