
Lightweight Support for Fine-Grained
Persistence on Stock Hardware

Antony L. Hosking

Technical Report 95-02
February 1995

Computer Science Department
University of Massachusetts at Amherst





LIGHTWEIGHT SUPPORT FOR FINE-GRAINED PERSISTENCE
ON STOCK HARDWARE

A Dissertation Presented

by

ANTONY LLOYD HOSKING

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 1995

Department of Computer Science



c Copyright by Antony Lloyd Hosking 1995

All Rights Reserved



To Carla



iv



ACKNOWLEDGEMENTS

One cannot survive the Ph.D. experience without the support and guidance of a great

many people. To those individuals I neglect to mention here by name (and there are many)

I still offer my deepest thanks.

Upon my arrival at a new university in a strange country I was fortunate to land in

the office of Eliot Moss. As my advisor throughout my time at UMass, Eliot has been a

constant source of support, encouragement, and inspiration. His intellectual and scholarly

integrity has been the primary role model in my own academic development. It is an honor

and a privilege that I am now able to count him as a colleague.

Special thanks must also go to my comrades in arms, the members of the Object Systems

Laboratory, whose companionship (both academic and otherwise) I have greatly enjoyed. I

thank Amer Diwan for his enthusiasm in educating me as to the intricacies of cache memory

simulation, Eric Brown for his tireless support and development of the Mneme persistent

object store, Darko Stefanović for his assistance debugging and improving the garbage

collector toolkit, Rick Hudson for our many technical discussions, and Norm Walsh for his

advice and assistance with TEX and LATEX (see also Walsh [1994]). Thanks also to the many

members of the OOS lab over the years for their part in making it such a vital and interesting

workplace.

This dissertation has been greatly improved by the comments of my examining com-

mittee, Lori Clarke, Jack Stankovic, Dave Stemple and Wayne Burleson. Their advice and

interest have helped me immensely.

Lastly, I thank my family for their guidance, encouragement, and confidence. I thank

my parents for nurturing me in an environment where the pursuit of knowledge was always

v



such incredible fun, and striving towards excellence a noble goal in itself. To my wife,

Carla Brodley, I am forever indebted for her sage advice and unflagging support through

the ups and downs of postgraduate student life. When obstacles appeared to block my way

she saw the way around them if I did not.

——

This research has been supported by the National Science Foundation under grants

CCR-9211272, CCR-8658074 and DCR-8500332, and by the following companies and

corporations: Sun Microsystems, Digital Equipment, Apple Computer, GTE Laboratories,

Eastman Kodak, General Electric, ParcPlace Systems, Xerox and Tektronix.

vi



ABSTRACT

LIGHTWEIGHT SUPPORT FOR FINE-GRAINED PERSISTENCE
ON STOCK HARDWARE

FEBRUARY 1995

ANTONY LLOYD HOSKING

B.Sc., UNIVERSITY OF ADELAIDE

M.Sc., UNIVERSITY OF WAIKATO

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor J. Eliot B. Moss

Persistent programming languages combine the features of database systems and pro-

gramming languages to allow the seamless manipulation of both short- and long-term

data, thus relieving programmers of the burden of distinguishing between data that is tran-

sient (temporarily allocated in main memory) or persistent (residing permanently on disk).

Secondary storage concerns, including the representation and management of persistent

data, are directly handled by the programming language implementation, rather than the

programmer. Moreover, unlike traditional database systems, persistent programming lan-

guages extend to persistent data all the data structuring features supported by the language,

not just those imposed by the underlying database system.

Prototype persistent languages have until now focused more on functionality than

performance. In contrast, this dissertation addresses performance issues in the language

implementation. It presents an architecture and framework for persistence which allows

programming language implementation techniques to be brought to bear on the problem of

performance. Building on this framework, a prototype persistent programming language is

vii



implemented, and submitted to performance evaluation to obtain direct comparisons of the

performance of several implementation alternatives for different aspects of persistence. The

results of these performance evaluations, which use established benchmarks, indicate that

persistence can be implemented on general-purpose machines without imposing significant

overhead above and beyond the fundamental costs of data transfer to and from secondary

storage. Moreover, the results show that software-mediated implementation techniques can

be a competitive alternative to techniques that rely on low-level support from the operating

system and hardware.

viii



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Scope of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3.1 Model of Persistence . . . . . . . . . . . . . . . . . . . 4
1.2.3.2 Prototype and Experimental Framework . . . . . . . . . 5
1.2.3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . 6

1.3 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. A SURVEY OF PERSISTENCE . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Database Programming Languages . . . . . . . . . . . . . . . . . . 10

2.1.1.1 Language Extensions . . . . . . . . . . . . . . . . . . . 10
2.1.1.2 Languages with Advanced Data Models . . . . . . . . . 14
2.1.1.3 Languages with Object-Oriented Data Models . . . . . . 17

2.1.2 Persistent Programming Languages . . . . . . . . . . . . . . . . . 19

2.1.2.1 PS-Algol . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ix



2.1.2.2 Napier88 . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2.3 LOOM . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2.4 Alltalk . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2.5 Avalon/C++ . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Storage Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Persistent Object Stores . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1.1 ObServer . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1.2 Mneme . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1.3 Texas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1.4 ObjectStore . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1.5 EXODUS . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1.6 Other Commercial Ventures . . . . . . . . . . . . . . . . 31

2.2.2 Object Oriented Database Systems . . . . . . . . . . . . . . . . . . 31

2.2.2.1 GemStone . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2.2 ORION . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2.3 O2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Essential Persistence Mechanisms . . . . . . . . . . . . . . . . . . 35

2.3.1.1 The Read Barrier: Object Faulting . . . . . . . . . . . . 36
2.3.1.2 The Write Barrier: Detecting and Logging Updates . . . 36

2.3.2 Fine-Grained Persistence and the Performance Problem . . . . . . . 37

3. ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Object Faulting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Swizzling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Extensions to the Basic Architecture . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Buffer Management . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Concurrency Control . . . . . . . . . . . . . . . . . . . . . . . . . 44

4. IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Smalltalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Object-Oriented Method Invocation . . . . . . . . . . . . . . . . . 48

4.1.1.1 Method Lookup . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2 The Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . 50

x



4.1.2.1 Object Pointers . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2.2 Threaded Code . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.3 The Virtual Image . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Persistent Smalltalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 The Read Barrier: Object Faulting . . . . . . . . . . . . . . . . . . 54

4.2.1.1 Residency Constraints . . . . . . . . . . . . . . . . . . . 55
4.2.1.2 Edge Marking . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1.3 Node Marking . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1.4 Object Faulting Summary . . . . . . . . . . . . . . . . . 60

4.2.2 Swizzling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.3 The Write Barrier: Detecting and Logging Updates . . . . . . . . . 62

4.2.3.1 Object-Based Schemes . . . . . . . . . . . . . . . . . . 62
4.2.3.2 Card-Based Schemes . . . . . . . . . . . . . . . . . . . 63
4.2.3.3 Page-Protection Schemes . . . . . . . . . . . . . . . . . 65

5. PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Benchmark Database . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2 Benchmark Operations . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 The Read Barrier: Object Faulting . . . . . . . . . . . . . . . . . . 73
5.2.2 The Write Barrier: Detecting and Logging Updates . . . . . . . . . 74

5.3 Results: Object Faulting . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1.1 Cold Lookup . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.1.2 Warm Lookup . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1.3 Hot Lookup . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1.4 Running Time Overheads . . . . . . . . . . . . . . . . . 82

5.3.2 Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.2.1 Cold Traversal . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.2.2 Warm Traversal . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2.3 Hot Traversal . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2.4 Running Time Overheads . . . . . . . . . . . . . . . . . 88

5.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xi



5.4 Results: Detecting and Logging Updates . . . . . . . . . . . . . . . . . . . 89

5.4.1 Insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.2.1 Cold Update . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2.2 Warm Update . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2.3 Hot Update . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2.4 Long Transactions . . . . . . . . . . . . . . . . . . . . . 99

5.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Related Performance Studies . . . . . . . . . . . . . . . . . . . . . . . . . 105

6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 Compilation Versus Interpretation . . . . . . . . . . . . . . . . . . 108
6.2.2 Other Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.3 Higher-Level Functionality . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

APPENDICES

A. SMALLTALK SOURCE LISTING OF OO1 BENCHMARKS . . . . . . . . . . 113
B. SUPPLEMENTAL RESULTS: OBJECT FAULTING . . . . . . . . . . . . . . . 133

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xii



LIST OF TABLES

Table Page

4.1 Tagging object pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Schemes compared in object faulting experiments . . . . . . . . . . . . . . 74

5.2 Schemes compared in resilience experiments . . . . . . . . . . . . . . . . 75

5.3 Lookup: key cold/warm/hot results . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Lookup: fault detection overheads . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Traversal: key cold/warm/hot results . . . . . . . . . . . . . . . . . . . . . 87

5.6 Traversal: fault detection overheads . . . . . . . . . . . . . . . . . . . . . 88

5.7 Insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.8 Long-running Update: traversal overheads (per part modified) . . . . . . . 103

5.9 Long-running Update: intrinsic run-time overheads (per update) . . . . . . 103

5.10 Long-running Update: break-even points for cards-4096 versus pages . . 103

xiii



xiv



LIST OF FIGURES

Figure Page

3.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Node marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Objects, classes, inheritance, and object-oriented method invocation . . . . 49

4.2 Method lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Object pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Edge marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Node marking: fault blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Node marking: indirect blocks . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Lookup, by object faulting scheme . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Traversal, by object faulting scheme . . . . . . . . . . . . . . . . . . . . . 85

5.3 Insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Insert: Hot breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Cold Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Cold Update (expanded scale) . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 Warm Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Warm Update (expanded scale) . . . . . . . . . . . . . . . . . . . . . . . . 95

5.9 Hot Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.10 Hot Update (expanded scale) . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.11 Update: Hot breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.12 Long-running Update: checkpoint overhead per transaction . . . . . . . . . 99

5.13 Traversal overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xv



B.1 Lookup, swizzling one object per fault . . . . . . . . . . . . . . . . . . . . 134

B.2 Lookup, swizzling one LSEG per fault . . . . . . . . . . . . . . . . . . . . 135

B.3 Lookup, swizzling one PSEG per fault . . . . . . . . . . . . . . . . . . . . 136

B.4 Traversal, swizzling one object per fault . . . . . . . . . . . . . . . . . . . 137

B.5 Traversal, swizzling one LSEG per fault . . . . . . . . . . . . . . . . . . . . 138

B.6 Traversal, swizzling one PSEG per fault . . . . . . . . . . . . . . . . . . . . 139

xvi



LIST OF ABBREVIATIONS

FB fault block
KB kilobyte(s): 1KB = 210 bytes
LSEG logical segment
MB megabyte(s): 1MB = 220 bytes
PID persistent identifier
PSEG physical segment
RISC reduced instruction set computer
VM virtual machine

xvii



xviii



CHAPTER 1

INTRODUCTION

The problem of storing, retrieving, and manipulating large amounts of highly-structured

information, while sharing that information among multiple, cooperating users, attracts con-

siderable research interest. New classes of applications including computer-aided design

(CAD), computer-aided software engineering (CASE), document preparation, and office au-

tomation, demand capabilities that far exceed those of traditional programming languages

and database systems. These applications highlight a need for unified programming environ-

ments that integrate the concepts of data manipulation and long-term storage management.

While traditional programming languages have successfully solved the data manipu-

lation problem, their support for long-term storage management is inadequate. Typically,

they provide only a very weak notion of long-term storage in terms of “files”, onto which

programmers must map their long-term data. This requires considerable effort to translate

from a highly-structured in-memory format to the “flat” format required for transfer to and

from a file. Not only is this inconvenient and a source of programming errors, it is also

potentially dangerous, since the translation process may bypass type safety.

On the other hand, traditional database systems, having been designed to solve the stor-

age management problem, typically restrict the model of data in the database. For example,

relational database systems provide just one long-term data type — the relation — along

with a limited set of operators for manipulating relations. The resulting lack of compu-

tational completeness severely limits the kinds of applications that can be programmed

directly using just relations and relational operators, requiring application writers to step

outside the database language into some general-purpose programming language when

1



they desire the expressiveness that the database language lacks. There is then the attendant

problem of converting data between the relational format and the format expected by the

general-purpose programming language. For example, graphical user interface front-ends

to traditional database systems are typically programmed in some high-level programming

language, in which database language code fragments are embedded to access and ma-

nipulate the underlying database. Thus, the application writer must be familiar with two

different programming paradigms and their (not necessarily straightforward) integration.

This lack of integration of data manipulation language with storage management, re-

quiring programmers to be explicit in converting data between internal and external formats,

has been characterized as an impedance mismatch [Copeland and Maier, 1984] between

programming languages and database systems. In an attempt to overcome this mismatch,

researchers have devoted considerable effort to forging a new technology, integrating many

of the features of languages and databases.

1.1 Persistence

The notion of persistence — the quality or state of continuing to exist — is the driving

force behind the convergence of programming languages with databases. A persistent

system is a software system which maintains data whose lifetime is independent of the

programs that create and manipulate that data. The data are maintained in a persistent

store, which programmers view as a stable extension of volatile memory, in which they

can dynamically allocate new data, but which persists from one program invocation to the

next. Programs to create and manipulate the data are written in a persistent programming

language, which allows traversal and modification of the data structures in the persistent

store to be programmed transparently, without explicit calls to read and write the data.

Rather, the language implementation and run-time system contrive to make persistent data

resident in memory on demand, much as non-resident pages are automatically made resident

by a paged virtual memory system. Moreover, a persistent program can modify persistent

2



data and commit the modifications so that their effects are permanently recorded in the

persistent store.

1.2 Scope of the Dissertation

This dissertation explores several dimensions of the implementation design space for

persistent programming languages, focusing on alternative implementation strategies for

the two fundamental mechanisms of persistent systems: the reading and writing of data that

reside only temporarily in memory, but permanently on disk. It evaluates the performance

of these alternatives within a prototype persistent programming language, to determine if

a clean model of persistence is intrinsically expensive, or can be supported efficiently on

stock hardware.

1.2.1 The Thesis

We contend that problems of efficiency are best attacked directly in the language

implementation and run-time system, where persistence mechanisms can be implemented

with very low cost, and the language implementor can exploit semantic-level properties of

the language to eliminate unnecessary overhead. Our thesis is summed up as follows:

Transparent persistence can be efficiently supported by the language imple-
mentation and run-time system, without resorting to specialized hardware or
relying on specific features of the underlying operating system and hardware
architecture.

That persistent systems need not rely on specialized hardware and operating system features

is important, for it means that persistence can be implemented on virtually any stock

hardware, putting persistent systems within the reach of all computer users. Moreover, it

has been demonstrated time and again that reliance on specialized features of hardware

and operating systems leaves an implementation vulnerable to being left behind by rapid

advances in computer technology. Witness the fate of Lisp machines and microcoded

3



Smalltalk implementations. In contrast, implementations that are independent of both

hardware and operating system can often be migrated to new computer systems with ease.

1.2.2 Performance

The claim to efficiency requires some definition of performance, of which persistent

systems have two main aspects. The first is the overhead to manage main memory as a

volatile cache of resident persistent data: detecting the need to retrieve data into memory,

and flushing updates back to secondary storage. The goal is to minimize this overhead, so

that in the case that all data needed by a persistent program is resident, then its performance

will approach that of its non-persistent counterpart.

The second aspect of performance pertains to the transfer of data between memory and

secondary storage, including the conversion of data from its disk format to the memory

format expected by the persistent program. Efficiency in this aspect of performance is more

difficult to define, but is naturally characterized as that which makes the best use of system

resources (both space and time).

1.2.3 Contributions

This dissertation makes several contributions:

� a practical model of persistence based on object faulting that can be supported effi-
ciently within the programming language implementation, allowing new techniques
to manage the retrieval, manipulation, and modification of persistent data

� a prototype system and novel experimental framework for meaningful direct compar-
ison of alternative implementations of persistence mechanisms

� performance results comparing the different implementations, showing several new
techniques are robust over a broad range of program behaviors

1.2.3.1 Model of Persistence

The model of persistence, based on object faulting, is flexible enough to admit many

different implementation approaches for the fundamental mechanisms of persistence. These

4



mechanisms mediate the retrieval of persistent data (stored on disk) into main memory for

direct manipulation by the executing program, and the propagation of updates to that data

back to stable storage:

� An object fault occurs when the program attempts to access a data object that is not
yet resident in memory. This dissertation considers several implementations for the
detection of object faults, including explicit checks in software and hardware-assisted
approaches that take advantage of the virtual memory page protection primitives
supported by the operating system and hardware.

� Once an object is made resident there is no reason why the executing program should
not refer to it directly in memory, so that accessing a resident persistent object incurs
no additional overhead. We consider several representations for references to resident
persistent data that circumvent the otherwise high overhead of persistent references.

� Updates occurring to (memory-resident) persistent data must ultimately be logged
to stable storage to ensure their persistence. We consider a number of schemes
for tracking updates for efficient generation of the log, including new schemes that
detect updates explicitly in software, as well as the use of virtual memory primitives
to maintain per-page dirty bits.

These mechanisms constitute the minimal functionality any persistent system must offer,

allowing the safe, efficient, and reliable management of persistent data. More complex

functionality (e.g., concurrency control, distribution, interoperability) is not absolutely

necessary, although it may certainly be desirable. The mechanisms can be supported

directly by the language implementation, or as mentioned, by relying on virtual memory

primitives.

1.2.3.2 Prototype and Experimental Framework

The prototype implements our model of persistence for an efficient implementation of

the Smalltalk programming language and system. The object-oriented execution paradigm

of Smalltalk allows us to minimize the overheads of residency checks for object faulting by

imposing residency constraints on objects crucial to the forward progress of computation.

The result is that residency checks occur only on the receiving object at time of method

lookup (the process by which Smalltalk implementations effect class-based polymorphism).

5



Method lookup caching means residency checks occur only when a method lookup cache

miss occurs (see Chapter 4 for further details).

The prototype persistent Smalltalk implementation can be tailored so that different

instantiations of the prototype use different implementations of the low-level persistence

mechanisms. All other aspects of the implementation are kept constant across all instances

of the prototype. This allows a head-to-head comparison of alternative implementations

where only the particular persistence mechanism under study varies across all instances of

the prototype. That is, the generic prototype system represents a fixed frame of reference for

comparison of different points on several dimensions of the design space (e.g., object fault

detection, object retrieval, update detection), by allowing variables along each dimension

to be controlled separately. In this respect, the prototype is a unique experimental test-bed

for the exploration of persistent systems implementation.

In addition, the prototype implementation is able to take advantage of the object-oriented

execution paradigm of Smalltalk to restrict the need for software-mediated residency checks

to method invocation, and then only on the receiver of the invocation. This comes as a

result of careful consideration of the object residency requirements for executing Smalltalk

programs to make forward progress.

1.2.3.3 Performance Evaluation

The performance evaluation represents the first performance study of implementation

alternatives for persistent programming languages, within a single prototype system. The

results, which measure the absolute cost of alternative object faulting and update detection

mechanisms, demonstrate that persistent programming languages can be both practical and

efficient, where previous work has explored only functionality rather than performance. In

particular, the prototype exhibits performance near optimal for resident objects (with varia-

tions attributable only to underlying hardware cache effects). Moreover, our newly-devised

software-mediated persistence mechanisms have performance as good, if not significantly

6



better than, equivalent approaches that rely on virtual memory primitives supported by the

operating system and hardware. The results demonstrate the extreme importance of our

residency constraints in the near elimination of residency checking overheads.

The results also have implications with respect to the performance of operating systems

in their support of memory management for persistence and other applications. In partic-

ular, software-only methods can outperform approaches that rely on virtual memory page

protection primitives. Much of the problem is attributable to the large page granularity of

modern operating systems, where the objects being managed in memory are much smaller

than a page. Nevertheless, the overheads to manage page protections, and to field page

protection violations at user level, are high enough to significantly degrade the performance

of programs that rely on virtual memory page protection to detect anything but the most

exceptional conditions.

The performance results stand on their own in demonstrating that persistence can offer

useful functionality while being efficiently realizable on stock hardware, making it a mature

feasible technology that is deserving of serious consideration by database system and

language designers alike.

1.3 Outline of the Dissertation

The rest of the dissertation is outlined as follows. Chapter 2 surveys literature relevant

to persistence, focusing on the convergence of programming language and database tech-

nology to support persistence. Given this background it then describes our notion of the key

mechanisms crucial for high-performance persistent systems. Chapter 3 presents our archi-

tecture for persistence and its rationale, which serves as the basis for the implementation of

persistent Smalltalk described in Chapter 4. In Chapter 5, we look at the performance of

several alternatives for implementation of persistence mechanisms, by subjecting several

versions of the prototype persistent Smalltalk implementation to a range of benchmarks.

7



Finally, Chapter 6 summarizes the key results and their implications, and describes possible

research directions for future exploration.

8



CHAPTER 2

A SURVEY OF PERSISTENCE

Persistence should be understood in the context of a fundamental convergence of the

research directions of the historically distinct fields of programming languages and database

systems. This requires that we familiarize ourselves with the relevant culture and history

of both fields in relation to several aspects of persistence: languages for manipulation

of persistent data and storage management for persistent data. We begin by considering

the development of database and persistent programming languages, by examining their

characteristics and key features. Storage management solutions break down into approaches

that are minimal persistent object stores, versus object-oriented databases, which support

a higher degree of database functionality. Having surveyed the relevant literature we then

refine our definition of persistence to focus on its key mechanisms in order to frame the

performance problem that we address in this dissertation.

2.1 Languages

The database world has approached the problem of impedance mismatch, which results

from embedding data definition and query language constructs in a traditional programming

language, by developing database programming languages that make database constructs

a part of the programming language. In programming languages, the effort has been in the

other direction, making the full type system of the programming language available for use

in defining and manipulating persistent data. This distinction is somewhat fuzzy, but may

be summed up by treating languages that provide some sort of bulk long-term data type,

along with operations for manipulating it, as database programming languages, and others,

9



in which arbitrarily typed data can persist, as persistent programming languages. Atkinson

and Buneman [1987] give a comprehensive survey on the issues of types, persistence, and

database features in programming languages.

2.1.1 Database Programming Languages

We group the database programming languages by their defining characteristics, as

follows. The earliest database programming languages simply extended an existing pro-

gramming language to include a relation data type. More recently, there has been a trend

towards languages that incorporate advanced semantic data models; these are intended to

support a more natural definition of the user-level semantics of the database than can be

captured in a pure relational model. Still other database languages have been designed

for programming applications in object-oriented database systems, so they incorporate an

object-oriented data model.

2.1.1.1 Language Extensions

The following languages all add relations to an existing programming language. In so

doing they place certain restrictions on the attribute values that may be stored in the tuples

of relations. In particular, a tuple may not contain pointers; they justify this restriction not

only because of the implementation challenges required to support persistent pointers, and

the sharing semantics this implies, but also because it is difficult to express such semantics

within the pure relational data model.

Pascal/R The first of the extended languages was Pascal/R [Schmidt, 1977; Schmidt and

Mall, 1980]. It extends Pascal with a relation type constructor relation of, similar to set of.

This constructor takes two parameters: a record type, corresponding to the type of the

tuples of the relation; and a subset of the record’s fields as the primary key of the relation.

10



The tuples of a relation are restricted to “flat” records — all tuple fields must be scalar or

string values.

A relation may be altered by the elementary operations of insertion, deletion, and

replacement of tuples in one relation based on the tuples in another relation along with their

primary keys. For example, the statement:

R1 :+ R2;

(where R1 and R2 are relation variables of the same type) inserts into R1 copies of those

tuples of R2 whose key values do not already occur in any tuple of R1. R2 remains

unchanged.

Low-level, tuple-wise iteration over a relation, from the tuple with the lowest key

value to the tuple with the highest key value, is provided through the elementary retrieval

operations of low (initialize iteration) and next (get the tuple with next highest key value),

along with the boolean function aor (all of relation). These are used in conjunction with

the standard Pascal iteration statements. In many cases, ordering the access based on the

key is unnecessary and may prevent a more efficient access order. For this reason, a new

high-level iteration statement for each is provided to allow repetition of a computation for

each tuple of the relation, in some arbitrary order.

Two other extensions realize the full power of the relational calculus. First, existential

and universal quantifiers are provided for use in Boolean expressions to construct predicates

over relations; these quantifiers may be nested. Second, a relation constructor permits the

expression of an arbitrary relational calculus query with one Pascal/R statement.

Finally, the program must be bound to a database in some way. This is achieved by

specifying a database variable in the parameters to the program (cf. Pascal’s file parameters),

and declaring its type using the database type constructor to specify the relations that

constitute the program’s view of the database. Type safety is guaranteed by checking that

the type of the database variable is an acceptable view of the actual database when the

database is bound to the program parameter.

11



DBPL Following on from Pascal/R, Matthes and Schmidt [1989] designed its successor,

DBPL, by integrating a set- and predicate-oriented view of relations into Modula-2. The

bulk data type is the set, which is an extension of the relation type of Pascal/R to include

elements of arbitrary type, with operators and constructors similar to those of Pascal/R.

Like Pascal/R relations, a set may be keyed on a list of components of its element type —

no two elements of the set can have the same key value.1 Unlike Pascal/R relations, sets

need not be keyed.

Low-level access to the elements of a keyed set is supported through associative access

based on the key, much as array elements are indexed, or record components are named.

High-level access is provided through access expressions. An access expression denotes

those elements of a set that satisfy some selection predicate. The elements denoted by

an access expression may be formed into a new set using the set constructor. There is

also a for each statement, similar to that of Pascal/R, which iteratively performs some

computation for each of the elements denoted by a given access expression.

Any variable declared (in the usual way) at the outermost scope of a database module

will be a persistent database variable. DBPL retains pointer types for compatibility with

Modula-2, although they cannot persist, so database variables cannot contain pointers.

All other values (e.g., scalars, records, variant records, arrays, etc.) can persist by being

stored in database variables, in contrast with Pascal/R where only relations can persist.

Since pointers cannot persist and recursive data structures are prohibited in DBPL, recursive

structures and persistent data with shared sub-components must be modelled using keyed

sets.

DBPL also supports a transaction model for concurrent access. Access to database

variables is restricted to transaction procedures, whose effects on the database are atomic.

Nested and recursive calls to transaction procedures are prohibited.

1A key component cannot be part of a variant section of a record type or be of type set.

12



PLAIN Wasserman [1979] designed PLAIN (Programming LAnguage for INteraction) to

support the construction of interactive information systems, drawing on the procedural

control structures, type system, and variable declarations of Pascal. Relations in PLAIN are

much the same as those in Pascal/R, with the same restrictions on their attribute types.

Data access is provided in a number of ways. Individual tuples can be accessed

associatively by their key, as in DBPL. Tuples may be inserted into and deleted from

relations. There is also a generalized iterator applicable to relations as well as other

composite objects such as sets.

Unlike Pascal/R, the high-level operations on relations are the relational algebra opera-

tors select, project, and join, along with set intersection, union, and difference. Intermediate

results, obtained through the evaluation of algebraic expressions, may be assigned to vari-

ables of type marking. These are similar to relations, except they are unkeyed (permitting

duplicate tuples), cannot persist, and cannot be updated; as such, they are merely “snap-

shots” of relations or other markings.

RIGEL Yet another procedural Pascal-like language that incorporates relations, RIGEL

[Rowe and Shoens, 1979] is similar to Pascal/R in that its expressions include the relational

calculus. Like PLAIN it provides an iterator that is a generalized version of the Pascal for

statement, which iterates over each element of a sequence of values produced by a generator

expression. The generator expression for relations is the where statement, which generates

a selected sequence of tuples from a relation, much like an access expression in DBPL.

An interesting feature of RIGEL is its extension of data abstraction into the database,

including support for modules and abstract data types. Modules allow the definition of

alternative interfaces to a database, with client programs importing only those interfaces

they need. The view type constructor extends the power of abstract data types to relations.

A view is an abstract relation, defined by a mapping from the tuples of the base relations

of the database to the view’s tuples. Views may be updated, with certain restrictions: the

13



view programmer must specify update operations in terms of updates to the underlying base

relations.2 Combined with modules, views allow the definition of interfaces that are very

different from those embodied by the base relations.

Theseus Lastly, Theseus [Shopiro, 1979] was designed as a language for use in a test-bed

for exploring program optimization issues. Unfortunately, Theseus was never implemented,

so its practical value remains unproven. Theseus is an extension of Euclid (itself a Pascal

extension) with a relation type constructor and primitive operations which make for rela-

tional completeness: any expression in the relational algebra can be computed by a Theseus

program.

A distinguishing feature of Theseus is its use of association sets as the elements of the

relations. Essentially a generalized record, an association set is a set of name-value pairs.

The names are declared globally along with their type, to allow static type checking — a

name can only be associated with values of its type. Pointers, association sets, and names

are not permitted as values in association sets.

2.1.1.2 Languages with Advanced Data Models

The relational extensions of the previous section require all bulk data to be cast in terms

of relations. To overcome this inflexibility, semantic data models have been developed to

allow a more natural definition of the database in terms of user level abstractions. The

languages have several features in common, including inheritance; some also interpret

classes extensionally as bulk data.

ADAPLEX Smith et al. [1983] took the functional data model of DAPLEX [Shipman,

1981], which views the database as a collection of functions mapping entities to other values,

2This avoids the problems of undefined and ambiguous updates: an undefined update is one for which no
sequence of operations on the base relations will produce a correct update when the data is accessed through
the view; an ambiguous update is one for which more than one sequence of operations will produce a correct
view update but each produces a very different meaning on the underlying data.

14



and merged it with with the Ada programming language to create ADAPLEX. ADAPLEX

supports subtyping with (single) inheritance, allowing an entity type to be defined as a

subtype of another, inheriting its attributes. Each entity type has an associated implicit

extent (class), comprising all entities of that type currently in the database. The language

provides iterative access to all the elements of an extent that satisfy some predicate.

TAXIS The conceptual modelling language TAXIS [Mylopoulos et al., 1980; Nixon et al.,

1987] is designed to support the high-level modelling of interactive information systems.

Classes and (multiple) inheritance are the chief means for structuring the world. Every

entity in the conceptual schema is represented as an instance of some class. In true object-

oriented fashion, everything in TAXIS is an entity, including numbers, strings, and even

classes (instances of some metaclass) and running programs (instances of some transaction

class). Inheritance is embodied in the is-a relationship, which allows the definition of one

class as a derivation of a number of other classes.

Like ADAPLEX, TAXIS takes an extensional view of classes: a class is a collection of

entities that share common properties. Note that the extent of a subclass is a subset of

the extent(s) of its superclass(es). TAXIS supports a number of mechanisms for defining

extents. Variable classes permit updates to their extents through the operations of insertion

and deletion, as well as other operations including the iterative retrieval of selected instances

from their extent — variable classes may be keyed and roughly correspond to relations.

An aggregate class defines its extent as the cross product of the instances (i.e., the extents)

of a group of classes. Finitely defined classes have their extents defined once and for all

when they are first defined (cf. enumerated types in Pascal). All of these are generalized

by test-defined classes, which define their extent procedurally in terms of a transaction that

generates the instances. These are particularly interesting since they allow the expression

of arbitrarily complex constraints on the instances of a class.

15



Galileo Another conceptual modelling language, Galileo [Albano et al., 1985; Albano

et al., 1989], takes a slightly different approach by separating the concepts of class (extent)

and type.3 Subtyping deals with the intensional aspects of inheritance (for static checking

of type compatibility among all the possible values of a type and those of its supertypes),

while subclasses deal with the extensional aspects of inheritance.

ADABTPL The last of the advanced data models is found in ADABTPL (Abstract DAtaBase

Type Programming Language) [Stemple et al., 1988; Fegaras et al., 1989; Sheard and

Stemple, 1989], a high-level functional database programming language based on sets. It is

much more than a conceptual modelling language since its goals far exceed mere conceptual

modelling; rather, it is intended as a language for formally specifying and implementing

database systems. ADABTPL is also distinguished by its omission of any notion of extent or

class; in this regard it is more closely related to DBPL with its provision for sets as bulk data

types.

The composite types of ADABTPL include tuples (labelled cross products), lists, and sets.

Explicit subtyping is introduced by several of its type constructors:

� where restricts a type by admitting only those values that satisfy a given predicate,
allowing the expression of database integrity constraints, such as indicating that a set
is keyed

� discriminated union (tagged disjoint sum) types (similar to the union types of C,
except that for type safety they must be qualified by their tag) are supertypes of their
component types

� inherits defines a subtype having all the operations of its supertype(s)

� with adds tuple components to any given type, to create a subtype

� parameterized types are supertypes of their instantiations

There are also implicit subtyping rules for tuples, sets, and functions.

ADABTPL is a functional language. This has a number of consequences. First, it treats

functions as first-class values. Second, it is side-effect free, so there are no variables, only

3Actually, since every class must be defined in terms of the abstract type of its elements, each class must
have a corresponding unique type, so class and type are not totally separated in Galileo.

16



immutable values. There is one exception to this, arising out of the need to view a database

as a mutable entity, with a value that changes over time. Every ADABTPL schema defines a

named database variable, along with its type. This is an implicit input to all transactions,

which are written in an imperative style. While the effect of a transaction is to compute

values and update the database, its semantics is given by a function that takes the database

and inputs, and returns a new database. Furthermore, the pure recursive function semantics

of the ADABTPL type system have been axiomatically formalized. This formulation drives

the automatic verification of transactions, providing feedback to database designers about

transactions that violate integrity constraints.

2.1.1.3 Languages with Object-Oriented Data Models

Object-oriented database programming languages incorporate the salient features of

the object-oriented data model: objects, methods, classes, inheritance, and identity. Object

identity is the main feature distinguishing object-oriented languages from the value-oriented

languages we have seen so far. While value-oriented languages treat two entities as

identical if they have the same value, object-oriented languages regard an object as having

a unique identity for all time, regardless of its value — objects can have the same value and

still not be identical. Object identity can be characterized in terms of pointer semantics:

every object has a unique identifier somewhat like a memory pointer, by which it can be

referenced. Object-oriented databases support such pointer semantics, so that references

between persistent objects are retained, allowing explicit sharing of subcomponents among

different objects in the database. This semantics is reflected in the following programming

languages, which all use generalized pointers to refer to both in-memory and persistent

objects.

E The “persistent systems implementation language” E [Richardson and Carey, 1987;

Richardson and Carey, 1990] augments C++ with database types, which are expressed by

17



adding the prefix db to the standard C++ type names and type constructors; thus, any C++

type can be analogously defined as a db type. Only values of db type can persist, so

persistence is not orthogonal. Any variable of db type can be qualified with the persistent

storage class, indicating that the variable is to be bound to a value in the database —

assignments to the variable are reflected as updates to the database.

E qualifies as a database programming language through its provision for bulk data

in the form of collections, which are introduced via another extension to C++: generator

classes. A generator class is a parameterized C++ class, and must be instantiated before it

can be used. Instantiations of the built-in generator class collection define an unordered

collection of elements of a given db type. Items may be entered into a collection only when

they are created, with a special form of the new statement. When an item is destroyed

(with the delete operator) it is also removed from its collection; destroying a collection

has the effect of destroying all its elements first. E also extends C++ with iterators, which

are a high-level generalization of looping control structures, similar to those of Pascal/R,

PLAIN, and RIGEL. An iterator for scanning the elements of a collection is a built-in member

function of the collection generator class.

The net result is that data can persist in one of two ways in E: either by assignment to a

statically allocated persistent variable, or by dynamic allocation in a persistent collection.

Database objects are deallocated explicitly, just as heap-allocated volatile data in C++ is

deallocated explicitly. There is no restriction on the values that may persist or be stored

in a database collection. In particular, pointers to db types can persist, so that sharing of

subcomponents between objects is automatically preserved in the database.

O++ The object-oriented database programming language O++ [Agrawal and Gehani,

1989a; Agrawal and Gehani, 1989b] is similar to E in that it is based on C++. It differs from

E in collapsing the distinction between database types and volatile types, with persistence

being an attribute of object instances rather than object types. Just as volatile objects are

18



allocated with the new operator, there is a corresponding operator, pnew for allocating

persistent objects in the database; similarly, deletion is explicit using the pdelete operator.

The keyword persistent is a type qualifier (like const), so that pointer types can be declared

to refer to persistent objects. The dual type qualifier allows the declaration of pointers that

can refer to both persistent and volatile data, with run-time checking to determine whether

the referenced object is persistent or volatile.

Bulk data are provided by the cluster and set data types. Clusters are extents: all

persistent objects of the same type are placed in the cluster corresponding to that type;

before a persistent object can be allocated, the cluster for its type must be created. Sets

are actually multisets (they can contain duplicates), are declared like arrays, and have the

operations of assignment, union, difference, insertion, and deletion. Selective, ordered

access to the elements of sets and clusters is supported by an iterator that is optionally

qualified by a predicate that each element must satisfy, and an expression by which element

retrieval should be ordered. A similar iterator allows iteration over all the elements of a

type’s cluster as well as the elements of the clusters of its subtypes. Arbitrary joins are

supported by allowing multiple loop variables for an iterator.

2.1.2 Persistent Programming Languages

In contrast with the database programming languages, persistent programming lan-

guages have focussed on placing the full type system of the language at the programmer’s

disposal in defining persistent data. Early on, Atkinson et al. [1983a] characterized persis-

tence as “an orthogonal property of data, independent of data type and the way in which data

is manipulated”. This particular characterization has important ramifications for the design

of persistent programming languages, since it encourages the view that a language can be

extended to support persistence with minimal disturbance of its existing syntax. With the

exception of Avalon/C++, the following persistent languages achieve this admirably.

19



All persistent programming languages represent an attempt to extend the address space

of programs beyond that which can be addressed directly by the available hardware, just as

virtual memory represents the extension of the memory address space of a program beyond

that of physical memory (virtual address translation allows transparent access to data

regardless of its physical memory location; the operating system and hardware cooperate

to trap references to pages that are not yet resident in physical memory). All provide an

abstraction of persistent storage in terms of a persistent dynamic allocation heap: objects in

the heap are referred to by language-supported pointers. If the entire heap can fit in virtual

memory, then pointers can be represented as direct virtual memory addresses. However,

this limits the size of the heap to that of the virtual address space. Extended addressability

requires pointers that are not necessarily virtual memory addresses, as well as a mechanism

to perform translation of pointers to virtual addresses to allow the program to manipulate

the data.

2.1.2.1 PS-Algol

PS-Algol [Atkinson et al., 1982; Atkinson et al., 1983b; Atkinson et al., 1983a] can lay

claim to being the first true persistent language, since it was envisioned as a minimal ex-

tension to the heap-oriented programming language S-Algol. Persistence was incorporated

with no change to the syntax of the programming language by modifying the language

run-time system to allow heap structures to persist, and providing a small number of new

predefined procedures for binding programs to these preserved heap structures. A PS-Algol

database consists of an associative table in which the root objects of heap structures are

associated with a string or integer key. A PS-Algol program is able to open any number

of databases for read or exclusive write access, enter and look up objects in a database,

scan through the entries in a database executing some function for each entry, commit any

changes made to a database open for writing (saving all objects reachable from the root

entries), and close a database to make it available for write access to other users. The

20



overall effect is that any value in a PS-Algol program can be made to persist, no matter

what its type, so persistence is fully orthogonal. Atkinson and Morrison [1985] indicate

that this notion of persistence has profound implications for the way one writes programs,

particularly if procedures are first-class data values in the programming language.

Because pointers in PS-Algol are untyped, every PS-Algol object must carry its type

with it, so that run-time type checking can be performed whenever pointers to it are

dereferenced. Such type checking also includes a residency check to ensure that the target

object is resident. These overheads have a significant impact on program performance.

2.1.2.2 Napier88

Napier88 [Morrison et al., 1989; Dearle et al., 1989] is the successor to PS-Algol. As

a new language, it was designed in the light of hindsight gained from experience with

its predecessor. In contrast with PS-Algol, Napier88 employs strong typing, so that static

type checking can be performed in certain circumstances to eliminate some of the run-time

overhead that was so costly in PS-Algol. Nevertheless, there are situations that require

dynamic type checking, so Napier88 objects must still carry their type with them.

The associative nature of the database in PS-Algol is generalized by the Napier88

environment. This is a collection of associations between names, values, and their types.

Environments are first-class values in Napier88: they can be assigned, returned by functions,

and manipulated just like other values; name-value pairs can be dynamically inserted and

deleted from them. All expressions are viewed as being evaluated in the context of

some environment (the names in the expression denote values in the current environment)

whether that environment is bound to the expression statically or dynamically. In the case

that binding is static, then type checking can also be performed statically. If binding is

dynamic, then dynamic type checking occurs at the moment of binding to ensure that the

values in the environment are of the same type as expected by the expression. This allows

the expression itself to be statically type checked in the knowledge that the binding will

21



be performed safely. To provide for persistence there is a top-level persistent environment

PS (for Persistent Store), which binds names to values in the database. As in PS-Algol, all

objects reachable from this persistent root will persist.

2.1.2.3 LOOM

LOOM [Kaehler and Krasner, 1983; Kaehler, 1986] represents another early attempt to

extend the size of the heap beyond that addressable by a machine word. Its goal was to

provide extended virtual memory support for Smalltalk systems on machines with a narrow

(16-bit) word width. Object pointers are stored in 32 bits on disk, and an object table

is used to translate between the short and long forms. When an object is brought into

memory, its 32-bit persistent pointer is hashed to find an entry for it in the object table. All

in-memory references to the object are then indirected through its object table entry. If the

object contains references to other objects then they must be converted to short form, in a

process which has since been termed swizzling: references to resident objects are converted

to their in-memory short object pointer; references to non-resident objects are represented

either as an in-memory pointer to a leaf or as a lambda. A leaf is a resident proxy object

that represents an object on disk, containing sufficient information to locate that object. A

lambda is a place-holder (actually the null pointer with value zero) for a pointer to an object

that has not yet been assigned a short pointer.

Object faults in LOOM are triggered via explicit checks, isolated to certain operations in

the Smalltalk interpreter. A leaf is distinguished by a bit in its object table entry. Objects

containing lambdas are also specially marked. Handling an object fault means retrieving the

object from disk and converting it to its in-memory format. This object-at-a-time transfer

of objects between memory and disk is the major downfall of the LOOM approach, since

Smalltalk objects are too small a unit for cost-effective transfer, resulting in thrashing — I/O

overheads dominate total execution time. LOOM’s implementors speculate on refinements to

22



their system that would group objects together for more efficient transfer between memory

and disk.

2.1.2.4 Alltalk

Alltalk [Straw et al., 1989] takes a similar approach to LOOM in its implementation of

a persistent Smalltalk system. However, Alltalk does not swizzle objects between disk

and memory formats. Thus, object pointers are always external identifiers that must be

translated whenever they are dereferenced. Although this saves overhead in writing and

reading data to and from disk, it does appear to severely curtail the execution speed of

Alltalk programs — the implementors report a factor of four slowdown in the running time

of programs running under Alltalk versus a non-persistent Smalltalk implementation.

Alltalk records updates by setting a flag in objects as they are modified. The flags are

consulted by the transaction manager at time of commit to determine which objects have

been modified.

2.1.2.5 Avalon/C++

Avalon/C++ [Detlefs et al., 1988] is a language for programming reliable distributed

systems, with provision for transactions and persistence of distributed data. It supports

these features by extending C++ with three built-in classes: recoverable, atomic, and

subatomic. Class recoverable has two primitive operations for ensuring persistence: pin

causes the pages containing an object to be pinned in memory, whereupon the object can

be modified; unpin logs the modifications to stable storage, and unpins the object’s pages.

Any object whose type inherits from the recoverable class will be persistent; changes that

are made to it between calls to pin and unpin are guaranteed to be reflected in the stable

store. The atomic class provides read/write locking, while subatomic allows for more

fine-grained synchronization.

23



Because atomicity, recoverability, and persistence are attributes of classes, orthogonality

is violated, since only the instances of classes inheriting those attributes can have those

properties.

2.2 Storage Management

Architectures for persistence typically have one component in common: a storage

manager, responsible for maintaining data in some inexpensive stable storage medium

such as magnetic disk and for fielding requests to retrieve and save specified data. Object-

oriented storage managers allow retrieval of a data object based on its identifier (ID).

Systems that support identifier-based retrieval have been called persistent object stores.

Object-oriented database systems also support this style of access, but they are distinguished

from the persistent object stores by their provision of full database functionality, including

concurrency control, recovery, transactions, distribution, data access via associative queries,

and languages for data definition and manipulation.

2.2.1 Persistent Object Stores

Persistent object stores all have some primitive notion of object and identity. They vary

in the level of semantics they give objects: some see objects as “bags of bytes”, while

others impose a more structured view. They also vary in their support of different aspects

of database functionality.

2.2.1.1 ObServer

ObServer [Skarra et al., 1986; Hornick and Zdonik, 1987] uses a client/server model, in

which a centralized object server (the server and its data reside on the same node) manages

data for (possibly remote) client processes. Client requests on the server follow a mailbox

interprocess communication model. ObServer objects are simple byte vectors.

24



For efficiency, ObServer clusters related objects together for retrieval into segments of

varying size; a segment is the unit of transfer for objects between client and server, and

from secondary storage to main memory. When a client receives a segment it extracts the

individual objects into a hash table, and then discards the segment. A client finalizes any

updates it has made to objects by communicating just the changes to the server, which

modifies the objects in its master copy of the segment correspondingly. This approach

reduces communication traffic with the centralized server in an environment where many

processes may be accessing the same segment at the server.

ObServer also allows segments to be grouped together for retrieval. Segment groups

contain at least one segment, and every segment is a member of at least one group containing

only that segment. A segment group is identified with a name supplied by the client when

it is created. An object’s identifier is assigned by the server when the object is created, and

remains the same for all time; the identifier is not recycled when the object is deleted. A

single client request can be for a segment group or for a particular object. When a client

requests an object, it receives the entire segment in which the object resides. In addition,

the client can specify a segment group as the context in which it is working; in this case it

will receive the other members of the segment group asynchronously, while it is working

on the initial segment.

There are a number of other interesting features of ObServer. Objects can be replicated

in different segments — the server is responsible for maintaining the coherence of duplicate

objects. Also, several types of primitive locks, along with a low-level tailorable transaction

model, support many different styles of concurrency control.

2.2.1.2 Mneme

Mneme [Moss, 1990] is intended for tight integration with persistent programming lan-

guages through a procedural interface. The primary abstraction of Mneme is the persistent

store as a persistent heap: objects persist so long as they are reachable from designated

25



root objects. Mneme treats an object as slightly more than just a sequence of uninterpreted

bytes: it is able to determine the positions of object identifiers contained within objects via

call-backs to the client programming language. Thus, Mneme is able to garbage collect

the store, rearranging the space of object identifiers and recycling the identifiers of deleted

objects. One implication of such rearrangement is that an object’s identifier does not nec-

essarily remain the same for all time (although it is guaranteed always to be unique); this

is not a problem, since a program must initiate all access to objects through one of the root

objects, and object identifiers are guaranteed not to change for the duration of a program’s

session of access to the store.

Mneme groups objects together into files. Each file has a root object from which all the

objects in the file can be reached. Access to objects is supported by procedures that retrieve

an object (and its containing segment), returning a pointer to the object in memory; clients

must explicitly notify Mneme of any updates they make to objects via these pointers for

those updates to be made permanent.

Within a file, objects are clustered into segments for retrieval, similarly to ObServer.

The unit of transfer between the disk and Mneme’s buffers is the physical segment (PSEG),

which may have arbitrary size (up to some large system-defined limit); a PSEG can contain

any number of objects. Objects within a PSEG are further grouped into logical segments.

A logical segment (LSEG) can contain at most 255 objects. LSEGs represent a partitioning

of the object identifier space into efficiently managed units of 255 consecutive numerical

object IDs.

2.2.1.3 Texas

The Texas persistent store [Singhal et al., 1992; Wilson and Kakkad, 1992] takes a

dramatically different approach to supporting persistence. Instead of representing object

references to the application as abstract object IDs, which must be presented to the storage

manager via a call interface to gain access to the object, Texas uses a virtual memory page

26



mapping approach to fault objects, so that an application never uses anything but virtual

memory addresses to refer to persistent objects. Within the persistent store, object references

are represented as symbolic persistent IDs (PIDs), which encode a persistent page number

and the offset within that page of their target. Thus, Texas allows persistent address spaces

significantly larger than virtual memory, since PIDs can be arbitrarily large. However, at any

one time an application can address only as much of the persistent store as can be mapped

into virtual memory.

Before an application can refer to an object, Texas must generate a virtual address for it,

by reserving an access-protected page of virtual memory for the corresponding persistent

page containing the object. Because the offset of the object in the persistent page is known,

Texas is able to calculate the corresponding virtual address of the object in the reserved

virtual memory page. When the application actually attempts to access the object in its

access-protected virtual memory page a page trap occurs, and is handled by Texas, which

reads in the persistent page from the store and copies it into the reserved virtual page. As

the page is copied, all persistent object references within the page are swizzled to virtual

memory pointers, by reserving virtual memory pages for the objects to which they refer

(assuming the referenced pages are not already mapped into virtual memory). Swizzling

relies on support from the application language to distinguish object references from scalar

data. The newly-resident virtual memory page is then unprotected, and execution resumes.

As execution proceeds, virtual pages are thus reserved in a “wave-front” just ahead of the

most recently faulted and swizzled pages, guaranteeing that the application will only ever

see virtual memory addresses.

Texas tracks updates to persistent objects by protecting virtual memory pages that may

be updated from write access. On the first write to a protected page an access violation

occurs, which Texas handles by unprotecting the page and making a copy of it in a clean

version buffer. At transaction commit, a modified page will have a clean copy in the clean

27



version buffer, which is compared with the modified page to generate a log entry recording

the differences between the clean and modified versions.

The beauty of Texas is that it requires little or no modification to an existing language

to support persistence, so long as object layout information is readily determined for use

in swizzling. Wilson and Kakkad [1992] report promising preliminary performance results

using Texas to support transparent persistence for C++ — ingeniously, they extract object

layout information from the tables generated by the GNU C++ compiler for use by symbolic

debuggers.

2.2.1.4 ObjectStore

ObjectStore [Lamb et al., 1991; ObjectStore, 1990] is a commercial product4 which uses

a page mapping scheme similar to Texas, but differs from Texas by storing objects on disk

in their virtual memory format. When a persistent page is to be allocated in virtual memory,

ObjectStore first tries to assign the page to the same virtual address as when the page was

last resident, in which case there is no need to swizzle pointers that refer to the page. If there

is a conflict with some other page, then swizzling becomes necessary to adjust pointers that

refer to objects on the page. Note that this direct-mapped virtual memory approach means

that the store size can grow only as large as is directly addressable by a virtual memory

pointer. ObjectStore generates recovery information by logging entire dirty pages.

2.2.1.5 EXODUS

The EXODUS Storage Manager (ESM) [Carey et al., 1986; Carey et al., 1989] is the storage

component of the EXODUS extensible database system. A storage object in EXODUS is an

uninterpreted byte sequence of almost unlimited size that can grow and shrink, with growth

and shrinkage possible even in the middle of the object. Every storage object resides

in a file object, which is a collection of storage objects. ESM also features concurrency

4Object Design, Inc., One New England Executive Park, Burlington, MA 01803.

28



control (with two-phase locking of byte ranges and whole storage objects), recovery (via a

combination of shadowing for concurrency among multiple users and logging of updates

within transactions), and support for versioning.

A procedural interface supports the creation and deletion of file objects and storage

objects within a given file. Files may be scanned: there are procedures to open a file for

scanning, to get the object identifier of the next object in the file, and to close the file. Object

access is supported by a procedure to get a pointer to a range of bytes within a given storage

object; the desired range is read into the client’s buffers, and a pointer to the now-resident

byte range is returned to the caller. The byte range is “pinned” in memory, until some

subsequent call indicates that the bytes are no longer needed, whereupon the byte range

is “unpinned” and becomes subject to replacement by the buffer manager. Pinned bytes

can be updated in place in the client buffer pool, though EXODUS must be informed of the

subrange of bytes that have been modified so that it can generate a log record based on the

changes.

ESM is the underlying storage subsystem for the E language described above. Over the

years, there have been several different architectures supporting persistence in E based on

ESM [Richardson, 1990; Schuh et al., 1990]. Some required object updates to be carried out

via the call interface, with updates made to the pinned objects in the client buffer pool, and

logged at the same time. To avoid this call overhead White and DeWitt [1992] introduced a

new architecture (EPVM 2.0) using object caching. Objects are still retrieved into the client

buffer pool using the ESM interface, but they are then copied into the virtual memory of the

application, while originals in the buffer pool are unpinned. A descriptor for the copied

object is entered into a hash table based on the object’s identifier. This descriptor contains a

pointer to the object in memory along with a pair of values indicating the range of modified

bytes in the object. Updates are applied directly to the object copies in the virtual memory

space of the application and noted by adjusting the byte range.

29



At transaction commit, the hash table of cached objects is scanned. For each modified

object, ESM is called to pin and update the object in the buffer pool and to generate a

log record based on the range of modified bytes. White and DeWitt [1992] describe two

versions of this caching scheme: the first copies objects one at a time from the buffer pool

into virtual memory as they are accessed by the application; the second copies all of the

objects on a given page of the buffer pool when the first object on the page is accessed.

The object caching scheme of EPVM 2.0 also performs some pointer swizzling, in which

references to objects that are resident in the cache are converted to direct memory pointers.

Each object includes a bit table indicating which of its slots contain direct pointers and

which contain unswizzled IDs. Translating an ID means probing a hash table containing

pointers for all cached objects, and caching the object if it is not already resident. EPVM 2.0

performs swizzling upon discovery: when a location is discovered to contain an unswizzled

reference to a persistent object (usually as a result of loading the reference to perform some

operation on it) the location is updated with a direct pointer to the object. Unfortunately,

this imposes unnecessary overhead on every load, even if the reference is never used to

access the object. It may also result in the unnecessary fetching of objects that are never

accessed.

White and DeWitt compared their object caching implementation’s performance with

several other systems, including ObjectStore. Their results indicate that object caching is

an attractive architecture for persistent programming languages. For small databases, in

which the entire database can fit in main memory, caching objects a page at a time seems

best, since there is little extra overhead in copying pages versus objects, with fewer copying

operations being needed. However, for larger databases that do not fit in main memory,

page caching will copy some objects unnecessarily, which leads to double paging: pages

are first cached in virtual memory by the object caching mechanism, and then paged out by

the virtual memory manager.

30



The comparison with ObjectStore produced mixed results. Cold database performance

(obtained by running benchmarks against a database that starts out entirely on disk at the

possibly remote database server) was worse for ObjectStore than for the architectures based

on ESM. White and DeWitt suggest that these results indicate the cost of mapping data

into a process’s address space, including the high overhead of fielding page protection

traps from the operating system. For a small database ObjectStore exhibited the best warm

performance, since it allows access to objects using direct memory pointers; for the large

database its performance was the worst, due to double paging.

2.2.1.6 Other Commercial Ventures

There are a number of other commercial ventures marketing persistent storage systems

to support some form of persistence for C++. Most use a preprocessor approach to extract

object layout information, for compiler independence. They range from simple persistent

object stores to minimal database systems with support for associative access. Unfortu-

nately, their implementation details are proprietary and hence not readily disseminated.

They include Objectivity/DB,5 Versant ODBMS,6 and Ontos (formerly VBASE [Andrews and

Harris, 1987]),7 among others.

2.2.2 Object Oriented Database Systems

While persistent object stores provide a spectrum of functionality for storage of objects,

object-oriented database systems provide full database functionality as well. The following

systems all provide a unified object model of the database which consists of objects, classes,

and methods. Methods are defined on classes, and constitute the behavior of the instances

of a class; they are invoked by sending messages to objects.

5Objectivity, Inc., 800 El Camino Real, 4th Floor, Menlo Park, CA 94025.
6Versant Object Technology Corporation, 4500 Bohannon Drive, Menlo Park, CA 94025.
7Ontologic, Inc., Three Burlington Woods, Burlington, MA 01803.

31



2.2.2.1 GemStone

GemStone [Copeland and Maier, 1984; Purdy et al., 1987; Bretl et al., 1989] is a com-

mercial database system incorporating the data model of Smalltalk (consisting of objects,

messages, and classes) and the programming language OPAL,8 with syntax much like that

of Smalltalk, for data definition and manipulation. To support sharing, the database is par-

titioned into multiple name spaces; users can only see those objects in their allotted name

spaces. Since name spaces can be shared, objects can also be shared. Each user works in

his or her own private (i.e., unshared) workspace; any changes to shared objects are actually

made to shadow copies in the workspace. Transactions provide for atomic update, with

shared objects being replaced by their shadow copies at transaction commit; both optimistic

and pessimistic concurrency control are supported. Name spaces also serve as the persistent

roots of the database, since GemStone maintains persistence based on reachability; objects

are deleted by a garbage collector.

The GemStone database is centralized, residing on a single node running a GemStone

server. Access to the database can be either remote or local, from a Smalltalk or OPAL

environment running on a workstation, through a C call interface, or using an interactive

command-line interface. The Smalltalk-like execution model of GemStone allows execu-

tion to take place in the server, so that users have the option of copying objects to their

own workspace for manipulation, or of invoking methods on the objects at the server —

transaction semantics for these two modes of execution are quite different: server-executed

operations run as single transactions, whereas operations in the workspace are bundled

together as one transaction terminated by transaction commit.

Unlike some object-oriented databases, classes in GemStone are not extensional: they do

not support associative queries over their instances. Rather, associative access is provided

8GemStone and OPAL are trademarks of Servio Corporation, 1420 Harbor Bay Parkway, Suite 100,
Alameda, CA 94501

32



over non-sequenceable collections, such as bags and sets. Indexes can be maintained for

individual collections, to support efficient associative access [Maier and Stein, 1986].

Finally, GemStone supports schema evolution: classes can be added, deleted, and

modified, subject to certain constraints to ensure that instances can be converted to bring

them into line with their modified class; e.g., classes cannot be deleted if they have any

instances.

2.2.2.2 ORION

ORION9 [Banerjee et al., 1987; Kim et al., 1988; Kim et al., 1989; Kim et al., 1990]

is a research project which produced a number of prototype object-oriented database sys-

tems, addressing database issues such as transaction management, queries and automatic

query optimization, version control, change notification, dynamic schema evolution, and

distribution.

The ORION data model allows for objects, messages, and classes, similar to Smalltalk.

Objects must be explicitly deleted in ORION — there is no garbage collection. Classes are

treated as extents, so that high-level queries may be posed against a single target class.

Queries are optimized in a manner similar to that of relational databases.

Like GemStone, ORION supports schema evolution through controlled modification of

the class hierarchy. However, instances are not converted immediately when their class

changes, but only as they are retrieved from the database. This incremental approach has

the advantage of allowing schema changes to be processed quickly, since the instances do

not need to be updated immediately, although it does mean that the database can contain

obsolete data.
9A commercial version of ORION is now available from Itasca Systems, Inc., 2850 Metro Drive, Suite 300,

Minneapolis, MN 55425.

33



2.2.2.3 O2

O2 [Bancilhon et al., 1988; Lécluse et al., 1988; Lécluse and Richard, 1989; Deux et al,

1990] is another prototype object-oriented database system. The O2 data model provides

objects, classes, methods, and values. Values are instances of types, constructed recursively

from atomic types (e.g., integer, float, string) using type constructors (e.g., set, list, and

tuple). Objects are instances of classes, encapsulating data and behavior. Every class has

a type describing the structure of its instances, and may optionally be given an extent,

which is the set of all its instances. Persistence is achieved by naming objects or values: a

named object or value will persist, along with all objects or values reachable from it. As

in GemStone, there is no explicit deletion, and the named objects and values are treated as

persistent roots by the garbage collector.

Data manipulation in O2 is supported by extending existing programming languages

with an O2 layer to handle object and value declaration, method invocation, and value

manipulation, as well as selective iteration over the elements of sets and lists. Two languages

have been extended so far: C (CO2) and Basic (BasicO2).

2.3 Discussion

The foregoing survey is a heady concoction of different characterizations of persistence,

from the ad hoc relational extensions to existing languages, to the holistic approach of

orthogonally persistent languages. From this, we now distill what we consider to be useful

defining characteristics of persistence for a study of performance. Our bias is towards

the computationally complete persistent programming languages, which see the persistent

store as a stable dynamic allocation heap. There are several reasons for this bias. First,

computational completeness permits the full range of possible computations over all types

of persistent data. Second, the notion of persistent storage as a stable extension of the

dynamic allocation heap allows a uniform and transparent treatment of both transient and

persistent data, with persistence being orthogonal to the way in which data is defined,

34



allocated, and manipulated. This characterization of persistence allows us to identify the

fundamental mechanisms that any such persistent system must support, as the basis for our

study of the performance of persistent systems.

None of the above persistent programming languages have specifically addressed the

issue of performance in their implementation. The language designers have been interested

in exploring the bounds of expressiveness and functionality in their languages, viewing

implementation more as a means of validating the feasibility of the language design than

of showing that programs written in the language can be made to run efficiently. Now that

persistence is better understood, its performance aspects have become more important. To

be widely accepted, persistence must exhibit sufficiently good performance to justify its

inclusion as an important feature of any good programming language. Ideally, persistence

ought not to require any unusual support from the underlying hardware or operating system,

so that persistent programming can be extended to the widest possible community.

2.3.1 Essential Persistence Mechanisms

As in traditional database systems, a persistent system must cache frequently-accessed

data values in memory for efficient manipulation. Because memory is a relatively scarce

resource, it is likely that there will be much more persistent data than can be cached at

once. Thus, the persistent system must arrange to make resident just those persistent

values needed by the program for execution. Without knowing in advance which data is

needed, the system must decide dynamically when to retrieve needed data from secondary

storage into memory (although any advance knowledge that is available should be used

to guide prefetching). Updates can be made in place, in memory, but ultimately must be

propagated back to stable storage. Thus, a persistent system must provide mechanisms

for the detection and handling of references to persistent data and for the propagation of

any modified data back to stable storage. Efficient implementation of these mechanisms is

35



the key to implementing a high-performance persistent programming language, since they

provide the fundamental database functionality of retrieval and update.

2.3.1.1 The Read Barrier: Object Faulting

The first mechanism mediates retrieval of data from stable storage into memory for

manipulation by the program. Any operation that directly accesses a data value whose

residency is in doubt must first check that the value is available in memory. Such residency

checks constitute a read barrier to any operation that accesses persistent data: before the

operation can read (or write) the data it must first make sure it is resident.

2.3.1.2 The Write Barrier: Detecting and Logging Updates

The second key persistence mechanism ensures that updates to cached (i.e., volatile)

persistent data are reflected in the database. Making updates permanent means propagating

them to stable storage. Thus, every operation that modifies persistent data requires some

immediate or subsequent action to commit the modification to disk. A persistent system

might write the modifications straight through to disk on every update, but this is likely to

be very expensive if updates are frequent or otherwise incur very little overhead. Instead,

updating the stable store is typically held over to some later time, usually at the instigation

of the programmer through the invocation of a transaction commit or a checkpoint primitive

operation. Either way, any operation that modifies persistent data in memory must arrange

for the update to be made permanent, directly by writing the modified data to disk, or

indirectly by asking the system to remember that the update was made. Recording updates

in this way constitutes a write barrier that must be imposed on every operation that modifies

persistent data; writes require additional overhead to record the update.

Implementation of the write barrier is intimately tied up in assurances of database

resilience in the face of system failures. When a user commits to a set of updates they want

to be certain that all of the updates are permanently reflected in the database. Unfortunately,

36



a crash results in the loss of the volatile part of the database (the cached persistent data),

including all updates to persistent data that have not yet been propagated to stable storage.

Recovering from such a failure involves restoring the database to some consistent state

from which processing can resume. Any implementation of the write barrier must take

into account the mechanism by which programmers specify database consistency and the

information that must be generated for recovery.

2.3.2 Fine-Grained Persistence and the Performance Problem

Conventional non-persistent programming languages, such as those in the Algol family

(including Pascal, C, Modula-2, and their object-oriented cousins C++, Modula-3 and even

Smalltalk) have a fine-grained view of data — they provide fundamental data types and

operations that correspond very closely to the ubiquitous primitive types and operations

supported by all machines based on the von Neumann model of computation. Such a close

correspondence means that many operations supported in the language can be implemented

directly with as little as one instruction of the target machine.

Orthogonality mandates that even data values as fine-grained as a single byte (the small-

est value typically addressable on current machines) may persist independently. Clearly,

this situation is significantly different from that of relational database systems, where the

unit of persistence is the record, usually consisting of many tens, if not hundreds, of bytes.

Where a relational system can spend hundreds or thousands of instructions implementing

relational operators, an Algol-like persistent programming language must take an approach

to persistence that does not swamp otherwise low-overhead and frequently executed oper-

ations.

Thus, implementations of the read and write barrier for such languages must be suffi-

ciently lightweight as to represent only marginal overhead to frequently executed operations

on fine-grained persistent data.

37



38



CHAPTER 3

ARCHITECTURE

This chapter describes an architecture for persistence and its rationale, and constitutes

the framework for our approach to implementing persistent programming languages. The

architecture itself is not unique and bears a close resemblance to the object caching archi-

tecture of White and DeWitt [1992]; in many respects it reflects the general consensus of the

technical community as to how to structure persistent systems. However, the architecture’s

realization is unique in that it allows the language implementation maximum control over

all objects being manipulated by a program, without having to pass through a restrictive

interface to the underlying storage manager. Much of this flexibility comes as a result of

using the Mneme persistent object store (described in Chapter 2) to manage the storage and

retrieval of objects from disk, since Mneme allows direct access to the objects in its buffers

via virtual memory pointers.

The architecture is illustrated in Figure 3.1. As mentioned earlier, Mneme groups

objects into segments for efficient transfer to and from secondary storage, buffering the

segments in main memory as necessary. Objects are copied on demand from the client

buffer pool into the virtual memory address space of the program. This copying includes

any translation needed to convert the objects into a form acceptable to the program. In

particular, since Mneme uses object identifiers to refer to objects while the program uses

virtual memory pointers, object references may be swizzled to direct memory pointers for

manipulation by the program. The architecture permits standard programming language

techniques for memory management, including those of garbage collection, to manage the

objects resident in the program’s virtual address space.

39



Segments
Log

Records

Application
Memory Space

Database

Server
(possibly remote)

Objects
Old

New
Objects

Local Disk

Log

Segment

Segment

Client Buffer Pool
In−memory Mneme

Swizzle

Unswizzle

Unswizzle

Figure 3.1 System architecture

3.1 Object Faulting

Object faulting requires some mechanism to distinguish between references to resident

and non-resident objects. These mechanisms may be loosely divided into two categories,

depending on the strategy they adopt. For the purposes of this discussion we view the

persistent heap as a directed graph where the objects are the nodes and the references

between the objects are the edges.

Edge marking schemes take the approach of tagging the references between the objects.

If tagged as swizzled, then a reference is a direct pointer to the corresponding object in

memory; if non-swizzled then the reference contains an ID. An apparent disadvantage of

edge marking is that IDs can be fetched from the pointer fields of objects, passed around,

and stored, without accessing the target object. When the target object finally is accessed

the origin of the reference may no longer be known.

Node marking schemes require that all object references in resident objects be converted

to pointers. ObjectStore and Texas achieve this by reserving (although not necessarily

fetching) virtual pages for the objects referred to by the pointers and by protecting those

pages to trap all access. Another approach, similar to LOOM’s leaf objects, is to have small

proxy objects (we call them fault blocks) stand in for non-resident objects, as illustrated

in Figure 3.2(a). A fault block contains the ID of the target object and is distinguishable

40



(a) Fault blocks stand in for non−resident objects
S T

(b) Target object (T) faulted in
S T

S T
(c) Source (S) updated

S T
(d) Indirect block bypassed by garbage collector

  fault block

  indirect block

  non−resident object

  resident object

  object identifier

  direct memory pointer

Figure 3.2 Node marking

from an ordinary object. Whenever a reference is followed, if it refers to a fault block, then

the target object is made resident (copied and swizzled as necessary). The fault block is

changed to point to the now-resident object (see Figure 3.2(b)); we call the updated fault

block an indirect block. If a reference to be followed refers to an indirect block then the

target object can be located at the cost of an indirection. The indirection can be eliminated

in several ways. First, if the source of the faulting reference is known then it can be

updated to point directly to the resident object (Figure 3.2(c)). Remaining indirections

can be removed directly via scanning, by the garbage collector, or when discovered by the

application (Figure 3.2(d)).

References to tagged IDs and fault blocks may be detected via explicit checks upon

pointer dereference. Alternatively, fault blocks can be allocated in protected virtual memory

pages, so that dereferencing a pointer to a fault block is trapped, and handled by making

the target object available. Another approach is to exploit the indirection implicit in the

method invocation schemes of object-oriented programming languages, folding residency

checks into the overhead of method invocation.

41



3.2 Swizzling

When an object is made resident its pointer fields are swizzled according to the mech-

anism being employed for fault detection. All fields referring to objects that are already

resident can be converted to point directly to those objects — Mneme supports this mapping

efficiently with a hash table. Otherwise, for edge marking we convert the reference to a

tagged ID; for node marking, the reference is converted to point to a fault block for the

non-resident object (a fault block is allocated if one does not yet exist for the target object).

The architecture leaves open the possibility of copying and swizzling any number of

objects at one time from the Mneme buffer pool into memory. For this study we consider

the swizzling granularities naturally inherent in this architecture: individual objects, logical

segments, and physical segments. Swizzling just one object at a time has the advantage

of copying and swizzling only those objects needed immediately by the program for it to

continue execution. This will serve to minimize object fault latencies (including swizzling),

as well as memory consumption.

Swizzling a logical or physical segment at a time can take advantage of any clustering

present in the physical layout of objects in the database. Since all the objects in a segment

are mapped before they are swizzled, any intra-segment references can be converted to

direct pointers. If the static clustering is a good approximation to the dynamic locality of

access by the program then the speed of program execution will improve since fewer object

faults will occur.

3.3 Resilience

Our notion of recovery is dictated by certain assumptions about the behavior of persistent

programs. We assume that a program will invoke a checkpoint operation at certain points

throughout its execution to make permanent all modifications it has made to persistent

objects. In the event of a system crash the database recovery mechanism must restore the

42



state of the database to that of the most recent checkpoint. Moreover, we assume that

checkpoint latencies should be minimized so as to have the smallest possible impact on the

running time of the program. This last point is important in interactive environments where

checkpoints may noticeably delay response times.

A checkpoint operation consists of copying and unswizzling modified and newly-created

objects (or modified subranges of objects) back to the client buffer pool and generating log

records describing the range and values of the modified regions of the objects. Log records

are generated only if there are differences between an object and its original in the client

buffer pool. Persistence in our system is based on reachability, so the unswizzling operation

may encounter pointers to objects newly created since the last checkpoint. Each such object

is assigned a persistent identifier and unswizzled in turn, perhaps dragging further newly-

created objects into the database, and a log record describing the new object is generated.

The precise format of the log records is not relevant to this study, since we are interested

only in the mechanisms used to detect and log updates. However, we note that each log

record is tagged by the persistent identifier of the modified object and encodes a range

of modified bytes. Recovery involves applying these log records to the objects to which

they pertain, in the order in which they occur in the log. Although alternative log-record

formats might yield a slightly more compact log, or allow more efficient recovery, our log

is minimal in the sense that it records just enough information to reconstruct each modified

object.

3.4 Extensions to the Basic Architecture

As described so far, the architecture supports single-user access with recovery. We now

argue that the architecture can be extended to provided additional functionality such as

buffer management and concurrency control.

43



3.4.1 Buffer Management

To integrate buffer management with the recovery model, we guarantee that a modified

segment is flushed to the database only after the log records associated with those modifi-

cations have been written. Outside of that constraint, the buffer manager is free to use any

appropriate buffer replacement policy. Management of swizzled objects in the application’s

virtual memory must rely on techniques similar to garbage collection to determine which

objects are subject to replacement [Hosking, 1991]; this is compatible with the recovery

model, since modified objects that have been selected for replacement will be unswizzled

and logged in a checkpoint fashion.

3.4.2 Concurrency Control

The recovery model is indifferent to concurrency, which can be introduced to the

architecture in two ways. First, separate applications can share the same database, arbitrated

by a server. Locking is managed by the server and the application’s view of recovery is

unchanged, modulo some additional information required in a log entry to identify its owner.

Second, a single application may be multi-threaded. Additional locks must be managed

within the application if data is shared among threads. Again, the recovery model remains

essentially unchanged, modulo some additional log entry information to identify the owner

of the entry.

The recovery model and support for concurrency provide the foundation for any transac-

tion model. The incorporation of transaction models in persistent programming languages

remains an open topic of research. We are not directly concerned with that issue here, and

merely remark that our recovery model is based on that of the database cache [Elhardt

and Bayer, 1984], for which several transaction models exist. The database cache was

designed for fast transaction commit and rapid recovery after a crash. Modifications are

always applied to copies of original database pages in main memory (the cache) so that

transaction abort merely requires deletion of the copies. Transactions commit by flushing

44



dirty copies to the safe: a log of updated pages on stable storage. Once a dirty copy has

been flushed to the safe, it becomes a changed original. Dirty copies are never flushed to the

permanent database. Thus the permanent database contains only the effects of committed

transactions. Similarly, the buffer manager may only select unpinned originals for replace-

ment in the cache, flushing any changed originals to the database as necessary. Recovery

involves reconstructing the cache from the safe. To keep the size of the safe manageable,

it is periodically cleaned by removing log entries that are no longer necessary for recovery.

Elhardt and Bayer require locking and logging at the granularity of a page. Moss

et al. [1987] extend the database cache algorithms to allow locking and logging at a

finer granularity. The goal of their extension is to increase concurrency and, ultimately,

performance. These extensions are certainly possible within our framework. Indeed, Moss

et al. [1987] propose an investigation of the effects of different lock and log granularities

on system performance, which we partially address here. Our system is not an exact

implementation of the database cache, but we use a similar buffer management protocol

and our checkpoints have semantics similar to the database cache transaction commit. Here

we go beyond a comparison of logging granularities and investigate different methods for

noting modifications.

In more general terms, the database cache and the approach to logging described here

are nothing more than extended versions of the write ahead log used in traditional database

systems [Gray, 1978; Verhofstad, 1978; Haerder and Reuter, 1983]; the extensions are for

non-traditional database applications in which memory-residence is important. Thus, we

could just as easily consider other approaches to concurrency control and recovery that are

compatible with write-ahead logging, while retaining our own mechanisms for detecting

and recording updates.

45



46



CHAPTER 4

IMPLEMENTATION

Chapter 3 described a basic architecture for persistence, and the mechanisms required for

any implementation of a persistent programming language built on that architecture. This

chapter delves into the specifics of the persistent implementation of Smalltalk used in the

performance evaluation experiments of Chapter 5 to compare alternative implementations

of the persistence mechanisms. Section 4.1 summarizes the features of the non-persistent

Smalltalk implementation used as the starting point for the persistent implementation.

Section 4.2 then goes on to describe how we extend that implementation for persistence,

giving details of the alternative implementations of object faulting, using both node and

edge marking, and mechanisms to detect updates for resilience.

4.1 Smalltalk

The Smalltalk implementation is based on the original specification of the Smalltalk-

801 programming language and environment [Goldberg and Robson, 1983], consisting of

two components: a virtual machine, which executes the bytecode instruction set to which

Smalltalk source code is compiled, and a virtual image, which implements (in Smalltalk)

the Smalltalk-80 programming environment. Several aspects of the implementation of

the virtual machine are novel and are described below. We begin with a brief summary

of the salient features of Smalltalk’s object-oriented execution paradigm, to enlighten the

uninitiated reader, before revealing the details of the implementation of Persistent Smalltalk.

1Smalltalk-80 is a trademark of ParcPlace Systems.

47



4.1.1 Object-Oriented Method Invocation

A Smalltalk object (see Figure 4.1) is an encapsulation of some private state and a set

of operations called its interface. The private state consists of a number of data fields,

called instance variables, directly accessible only from the code implementing the object’s

operations. Every object is an instance of some class object, which implements the common

behavior of all its instances; a class object is itself an instance of its metaclass. Classes

are arranged in a hierarchy, such that a subclass will inherit instance behavior from its

superclass. Thus, an instance of the subclass will behave as an instance of the superclass,

except where the subclass overrides or extends that behavior.

Computation in Smalltalk proceeds through the sending of messages to objects. A

message consists of a message selector (e.g., at:put:) and a number of arguments, and

represents a request to an object to carry out one of its operations. The effect of sending a

message is to invoke one of the methods of the object receiving the message (the receiver).

Invoking a method may be thought of as a procedure call, with the receiver being the

first argument to the procedure, preceding the arguments specified in the message. The

particular method to execute is determined dynamically, using the message selector and

the class of the receiver. Each class object contains a reference to a method dictionary,

associating message selectors with compiled methods. A compiled method consists of

the virtual machine bytecode instructions that implement the method, along with a literal

frame, containing the shared variables,2 constants, and message selectors referred to by the

method’s bytecodes.

4.1.1.1 Method Lookup

Determining which method to execute in response to the sending of a message proceeds

as follows. If the method dictionary of the receiver’s class contains the message selector,

2A shared variable is an object that encapsulates a reference to another object. If the contents of the
variable are changed, then the change is visible to all other compiled methods holding references to that
shared variable.

48



method dict.
superclass

instance
variables

Metaclass
classclass

Object

selector method

Symbol

literal
frame

class
CompiledMethod

MethodDictionary

selector method

class

at:put:eg, 

Class

Class

bytecodes

Figure 4.1 Objects, classes, inheritance, and object-oriented method invocation

then its associated method is invoked. Otherwise, the search continues in the superclass of

the object, and so on, up the class hierarchy. If there is no matching selector in any of the

method dictionaries in the hierarchy then a run-time error occurs.

As described so far, the method lookup process would be very expensive, especially

since a given message may be implemented by a method in a class that is high up in the

superclass hierarchy, far removed from the class of the receiver. A method lookup cache can

reduce this lookup cost significantly. A valid entry in the cache contains object references

for a selector, a class, and a compiled method. Message sends first consult the method

lookup cache, by hashing the object references of the selector and the receiver’s class to

49



.

.

.

selector¹ class¹ method¹
selector² class²

Method Lookup Cache

method²

Miss: go to full method lookup;
prime cache and invoke method

Yes 

No Yes 

No 

selector # class

selector = selector¹
& class = class¹ ?

selector = selector²
& class = class² ?

Hit: invoke
method¹

Hit: invoke
method²

Figure 4.2 Method lookup. The method cache is probed by hashing the message
selector and receiver’s class. A valid entry occurs either in its natural hash slot or
the immediately following slot.

index an entry in the cache. If the selector and class of the cache entry match those of the

message, then the cached compiled method is invoked directly. Otherwise, the full method

lookup locates the compiled method and loads the cache entry with the selector, class and

method, before invoking the method. Figure 4.2 illustrates the method lookup process.

Our implementation uses a linearly-hashed method lookup cache; a valid entry may occur

in its natural hash slot, or in the immediate successor. The cache replacement policy is to

promote the second entry to the first slot, if that is its natural hash slot, and allocate the new

entry into the second slot; otherwise, the new entry is allocated in the first slot.

4.1.2 The Virtual Machine

The virtual machine (VM) implements the bytecode instruction set to which Smalltalk

source code is compiled, along with certain primitive methods whose functionality is built

directly into the VM. A primitive method is invoked in exactly the same way as a method

expressed as a sequence of Smalltalk expressions, but its implementation is not a compiled

50



method. Rather, the VM performs the primitive directly, without the need for a separate

Smalltalk activation record. Primitive methods typically provide low-level access to the

underlying hardware and operating system on which the VM is implemented. For example,

low-level floating point and integer arithmetic, indexed access to the fields of objects, and

object allocation, are all supported by primitive methods.

We retain the standard VM bytecode instruction set defined by Goldberg and Robson

[1983]. It is subdivided by functionality as follows:

� stack bytecodes move object references between the evaluation stack of the current
activation and:

1. the named instance variables of the receiver for that activation

2. the temporary variables local to that activation

3. the shared variables of the literal frame of the active method

� jump bytecodes change the instruction pointer of the current activation

� send bytecodes invoke compiled or primitive methods

� return bytecodes terminate execution of the current activation, and return control to
the calling activation

Although we retain the standard bytecode instruction set of Goldberg and Robson [1983],

the VM implementation differs markedly from their description. Because the VM is im-

plemented entirely in GNU C (a dialect of ANSI C with non-standard extensions), it ports

straightforwardly to other machines on which GNU C is available. Notable features of the

implementation include the use of direct 32-bit object pointers instead of 16-bit indexes

into an object table, an improved scheme for managing Smalltalk stack frames (i.e., ac-

tivation records) [Moss, 1987], generation scavenging garbage collection [Ungar, 1984;

Ungar, 1987], and dynamic translation of compiled methods from bytecodes to threaded

code [Bell, 1973].

4.1.2.1 Object Pointers

Each object in the Smalltalk system has an associated unique identifier called its object

pointer. For an object allocated in memory, its object pointer is simply the address of the

51



 class

 fields

...00 ...00 

object
reference

 pointer 

memory
object

Figure 4.3 Object pointers. An object allocated in memory is referred to directly
by its address.

first word of the object, which here happens to contain the object pointer for its class (see

Figure 4.3).

Memory objects are allocated on 32-bit word boundaries, so the two low bits of a

memory object’s address are guaranteed always to be zero for standard byte-addressed

architectures. These “spare” bits in an object pointer allow a space-efficient immediate

representation of scalar values such as integers and characters: the value is stored directly

in the object pointer, rather than being allocated in memory. For efficiency, the VM must

easily distinguish memory object pointers from immediate values. The low bit of the object

pointer serves this purpose: a 0 indicates an address, while a 1 indicates some immediate

value. Similarly, the VM efficiently discriminates immediate integer values using the second

low-order bit: a 1 indicates a 30-bit signed immediate integer (SmallInteger), while a 0

indicates some other immediate value (true, false, nil, or an instance of Character). We

extend the tag to differentiate the latter. These encodings are summarized in Table 4.1.

4.1.2.2 Threaded Code

Rather than interpreting the bytecodes of compiled methods directly, the VM dynamically

translates each compiled method into threaded code [Bell, 1973] the first time the method

is invoked. Threaded code consists of a sequence of branch targets to each of the machine-

code fragments implementing the bytecodes of the compiled method. Instead of expensively

52



Table 4.1 Tagging object pointers. A 0 in the low bit indicates a memory pointer;
a 1 in the second low-order bit indicates a SmallInteger; the remaining encodings
extend the tag.

Object pointer contents Bit encoding

memory object address . . . 00
unassigned . . . 0001
unassigned . . . 0101
instances of Character . . . 1001
nil 0 . . . 0001101
false 0 . . . 0011101
true 0 . . . 0111101
disallowed . . . 10
instances of SmallInteger . . . 11

decoding each bytecode on every VM instruction cycle, bytecode dispatch is thus reduced

to indexing from the VM’s program counter (maintained in a hardware register) to load the

address of the next bytecode fragment, and performing an indirect branch to that target. On

a modern RISC architecture this consists of just three instructions: one to load the branch

target, one to increment the (simulated) program counter, and one for the indirect branch.

Generating threaded code is cheap; translation consists simply of indexing a static

array mapping bytecodes to their machine-code targets. The up-front cost of translation

is mitigated by faster cycle times for bytecode interpretation, resulting in faster execution

of compiled methods. Subsequent repeat invocations of a given method incur no further

translation overhead. Since it is common for a method in the Smalltalk system to be invoked

more than once (see Krasner [1983]), the cost of translation is quickly repaid with faster

bytecode execution. A similar technique is used to improve performance in the commercial

ParcPlace implementation of Smalltalk-80, except that bytecoded methods are dynamically

translated to native code on first invocation for direct execution on the host machine, instead

of threaded code for interpretation.

53



4.1.3 The Virtual Image

The virtual image is derived from Xerox PARC’s Smalltalk-80 image, version 2.1, of

April 1, 1983, with minor modifications. It implements (in Smalltalk) all the functionality

of a Smalltalk development environment, including editors, browsers, a debugger, the

bytecode compiler, class libraries, etc. — all are first-class objects in the Smalltalk sense.

Bootstrapping a (non-persistent) Smalltalk environment entails loading the entire virtual

image into memory for execution by the VM.

4.2 Persistent Smalltalk

The persistent implementation of Smalltalk places the virtual image in the Mneme

persistent object store, and the Smalltalk environment is bootstrapped by loading just that

subset of the objects in the image sufficient to resume execution by the VM. We retain the

original bytecode instruction set and make only minor modifications to the virtual image.

Rather, our efforts are focussed on the VM, which is carefully augmented to make persistent

objects resident as they are needed by the executing image.

4.2.1 The Read Barrier: Object Faulting

The discussion of Smalltalk method invocation in Section 4.1.1 illustrates just how many

objects the VM must access for computation to proceed. Object faulting means that objects

become resident only when needed by the executing Smalltalk virtual image, as a result of

faults triggered by residency checks in the VM. To avoid burdening bytecode instruction

execution with unnecessary residency checks, it is essential that the persistent VM perform

residency checks only where absolutely necessary to ensure the availability of objects

critical to the forward progress of computation. We are able to keep bytecode dispatch and

execution completely free of residency checks by imposing residency constraints on these

critical objects, as follows.

54



4.2.1.1 Residency Constraints

Residency constraints represent a contract between the VM and the run-time system to

ensure that certain references are always represented as direct pointers to their (resident)

target objects. Residency constraints may be expressed in terms of a co-residency relation:

Object b is said to be co-resident with object a, written a ! b, if whenever a
is resident, b must also be resident.

Note that co-residency is not symmetric: a ! b 6) b ! a. For swizzling purposes, if a

contains a reference to b, then that reference can always be represented as a direct pointer

to b.

The residency constraints are derived by considering the objects whose residency is

critical to execution of each category of bytecode:

� Stack Bytecodes: The stack bytecodes directly manipulate the current activation’s
stack, named instance variables of the active receiver, temporary variables local to
the current activation, and the shared variable literals of the active method.

A method activation consists of the active stack frame (i.e., the activation record)

holding the state of the activation, the active receiver, and the active compiled method.

Processes and their stack frames are first-class objects in the Smalltalk system, and

so may be persistent. An active byte-compiled method must be co-resident with its

stack frame, so that execution of the method can proceed. Threaded code for the

method must also be generated when the stack frame is made resident.3

Similarly, the receiver must be co-resident with its stack frame and active compiled

method, so that the method’s stack bytecodes can refer directly to the receiver. The

stack and temporary variables are allocated in the stack frame, so they are always

directly accessible.

3Threaded code is not made persistent, but is regenerated in each run, since it consists of the absolute
virtual address branch targets for each of its method’s bytecodes, which might change if the VM were to
change. If threaded code were persistent, then changing the VM (such that the target addresses changed)
would require all persistent threaded code to be regenerated. In contrast, the bytecodes stored in compiled
methods are independent of the VM implementation.

55



Lastly, literals must be co-resident with their byte-compiled method, so that they

too are directly accessible by the active method’s bytecodes.

� Jump Bytecodes: The jump bytecodes directly manipulate only the active stack
frame and the instruction pointer.

This invariant imposes no additional residency constraints — the stack frame and

its (threaded) compiled method are already guaranteed to be resident.

� Return Bytecodes: The return bytecodes directly manipulate the active stack frame
and the (calling) activation to which control is being returned.

To avoid a residency check on the calling activation, all activations in a process

stack are made resident together. The constraint that a calling activation must be

co-resident with the activation it calls achieves this transitively — when an active

stack frame is made resident (usually because its process is being resumed), its caller,

its caller’s caller, and so on up the process stack, are made resident along with it.

� Send Bytecodes: The send bytecodes directly access the receiver (to obtain its class)
and the literal frame (for sends to literal selectors) when probing the method lookup
cache.

Because computation is driven by the sending of messages, most objects need

only to be made resident when first sent a message, since the send bytecodes must

load the receiver’s class for method lookup. By requiring that a class object be

co-resident with any one of its instances, every object’s class field can always be

swizzled to contain a direct pointer. Thus, the send bytecodes need not perform a

residency check on the receiver’s class when probing the method lookup cache.

Since literal selectors are always made resident along with their literal frame,

there is no need for a residency check on the selector in the send bytecodes, so long as

the selector is a literal. However, certain of the send bytecodes directly invoke special

selectors recognized by the compiler, allowing the compiler to save space by omitting

these selectors from the literal frames of compiled methods that use them. Instead,

the special selectors are stored in a global variable known to the virtual machine,

56



which is indexed by the special send bytecodes to load the corresponding selector.

By requiring these special selectors always to be resident, and because method literal

selectors are always resident, there is no need for residency checks on the message

selector in any send bytecode.

The receiver must still be resident before a send can proceed. Depending on

the representation of references to non-persistent objects (edge marking versus node

marking), we achieve this in one of two ways, as described below. Both approaches

rely on the fact that probing the method lookup cache can go ahead even if the “class

pointer” used in the probe is not a real pointer to memory, since the probe is based

solely on the value of the pointer, not the object it refers to. So long as an appropriate

“class pointer” value can be derived from any given reference, without resorting to

special case code, cache probes can be implemented in exactly the same way as for

non-persistent Smalltalk.

Only the full method lookup code need check for the exceptional case of a message

being sent to a non-resident object. In this situation, the lookup yields a cache entry

initialized to pass control to a primitive method whose only purpose is to fault the

target object into memory, before forwarding the original message to the now-resident

object. In effect, references to non-resident objects may be thought of as responding

to all messages by executing this special primitive. Thus, for normal case execution,

when the cache contains an entry matching the message selector and the receiver’s

class, message sends proceed without extra overhead.

57



object
reference

 tagged PID...0001 

Figure 4.4 Edge marking. A non-resident object is referred to by a tagged immediate
value containing its persistent identifier.

The co-residency constraints are summarized as follows:

� For any given object o, the class of o, C(o), is always co-resident with o:

o! C(o)

� For any stack frame object s, the class of s, C(s), the receiver for the activation
represented by s,R(s), the stack frame representing the sender activation that activated
s, S(s), and the compiled method for s’s activation,M(s), are all co-resident with s:

s! C(s), s!R(s), s! S(s), s!M(s)

� For any compiled method m, m’s literals are all co-resident with m:

8l 2 literals(m), m! l

4.2.1.2 Edge Marking

For edge marking, references to non-resident objects are represented as tagged im-

mediate persistent object identifiers (PIDs), using the hitherto unassigned tag 0001 (see

Figure 4.4).4 Immediate values map to their class based on the tag, rather than by derefer-

encing the object pointer to obtain the class. Tagged PIDs map to the null class pointer. The

full method lookup must first check if the receiver’s class is null; if it is, then the cache is

primed with an entry redirecting invocations of the given message on non-resident objects

to the faulting primitive. Subsequent invocations of that message on non-resident objects

will then hit that entry in the cache and proceed directly to the object faulting code without

the overhead of an explicit residency check.

4Mneme PIDs are only 28 bits, leaving room for the 4-bit tag on a 32-bit machine.

58



object
reference

...00  "class" = tagged PID

fault
block

 pointer ...0001 

Figure 4.5 Node marking: fault blocks. A non-resident object is referred to by a
pointer to its tagged persistent identifier.

4.2.1.3 Node Marking

A similar trick is used to obtain check-free message sends for node marking. Fault

blocks (see Figure 4.5) contain a tagged immediate PID in place of the class pointer normally

stored in the header of a resident object. Similarly, indirect blocks (Figure 4.6) contain a

forwarding pointer with the two low-order tag bits set, so that they too are distinguishable

from resident objects. When sending a message to a resident object, the VM probes the

method cache using the class pointer stored in the object’s header. If the message is sent

to an object represented by a fault or indirect block, then the probe will instead use the

PID or tagged forwarding pointer stored in the block. The full method lookup must first

check if the initial class for lookup is tagged (either as a fault or indirect block); if it is,

then the cache is primed with a faulting entry valid for that message and fault/indirect block

combination. Thus, subsequent invocations of the given message on that particular fault

or indirect block will hit the faulting entry and proceed directly to the object faulting code

without any residency checks.

The implementation of the page protection variation for fault blocks achieves the same

effect, but makes sure that the send bytecodes never see a reference to a non-resident

receiver — loading the “class” of an access-protected fault or indirect block will cause a

trap. The trap handler unprotects the pages containing fault and indirect blocks, overwrites

the offending fault block with an indirect block, and arranges for the load instruction that

caused the fault to be restarted with a direct pointer to the resident object. The handler

reprotects the fault and indirect block pages before returning execution to the VM.

59



object
reference

...11  "class" = tagged pointer...00 

 class

 fields

indirect
block

memory
object

 pointer 

...00 

Figure 4.6 Node marking: indirect blocks. An indirect reference to a resident
persistent object is a pointer to a tagged forwarding pointer.

4.2.1.4 Object Faulting Summary

By preloading objects critical to the forward progress of computation, bytecodes execute

without residency checks, except on the receiver in message sends, and then only in the

case of full method lookup when a method cache miss occurs. The persistent VM must

still check the residency of objects it accesses directly whose residency is not guaranteed

by the constraints. For example, full method lookup must perform residency checks as it

ascends the class hierarchy, to ensure that the superclasses and their method dictionaries

are resident. Similarly, primitive methods (implemented directly in the VM) must perform

residency checks on any objects (excluding the receiver) they access directly.

4.2.2 Swizzling

The residency constraints described in Section 4.2.1.1 require that constrained references

be swizzled to contain direct pointers to their resident targets at the time their source object

first becomes resident as the result of a fault; if the targets are not yet resident then they also

become resident as a result of the fault. In contrast, an unconstrained reference is typically

represented in its unswizzled form (i.e., tagged PID or a pointer to a fault/indirect block),

60



regardless of the residency of its target. Nevertheless, when the target finally does become

resident as the result of a subsequent object fault, there is no reason why the unconstrained

reference should not be swizzled to point directly to it. Indeed, there may be a significant

performance advantage to swizzling even unconstrained references if they are traversed

frequently during execution.

One approach to swizzling unconstrained references is to avoid creating the indirection

inherent in an unswizzled reference to a resident object in the first place, by selectively

swizzling the fields of an object when it is first faulted: if a field contains a reference to an

object that is already resident then it is swizzled to a direct pointer. Unfortunately, this can

only ensure a direct pointer representation for fields containing references to objects that

are already resident at the time of the fault, or become resident as a result of the fault. The

remaining fields become eligible for swizzling only when their targets are made resident by

subsequent object faults. They can be swizzled only through active elimination of indirect

references.

While the garbage collector is one place where indirection can be eliminated, a more

aggressive approach may be beneficial: eliminate all sources of unswizzled references

when their target objects are first made resident. To eliminate indirect references in transient

objects the system can scan all objects in the transient space (including active stack frames),

swizzling any indirect references it finds. For persistent space a more focussed approach is

needed, since persistent space is typically much larger than transient space, making scanning

prohibitively expensive. The VM and run-time system maintain a remembered set [Ungar,

1984; Ungar, 1987] for each logical segment of persistent objects, recording all memory

locations in persistent space that contain unswizzled references for objects in the segment.

When an object is made resident, the locations recorded in its segment’s remembered set

are examined and swizzled. Thus, every indirect reference to an object is converted to a

direct pointer when that object is first made resident, either through scanning of transient

objects or using remembered sets.

61



Such aggressive swizzling would appear to be particularly important for the virtual

memory page trap implementation of node marking, because it will preempt further un-

necessary and expensive page traps on unswizzled references to objects that are already

resident.

4.2.3 The Write Barrier: Detecting and Logging Updates

The lightweight mechanisms used for detecting updates in this study are inspired by

solutions to the write barrier problem in garbage collection: the act of storing a pointer in an

object is noted in order to minimize the number of pointer locations examined during garbage

collection [Hosking et al., 1992]. Similarly, efficient checkpointing requires keeping track

of all updates to objects, to minimize the number of locations unswizzled when generating

the log (recall that a log record is generated only if there are differences between the new

version of an object and the original in the client buffer pool).

This study examines several implementations of the write barrier, including three ap-

proaches previously used in garbage collection and here now applied for the first time to the

problem of detecting and logging updates for resilience. Note that since the log consists of

difference information obtained by comparing old and new versions of objects, all schemes

end up generating exactly the same log information. The schemes vary mostly in the gran-

ularity of the update information they record, and hence in the amount of unswizzling and

comparison required to generate the log.

4.2.3.1 Object-Based Schemes

The first two schemes record updates at the logical level of objects. One approach is

to mark updated objects by setting a bit in the header of the object when it is modified.

To perform a checkpoint all cached objects must be scanned to find those objects that are

marked as updated. A marked object must be unswizzled and compared to its original in

the buffer pool to determine any differences that must be logged. The drawback of this

62



approach is the additional checkpoint overhead required to scan the cached objects to find

those that are marked.

To avoid scanning, the second scheme uses a remembered set [Ungar, 1984] to record

modified persistent objects. A checkpoint need only process the entries in the remembered

set to locate the objects that must be unswizzled and possibly logged. The remembered set

is implemented as a dynamic hash table.

So that the remembered set does not become too large, an inline filter is applied to

record only updates to persistent objects, as opposed to newly-created transient objects —

Smalltalk is a prodigious allocator, so the vast majority of updates are to transient objects.

This requires a check to see that the updated object is located in the separately managed

persistent area of the volatile heap, determined by taking the high bits of its address to

index a table that contains such information. If the updated object is indeed persistent then

a subroutine is invoked to hash the object’s pointer into the remembered set.

Remembered sets have the advantage of being both concise and accurate, at the cost of

filtering and hashing to keep the sets small — repeated updates to the same object result in

just one entry in the remembered set, but incur repeated overhead to filter and hash.

4.2.3.2 Card-Based Schemes

For small objects, the object-based schemes are ideal. However, updates to larger

objects may suffer from poor locality with respect to the object size, resulting in unnecessary

unswizzling and comparison upon checkpoint, bounded solely by the size of the object.

An alternative is to record updates based on fixed-size units of the virtual memory space,

by dividing the memory into aligned logical regions of size 2k bytes — the address of the

first byte in the region has k low bits zero. These regions are called cards after Sobalvarro

[1988]. Each card has a corresponding entry in a card table indicating whether the card

contains updated locations. Mapping an address to an entry in this table is simple: shift the

63



address right by k bits and use the result as an index into the table. Whenever an object is

modified, the corresponding card is dirtied.

One of the most attractive features of card marking is the simplicity of the write barrier.

Ignoring cache effects, the per-update overhead is constant. Keeping this overhead to a

minimum is highly desirable. By implementing the card table as a byte array (rather than

a bit map), and interpreting zero bytes as dirty entries and non-zero bytes as clean, a store

is recorded using only a shift, index, and byte store of zero [Wilson and Moher, 1989a;

Wilson and Moher, 1989b].5

The checkpoint operation scans only the dirty cards containing persistent objects, to

perform unswizzling and obtain differences for logging. Unswizzling requires locating

all pointers within the card. Moreover, the log records must be generated with respect to

the modified objects in the card, recording the object identifier and contiguous ranges of

modified bytes. Since the formats of the objects in the card are encoded in their object

headers, the header of the first object within a given card must be located to start the scan.

For this purpose, a table of card offsets parallel to the dirty card table records the location of

the last (highest address) object header within each card. Thus, given a card for scanning,

the header of the first object in the card can be found at the end of the last object in the

previous card.

Dirty cards are marked clean after scanning. To reduce the overhead of scanning,

contiguous dirty cards are scanned as a batch, running from the first to the last in one scan.

Also, the implementation takes great pains to avoid unnecessary memory accesses when

scanning the card table to locate a run of dirty cards, by loading an entire memory word of

the table at a time.

The size of the cards is an important factor influencing checkpoint costs, since large cards

mean fewer cards and smaller tables. However, larger cards imply unnecessary checkpoint

5Some modern RISC architectures either do not provide a byte store instruction, or implement it as a
read-modify-write word instruction. On such machines, it may be cheaper to code the read-modify-write
explicitly as a sequence of instructions, or even revert to a bit map implementation of the card table.

64



overhead to perform unswizzling and comparison of objects that are unmodified, but just

happen to lie in a dirty card. Thus, an interesting question arises as to whether there exists an

optimal card size which minimizes the sum of these competing overheads. The performance

evaluation of Chapter 5 answers this question for the program behaviors considered there.

4.2.3.3 Page-Protection Schemes

A variant of the card-based approach uses the hardware-supported page protection

primitives of the operating system to detect stores into clean cards. A card in this scheme

corresponds to a page of virtual memory. All clean pages are protected from writes. When

a write occurs to a protected page, the trap handler dirties the corresponding entry in the

card table and unprotects the page. Subsequent writes to the now dirty page incur no

extra overhead.6 Because of this, keeping the dirty page table as small as possible may

be more important than the overhead to dirty an entry in the page table. Thus, one might

prefer to implement the dirty page table as a bit table, reducing the table’s size by a factor

of eight. Here, we continue to use a byte table, for more direct comparison with the

corresponding-sized card scheme.

6An operating system could more efficiently supply the information needed in the page protection scheme
by offering appropriate calls to obtain the page dirty bits maintained by most memory management hardware
[Shaw, 1987].

65



66



CHAPTER 5

PERFORMANCE EVALUATION

Having described an architecture for persistence, and several realizations of the read

and write barrier mechanisms required to support that architecture, we now examine the

performance of the prototype implementation, for each implementation alternative.

5.1 Benchmarks

The performance evaluation draws on the OO1object operations benchmarks [Cattell and

Skeen, 1992] to compare the alternative implementation approaches. These benchmarks

are retrieval-oriented and operate on substantial data structures, although the benchmarks

themselves are simple, and so easily understood. Their execution patterns include phases

of intensive computation, so that memory residence is important, in particular contrast

to the on-line transaction processing style of computation, which involves only simple

accesses and updates. Moreover, though the OO1 benchmarks are relatively low-level, they

are sufficient for an exhaustive exploration of the behavior of our minimal read and write

barrier persistence mechanisms.

For higher-level benchmark operations, such as set-oriented queries or relational-style

operations, the reader is referred to the Hypermodel [Anderson et al., 1989] and OO7 [Carey

et al., 1993] benchmarks. Both of these use a richer database schema over which more

complicated operations are defined, though they also retain simple operations very similar

to those of OO1. There is little (if anything) to be gained by using these benchmarks in this

study of low-level persistence mechanisms.

67



5.1.1 Benchmark Database

The OO1 benchmark database consists of a collection of 20 000 part objects, indexed by

part numbers in the range 1 through 20 000, with exactly three connections from each part to

other parts. The connections are randomly selected to produce some locality of reference:

90% of the connections are to the “closest” 1% of parts, with the remainder being made to

any randomly chosen part. Closeness is defined as parts with the numerically closest part

numbers.

The part database and the benchmarks are implemented entirely in Smalltalk, including

the B-tree used to index the parts (source code is listed in Appendix A). Performance

measurements are gathered using a specially instrumented version of the Smalltalk virtual

machine. The instrumentation is kept constant across all implementation variants being

considered, to enable direct comparisons.

The Mneme database file, including the base Smalltalk virtual image as well as the

parts data, consumes 179 physical segments, for a total size of around 6MB. Each physical

segment is at least 32KB in size, although some may be larger since any Smalltalk object

larger than 32KB is allocated in its own private segment. There are on average 3.2 logical

segments per physical segment, of up to 255 objects each. Newly created objects are

clustered into segments only as they are encountered when unswizzling, using an essentially

breadth-first traversal similar to that of copying garbage collectors [Cheney, 1970]. The part

objects are 68 bytes in size (including the object header). The three outgoing connections

are stored directly in the part objects. The string fields associated with each part and

connection are represented by references to separate Smalltalk objects of 24 bytes each.

Similarly, a part’s incoming connections are represented as a separate Smalltalk Array

object containing references to the parts that are the source of each incoming connection.

The B-tree index for the 20 000 parts consumes around 165KB.

68



5.1.2 Benchmark Operations

The OO1 benchmarks comprise three separate operations and measure response time

for execution of each operation. The first two operations are read-only, leaving the perma-

nent database untouched. Being retrieval-oriented, and involving no modification to the

database, they are good measures for comparing object faulting schemes. They operate as

follows:

� Lookup fetches 1 000 randomly chosen parts from the database. A null procedure is
invoked for each part, taking as its arguments the x, y, and type fields of the part.

� Traversal fetches all parts connected to a randomly chosen part, or to any part
connected to it, up to seven hops (for a total of 3 280 parts, with possible duplicates).
Similarly to the Lookup benchmark, a null procedure is invoked for each part, taking
as its arguments the x, y, and type fields of the part.1

The third operation requires updating the permanent database, and so is more appropriate

for comparing update detection schemes for resilience:

� Insert allocates 100 new parts in the database, each with three connections to ran-
domly selected parts as described in Section 5.1.1 (i.e., applying the same rules for
locality of reference). The index structure must be updated, and the entire set of
changes committed to disk.

Although this operation is a reasonable measure of update overhead, it is hampered by a

lack of control over the number and distribution of the locations modified, and its mixing

of updates to parts and the index. A more controlled benchmark is:

� Update [White and DeWitt, 1992] operates in the same way as the Traversal measure,
but instead of calling a null procedure it performs a simple update to each part object
encountered, with some fixed probability. The update consists of incrementing the x
and y scalar integer fields of the part. All changes must be committed to disk.

The probability of update can vary from one run to the next to change the frequency and

density of updates.

1OO1 also specifies a reverse Traversal operation, swapping “from” and “to” directions. This reverse
Traversal operation is of minimal practical use because the random nature of connections means that the
number of “from” connections varies among the parts — while every part has three outgoing connections,
the number of incoming connections varies randomly. Thus, different iterations of the reverse Traversal vary
randomly in the number of objects they traverse, and so the amount of work they perform.

69



These benchmarks are intended to be representative of the data operations in many

engineering applications. The Lookup benchmark emphasizes selective retrieval of objects

based on their attributes, while the Traversal benchmark illuminates the cost of raw pointer

traversal. The Update variant measures the costs of modifying objects and making those

changes permanent. Additionally, the Insert benchmark measures both update overhead

and the cost of creating new persistent objects.

OO1 calls for each benchmark measure to be iterated ten times, the first when the system

is cold, with none of the database cached (apart from any schema or system information

necessary to initialize the system). Thus, before each run of ten iterations we execute a

“chill” program on the client to read a 32MB file from the server, scanning first forwards

then backwards; this flushes the operating system kernel buffer cache on both client and

server, so that the first iteration is truly cold. Each successive iteration accesses a different

set of random parts. Still, there may be some overlap in the parts accessed by different

iterations, in which case implementations that cache data from one iteration to the next will

exhibit a warming trend, with improved performance for later warm iterations that access

data cached by earlier iterations.

In addition to the ten cold through warm iterations, it is useful to measure the elapsed

time for hot iterations of the Traversal and Update benchmarks, by beginning each hot

iteration at the same initial part used in the last of the warm iterations. The hot runs

are guaranteed to traverse only resident objects, and so are free of any overheads due to

swizzling and retrieval of non-resident objects.

5.2 Experimental Setup

The client machine on which the experiments were run is a SPARCstation 2 (Cy-

press Semiconductor CY7C601 integer unit clocked at 40MHz) running SunOS 4.1.3.2 The

SPARCstation 2 has a 64KB unified cache (instruction and data) with a line size of 32 bytes.

2SPARCstation is a trademark of SPARC International, licensed exclusively to Sun Microsystems. SunOS is
a trademark of Sun Microsystems.

70



Read misses cost 24-25 cycles. On a hit, writes update both cache and memory — a 16-byte

write buffer reduces this overhead, though if the buffer is full the processor will stall for

4-5 cycles for one slow memory cycle to complete. Write misses invalidate, but do not

allocate, the corresponding cache line.

The system has 32MB of main memory (DRAM), sufficient for the entire benchmark

database to be cached in memory. Thus, buffer management policies can be ignored when

interpreting the experimental results. The log file is written locally to an internal SUN0424

SCSI disk (414 360KB unformatted capacity, 2.5-3.0MB/s peak data rate,�2.9MB/s sustained

data rate,3 14ms average seek time). The log records are buffered by Mneme, and written

as a batch using calls to write, followed immediately by a call to fsync to force the log

data to the local disk before the checkpoint completes. Thus, checkpoints break down into

two phases (unswizzling and writing), which are measured separately.

The Smalltalk virtual machine is compiled with the GNU C compiler (gcc) version 2.5.7

at optimization level 2 (option -O2), and all libraries are linked statically (gcc link option

-static). The benchmarks were run with the client in single-user mode and disconnected

from the network, to minimize interference from network traffic, virtual memory paging,

and other operating system activity.

The database is stored locally (i.e., the client is its own Mneme database server), for the

simple reason that the experimental apparatus was thus easier to obtain and control, and also

because results for a remote database would differ only in the network latency for retrieval

of Mneme physical segments from a remote server’s disk. Local disk latencies turn out

to be sufficiently high to demonstrate the caching effects inherent in the implementation.

The database resides on an external SUN1.3G SCSI disk (1 336 200KB unformatted capacity,

3.25-4.5MB/s peak data rate, �3.5MB/s sustained data rate, 11ms average seek time).

3The data rate varies because the disk has a constant linear density for all tracks, with outer tracks yielding
a faster bit rate than inner tracks. Peak data rate is the data rate possible for a single sector. Sustained data rate
is calculated as the number of 512-byte sectors per track multiplied by the angular velocity — this number is
only approximate, since the number of sectors per track decreases from outer to inner tracks.

71



Elapsed time for the execution of the benchmark operations is measured using the SunOS

system call gettimeofday, which directly accesses the system hardware clock. On the

SPARCstation 2 the resolution provided by gettimeofday is 1�s. This fine-grained ac-

curacy permits the separate phases of execution (running, swizzling, disk retrieval, logging,

etc.) to be measured separately with minimal disturbance of the results due to measurement

overheads. All times are reported in seconds (unless stated otherwise), and exclude the

time to initialize the Smalltalk system prior to beginning the benchmark.

A benchmark run consists of the ten cold through warm iterations, plus a single hot

iteration. To guarantee repeatability, the permanent database is kept entirely static (check-

pointed updates are written only to the log, never propagated to the permanent database) so

that different runs are always presented with the same physical database. Moreover, every

run begins with the same random number seed, so the nth iteration of any given benchmark

run always accesses the same parts as the nth iteration within any other benchmark run.

In other words, although a different set of random parts are accessed from one cold/warm

iteration to the next within a run, corresponding iterations across runs always access the

same set of parts, so corresponding iterations from different runs are directly comparable.

Nevertheless, there may be other uncontrollable variations in system behavior from one

run to the next. For example, the disk state (track and block position of the disk read/write

arm) may influence read performance from one run to the next. To get an idea of the

significance of this variation in the comparison of different implementations we repeat the

runs for each implementation and calculate the results as 90% confidence intervals for mean

elapsed time. The confidence interval is a measure of the repeatability of the experiments —

small confidence intervals indicate a high degree of repeatability and reveal the significance

of differences in the experimental results among the alternative implementations.

72



As well as measuring elapsed time for the benchmarks, the runs were simulated using

Shade (part of Sun’s SPARC Performance Analysis Tools),4 to obtain precise execution

profiles for each run. Using modified versions of Shade’s tools for cache simulation

(cachesim5) and instruction profiling (spixcounts), this yielded precise counts of

cache misses (for the SPARCstation 2 cache configuration described above) and execution

frequency, per instruction address.

5.2.1 The Read Barrier: Object Faulting

The object faulting experiments use the Lookup and Traversal benchmarks to compare

several versions of the virtual machine, varying different parameters of the implementation:

� Representation of references to non-resident objects: this dictates the specific code
for residency checks:

– tagged PIDs (ID)

– pointers to tagged fault blocks (FB)

– pointers to page-protected fault blocks (trap)

� Faulting and swizzling: the number of objects made resident (and swizzled) per fault:

– single object: target of the fault (obj)

– logical segment: target of the fault along with all the objects in its LSEG (LSEG)

– physical segment: target of the fault along with all the objects in its PSEG (PSEG)

� Indirection elimination: the time when unconstrained references are converted to
point directly to their resident target object:

– never: this makes sense only for ID schemes (the other schemes obtain a pointer
to a fault/indirect block when swizzling, which directly encodes whether the
target object is resident, whereupon it can be swizzled to a direct pointer)
(no-bypass)

– when the reference is first swizzled: references are converted to direct pointers
as they are encountered during swizzling and only if their target object is already
resident (swizzle-bypass)

– when the reference is first swizzled (if the target is already resident); otherwise,
when the target is first made resident as the result of a fault (fault-bypass)

4Shade is freely available for research use under license from Sun. Contact address is: Bob Cmelik,
Sun Microsystems Laboratories, Inc., 2550 Garcia Avenue, MS 29-225, Mountain View, CA 94043, (415)
336-1709, rfc@sun.com.

73



Table 5.1 Schemes compared in object faulting experiments

Scheme Unswizzled references Fault granularity When to bypass

non-persistent direct pointer — —

ID, no-bypass, obj tagged PID object never
ID, no-bypass, LSEG " LSEG "
ID, no-bypass, PSEG " PSEG "

ID, swizzle-bypass, obj " object swizzling
ID, swizzle-bypass, LSEG " LSEG "
ID, swizzle-bypass, PSEG " PSEG "

FB, swizzle-bypass, obj pointer to tagged
fault/indirect block

object "

FB, swizzle-bypass, LSEG " LSEG "
FB, swizzle-bypass, PSEG " PSEG "

ID, fault-bypass, obj tagged PID object swizzling/faulting
ID, fault-bypass, LSEG " LSEG "
ID, fault-bypass, PSEG " PSEG "

FB, fault-bypass, obj pointer to tagged
fault/indirect block

object "

FB, fault-bypass, LSEG " LSEG "
FB, fault-bypass, PSEG " PSEG "

trap, fault-bypass, obj pointer to page-protected
fault/indirect block

object "

trap, fault-bypass, LSEG " LSEG "
trap, fault-bypass, PSEG " PSEG "

As a basis for comparison, the non-persistent virtual machine was run against the

memory-resident database (non-persistent). Table 5.1 enumerates the variants. Note that

there is no trap,swizzle-bypass variant — trap overhead is so high that indirect references

must be bypassed when their target is made resident for performance to be anywhere near

acceptable.

5.2.2 The Write Barrier: Detecting and Logging Updates

For the experiments comparing the alternative update detection schemes for resilience,

the object fault handling scheme is kept fixed (FB,LSEG,fault-bypass), while the mechanism

for tracking updates varies. The experiments use the Insert and Update benchmarks,

with update probabilities of 0.00, 0.05, 0.10, 0.15, 0.20, 0.50, and 1.00, to measure the

performance of object marking (objects), remembered sets (remsets), access-protected

74



Table 5.2 Schemes compared in resilience experiments

Scheme On update On checkpoint

scan do nothing scan all objects
objects set bit in header of changed object scan for changed objects
remsets enter object reference into update set iterate over update set
cards-n dirty card table entry scan dirty table for dirty cards

(process objects and fragments in cards)
pages dirty and unprotect page scan dirty table for dirty pages

(process objects and fragments in pages)
All schemes write only differences, for minimal log volume.

pages (pages), and card marking (cards-n, card size n 2 f16, 64, 256, 1024, 4096g bytes).

As a “worst-case” scenario, we also include a scheme (scan) which does not record updates

at all, but simply scans the entire set of resident persistent objects, and compares each one

with its unmodified copy in the Mneme buffers. The page size on the SPARCstation 2 is

4096 bytes. The update detection schemes are summarized in Table 5.2. In addition to the

cold through warm and hot iterations, which perform one update traversal per checkpoint,

we also measure the performance for longer transactions, varying the number of hot update

traversals performed as a single transaction. This allows us to derive an estimate of the

run-time overheads (excluding swizzling and disk accesses for retrieval) for the different

update detection schemes. We measure the total elapsed time for 5, 10, 15, 20, 50, 100, and

500 iterations per checkpoint.

5.3 Results: Object Faulting

The first set of results are for the Lookup and Traversal benchmarks, which compare

object faulting alternatives, including alternatives for the representation of references to

non-resident objects, alternative faulting and swizzling policies, and whether indirections

are eliminated. The graphs presented here give total elapsed time (in seconds) for execution

of the benchmarks. Detailed breakdowns of the total elapsed time by phases of execution

of each benchmark appear in Appendix B.

75



5.3.1 Lookup

The full set of results for the Lookup benchmark are plotted in Figure 5.1. Each

graph shows total elapsed time for execution of the benchmark from cold through warm

to hot iterations, varying just one of the implementation variables; i.e., there are plots for

each of the fault granularities (obj/LSEG/PSEG) for each possible representation/swizzling

combination (ID/FB/trap, no-/swizzle-/fault-bypass). The non-persistent results are also

plotted as a baseline measure of the benchmark’s pure running time (i.e., time spent only

in the interpreter executing bytecodes). Note the difference in scale for the fault-bypass

variants, which incur extra overhead at each fault to eliminate indirect references to resident

objects. Also, results for the fault-bypass,obj variants are omitted from the plots because

of their poor performance for cold through warm iterations — since they make just one

object resident per fault, object faults are so frequent that the high overhead to eliminate

indirections at every fault dominates execution; even for the warm iteration the obj schemes

still experience object faults (cf. Figures B.1(d)-(f), p. 134).

All variations exhibit a clear warming trend as the system caches more and more objects

from one iteration to the next, requiring successively fewer disk accesses. The warmup is

almost immediate, for all schemes, since the first cold Lookup iteration touches enough of

the database to bring most of the database’s physical segments into Mneme’s client buffers,

whence objects can be swizzled very quickly. This behavior is intrinsic to Lookup since it

randomly touches 1000 unrelated objects with each iteration. It also illustrates the value of

clustering objects into segments for efficient transfer from disk. Taking the LOOM approach

of transferring an object at a time from disk would require disk activity for every object

swizzled, so the warming trend would be much less immediate.

76



el
ap

se
d

tim
e

(s
)

0

1

2

3

4

5

6

7

cold 2 3 4 5 6 7 8 9 warm hot
iteration

ID,no-bypass,obj
ID,no-bypass,LSEG
ID,no-bypass,PSEG

non-persistent

(a) ID,no-bypass

0

1

2

3

4

5

6

7

cold 2 3 4 5 6 7 8 9 warm hot
iteration

ID,swizzle-bypass,obj
ID,swizzle-bypass,LSEG
ID,swizzle-bypass,PSEG

non-persistent

(b) ID,swizzle-bypass

0

1

2

3

4

5

6

7

cold 2 3 4 5 6 7 8 9 warm hot
iteration

FB,swizzle-bypass,obj
FB,swizzle-bypass,LSEG
FB,swizzle-bypass,PSEG

non-persistent

(c) FB,swizzle-bypass

el
ap

se
d

tim
e

(s
)

0

2

4

6

8

10

12

14

cold 2 3 4 5 6 7 8 9 warm hot
iteration

ID,fault-bypass,LSEG
ID,fault-bypass,PSEG

non-persistent

(d) ID,fault-bypass

0

2

4

6

8

10

12

14

cold 2 3 4 5 6 7 8 9 warm hot
iteration

FB,fault-bypass,LSEG
FB,fault-bypass,PSEG

non-persistent

(e) FB,fault-bypass

0

2

4

6

8

10

12

14

cold 2 3 4 5 6 7 8 9 warm hot
iteration

trap,fault-bypass,LSEG
trap,fault-bypass,PSEG

non-persistent

(f) trap,fault-bypass

Figure 5.1 Lookup, by object faulting scheme

77



Ignoring the issue of indirection elimination, for cold through warm iterations there is

little difference among the alternative representations for references to non-resident objects

(cf. Figures 5.1(a)-(c) and (d)-(f)), except that the trap,fault-bypass schemes have higher

overhead than the ID/FB,fault-bypass schemes because of the high cost of fielding page

protection violations and managing page protections. All approaches have performance

close to non-persistent at the hot iteration (relative to the colder iterations), indicating that

overheads for disk access and swizzling dominate cold through warm execution, while the

residency constraints eliminate most of the overhead for explicit residency checks.

The key cold/warm/hot results (with 90% confidence intervals) are summarized in

Table 5.3. We now examine each of these separately in more detail.

5.3.1.1 Cold Lookup

The cold iteration is dominated by disk retrieval (elapsed time is an order of magnitude

greater than for non-persistent), so the best overall cold performance is given by the

ID,no-bypass,obj scheme, which retrieves the minimal set of objects required to complete

the iteration and swizzles them simply by copying them into the application memory space

without converting them in any way. Schemes that swizzle more eagerly require corre-

spondingly higher overhead on retrieval: swizzle-bypass to bypass indirections while

swizzling and fault-bypass to eliminate indirections at every fault. Similarly, schemes that

fault larger granularities incur higher overhead because more objects must be copied. Nev-

ertheless, whereas smaller granularities mean overall better performance for the no-bypass

and swizzle-bypass schemes, faulting larger granularities yields better performance for

the fault-bypass schemes because it results in fewer object faults; thus the high per-fault

overhead of indirection elimination occurs less frequently. These results are highlighted by

the boldface figures in the cold column of Table 5.3.

78



Table 5.3 Lookup: key cold/warm/hot results

Scheme Cold Warm Hot
elapsed time (s) elapsed time (s) elapsed time (s) instruction

references
instruction

misses
data read
misses

data write
misses

non-persistent 0.2756�90%0.0001 0.2852�90%0.0001 0.2820�90%0.0001 5633352 25654 42945 14467

ID, no-bypass, obj 5.05 �90%0.06 0.542 �90%0.002 0.3501�90%0.0001 7492288 27412 50398 1539
ID, no-bypass, LSEG 5.32 �90%0.03 0.379 �90%0.001 0.3407�90%0.0001 7487326 10792 54687 1150
ID, no-bypass, PSEG 5.89 �90%0.02 0.376 �90%0.002 0.3284�90%0.0001 7499011 11813 34277 202

ID, swizzle-bypass, obj 5.13 �90%0.03 0.5511�90%0.0007 0.3522�90%0.0001 7492288 32135 49204 1539
ID, swizzle-bypass, LSEG 5.85 �90%0.05 0.3635�90%0.0005 0.3275�90%0.0001 7052368 17385 50101 1150
ID, swizzle-bypass, PSEG 6.34 �90%0.02 0.3403�90%0.0008 0.2998�90%0.0001 6600871 17220 31014 200

FB, swizzle-bypass, obj 5.244 �90%0.006 0.5406�90%0.0008 0.3340�90%0.0002 6921155 14881 49706 8879
FB, swizzle-bypass, LSEG 5.73 �90%0.02 0.350 �90%0.001 0.3126�90%0.0001 6588506 9392 46065 6178
FB, swizzle-bypass, PSEG 6.28 �90%0.02 0.350 �90%0.002 0.3196�90%0.0002 6416510 6770 68109 4700

ID, fault-bypass, obj 106.42 �90%0.04 14.770 �90%0.003 0.3191�90%0.0001 5637346 54258 66643 456
ID, fault-bypass, LSEG 10.86 �90%0.02 0.341 �90%0.001 0.2583�90%0.0001 5632351 11452 22690 1077
ID, fault-bypass, PSEG 9.74 �90%0.03 0.332 �90%0.002 0.2567�90%0.0001 5637346 8482 22397 94

FB, fault-bypass, obj 97.22 �90%0.01 13.772 �90%0.001 0.2542�90%0.0001 5772880 2725 17457 452
FB, fault-bypass, LSEG 10.43 �90%0.02 0.345 �90%0.002 0.2592�90%0.0001 5723937 6380 24690 1077
FB, fault-bypass, PSEG 9.40 �90%0.02 0.3320�90%0.0007 0.2559�90%0.0002 5642352 8259 22215 94

trap, fault-bypass, obj 138.22 �90%0.03 18.844 �90%0.004 0.2559�90%0.0001 N/A N/A N/A N/A
trap, fault-bypass, LSEG 13.072 �90%0.008 0.374 �90%0.002 0.2600�90%0.0001 N/A N/A N/A N/A
trap, fault-bypass, PSEG 11.09 �90%0.02 0.360 �90%0.001 0.2599�90%0.0001 N/A N/A N/A N/A

Boldface values are the best cold/warm/hot performance within each group of object faulting schemes.

79



5.3.1.2 Warm Lookup

In contrast to the cold results, eagerness in faulting and swizzling in the cooler iterations

pays off at warmer iterations, since fewer unswizzled references (each requiring an ID

lookup, indirection bypass, or object fault) are encountered. Thus, the best warm Lookup

performance is for the fault-bypass,PSEG schemes, except that the trap approach suffers

from the high cost to field page protection violations to trigger object faults and to manage

page protections (there are sufficient faults for these overheads to be apparent). The boldface

figures in the warm column of Table 5.3 highlight this trend favoring eager faulting and

swizzling for improved warm Lookup performance.

5.3.1.3 Hot Lookup

The hot Lookup results are also summarized in Table 5.3. Similarly to the warm

results, the schemes are essentially ranked by their eagerness to fault and swizzle, although

the elapsed time results are slightly obscured by method lookup cache and underlying

hardware cache effects — different fault granularities result in a different object layout in

virtual memory, so cache footprints vary among the schemes. For this reason, the table

also lists the number of instruction references, instruction cache misses, and data read and

write misses, incurred by each of the schemes for the hot Lookup iteration.5 The best hot

Lookup performance for each faulting scheme is given in boldface.

The ID,no-bypass schemes all have comparable cost in terms of number of instructions

executed since they do no swizzling of unconstrained references — differences are a result

of variable method lookup cache behavior. Thus, most references encountered are in the

form of tagged IDs, requiring expensive lookup to obtain a pointer to their targets, and fault

5Unfortunately, Shade results for the trap scheme are not available (N/A), since Shade cannot simulate
our trap handler correctly: the handler relies on precise knowledge of the contents of particular registers at
the time of the trap, in order to restart the trapping instruction with the address of the newly-resident object;
Shade does not map these registers directly, so our trap handler does not work properly under Shade.

80



granularity has little intrinsic impact on performance — ID,no-bypass,PSEG is best (by

chance) only because it incurs fewer hardware cache misses.

The swizzle-bypass schemes are ranked by faulting granularity, since faulting more

objects at a time reduces the number of locations containing tagged IDs or pointers to

fault blocks. Still, the FB,swizzle-bypass schemes require fewer instructions (if not less

time because of variations in cache behavior) than the corresponding ID,swizzle-bypass

schemes — for the remaining unswizzled references it is cheaper to dereference an indirect

block than to look up an ID. Of the ID,swizzle-bypass schemes, ID,swizzle-bypass,PSEG

is best since it leaves fewer references in their unswizzled tagged ID format. Of the

FB,swizzle-bypass schemes, FB,swizzle-bypass,LSEG is better only because it has a

better cache footprint than the PSEG variant, which executes fewer instructions because it

encounters fewer indirect blocks.

As expected, overall best hot Lookup performance is achieved for the fault-bypass

schemes since they convert all references to direct pointers — unswizzled references to

resident objects are never encountered. The improvement in performance for the fault-

bypass schemes over those which bypass indirections less eagerly is around 20% —

significant enough for applications dealing with large amounts of hot data to pay the up-

front cost of indirection elimination. In fact, the elapsed time executions for these schemes

are mostly better than for non-persistent, once again because of improved cache behavior,

and despite the fact that the software variants require additional overhead for the read

barrier. This result illustrates the extreme importance of our residency constraints, since

they go most of the way to eliminating software residency checks, so the overhead for the

read barrier is negligible. Method lookup cache and hardware cache variations for different

fault granularities account for the remaining differences in performance within each of the

ID-, FB-, and trap- fault-bypass object faulting variants.

81



5.3.1.4 Running Time Overheads

Lastly, to get some sense of the running time cost of the page traps and software-

mediated object faults, we obtain linear regression fits of the running time (time spent in

the interpreter actually executing bytecodes as opposed to retrieval, swizzling, or bypassing

indirections) versus the number of faults occurring for each iteration of the benchmark. The

variables and coefficients for the regression equation y = a + bx are:

y = running time (excluding swizzling and other fault handling overheads);

a = base running time overhead per iteration;

b = incremental running time overhead per fault;

x = number of faults.

The fitted coefficients (including 90% confidence intervals) appear in Table 5.4, along

with the sample correlation coefficient. The b coefficient (overhead per fault) is a measure

of the number of seconds required to get in and out of the object fault handler, either

through software checks to detect faults or through a protection trap handler. Correlations

are best for those schemes where objects faults occur frequently enough, or detecting a fault

is sufficiently expensive, to have noticeable impact on running time performance. Where

other effects have more impact, the correlations are not so good.

The results for the trap schemes are of particular interest, since they reveal the very

high cost to field page protection traps in user-mode. In comparison, the overheads for

software-mediated object faulting are at least an order of magnitude smaller. Note that

the overhead to field page protection traps like this, interspersed throughout a program’s

normal execution, is likely to be significantly higher than that to field page protection traps

in a tight loop, since the operating system trap handling code and data structures needed to

service the trap may not be in the hardware caches. Indeed, in an earlier study Hosking and

Moss [1993] show that fielding interspersed traps like this can cost an order of magnitude

more than traps performed in a tight loop.

82



Table 5.4 Lookup: fault detection overheads

Scheme Base running
time (s)

Overhead
per fault (�s)

sample
correlation
coefficient

ID, no-bypass, obj 0.37 �90%0.02 50�90% 10 0.9469
ID, no-bypass, LSEG 0.344 �90%0.005 200�90% 100 0.7862
ID, no-bypass, PSEG 0.340 �90%0.007 90�90% 200 0.2310

ID, swizzle-bypass, obj 0.364 �90%0.008 48�90% 4 0.9904
ID, swizzle-bypass, LSEG 0.328 �90%0.006 200�90% 100 0.7791
ID, swizzle-bypass, PSEG 0.307 �90%0.006 100�90% 200 0.3564

FB, swizzle-bypass, obj 0.348 �90%0.006 57�90% 3 0.9952
FB, swizzle-bypass, LSEG 0.32 �90%0.01 300�90% 200 0.6607
FB, swizzle-bypass, PSEG 0.309 �90%0.004 80�90% 100 0.3431

ID, fault-bypass, obj 0.36 �90%0.02 110�90% 10 0.9884
ID, fault-bypass, LSEG 0.261 �90%0.004 280�90% 80 0.9144
ID, fault-bypass, PSEG 0.267 �90%0.008 100�90% 300 0.2632

FB, fault-bypass, obj 0.30 �90%0.02 124�90% 9 0.9926
FB, fault-bypass, LSEG 0.258 �90%0.002 260�90% 40 0.9708
FB, fault-bypass, PSEG 0.2570�90%0.0006 170�90% 20 0.9804

trap, fault-bypass, obj 0.9 �90%0.5 8300�90% 200 0.9989
trap, fault-bypass, LSEG 0.27 �90%0.01 8800�90% 200 0.9992
trap, fault-bypass, PSEG 0.28 �90%0.02 9000�90% 600 0.9944

83



5.3.2 Traversal

The full set of results for the Traversal benchmark are plotted in Figure 5.2, omitting

those for fault-bypass,obj due to their poor performance (cf. Figures B.4(d)-(f), p. 137).

The warming trend is slower than for Lookup, despite the fact that each iteration

accesses more parts. This is due to the locality of references encoded in the connections

between parts, which has been replicated in the clustering used to group objects into physical

segments. Thus, traversals mostly touch parts whose physical segments are already resident

in Mneme’s client buffers, with only a few connection traversals needing to be serviced

by a disk access. When faults do occur, they signal the traversal entering a previously

unvisited region of the database, requiring a burst of retrieval activity to fetch a cluster

of “strongly-connected” parts. For this reason, the elapsed time for a Traversal does not

necessarily decrease from one iteration to the next (nominally warmer) iteration, since

subsequent iterations visit a different random set of parts, of which only a few may have

been made resident in preceding iterations. This behavior makes the tradeoffs in swizzling

and fault granularity more distinct.

Again, we summarize the key cold/warm/hot results (with 90% confidence intervals) in

Table 5.5, and discuss each separately.

5.3.2.1 Cold Traversal

The cold results are similar to those for Lookup. Eager swizzling and larger-granularity

faulting incur higher overhead up front for retrieval, although the frequency of object faults

(and hence indirection elimination) impact performance most for the fault-bypass schemes.

Once again, best cold Traversal performance occurs for the ID,no-bypass,obj scheme.

84



el
ap

se
d

tim
e

(s
)

0

0.5

1

1.5

2

2.5

3

cold 2 3 4 5 6 7 8 9 warm hot
iteration

ID,no-bypass,obj
ID,no-bypass,LSEG
ID,no-bypass,PSEG

non-persistent

(a) ID,no-bypass

0

0.5

1

1.5

2

2.5

3

cold 2 3 4 5 6 7 8 9 warm hot
iteration

ID,swizzle-bypass,obj
ID,swizzle-bypass,LSEG
ID,swizzle-bypass,PSEG

non-persistent

(b) ID,swizzle-bypass

0

0.5

1

1.5

2

2.5

3

cold 2 3 4 5 6 7 8 9 warm hot
iteration

FB,swizzle-bypass,obj
FB,swizzle-bypass,LSEG
FB,swizzle-bypass,PSEG

non-persistent

(c) FB,swizzle-bypass

el
ap

se
d

tim
e

(s
)

0

1

2

3

4

5

6

cold 2 3 4 5 6 7 8 9 warm hot
iteration

ID,fault-bypass,LSEG
ID,fault-bypass,PSEG

non-persistent

(d) ID,fault-bypass

0

1

2

3

4

5

6

cold 2 3 4 5 6 7 8 9 warm hot
iteration

FB,fault-bypass,LSEG
FB,fault-bypass,PSEG

non-persistent

(e) FB,fault-bypass

0

1

2

3

4

5

6

cold 2 3 4 5 6 7 8 9 warm hot
iteration

trap,fault-bypass,LSEG
trap,fault-bypass,PSEG

non-persistent

(f) trap,fault-bypass

Figure 5.2 Traversal, by object faulting scheme

85



5.3.2.2 Warm Traversal

Unlike the Lookup benchmark, Traversal requires significant numbers of object faults

even at the warm iteration. Thus, the overhead to eliminate indirections is still relevant to

the warm Lookup performance of the fault-bypass schemes, which do not perform as well

as ID,swizzle-bypass,PSEG which is best overall.

5.3.2.3 Hot Traversal

Hot system performance is highlighted even more by the Traversal benchmark, since it

is dominated by raw pointer traversal overheads much more than Lookup (which also incor-

porates the relatively fixed cost of the B-tree lookup). Once again, eliminating unswizzled

references (fault-bypass) yields the best overall performance (around 15% improvement

over other schemes), since all references are direct pointers, so the traversal can proceed at

full speed. Interestingly, faulting one object at a time (obj) gives best performance across

almost all object faulting variants (boldface), because of the improved locality of reference

obtained by object-at-a-time placement: “strongly-connected” objects are placed close to-

gether in virtual memory, yielding improved hardware cache locality. The exception is for

FB,swizzle-bypass, where the additional overhead due to cache misses is outweighed by

the reduction in instruction cycles to bypass indirect blocks for LSEG over obj, so their

elapsed times are much the same (52.5ms and 52.6ms respectively).

86



Table 5.5 Traversal: key cold/warm/hot results

Scheme Cold Warm Hot
elapsed time (s) elapsed time (s) elapsed time (s) instruction

references
instruction

misses
data read
misses

data write
misses

non-persistent 0.05563�90%0.00007 0.05553�90%0.00007 0.05465�90%0.00004 1016219 6983 9109 50

ID, no-bypass, obj 1.693 �90%0.005 0.2157 �90%0.0007 0.0566 �90%0.0002 1303503 691 4263 99
ID, no-bypass, LSEG 2.08 �90%0.01 0.1479 �90%0.0007 0.0651 �90%0.0003 1303507 6955 9708 125
ID, no-bypass, PSEG 2.28 �90%0.01 0.1131 �90%0.0009 0.0655 �90%0.0002 1303593 7083 10584 323

ID, swizzle-bypass, obj 1.705 �90%0.009 0.2169 �90%0.0009 0.0532 �90%0.0001 1214100 493 3974 95
ID, swizzle-bypass, LSEG 2.27 �90%0.01 0.1508 �90%0.0007 0.0561 �90%0.0001 1059098 6907 9039 122
ID, swizzle-bypass, PSEG 2.508 �90%0.009 0.1110 �90%0.0006 0.0557 �90%0.0002 1039126 6823 9361 271

FB, swizzle-bypass, obj 1.747 �90%0.004 0.2136 �90%0.002 0.0526 �90%0.0001 1127224 497 6154 538
FB, swizzle-bypass, LSEG 2.39 �90%0.01 0.1491 �90%0.0005 0.0525 �90%0.0002 1036461 4717 7198 101
FB, swizzle-bypass, PSEG 2.537 �90%0.009 0.1180 �90%0.0009 0.05533�90%0.00003 1027172 6866 9445 251

ID, fault-bypass, obj 17.521 �90%0.006 9.402 �90%0.001 0.04590�90%0.00008 1016224 255 2445 83
ID, fault-bypass, LSEG 4.251 �90%0.003 0.2305 �90%0.0006 0.05441�90%0.00008 1016219 6870 9033 76
ID, fault-bypass, PSEG 3.93 �90%0.01 0.1318 �90%0.0006 0.05452�90%0.00008 1016224 6771 8969 230

FB, fault-bypass, obj 16.632 �90%0.005 8.9044 �90%0.0007 0.04631�90%0.00006 1032629 274 2392 79
FB, fault-bypass, LSEG 4.18 �90%0.01 0.244 �90%0.001 0.0547 �90%0.0003 1016230 6857 9016 81
FB, fault-bypass, PSEG 3.90 �90%0.01 0.136 �90%0.002 0.05456�90%0.00005 1016230 6785 8957 234

trap, fault-bypass, obj 21.42 �90%0.01 14.15 �90%0.01 0.0465 �90%0.0002 N/A N/A N/A N/A
trap, fault-bypass, LSEG 5.224 �90%0.006 0.3010 �90%0.0007 0.05492�90%0.00003 N/A N/A N/A N/A
trap, fault-bypass, PSEG 4.651 �90%0.009 0.162 �90%0.002 0.0552 �90%0.0002 N/A N/A N/A N/A

Boldface values are the best cold/warm/hot performance within each group of object faulting schemes.

87



Table 5.6 Traversal: fault detection overheads

Scheme Base running
time (s)

Overhead
per fault (�s)

sample
correlation
coefficient

ID, no-bypass, obj 0.058 �90%0.002 52�90% 2 0.9970
ID, no-bypass, LSEG 0.0664�90%0.0008 160�90% 30 0.9610
ID, no-bypass, PSEG 0.0668�90%0.0006 170�90% 40 0.9215

ID, swizzle-bypass, obj 0.054 �90%0.002 55�90% 2 0.9981
ID, swizzle-bypass, LSEG 0.0577�90%0.0009 160�90% 30 0.9455
ID, swizzle-bypass, PSEG 0.0572�90%0.0008 170�90% 60 0.8844

FB, swizzle-bypass, obj 0.055 �90%0.002 54�90% 3 0.9964
FB, swizzle-bypass, LSEG 0.056 �90%0.002 190�90% 60 0.8989
FB, swizzle-bypass, PSEG 0.0571�90%0.0007 180�90% 50 0.9233

ID, fault-bypass, obj 0.0470�90%0.0008 102�90% 1 0.9999
ID, fault-bypass, LSEG 0.0554�90%0.0004 140�90% 10 0.9867
ID, fault-bypass, PSEG 0.0559�90%0.0005 140�90% 40 0.9203

FB, fault-bypass, obj 0.049 �90%0.002 106�90% 3 0.9992
FB, fault-bypass, LSEG 0.0555�90%0.0004 140�90% 10 0.9880
FB, fault-bypass, PSEG 0.0560�90%0.0005 140�90% 40 0.9236

trap, fault-bypass, obj 0.7 �90%1.6 7000�90% 2000 0.8995
trap, fault-bypass, LSEG 0.07 �90%0.01 8300�90% 500 0.9956
trap, fault-bypass, PSEG 0.062 �90%0.004 8800�90% 300 0.9984

5.3.2.4 Running Time Overheads

Because Traversal performance is so strongly correlated with the overhead of raw

pointer traversal, the regression fits to measure object faulting overheads are all excellent

(see Table 5.6). Once again, we see the very high overhead to trap page protection violations,

with the software-mediated schemes having much lower overhead. Also, cache locality

produced by object-at-a-time faulting is evident in the obj variants having much lower

run-time object faulting overhead than for larger-granularity faulting — not only is data

more likely to be resident in the cache, but the more frequent faulting incurred by the obj

schemes means that the code to trigger faults is also more likely to be cache resident.

5.3.3 Conclusions

The results are conclusive in establishing that software object fault detection mecha-

nisms can provide performance very close to optimal, even surpassing the performance of

88



comparable hardware-assisted schemes. This has been achieved through careful assump-

tions about residency. In particular, the object-oriented execution paradigm allows many

residency checks to be elided, with residency checks being restricted mostly to method

invocation. This approach can be applied to any language that includes dynamic binding

of method calls, by arranging for fault blocks to respond to all methods by first faulting the

target object and then forwarding the invocation to it. We have also shown that it can pay

to be eager in object swizzling, by swizzling related objects in advance of the application’s

need for them. Naturally, this depends on the number of times a each object reference is

used, just as eager swizzling incurs higher overhead when the system is cold. Thus, the

break-even point for swizzling depends on the execution characteristics of the application.6

5.4 Results: Detecting and Logging Updates

The second set of results concerns the detection of updates to support resilience, using

both the Insert and Update benchmarks. Both of these benchmarks include a checkpoint

operation, thereby enabling the comparison of different approaches to detecting updates

and generating the log.

5.4.1 Insert

Results for Insert are plotted in Figure 5.3, and summarized in Table 5.7. The baseline

non-persistent implementation treats checkpoint as a null operation.

For cold transactions, the results for the pages scheme reveal the high cost of calls

to the operating system to manage page protections. Only as the system warms up does

performance for pages fall below the “worst-case” scan approach, which pays consistently

high overhead to scan the entire set of resident objects on checkpoint.

6We leave a detailed study of the break-even points for swizzling to future work, since the current swizzling
implementation is not particularly well-tuned. Its performance is also dependent on database clustering, which
we have also not attempted to tune. As such, the current implementation is unlikely to give a complete picture
of the tradeoff between swizzled and non-swizzled implementations.

89



0

2

4

6

8

10

12

14

16

cold 2 3 4 5 6 7 8 9 warm hot

el
ap

se
d 

tim
e 

(s
)

iteration

scan
pages

objects
remsets

cards-4096
cards-1024
cards-256
cards-64
cards-16

non-persistent

Figure 5.3 Insert

Table 5.7 Insert

Scheme Cold Warm Hot

non-persistent 0.2426�90%0.0001 0.26014�90%0.00009 0.19914�90%0.00006
scan 7.942 �90%0.008 2.333 �90%0.005 1.993 �90%0.001
objects 7.161 �90%0.007 0.887 �90%0.003 0.562 �90%0.002
remsets 7.10 �90%0.02 0.766 �90%0.004 0.436 �90%0.002
cards-16 7.61 �90%0.02 0.673 �90%0.003 0.345 �90%0.003
cards-64 7.55 �90%0.01 0.646 �90%0.003 0.511 �90%0.003
cards-256 7.327 �90%0.009 0.794 �90%0.003 0.454 �90%0.003
cards-1024 7.189 �90%0.009 0.766 �90%0.003 0.425 �90%0.004
cards-4096 7.24 �90%0.01 0.764 �90%0.004 0.436 �90%0.005
pages 14.03 �90%0.02 1.722 �90%0.002 0.585 �90%0.005

90



The hot transaction makes insertions to the same set of objects as the last of the warm

transactions. Thus, the hot transaction includes no object faults or swizzling, so the page

protection scheme is no longer penalized for having to manipulate page protections during

swizzling, and therefore achieves performance closer to that of the other schemes — it still

incurs page traps when clean pages are modified, and must manipulate page protections at

checkpoint time. For the other schemes, there is little to distinguish one from another in

Figure 5.3 for the cold through warm transactions.

Differences are better discerned by considering the raw elapsed times given in Table 5.7.

For the cold Insert, the pages scheme is significantly more expensive (even than scan)

because of the overhead to manage page protections as objects are made resident. Best is

remsets closely followed by objects, since neither of these schemes incur any overhead

as the resident set of objects grows, whereas the card schemes must grow their tables to

cover the expanding set of resident objects. For warmer iterations, checkpoint cost is more

important, so the smaller granularity schemes that require no scanning are to be preferred

since they focus unswizzling. Notice how these two factors influence the results among the

card schemes: moderately large cards (cards-1024) are better when the system is cold, and

the resident set of objects grows frequently, since growing the card tables is cheaper; smaller

cards are better for the warm (cards-64) and hot (cards-16) iterations where checkpoint

overheads dominate.

For a better understanding of the behavior of the hot results, Figure 5.4 shows the

breakdown of the elapsed time for each phase of execution of the benchmark:

� running: time spent in the interpreter executing the program, as opposed to unswiz-
zling old and new objects to generate differences and writing those differences to the
log (note that running includes the cost of noting modifications as they occur);

� old: time to unswizzle old modified objects and generate log entries for them;

� new: time to unswizzle new objects and generate log entries for them;

� write: time to flush the log entries to disk; and

� other: time for any remaining bookkeeping activities, such as modifying page pro-
tections, and scavenging free transient memory space.

91



Running Old New Write Other

el
ap

se
d

tim
e

(s
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no
n-

pe
rs

is
te

nt
sc

an

ob
je

ct
s

re
m

se
ts

ca
rd

s-
16

ca
rd

s-
64

ca
rd

s-
25

6

ca
rd

s-
10

24

ca
rd

s-
40

96

pa
ge

s

Figure 5.4 Insert: Hot breakdown

The most interesting feature of Figure 5.4 is the old component, which reflects the

amount of scanning required to determine the differences between a cached object and its

original in the client buffer pool. For the card-based schemes there is an evident tradeoff

between the size of the card table and the card size: small cards require more overhead to

scan the card table but less overhead in scanning the cards themselves; larger cards have a

smaller table, but more overhead to scan the larger cards. Variation among the schemes in

the other components are due less to intrinsic costs of the schemes than to subtle underlying

cache effects: that the other component exhibits such variation is a result of the scavenging

of transient space having markedly different cache performance between schemes. Thus,

we refrain from further discussion of the results for Insert, and move on to those for the

Update benchmark, which offers more precise control of benchmark parameters.

5.4.2 Update

Comparison of the results for the implementation alternatives is easier if we consider

the key cold, warm, and hot results separately.

92



5.4.2.1 Cold Update

Figure 5.5 presents the elapsed time for the first (cold) iteration at each of the update

probabilities; Figure 5.6 repeats the plot at an expanded scale omitting the results for

pages and scan. There is little variation with update probability, since the cold times are

dominated by I/O and swizzling costs. Nevertheless, pages is significantly more expensive

(worse even than scan) due to the overheads of page protection management, both to

trap updates to protected pages and to manipulate page protections during swizzling. Best

overall is objects, closely followed by remsets — neither of these schemes incurs any

overhead as the resident set of objects grows; in contrast, the card schemes must grow their

tables to cover the expanding set of resident objects.

5.4.2.2 Warm Update

At the tenth (warmest) iteration (Figures 5.7 and 5.8), checkpoint cost becomes more

important. Worst overall is scan, since it must unswizzle all resident objects to generate the

log. Next worst is pages, again because of the overhead to manage page protections. The

card schemes are ranked by size, with smaller cards providing more precise information as

to which objects are modified. The remsets scheme has performance very close to that of

the smaller card schemes, because it concisely records just those objects that are modified.

5.4.2.3 Hot Update

The hot transaction traverses exactly the same parts as the last of the ten cold through

warm iterations, by beginning at the same part. Thus, the hot transaction includes no

object faults or swizzling. The hot results (Figures 5.9 and 5.10) are similar to those for

the warm transaction, except that with all objects needed by the traversal having already

been cached, no fetching and swizzling of objects occurs. Thus, the page protection

scheme is no longer penalized for having to manipulate page protections during swizzling,

and therefore achieves performance closer to that of the page-sized card scheme. The

93



4

4.5

5

5.5

6

6.5

7

7.5

8

0.0 0.2 0.4 0.6 0.8 1.0

el
ap

se
d 

tim
e 

(s
)

actual fraction of parts modified

pages
scan

cards-4096
cards-1024
cards-256
cards-64
cards-16
remsets
objects

Figure 5.5 Cold Update

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

0.0 0.2 0.4 0.6 0.8 1.0

el
ap

se
d 

tim
e 

(s
)

actual fraction of parts modified

cards-4096
cards-1024
cards-256
cards-64
cards-16
remsets
objects

Figure 5.6 Cold Update (expanded scale)

94



0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.0 0.2 0.4 0.6 0.8 1.0

el
ap

se
d 

tim
e 

(s
)

actual fraction of parts modified

scan
pages

objects
cards-4096
cards-1024
cards-256
cards-64
cards-16
remsets

Figure 5.7 Warm Update

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.2 0.4 0.6 0.8 1.0

el
ap

se
d 

tim
e 

(s
)

actual fraction of parts modified

objects
cards-4096
cards-1024
cards-256
cards-64
cards-16
remsets

Figure 5.8 Warm Update (expanded scale)

95



remaining difference between these two schemes is explained by the need to manipulate

the protection of dirty pages at checkpoint time.

The breakdowns of the elapsed time for the hot Update at each update probability (p) are

plotted in Figures 5.11(a)-(g) (note that the scale changes as update probability increases),

omitting the results for scan and non-persistent. As we saw with Insert, checkpoint

costs dominate performance, with the old component being the decisive difference between

schemes, particularly at larger update probabilities. The tradeoff between card table size

and card size is once again evident. At the smaller update probabilities the cost of scanning

the card table has more influence; schemes with small cards but a larger card table fare

worse than larger cards. At higher update probabilities there are more dirty cards to

process, so unswizzling overheads dominate those of scanning the card table, with larger

cards requiring more unswizzling to generate differences than smaller cards. The tradeoff

is most pronounced for the 16-byte cards, which are substantially smaller than the average

object size, so that unswizzling costs outweigh card table scanning costs only at the higher

update probabilities. Overall, remembered sets offer the most concise record of updates,

allowing modified objects to be unswizzled without scanning. The scanning overhead is

clearly evident for the object marking scheme, especially at low update probabilities, where

objects has the worst performance.

Apart from the pages scheme, variation among the schemes in the running component

is not significant, indicating that checkpoint overheads are the dominating influence for this

short transaction benchmark. The pages scheme does incur significant run-time overhead

because of the high cost of the traps to note updates. Note that although no part objects are

modified for p = 0.0, some updates do occur to other objects in the system, which cause

page traps.

96



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0

el
ap

se
d 

tim
e 

(s
)

actual fraction of parts modified

scan
pages

objects
cards-4096
cards-1024
cards-256
cards-64
cards-16
remsets

Figure 5.9 Hot Update

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.2 0.4 0.6 0.8 1.0

el
ap

se
d 

tim
e 

(s
)

actual fraction of parts modified

objects
cards-4096
cards-1024
cards-256
cards-64
cards-16
remsets

Figure 5.10 Hot Update (expanded scale)

97



el
ap

se
d

tim
e

(s
)

0

0.1

0.2

0.3

ob
je

ct
s

re
m

se
ts

ca
rd

s-
16

ca
rd

s-
64

ca
rd

s-
25

6

ca
rd

s-
10

24

ca
rd

s-
40

96

pa
ge

s

(a) p = 0.00

0

0.1

0.2

0.3

0.4

ob
je

ct
s

re
m

se
ts

ca
rd

s-
16

ca
rd

s-
64

ca
rd

s-
25

6

ca
rd

s-
10

24

ca
rd

s-
40

96

pa
ge

s

(b) p = 0.05

0

0.1

0.2

0.3

0.4

0.5

ob
je

ct
s

re
m

se
ts

ca
rd

s-
16

ca
rd

s-
64

ca
rd

s-
25

6

ca
rd

s-
10

24

ca
rd

s-
40

96

pa
ge

s

(c) p = 0.10

0

0.1

0.2

0.3

0.4

0.5

ob
je

ct
s

re
m

se
ts

ca
rd

s-
16

ca
rd

s-
64

ca
rd

s-
25

6

ca
rd

s-
10

24

ca
rd

s-
40

96

pa
ge

s

(d) p = 0.15

el
ap

se
d

tim
e

(s
)

0

0.1

0.2

0.3

0.4

0.5

ob
je

ct
s

re
m

se
ts

ca
rd

s-
16

ca
rd

s-
64

ca
rd

s-
25

6

ca
rd

s-
10

24

ca
rd

s-
40

96

pa
ge

s

(e) p = 0.20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ob

je
ct

s

re
m

se
ts

ca
rd

s-
16

ca
rd

s-
64

ca
rd

s-
25

6

ca
rd

s-
10

24

ca
rd

s-
40

96

pa
ge

s

(f) p = 0.50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ob
je

ct
s

re
m

se
ts

ca
rd

s-
16

ca
rd

s-
64

ca
rd

s-
25

6

ca
rd

s-
10

24

ca
rd

s-
40

96

pa
ge

s

(g) p = 1.00

Other

Write

New

Old

Running

Figure 5.11 Update: Hot breakdown

98



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.2 0.4 0.6 0.8 1.0

ch
ec

kp
oi

nt
 e

la
ps

ed
 ti

m
e 

(s
)

actual fraction of parts modified

objects
pages

cards-4096
cards-1024
cards-256
cards-64
cards-16
remsets

Figure 5.12 Long-running Update: checkpoint overhead per transaction

5.4.2.4 Long Transactions

Run-time overheads come into play only when transactions are long enough for compu-

tation to dominate checkpoint overhead. The final set of results concerns the experiments in

which multiple hot update traversals are performed as a single transaction. We generalize

the results, by obtaining linear regression fits for each scheme, for the model: y = a + bx,

where y is the total elapsed time, and x the number of update traversals per transaction.

As expected, since a hot traversal will have constant cost no matter how many times it is

performed, the fits are excellent. The y-axis intercept, a, approximates the checkpoint over-

head per transaction, and has the familiar form we have seen for short-running transactions

(see Figure 5.12).

The slope b is a measure of the long-running per-traversal costs of each scheme, plotted

in Figure 5.13(a). The remsets scheme has the highest overhead to note updates. The card

schemes are clustered together in the mid-range of overhead, while objects has the least

measured overhead apart from scan. Curiously, pages has the second worst measured

overhead per update, even though it incurs no additional overhead for subsequent updates

99



to a page after it is first modified. The overhead to field these page protection traps is

thus constant for each value of x in the regression, so the trap overhead is extracted as a

component of the a coefficient.

As it turns out, the pages scheme is the victim of anomalous hardware cache behavior.

Indeed, taking per-traversal instruction references as our measure (plotted in Figure 5.13(b)),

pages has overhead equivalent to that of scan. The anomaly is revealed in Figures 5.13(c)

and (d), where we see that there is contention between data and instructions for cache lines

in the unified instruction and data cache of the SPARCstation 2. Subsequent inspection of

the cache simulation results indicates that the contention is restricted to a single instruction

and data location, both of which are accessed for each part modified in the Update traversal

— the slopes of the lines for pages in Figures 5.13(c) and (d) are approximately 1 miss

per modified part. There is a similar anomaly for remsets, but only at update probabilities

0.15 and 0.2.

Taking linear regressions for the per-traversal elapsed time and instruction references,

versus the actual number of parts modified (i.e., the slopes of the lines in Figures 5.13(a)

and (b)), we obtain a measure of the per-update run-time overhead for each scheme, given

in Table 5.8. Taking the non-persistent/scan results as the base level of overhead required

to perform an unrecorded update, we calculate the intrinsic update overhead that can be

attributed to each of the schemes as:

intrinsic overhead per update =
overhead per part � scan overhead per part

2

The division by 2 reflects the fact that modifying a part actually consists of two updates:

one to increment the x attribute, and one to increment the y attribute. These attributable

per-update overheads are given in Table 5.9. The adjusted pages result is obtained by

subtracting 25 cycles to correct for the anomalous 2 read misses per modified part incurred

by the pages scheme (2�25
2 = 25 cycles).

As validation of these results, the observed instruction overheads for the different

schemes correspond to the actual instruction overheads revealed upon inspection of the code

100



30

35

40

45

50

55

0.0 0.2 0.4 0.6 0.8 1.0

tr
av

er
sa

l e
la

ps
ed

 ti
m

e 
(m

s)

actual fraction of parts modified

remsets
pages

cards-4096
cards-1024
cards-256
cards-64
cards-16

objects
scan

(a) Elapsed time

0.7

0.8

0.9

1

1.1

0.0 0.2 0.4 0.6 0.8 1.0

tr
av

er
sa

l i
ns

tr
uc

tio
n 

re
fe

re
nc

es
 (

m
ill

io
ns

)

actual fraction of parts modified

remsets
cards-4096/-1024/-64/-16/objects

cards-256
pages/scan

(b) Instruction references

0

0.5

1

1.5

2

2.5

3

3.5

4

0.0 0.2 0.4 0.6 0.8 1.0

tr
av

er
sa

l i
ns

tr
uc

tio
n 

m
is

se
s 

(t
ho

us
an

ds
)

actual fraction of parts modified

pages
remsets

scan
objects

cards-4096
cards-1024
cards-256
cards-64
cards-16

(c) Instruction misses

2

2.5

3

3.5

4

4.5

5

5.5

6

0.0 0.2 0.4 0.6 0.8 1.0

tr
av

er
sa

l d
at

a 
re

ad
 m

is
se

s 
(t

ho
us

an
ds

)

actual fraction of parts modified

pages
remsets
objects

cards-16
cards-64

cards-256
cards-1024
cards-4096

scan

(d) Data read misses

Figure 5.13 Traversal overheads

101



generated by the compiler. Indeed, the cards-256 scheme requires only three instructions

instead of the four used for the other card sizes because of shared code with the write barrier

for the generation scavenging garbage collector, which also uses 256-byte cards.

These results precisely measure the run-time overheads of each of the schemes. The

page protection scheme (pages) offers the least overhead per update of all the schemes that

record updates (i.e., apart from scan and non-persistent), since each transaction entails

many repeated updates to the same locations, so that only the first update to a location

causes a page trap. Remaining updates proceed with no additional overhead. Note that the

remaining 5 cycles overhead for pages is likely anomalous, unless it indicates lingering

cache disturbance due to page protection traps. Meanwhile, the software-mediated card

schemes show only marginally higher overhead, while the remsets scheme incurs the high

cost of a call to hash the updated location into the remembered set on every update.

Finally, we also determine the break-even point between pages and cards-4096 for

the hot Update benchmark, as the number of Update traversals, t, required for the up-front

cost of pages (incurred in managing page protections at checkpoint time as well as the

per-transaction run-time cost of the page traps) to equal the per-update run-time costs of

cards-4096. This is calculated by taking their difference in checkpoint overhead per

transaction (as plotted in Figure 5.12), say p� c, and dividing by the cards-4096 cost per

update (from Table 5.9), 13 cycles
40MHz , times the number of updates per traversal, 2m where m is

the number of parts modified per traversal:

t =
p� c

13
40000000 � m� 2

The calculations are summarized in Table 5.10. Note how the frequency/density of update

affects the tradeoff between the high per-transaction cost of pages versus the run-time

costs of cards-4096: amortization of the up-front per-transaction overheads occurs with

fewer Update traversals for higher update probabilities. The high break-even points show

that pages is preferable only in extreme cases, when transactions are particularly long or

updates extremely frequent and dense.

102



Table 5.8 Long-running Update: traversal overheads (per part modified)

Scheme Time (cycles) Instructions

non-persistent 159�90%0 81�90%0
scan 159�90%1 81�90%0
objects 173�90%1 89�90%0
remsets 249�90%4 139�90%1
cards-16 188�90%2 89�90%0
cards-64 185�90%1 89�90%0
cards-256 183�90%2 87�90%0
cards-1024 184�90%1 89�90%0
cards-4096 185�90%2 89�90%0
pages 219�90%1 81�90%0

Table 5.9 Long-running Update: intrinsic run-time overheads (per update)

Scheme Time (cycles) Instructions

non-persistent 0�90%0 0�90%0
scan 0�90%1 0�90%0
objects 7�90%1 4�90%0
remsets 45�90%2 29�90%1
cards-16 15�90%1 4�90%0
cards-64 13�90%1 4�90%0
cards-256 12�90%1 3�90%0
cards-1024 13�90%1 4�90%0
cards-4096 13�90%1 4�90%0
pages (raw) 30�90%1 0�90%0
pages (adjusted) 5�90%1 0�90%0

intrinsic overhead per update =
overhead per part� scan overhead per part

2

Table 5.10 Long-running Update: break-even points for cards-4096 versus pages

update checkpoint overhead (seconds) parts modified break-even point
probability pages (p) cards-4096 (c) per traversal (m) (traversals, t)

0.00 0.152�90%0.006 0.077�90%0.006 0 1

0.05 0.282�90%0.008 0.135�90%0.004 98 2308�90% 366
0.10 0.358�90%0.009 0.184�90%0.005 252 1062�90% 167
0.15 0.42 �90%0.01 0.221�90%0.008 490 625�90% 105
0.20 0.43 �90%0.01 0.229�90%0.005 632 489�90% 74
0.50 0.60 �90%0.01 0.350�90%0.004 1577 244�90% 32
1.00 0.744�90%0.008 0.455�90%0.003 3280 136�90% 16

t =
p� c

13
40000000 �m� 2

103



5.4.3 Conclusions

The results for the detection of updates and checkpointing show a clear ranking among

the alternative schemes, with approaches that record updates at smaller granularities having

a significant advantage when the transactions are short and the update locality is poor, since

they greatly reduce the overheads of unswizzling and generation of differences for the log.

For short transactions, the remembered set scheme is best over all update probabilities, since

it provides a very concise summary of just those objects that have been modified. Still,

small granularity cards also offer robust performance across a range of update probabilities,

and have the advantage of lower and precisely bounded run-time overhead.

For longer intervals between checkpoints, the run-time costs of update detection come

into play. Thus, the remembered set scheme loses its appeal due to the relatively high

expense of managing the remembered set. The page protection scheme has the advantage

that detection overhead is paid for up front in the page protection violation trap on the

first write to a clean page, and subsequent updates proceed without cost. Meanwhile, the

overheads of the card and object marking schemes change very little as update probability

varies, with any difference being due to hardware cache effects. Even so, the differences

in run-time overheads of the schemes are slight when compared to those of checkpointing.

The length of the interval between checkpoints is an important factor because of this

tension between the run-time and checkpointing overheads of the various schemes. Long

intervals between checkpoints are likely to result in correspondingly more updates, increas-

ing the checkpoint latency. Only when the volume of modified data is small with respect

to the length of time between checkpoints should the run-time costs of the schemes be per-

mitted to guide the choice of update detection mechanism. The overwhelming influence of

unswizzling and generation of log records indicates that the general bias should be towards

the more accurate smaller granularities than to schemes with low run-time overheads.

With respect to the hardware approach embodied in the page protection scheme we have

seen that it can involve substantial extra overhead for “typical” operations as represented

104



by the benchmarks. In the abstract, the hardware approach is an attractive one. However,

current realizations which must use expensive calls to the operating system seem to be

limited in their effectiveness. Moreover, the large granularity of page size remains the most

serious deficiency of this scheme, even if improved operating system support can succeed

in lowering the costs of managing the update information through access to page dirty bits

(Hosking and Moss [1993] explore the ramifications of such support in more detail).

We offer three guidelines for the generation of recovery information in persistent pro-

gramming languages:

� Avoid large granules of update detection, to minimize checkpoint overheads.

� Choose a checkpoint frequency corresponding to the rate of generation of new update
information, so that checkpoint delays are tolerable. Long-running transactions that
perform few updates need infrequent checkpoints.

� Use page protection mechanisms only where update locality is good and checkpoints
are infrequent.

5.5 Related Performance Studies

This study is loosely related to that of White and DeWitt [1992] (mentioned earlier in

Chapter 2), which compares the overall performance of various object faulting and pointer

swizzling schemes for C++, as supported by several different persistent object stores,

including ObjectStore and the EXODUS Storage Manager. While our basic architecture

is similar to the object caching scheme of White and DeWitt, the thrust of our study is

significantly different. Instead of comparing several different architectures for persistence

we keep the architecture fixed, while varying the mechanisms to fault objects and generate

log information. The representations we use for references to non-resident objects are

much more lightweight than those of White and DeWitt, as are our mechanisms to support

generation of the log.

Nevertheless, White and DeWitt’s results do suggest that the method used to generate

recovery information can have a significant impact on the performance of the system, with

105



fine-grained update information being most beneficial when transactions are short and there

is poor update locality. Similarly, they note the high overhead of faulting objects using a page

protection scheme like ObjectStore or Texas. We have explored these issues directly here,

addressing the specific question of which mechanisms are best, and what factors determine

a method’s effectiveness, within the fixed framework of a single persistent programming

language.

In a subsequent study, White and DeWitt [1994] extend ESM to support a memory-

mapped style of access like that of ObjectStore and Texas. They compare their system, called

QuickStore, with the software-mediated faulting scheme of E (using the OO7 benchmarks).

Once again, although their results do reveal the high cost of managing page mappings, the

comparison is between two different systems, which perform faulting and swizzling quite

differently, while our experimental framework operates within the same basic persistent

system, where everything but the primitive faulting and logging mechanisms are fixed.

For future work, White and DeWitt [1994] speculate on the advantages to be gained in

augmenting the language implementation to generate log information instead of relying on

QuickStore’s memory mapping mechanisms to generate per-page difference records. This

is precisely what we have done here with our studies of different mechanisms for noting

updates for logging.

106



CHAPTER 6

CONCLUSIONS

We have explored the lightweight implementation of two key mechanisms for fine-

grained persistence: the detection and handling of references to non-resident objects, and the

efficient generation of recovery information. Our experiments used recognized benchmarks

to compare the performance of alternative realizations of these mechanisms, within a

prototype persistent programming language. Most importantly, we have demonstrated

that software-mediated techniques can be a competitive alternative to hardware-assisted

techniques, and that adding persistence to a programming language does not necessarily

degrade its performance. Moreover, the results show that persistence can be implemented

on general-purpose machines without imposing significant overhead above and beyond

the fundamental costs of data transfer to and from secondary storage. In fact, our results

indicate that performance differences between non-persistent and persistent languages are

reducible to mere differences in hardware cache performance between the persistent and

non-persistent implementation.

In addition, the performance evaluation of Chapter 5 represents the first comprehensive

exploration of implementation alternatives for persistence within a single prototype sys-

tem, where intrinsic differences between the alternatives are more clearly discerned. The

experimental methodology is (to our knowledge) unique, and allows precise measurement

of the low-level costs of the mechanisms being studied.

6.1 Implications

These results have implications beyond the realm of persistence. At a general level, the

results are an indictment of the performance of operating system virtual memory primitives.

107



Both the overhead to field page protection violations within user-level signal handlers,

and the high cost of calls to the operating system to modify page protections mean that

applications relying on these primitives pay unnecessarily high overheads. Much of the

problem lies with the large granularity (relative to fine-grained objects) of virtual memory

pages in modern operating systems and architectures, which can significantly affect overall

performance. As processor speeds improve, and physical memories grow, page sizes are

likely to become larger, further degrading the performance of virtual memory solutions in

applications that have a naturally smaller granularity.

It is worthwhile noting that similar results have been obtained in other very different ap-

plication areas, such as efficient implementation of data breakpoints for debuggers [Wahbe,

1992] and generational garbage collection [Hosking et al., 1992; Hosking and Moss, 1993].

We acknowledge that sub-page protection and dirty bits, along with appropriate operating

system interfaces, might somewhat overcome the performance disadvantages we observed

(cf. Thekkath and Levy [1994]). However, it is clear that while user level virtual memory

primitives offer transparent solutions to various memory management problems, requiring

no modification of the programming language implementation (except in the run-time to

handle protection violations) they do not necessarily offer the best performance.

6.2 Future Work

There are several promising directions for extension of this work: examination of

the issues in a compiled setting; alternative architectures for persistence; language and

implementation support for coarse-grained persistent data and large collections of data; and

support for distribution and concurrency.

6.2.1 Compilation Versus Interpretation

The fact that the results have been obtained for an interpreted language cannot be taken

lightly, since run-time overheads for interpretation are several times higher than those of

108



compiled programs. Nevertheless, we see no reason why the results will not carry over to

a compiled setting. We acknowledge that compilation will shrink the running-time portion

of total execution, so that the overheads of object faulting and update noting will become

more pronounced relative to total execution time. However, the various mechanisms should

retain their rankings with respect to one another, since their absolute costs will remain the

same (modulo shifting and possibly spurious hardware cache effects).

Some languages (e.g., Modula-3 [Nelson, 1991; Harbison, 1992], C++ [Stroustrup,

1986]) do not enforce the pure object-oriented style of execution that enables residency

checks to be piggy-backed upon method invocation. Operations on an object can be

performed without necessarily invoking a method on it. This means that explicit residency

checks must be compiled into the code in advance of such operations, to ensure that the

object is resident. Compiler optimizations [Richardson and Carey, 1990; Richardson, 1990;

Hosking and Moss, 1990; Hosking and Moss, 1991; Moss and Hosking, 1994] may allow

these explicit residency checks to be merged or eliminated. For example, control-flow

information may reveal that multiple traversals of a particular object reference along a

given execution path require only one residency check, rather than a check per traversal.

Similar optimizations may merge or eliminate the noting of updates at certain store sites.

These optimizations will have the effect of reducing the importance of run-time overheads

of the software-based schemes, so that swizzling, disk retrieval, and checkpoint overheads

become the dominant factor influencing the choice of object faulting and update detection

scheme. The effect of such optimizations in a compiled setting is an interesting avenue of

further research.

6.2.2 Other Architectures

We acknowledge that our architectural framework is one of several that might be con-

sidered. For example, we have chosen a copy swizzling approach, whereas it may be

possible for applications to manipulate objects directly in the client buffer pool. Consider-

109



ation of such alternatives would further our understanding of the relative merits of different

architectures.

We also recognize that our hardware-mediated object faulting approach, which allocates

fault blocks in protected pages, does not compare directly with the memory-mapped file

approaches of ObjectStore and Texas. In particular, ObjectStore makes some effort to allow

objects to be mapped directly into the same memory locations in which they were originally

allocated, thus reducing or eliminating the need to swizzle pointers upon object fault.

While our results stand as a relative comparison of object faulting techniques within a fixed

architectural framework, and it is reasonable to assume that the relative standing of our fault

detection mechanisms will remain the same even if the underlying persistent object storage

architecture changes, side-by-side comparison with direct-mapped approaches would still

be interesting.

To some extent, this is the focus of the efforts of White and DeWitt [1992] and White

and DeWitt [1994]. However, devising an experimental framework in which irrelevant

differences in the alternative architectures are abstracted away, so as to highlight their

intrinsic characteristics, poses a challenge that has yet to be fully addressed.

6.2.3 Higher-Level Functionality

Finally, there are several features of database systems that have not been explored in this

work. Here, we have focused on the navigational style of data access supported by program-

ming languages. Database systems also typically support query-oriented associative access

over collections of data — providing efficient support for this alternative access style, and

integrating it within our framework for persistence is a significant open problem. Similarly,

new applications demand support for accessing coarse-grained data significantly different

from the fine-grained objects we consider here. For example, multimedia databases incor-

porate text, images, and audio/video streams, all of which are relatively coarse-grained.

110



Supporting the management of such data within a persistent programming language seems

a ripe research problem.

Other aspects of database systems that we have not considered here are support for

concurrency and distribution. Allowing simultaneous manipulation of the database by con-

currently executing persistent programs requires concurrency control mechanisms to ensure

that the database remains in a consistent state. We have argued that several approaches to

concurrency control can certainly be incorporated into our architecture, but concurrency

control also requires that we incorporate some form of transaction semantics in the per-

sistent programming language — but there remain many interesting questions as to what

those transaction semantics should be, how they should be presented to the programmer,

and what their performance impact will be. Distribution is also a logical extension of

this work, since there are synergies to be exploited in the way we represent references to

non-resident objects and the way distributed systems must address objects distributed over

many machines in a network.

6.3 Closing Remarks

Persistence promises to revolutionize the way in which programmers think about long-

term data storage solutions. This dissertation opens the way to persistence becoming

ubiquitous in programming languages and systems, by demonstrating that persistence is a

feasible, maturing technology, with competitive performance, deserving of inclusion in the

canon of desirable language features.

111



112



APPENDIX A

SMALLTALK SOURCE LISTING OF OO1 BENCHMARKS

The following source code listing gives the Smalltalk code for the OO1 benchmark

database and operations used in the experiments of Chapter 5.

113



Smalltalk-80, version 2, of April 1, 1983

BTree

class name BTree
superclass SequenceableCollection
instance variable names tally children
class variable names none
pool dictionaries none
category Benchmarks-OO1

I am a minimal (insert-only) implementation of a B+-tree index. My instances are nodes in
the tree.

Instance variables:

tally <SmallInteger> The number of keyed objects stored in this
node.

children <Array j Nil> The children of this node.

Protocol for accessing

add: anObject
“Insert anObject into the BTree rooted at myself”

j new newChildren j
self isFull

ifTrue:
[“Split the root”
new self species new: self minDegree.
1 to: tally do: [:i j new basicAt: i put: (self basicAt: i)].
new tally: tally.
new children: children.
tally 0.
self setChildren at: 1 put: new.
self splitChild: 1].

"self insert: anObject

at: anInteger
“Access the nth element of the BTree. This allows the BTree to be
enumerated like any other SequenceableCollection”

j index tree i child delta j
index anInteger.
tree self.
i 0.

114



[tree children notNil & (i <= tree tally)]
whileTrue:

[i i + 1.
child tree children at: i.
delta index � child size � 1.
delta < 0

ifTrue:
[i 0.
tree child].

delta = 0
ifTrue:

[index i.
i tree tally + 1].

delta > 0 ifTrue: [index delta]].
index > tree tally ifTrue: [self errorSubscriptBounds: anInteger].
"tree basicAt: index

at: anInteger put: anObject
“Storing into a BTree with at:put: is not allowed.”

self error: ’to add to a BTree, you must use add:’

findKeyOrNil: key
j index element j
index self indexForInserting: key.
index > 0

ifTrue:
[element self basicAt: index.
key = element key ifTrue: ["element]].

children isNil ifTrue: ["nil].
"(children at: index + 1)

findKeyOrNil: key

size
j size j
size tally.
children notNil ifTrue: [1 to: tally + 1 do: [:i j size size + (children at: i) size]].
"size

Protocol for copying

shallowCopy
“Answer a copy of the receiver which shares the same elements; in
this case keyed objects”

115



j copy copyChildren j
(copy self species new: self minDegree) tally: tally.
1 to: tally do: [:i j copy basicAt: i put: (self basicAt: i)].
children notNil

ifTrue:
[copyChildren copy setChildren.
1 to: children size do:

[:i j copyChildren at: i put: (children at: i) shallowCopy]].
"copy

Protocol for enumerating

do: aBlock
“Evaluate aBlock with each of the elements of the BTree rooted at
myself ”

j index j
index 0.
children notNil

ifTrue:
[[(index index + 1) <= tally]

whileTrue:
[(children at: index)

do: aBlock.
aBlock value: (self basicAt: index)].

(children at: index)
do: aBlock]

ifFalse: [[(index index + 1) <= tally]
whileTrue: [aBlock value: (self basicAt: index)]]

Protocol for printing

printOn: aStream
aStream nextPutAll: self class name, ’ ’.
self printOn: aStream limit: aStream position + self maxPrint

printOn: aStream limit: limit
j index j
aStream nextPut: $(.
index 0.
children notNil

ifTrue:
[[(index index + 1) <= tally] whileTrue:

[(children at: index) printOn: aStream limit: limit.
aStream space.

116



aStream position > limit ifTrue: [aStream nextPutAll: ’...etc...)’. "self].
(self basicAt: index) key printOn: aStream.
aStream space].

(children at: index) printOn: aStream limit: limit.
aStream space]

ifFalse:
[[(index index + 1) <= tally] whileTrue:

[aStream position > limit ifTrue: [aStream nextPutAll: ’...etc...)’. "self].
(self basicAt: index) key printOn: aStream.
aStream space]].

aStream nextPut: $)

Protocol for private

children
"children

children: anArray
"children anArray

indexForInserting: key
“Find the index of the child in which to insert key”

j low high index j
low 1.
high tally.

[index high + low bitShift: �1.
low > high]

whileFalse: [(self basicAt: index) key <= key
ifTrue: [low index + 1]
ifFalse: [high index � 1]].

"high

insert: anObject
“Insert anObject into the BTree rooted at myself”

j index j
index self indexForInserting: anObject key.
index > 0 ifTrue:

[(self basicAt: index) key = anObject key ifTrue:
[self error: ’Attempting to insert object with duplicate key’]].

index index + 1.
children isNil

ifTrue:

117



[tally
to: index
by: �1
do: [:i j self basicAt: i + 1 put: (self basicAt: i)].

tally tally + 1.
"self basicAt: index put: anObject].

(children at: index) isFull
ifTrue:

[self splitChild: index.
anObject key > (self basicAt: index) key ifTrue: [index index + 1]].

"(children at: index)
insert: anObject

isFull
"tally = self basicSize

maxDegree
"self basicSize + 1

minDegree
"self maxDegree // 2

setChildren
"children Array new: self maxDegree

setTally
tally 0

splitChild: index
“Split the child at index”

j minDegree oldChild newChild oldChildren newChildren j
minDegree self minDegree.
(oldChild children at: index) tally: minDegree � 1.
(newChild self species new: minDegree) tally: minDegree � 1.
1 to: minDegree � 1 do:

[:i j newChild basicAt: i put: (oldChild basicAt: minDegree + i)].
(oldChildren oldChild children) notNil

ifTrue:
[newChildren newChild setChildren.
1 to: minDegree do:

[:i j newChildren at: i put: (oldChildren at: minDegree + i)]].
tally + 1

to: index + 1
by: �1
do: [:i j children at: i + 1 put: (children at: i)].

118



children at: index + 1 put: newChild.
tally

to: index
by: �1
do: [:i j self basicAt: i + 1 put: (self basicAt: i)].

self basicAt: index put: (oldChild basicAt: minDegree).
tally tally + 1

tally
"tally

tally: anInteger
"tally anInteger

119



BTree class

class name BTree class
superclass SequenceableCollection class
instance variable names none
class variable names none
pool dictionaries none
category Benchmarks-OO1

Protocol for instance creation

new
"self new: 2

new: minDegree
"(super new: 2 * (minDegree max: 2) � 1) setTally

120



OO1

class name OO1
superclass Object
instance variable names random parts lastId traverseIds insertConnections
class variable names none
pool dictionaries none
category Benchmarks-OO1

I am an OO1 database.

Instance variables:

random <Random> Random number generator used to generate the
benchmark database and run the benchmarks.

parts <BTree> BTree index for the parts database, indexed by
part identifier.

lastId <SmallInteger> The highest (most recently) assigned part
identifier.

traverseIds <Array> The randomly-selected parts to be used as the
starting point for each iteration (cold through warm) of the
traversal benchmarks.

insertConnections <Array> The randomly-selected parts for connection to the
newly-added parts in the insertion benchmark.

Protocol for initialize-release

build: numParts
“Build a new OO1 database, containing numParts parts”

j firstId j
random Random new.

“Parts index is a BTree with minimum degree 500; this value was chosen to give
approximately one BTree node per Mneme physical segment (32K PSEGS / 68 byte parts
= 482)”

parts BTree new: 500.

“Insert numParts parts”
lastId 0.
numParts timesRepeat: [parts add: (Part new id: (lastId lastId + 1))].

121



“Make clustered random connections from each part to 3 other parts”
parts do:

[:part j
part

connectTo: (parts findKeyOrNil: (self randomConnection: part id))
to: (parts findKeyOrNil: (self randomConnection: part id))
to: (parts findKeyOrNil: (self randomConnection: part id)).

“Initialize build field of part with a random integer in the range [0, 99].
This determines which parts are modified by the update benchmark.”
part build: (self randomIntRange: 0 to: 99)].

“Precompute the 10 random parts to be used as starting points in the
cold through warm traversals”
traverseIds Array new: 10.
1 to: 10 do: [:i j traverseIds at: i put: (self randomIntRange: 1 to: lastId)].

“Precompute the 3 clustered random connections for each of the 100
parts added to the database in the 10 cold through warm insertions”
insertConnections ReadWriteStream on: (Array new: 1000).
firstId lastId.
1000

timesRepeat:
[lastId lastId + 1.
insertConnections nextPut: (Array

with: (self randomConnection: lastId)
with: (self randomConnection: lastId)
with: (self randomConnection: lastId))].

insertConnections reset.
lastId firstId

Protocol for benchmarks

btraverse
“Run the 10 cold through warm backward traversals, followed by
several hot traversals varying the number of traversals per
measurement”

j id j
1 to: 10 do:

[:i j
id traverseIds at: i.
self time: [self btraverse: id]].

#(0 1 5 10 15 20 50 100 500 ) do:
[:i j self time: [i timesRepeat: [self btraverse: id]]]

122



btraverse: fromId
“Do a backward traversal starting from the part with identifier fromId”

(parts findKeyOrNil: fromId)
btraverse: 7

ftraverse
“Run the 10 cold through warm forward traversals, followed by
several hot traversals varying the number of traversals per
measurement”

j id j
1 to: 10 do:

[:i j
id traverseIds at: i.
self time: [self ftraverse: id]].

#(0 1 5 10 15 20 50 100 500 ) do: [:i j self time: [i timesRepeat: [self ftraverse: id]]]

ftraverse: fromId
“Do a forward traversal starting from the part with identifier fromId”

(parts findKeyOrNil: fromId)
ftraverse: 7

insert
“Run the 10 cold through warm insertions, followed by a hot insertion
where the targets of the new connections are already resident”

Smalltalk commit.
10 timesRepeat: [self

time:
[self insert100.
Smalltalk commit]].

insertConnections position: 900.
self

time:
[self insert100.
Smalltalk commit]

insert100
“Insert 100 new parts, with precomputed clustered random
connections ”

j toIds j
100

timesRepeat:

123



[toIds insertConnections next.
(parts add: (Part new id: (lastId lastId + 1)))

connectTo: (parts findKeyOrNil: (toIds at: 1))
to: (parts findKeyOrNil: (toIds at: 2))
to: (parts findKeyOrNil: (toIds at: 3))]

lookup
“Run the 10 cold through warm lookups, followed by
a hot lookup where the targets of the lookup are guaranteed all to
be resident”

j ids j
10

timesRepeat:
[ids ReadWriteStream on: (Array new: 1000).
1000 timesRepeat: [ids nextPut: (self randomIntRange: 1 to: lastId)].
ids reset.
self time: [self lookup: ids]].

ids reset.
self time: [self lookup: ids]

lookup: ids
“Lookup the parts in ids”

ids do: [:id j (parts findKeyOrNil: id) lookup]

update: p
“Run 10 cold through warm update traversals, followed by
several hot update traversals varying the number of traversals per
measurement. The probability of any given part encountered during
the traversal being updated is p%”

j id j
Smalltalk commit.
1 to: 10 do:

[:i j
id traverseIds at: i.
self

time:
[self update: id ifBuildLessThan: p.
Smalltalk commit]].

#(0 1 5 10 15 20 50 100 500 ) do: [:i j self
time:

[i timesRepeat: [self update: id ifBuildLessThan: p].
Smalltalk commit]]

124



update: fromId ifBuildLessThan: int0to100
“Do an update traversal, starting at the part with the identifier
fromId, updating each part encountered whose randomly initialized
build field contains an integer less than int0to100”

(parts findKeyOrNil: fromId)
update: 7 ifBuildLessThan: int0to100

Protocol for private

beginBenchmark
“Indicate to the VM that the benchmark has begun”

<primitive: 120>
"self

endBenchmark
“Indicate to the VM that the benchmark has ended”

<primitive: 121>
"self

randomConnection: fromId
“Randomly (modulo clustering) select a part as a target for a
connection from the part with identifier fromId”

j toId j
(self randomIntRange: 1 to: 10)

> 1
ifTrue:

[“90% of time create connection to the closest1% of parts”
toId fromId + (self randomIntRange: 1 to: lastId // 100)
� 1 � (lastId // 200).

“ ’double up’ at ends so stay in part-id range”
toId < (lastId // 200) ifTrue: [toId toId + (lastId // 200)].
toId > (lastId � (lastId // 200)) ifTrue: [toId toId � (lastId // 200)]]

ifFalse: [“10 % of time create connection to any part 1...N”
toId self randomIntRange: 1 to: lastId].

"toId

randomIntRange: low to: high
“Generate a random integer in the range [low, high]”

"(random next * (high � low)) rounded + low

125



time: timedBlock
“Tell the VM to measure the elapsed time for execution of timedBlock”

self beginBenchmark.
timedBlock value.
self endBenchmark

126



Part

class name Part
superclass Object
instance variable names id type x y build conn1To conn1Type conn1Len conn2To

conn2Type conn2Len conn3To conn3Type conn3Len
from

class variable names none
pool dictionaries none
category Benchmarks-OO1

Instance variables:

id <SmallInteger> unique part identifier

type <String> 10-character part type

x y <SmallInteger>

build <SmallInteger>

conn1To conn2To conn3To <Part> outgoing connections

conn1Type conn2Type conn3Type <String> 10-character connection type

conn1Len conn2Len conn3Len <SmallInteger>

from <Array j Nil> incoming connections

Protocol for initialize-release

id: newId
id newId.
type String new: 10.
x 0.
y 0.
build 0

Protocol for accessing

build
"build

build: value
"build value

127



id
"id

key
"id

Protocol for connections

addFrom: aPart
“Add a connection to myself from aPart”

from isNil
ifTrue:

[from Array with: aPart.
"self].

from from copyWith: aPart

connectTo: part1 to: part2 to: part3
“Connect myself to part1, part2, and part3”

conn1To part1 addFrom: self.
conn1Type String new: 10.
conn1Len 0.
conn2To part2 addFrom: self.
conn2Type String new: 10.
conn2Len 0.
conn3To part3 addFrom: self.
conn3Type String new: 10.
conn3Len 0

Protocol for operations

btraverse: level
j count j
count 1.
self

x: x
y: y
type: type.

level = 0 ifTrue: ["count].
from notNil ifTrue:

[from do: [:part j count (part btraverse: level � 1) + count]].
"count

ftraverse: level
self

128



x: x
y: y
type: type.

level = 0 ifTrue: ["self].
conn1To ftraverse: level � 1.
conn2To ftraverse: level � 1.
conn3To ftraverse: level � 1

lookup
self

x: x
y: y
type: type

update: level ifBuildLessThan: int0to100
“Perform update traversal, updating me if my build field is less than
int0to100 ”

build < int0to100
ifTrue:

[x x + 1.
y y + 1].

level = 0 ifTrue: ["self].
conn1To update: level � 1 ifBuildLessThan: int0to100.
conn2To update: level � 1 ifBuildLessThan: int0to100.
conn3To update: level � 1 ifBuildLessThan: int0to100

x: arg1 y: arg2 type: arg3
“Null procedure to be invoked on parts encountered during benchmarks”

"self

129



Random

class name Random
superclass Stream
instance variable names seed
class variable names A M MF Q R
pool dictionaries none
category Numeric-Numbers

A good, minimal standard, random number generator.
This is “Integer Version 1” of the random number generator presented in:

“Random Number Generators: Good Ones are Hard to Find”,
Stephen K. Park and Keith W. Miller,
CACM 31 (10), Oct. 1988, pp. 1192�1201.

Protocol for accessing

contents
"self shouldNotImplement

next
“Answer with the next random number.”

j hi lo test j
seed A * seed nnM.
"seed / MF

nextPut: anObject
"self shouldNotImplement

Protocol for testing

atEnd
"false

Protocol for private

setSeed
seed Time millisecondClockValue bitAnd: 16r1FFFFFFF
“Time millisecondClockValue gives a large Integer; I want a
SmallInteger. ”

130



Random class

class name Random class
superclass Stream class
instance variable names none
class variable names A M MF Q R
pool dictionaries none
category Numeric-Numbers

Protocol for instance creation

new
“Answer a new random number generator.”

"self basicNew setSeed

Protocol for class initialization

initialize
A 16807.
M 16r7FFFFFFF.
MF M asFloat.
Q M // A.
R M nn A

131



132



APPENDIX B

SUPPLEMENTAL RESULTS: OBJECT FAULTING

The following graphs plot the breakdown of elapsed time for each phase of execution

of the object faulting benchmarks:1

� running: time spent in the interpreter executing the program; includes the overhead
to trigger object faults, but not the time for disk reads, swizzling, or indirection
elimination;

� swizzling: time spent copying and swizzling objects from Mneme’s buffer pool;

� reading: time spent reading Mneme PSEGs from disk into the buffer pool; and

� bypassing: time spent bypassing indirect references to objects made resident at time
of fault.

1Raw data for all results presented in this dissertation may be obtained by contacting the author via email:
hosking@cs.purdue.edu. Check also WWW URLs http://www.cs.umass.edu/�hosking or
http://www.cs.purdue.edu/people/hosking.

133



to
ta

le
la

ps
ed

tim
e

(s
)

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6

7 Running

Swizzling

Reading

(a) ID,no-bypass,obj

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6

7 Running

Swizzling

Reading

(b) ID,swizzle-bypass,obj

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6

7 Running

Swizzling

Reading

(c) FB,swizzle-bypass,obj

to
ta

le
la

ps
ed

tim
e

(s
)

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

20

40

60

80

100

120

140 Running

Swizzling

Reading

Bypassing

(d) ID,fault-bypass,obj

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

20

40

60

80

100

120

140 Running

Swizzling

Reading

Bypassing

(e) FB,fault-bypass,obj

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

20

40

60

80

100

120

140 Running

Swizzling

Reading

Bypassing

(f) trap,fault-bypass,obj

Figure B.1 Lookup, swizzling one object per fault

134



to
ta

le
la

ps
ed

tim
e

(s
)

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6

7 Running

Swizzling

Reading

(a) ID,no-bypass,LSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6

7 Running

Swizzling

Reading

(b) ID,swizzle-bypass,LSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6

7 Running

Swizzling

Reading

(c) FB,swizzle-bypass,LSEG

to
ta

le
la

ps
ed

tim
e

(s
)

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

2

4

6

8

10

12

14 Running

Swizzling

Reading

Bypassing

(d) ID,fault-bypass,LSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

2

4

6

8

10

12

14 Running

Swizzling

Reading

Bypassing

(e) FB,fault-bypass,LSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

2

4

6

8

10

12

14 Running

Swizzling

Reading

Bypassing

(f) trap,fault-bypass,LSEG

Figure B.2 Lookup, swizzling one LSEG per fault

135



to
ta

le
la

ps
ed

tim
e

(s
)

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6

7 Running

Swizzling

Reading

(a) ID,no-bypass,PSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6

7 Running

Swizzling

Reading

(b) ID,swizzle-bypass,PSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6

7 Running

Swizzling

Reading

(c) FB,swizzle-bypass,PSEG

to
ta

le
la

ps
ed

tim
e

(s
)

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

2

4

6

8

10

12

14 Running

Swizzling

Reading

Bypassing

(d) ID,fault-bypass,PSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

2

4

6

8

10

12

14 Running

Swizzling

Reading

Bypassing

(e) FB,fault-bypass,PSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

2

4

6

8

10

12

14 Running

Swizzling

Reading

Bypassing

(f) trap,fault-bypass,PSEG

Figure B.3 Lookup, swizzling one PSEG per fault

136



to
ta

le
la

ps
ed

tim
e

(s
)

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3 Running

Swizzling

Reading

(a) ID,no-bypass,obj

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3 Running

Swizzling

Reading

(b) ID,swizzle-bypass,obj

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3 Running

Swizzling

Reading

(c) FB,swizzle-bypass,obj

to
ta

le
la

ps
ed

tim
e

(s
)

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

5

10

15

20

25

30

35 Running

Swizzling

Reading

Bypassing

(d) ID,fault-bypass,obj

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

5

10

15

20

25

30

35 Running

Swizzling

Reading

Bypassing

(e) FB,fault-bypass,obj

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

5

10

15

20

25

30

35 Running

Swizzling

Reading

Bypassing

(f) trap,fault-bypass,obj

Figure B.4 Traversal, swizzling one object per fault

137



to
ta

le
la

ps
ed

tim
e

(s
)

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3 Running

Swizzling

Reading

(a) ID,no-bypass,LSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3 Running

Swizzling

Reading

(b) ID,swizzle-bypass,LSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3 Running

Swizzling

Reading

(c) FB,swizzle-bypass,LSEG

to
ta

le
la

ps
ed

tim
e

(s
)

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6 Running

Swizzling

Reading

Bypassing

(d) ID,fault-bypass,LSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6 Running

Swizzling

Reading

Bypassing

(e) FB,fault-bypass,LSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6 Running

Swizzling

Reading

Bypassing

(f) trap,fault-bypass,LSEG

Figure B.5 Traversal, swizzling one LSEG per fault

138



to
ta

le
la

ps
ed

tim
e

(s
)

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3 Running

Swizzling

Reading

(a) ID,no-bypass,PSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3 Running

Swizzling

Reading

(b) ID,swizzle-bypass,PSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3 Running

Swizzling

Reading

(c) FB,swizzle-bypass,PSEG

to
ta

le
la

ps
ed

tim
e

(s
)

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6 Running

Swizzling

Reading

Bypassing

(d) ID,fault-bypass,PSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6 Running

Swizzling

Reading

Bypassing

(e) FB,fault-bypass,PSEG

cold 2 3 4 5 6 7 8 9 warm hot

iteration

0

1

2

3

4

5

6 Running

Swizzling

Reading

Bypassing

(f) trap,fault-bypass,PSEG

Figure B.6 Traversal, swizzling one PSEG per fault

139



140



BIBLIOGRAPHY

Agrawal, R. and Gehani, N. H. (1989a). ODE (Object Database and Environment): The
language and the data model. In Proceedings of the 1989 ACM SIGMOD International
Conference on Management of Data, pages 36–45, Portland, Oregon. ACM SIGMOD
Record 18, 2 (May 1989).

Agrawal, R. and Gehani, N. H. (1989b). Rationale for the design of persistence and query
processing facilities in the database language O++. In Hull et al. [1989], pages 25–40.

Albano, A., Cardelli, L., and Orsini, R. (1985). Galileo: A strongly-typed, interactive
conceptual language. ACM Transactions on Database Systems, 10(2):230–260.

Albano, A., Ghelli, G., and Orsini, R. (1989). Types for databases: The Galileo experience.
In Hull et al. [1989], pages 196–206.

Anderson, T. L., Berre, A. J., Mallison, M., Porter, H., and Schneider, B. (1989). The
Tektronix HyperModel benchmark specification. Technical Report 89-05, Computer
Research Laboratory, Tektronix Laboratories.

Andrews, T. and Harris, C. (1987). Combining language and database advances in an
object-oriented development environment. In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages 430–440, Or-
lando, Florida. ACM SIGPLAN Notices 22, 11 (November 1987).

Atkinson, M., Chisolm, K., and Cockshott, P. (1982). PS-Algol: an Algol with a persistent
heap. ACM SIGPLAN Notices, 17(7):24–31.

Atkinson, M. P., Bailey, P. J., Chisholm, K. J., Cockshott, P. W., and Morrison, R. (1983a).
An approach to persistent programming. The Computer Journal, 26(4):360–365.

Atkinson, M. P. and Buneman, O. P. (1987). Types and persistence in database programming
languages. ACM Computing Surveys, 19(2):105–190.

Atkinson, M. P., Chisholm, K. J., Cockshott, W. P., and Marshall, R. M. (1983b). Algorithms
for a persistent heap. Software: Practice and Experience, 13(7):259–271.

Atkinson, M. P. and Morrison, R. (1985). Procedures as persistent data objects. ACM
Transactions on Programming Languages and Systems, 7(4):539–559.

Bancilhon, F., Barbedette, G., Benzaken, V., Delobel, C., Gamerman, S., Lécluse, C.,
Pfeffer, P., Richard, P., and Velez, F. (1988). The design and implementation of O2, an
object-oriented database system. In Dittrich [1988], pages 1–22.

141



Banerjee, J., Chou, H., Garza, J. F., Kim, W., Woelk, D., Ballou, N., and Kim, H. (1987).
Data model issues for object-oriented applications. ACM Transactions on Office Infor-
mation Systems, 5(1):3–26.

Bell, J. R. (1973). Threaded code. Communications of the ACM, 16(6):370–372.

Bretl, R., Maier, D., Otis, A., Penney, J., Schuchardt, B., Stein, J., Williams, E. H., and
Williams, M. (1989). The GemStone data management system. In Kim and Lochovsky
[1989], chapter 12, pages 283–308.

Carey, M. J., DeWitt, D. J., and Naughton, J. F. (1993). The OO7 benchmark. In Proceedings
of the 1993 ACM SIGMOD International Conference on Management of Data, pages
12–21, Washington, DC. ACM SIGMOD Record 22, 2 (June 1993).

Carey, M. J., DeWitt, D. J., Richardson, J. E., and Shekita, E. J. (1986). Object and
file management in the EXODUS extensible database system. In Proceedings of the
Twelfth International Conference on Very Large Data Bases, pages 91–100, Kyoto,
Japan. Morgan Kaufmann.

Carey, M. J., DeWitt, D. J., Richardson, J. E., and Shekita, E. J. (1989). Storage management
for objects in EXODUS. In Kim and Lochovsky [1989], chapter 14, pages 341–369.

Cattell, R. G. G. and Skeen, J. (1992). Object operations benchmark. ACM Transactions
on Database Systems, 17(1):1–31.

Cheney, C. J. (1970). A nonrecursive list compacting algorithm. Communications of the
ACM, 13(11):677–678.

Copeland, G. and Maier, D. (1984). Making Smalltalk a database system. In Proceedings
of the 1984 ACM SIGMOD International Conference on Management of Data, pages
316–325, Boston, Massachusetts. ACM SIGMOD Record 14, 2 (1984).

Dearle, A., Conner, R., Brown, F., and Morrison, R. (1989). Napier88—A database
programming language? In Hull et al. [1989], pages 179–195.

Dearle, A., Shaw, G. M., and Zdonik, S. B., editors (1990). Proceedings of the Fourth In-
ternational Workshop on Persistent Object Systems, Martha’s Vineyard, Massachusetts.
Published as Implementing Persistent Object Bases: Principles and Practice, Morgan
Kaufmann, 1990.

Detlefs, D. D., Herlihy, M. P., and Wing, J. M. (1988). Inheritance of synchronization and
recovery in Avalon/C++. IEEE Computer, 21(12):57–69.

Deux, O. et al. (1990). The story of O2. IEEE Transactions on Knowledge and Data
Engineering, 2(1):91–108.

Dittrich, K. and Dayal, U., editors (1986). Proceedings of the International Workshop on
Object-Oriented Database Systems, Pacific Grove, California. IEEE Computer Society
Press, Washington, D.C.

142



Dittrich, K. R., editor (1988). Proceedings of the Second International Workshop on
Object-Oriented Database Systems, volume 334 of Lecture Notes in Computer Science,
Bad Münster am Stein-Ebernburg, Federal Republic of Germany. Advances in Object-
Oriented Database Systems, Springer-Verlag, 1988.

Elhardt, K. and Bayer, R. (1984). A database cache for high performance and fast restart in
database systems. ACM Transactions on Database Systems, 9(4):503–525.

Ellis, M. A. and Stroustrup, B. (1990). The Annotated C++ Reference Manual. Addison-
Wesley.

Fegaras, L., Sheard, T., and Stemple, D. (1989). The ADABTPL type system. In Hull et al.
[1989], pages 207–218.

Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language and its Implementation.
Addison-Wesley.

Gray, J. N. (1978). Notes on database operating systems. In Bayer, R. et al., editors, Op-
erating Systems: An Advanced Course, Lecture Notes in Computer Science. Springer-
Verlag.

Haerder, T. and Reuter, A. (1983). Principles of transaction-oriented database recovery.
ACM Computing Surveys, 15:287–318.

Harbison, S. P. (1992). Modula-3. Prentice Hall, New Jersey.

Hornick, M. F. and Zdonik, S. B. (1987). A shared, segmented memory system for an
object-oriented database. ACM Transactions on Office Information Systems, 5(1):70–
95.

Hosking, A. L. (1991). Main memory management for persistence. Position paper presented
at the OOPSLA ’91 Workshop on Garbage Collection.

Hosking, A. L. and Moss, J. E. B. (1990). Towards compile-time optimisations for persis-
tence. In Dearle et al. [1990], pages 17–27.

Hosking, A. L. and Moss, J. E. B. (1991). Compiler support for persistent programming.
COINS Technical Report 91-25, University of Massachusetts, Amherst, MA 01003.

Hosking, A. L. and Moss, J. E. B. (1993). Protection traps and alternatives for memory
management of an object-oriented language. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles, pages 106–119, Asheville, North Carolina.
ACM Operating Systems Review 27, 5 (December 1993).

Hosking, A. L., Moss, J. E. B., and Stefanović, D. (1992). A comparative performance
evaluation of write barrier implementations. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications, pages 92–109,
Vancouver, Canada. ACM SIGPLAN Notices 27, 10 (October 1992).

143



Hull, R., Morrison, R., and Stemple, D., editors (1989). Proceedings of the Second Inter-
national Workshop on Database Programming Languages, Gleneden Beach, Oregon.
Morgan Kaufmann.

Kaehler, T. (1986). Virtual memory on a narrow machine for an object-oriented language. In
Proceedings of the Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 87–106, Portland, Oregon. ACM SIGPLAN Notices 21, 11
(November 1986).

Kaehler, T. and Krasner, G. (1983). LOOM—large object-oriented memory for Smalltalk-
80 systems. In Krasner [1983], chapter 14, pages 251–270.

Kim, W., Ballou, N., Banerjee, J., Chou, H., Garza, J. F., and Woelk, D. (1988). Integrating
an object-oriented programming system with a database system. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and Applications,
pages 142–152, San Diego, California. ACM SIGPLAN Notices 23, 11 (November
1988).

Kim, W., Ballou, N., Chou, H., Garza, J. F., and Woelk, D. (1989). Features of the ORION
object-oriented database system. In Kim and Lochovsky [1989], chapter 11, pages
251–282.

Kim, W., Garza, J. F., Ballou, N., and Woelk, D. (1990). Architecture of the ORION next-
generation database system. IEEE Transactions on Knowledge and Data Engineering,
2(1):109–124.

Kim, W. and Lochovsky, F. H., editors (1989). Object-Oriented Concepts, Databases, and
Applications. ACM Press/Addison-Wesley, New York, New York.

Krasner, G., editor (1983). Smalltalk-80: Bits of History, Words of Advice. Addison-Wesley.

Lamb, C., Landis, G., Orenstein, J., and Weinreb, D. (1991). The ObjectStore database
system. Communications of the ACM, 34(10):50–63.

Lécluse, C. and Richard, P. (1989). The O2 database programming language. In Proceedings
of the Fifteenth International Conference on Very Large Data Bases, pages 411–422,
Amsterdam, The Netherlands. Morgan Kaufmann.

Lécluse, C., Richard, P., and Velez, F. (1988). O2, an object-oriented data model. In
Proceedings of the 1988 ACM SIGMOD International Conference on Management of
Data, pages 424–433, Chicago, Illinois. ACM SIGMOD Record 17, 3 (September 1988).

Maier, D. and Stein, J. (1986). Indexing in an object-oriented DBMS. In Dittrich and Dayal
[1986], pages 171–182.

Matthes, F. and Schmidt, J. W. (1989). The type system of DBPL. In Hull et al. [1989],
pages 219–225.

144



Morrison, R., Brown, A., Carrick, R., Connor, R., Dearle, A., and Atkinson, M. P. (1989).
The Napier type system. In Rosenberg, J. and Koch, D., editors, Proceedings of the
Third International Workshop on Persistent Object Systems, pages 3–18, Newcastle,
Australia. Springer-Verlag, 1990.

Moss, J. E. B. (1987). Managing stack frames in Smalltalk. In Proceedings of the ACM
SIGPLAN ’87 Symposium on Interpreters and Interpretive Techniques, pages 229–240,
St. Paul, Minnesota. ACM SIGPLAN Notices 22, 7 (July 1987).

Moss, J. E. B. (1990). Working with persistent objects: To swizzle or not to swizzle. COINS

Technical Report 90-38, University of Massachusetts, Amherst, MA 01003. Submitted
for publication.

Moss, J. E. B. and Hosking, A. L. (1994). Expressing object residency optimizations
using pointer type annotations. In Proceedings of the Sixth International Workshop on
Persistent Object Systems, Tarasçon, France. Springer-Verlag.

Moss, J. E. B., Leban, B., and Chrysanthis, P. K. (1987). Finer grained concurrency control
for the database cache. In Proceedings of the Third International Conference on Data
Engineering, pages 96–103, Los Angeles, CA. IEEE.

Mylopoulos, J., Bernstein, P. A., and Wong, H. K. T. (1980). A language facility for
designing database-intensive applications. ACM Transactions on Database Systems,
5(2):185–207.

Nelson, G., editor (1991). Systems Programming with Modula-3. Prentice Hall, New Jersey.

Nixon, B., Chung, L., Lauzon, D., Borgida, A., Mylopoulos, J., and Stanley, M. (1987).
Implementation of a compiler for a semantic data model: Experiences with Taxis. In
SIGMOD [1987], pages 118–131.

ObjectStore (1990). ObjectStore User Guide. Object Design, Inc. Release 1.0.

Purdy, A., Schuchardt, B., and Maier, D. (1987). Integrating an object server with other
worlds. ACM Transactions on Office Information Systems, 5(1):27–47.

Richardson, J. E. (1990). Compiled item faulting: A new technique for managing I/O in a
persistent language. In Dearle et al. [1990], pages 3–16.

Richardson, J. E. and Carey, M. J. (1987). Programming constructs for database implemen-
tations in EXODUS. In SIGMOD [1987], pages 208–219.

Richardson, J. E. and Carey, M. J. (1990). Persistence in the E language: Issues and
implementation. Software: Practice and Experience, 19(12):1115–1150.

Rowe, L. A. and Shoens, K. (1979). Data abstraction, views and updates in RIGEL. In
SIGMOD [1979], pages 71–81.

Schmidt, J. W. (1977). Some high level language constructs for data of type relation. ACM
Transactions on Database Systems, 2(3):247–261.

145



Schmidt, J. W. and Mall, M. (1980). Pascal/R report. Report 66, Fachbereich Automatik,
University of Hamburg, Hamburg, Germany.

Schuh, D., Carey, M., and DeWitt, D. (1990). Persistence in E revisited—implementation
experiences. In Dearle et al. [1990], pages 345–359.

Shaw, R. A. (1987). Improving garbage collector performance in virtual memory. Technical
Report CSL-TR-87-323, Stanford University.

Sheard, T. and Stemple, D. (1989). Automatic verification of database transaction safety.
ACM Transactions on Database Systems, 14(3):322–368.

Shipman, D. W. (1981). The functional data model and the data language DAPLEX. ACM
Transactions on Database Systems, 6(1):140–173.

Shopiro, J. E. (1979). Theseus—A programming language for relational databases. ACM
Transactions on Database Systems, 4(4):493–517.

SIGMOD (1979). Proceedings of the 1979 ACM SIGMOD International Conference on
Management of Data, Boston, Massachusetts.

SIGMOD (1987). Proceedings of the 1987 ACM SIGMOD International Conference on
Management of Data, San Francisco, California. ACM SIGMOD Record 16, 3 (Decem-
ber 1987).

Singhal, V., Kakkad, S. V., and Wilson, P. R. (1992). Texas, an efficient, portable persistent
store. In Proceedings of the Fifth International Workshop on Persistent Object Systems,
pages 11–33, San Miniato, Italy.

Skarra, A., Zdonik, S. B., and Reiss, S. P. (1986). An object server for an object oriented
database system. In Dittrich and Dayal [1986], pages 196–204.

Smith, J. M., Fox, S., and Landers, T. (1983). ADAPLEX: Rationale and Reference Manual.
Computer Corporation of America, Cambridge, Mass., second edition.

Sobalvarro, P. G. (1988). A lifetime-based garbage collector for LISP systems on general-
purpose computers. B.S. Thesis, Dept. of EECS, Massachusetts Institute of Technology,
Cambridge.

Stemple, D., Socorro, A., and Sheard, T. (1988). Formalizing objects for databases using
ADABTPL. In Dittrich [1988], pages 110–128.

Straw, A., Mellender, F., and Riegel, S. (1989). Object management in a persistent Smalltalk
system. Software: Practice and Experience, 19(8):719–737.

Stroustrup, B. (1986). The C++ Programming Language. Addison-Wesley.

Taylor, J. R. (1982). An Introduction to Error Analysis. University Science Books, Mill
Valley, California.

146



Thekkath, C. A. and Levy, H. M. (1994). Hardware and software support for efficient ex-
ception handling. In Proceedings of the Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 110–119, San Jose,
California. ACM SIGPLAN Notices 29, 11 (November 1994).

Ungar, D. (1984). Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Development Environments, pages 157–167,
Pittsburgh, Pennsylvania. ACM SIGPLAN Notices 19, 5 (May 1984).

Ungar, D. M. (1987). The Design and Evaluation of a High Performance Smalltalk System.
ACM Distinguished Dissertations. The MIT Press, Cambridge, MA. Ph.D. Dissertation,
University of California at Berkeley, February 1986.

Verhofstad, J. S. M. (1978). Recovery techniques for database systems. ACM Computing
Surveys, 10(2):167–195.

Wahbe, R. (1992). Efficient data breakpoints. In Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, pages 200–212, Boston, Massachusetts. ACM SIGPLAN Notices 27, 9 (September
1991).

Walsh, N. (1994). Making TEX Work. O’Reilly and Associates, Inc.

Wasserman, A. L. (1979). The data management facilities of PLAIN. In SIGMOD [1979],
pages 60–70.

White, S. J. and DeWitt, D. J. (1992). A performance study of alternative object faulting and
pointer swizzling strategies. In Proceedings of the Eighteenth International Conference
on Very Large Data Bases, pages 419–431, Vancouver, Canada. Morgan Kaufmann.

White, S. J. and DeWitt, D. J. (1994). QuickStore: A high performance mapped object store.
In Proceedings of the 1994 ACM SIGMOD International Conference on Management
of Data, pages 395–406, Minneapolis, Minnesota. ACM SIGMOD Record 23, 2 (June
1994).

Wilson, P. R. and Kakkad, S. V. (1992). Pointer swizzling at page fault time: Efficiently
and compatibly supporting huge address spaces on standard hardware. In Proceedings
of the 1992 International Workshop on Object Orientation in Operating Systems, pages
364–377, Paris, France. IEEE Press.

Wilson, P. R. and Moher, T. G. (1989a). A “card-marking” scheme for controlling intergen-
erational references in generation-based garbage collection on stock hardware. ACM
SIGPLAN Notices, 24(5):87–92.

Wilson, P. R. and Moher, T. G. (1989b). Design of the opportunistic garbage collector. In
Proceedings of the Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 23–35, New Orleans, Louisiana. ACM SIGPLAN Notices 24,
10 (October 1989).

147


