
Compiler Support for Persistent Programming�

Antony L. Hosking J. Eliot B. Moss

COINS Technical Report 91-25
March 1991

Object Oriented Systems Laboratory
Department of Computer and Information Science

University of Massachusetts
Amherst, MA 01003

Abstract

We present the design and implementation of Persistent Modula-3, a compiled, optimized,
persistent programming language. The design allows the evaluation of performance aspects
of persistent programming languages, while the implementation supports the development of
compile-time mechanisms for optimizing persistent programs. We present several optimizations
in detail, and outline further optimization opportunities.

�This project is supported by National Science Foundation Grants CCR-8658074 and DCR-8500332,
and by Digital Equipment Corporation, GTE Laboratories, and the Eastman Kodak Company.

1 Introduction

There is considerable current interest in the design of new programming languages that address
the problems associated with the storage, retrieval, and manipulation of large amounts of highly
structured, long-term data. The need for such support can be seen in the emergence of new classes
of applications including computer-aided design (CAD), computer-aided software engineering
(CASE), document preparation, and office automation. Traditional programming languages have
failed to support these sorts of applications satisfactorily, since they provide only a very weak
notion of long-term storage management in terms of the “file” data type.

Recently we have seen the emergence of persistent programming languages, that treat persis-
tence as an important property of data. The designers of PS-Algol outlined a spectrum of persistence
ranging up to and including data items that outlive the programs that create them [Atkinson et al.,
1983; Atkinson and Morrison, 1985]. They sought to make the longevity of a data item independent
of the way it is manipulated, and conversely, the way programs are expressed independent of the
longevity of the data they manipulate. In line with this principle, they also argued that persistence
should be orthogonal to type, allowing all data items the full range of persistence.

Many programming languages incorporating some form of persistence have since been proposed
and implemented. However, few have specifically addressed the issue of performance. Language
designers have been interested in exploring the bounds of expressiveness and functionality in their
languages, viewing implementation more as a means of validating the feasibility of the language
design than showing that programs written in the language can be made to run efficiently. As the
field has matured, the performance aspects of persistence have become more important. If persistent
programming languages are to gain widespread acceptance then they must exhibit sufficiently good
performance to attract programmers away from traditional programming languages.

Traditional languages have addressed the issue of performance in the compiler, performing
substantial analysis at compile time to optimize programs. Persistence introduces a new set of
optimization problems related to those found in database systems, resulting from the need to
mitigate the high cost of manipulating a database that is only partially resident in memory.

Here we explore mechanisms for optimizing persistent programs in the context of a highly
optimizing compiler for a persistent extension of Modula-3. The remainder of the paper is organized
as follows. We first give an informal presentation of the syntax and semantics of Persistent Modula-
3. Following this introduction to the language, we sketch its straightforward implementation using a
technique we call object faulting. Finally, we present approaches to optimizing persistent programs
so as to improve their performance.

2 Persistent Modula-3

Persistent Modula-3 is an extension of Modula-3 as defined by DEC/Olivetti [Cardelli et al.,
1989]. We have chosen Modula-3 as a vehicle for exploring optimization of persistent programs
because it is strongly typed, compiled, and representative of a class of familiar languages, including
Pascal [Jensen and Wirth, 1974] and Modula-2 [Wirth, 1983]. We are interested in exploring
persistence in such a setting. Furthermore, strong typing permits optimizations that would be
precluded in a more loosely typed language.

1

2.1 Modula-3

Modula-3 consists primarily of Modula-2 with extensions for threads (lightweight processes in
a single address space), exception handling, generics, objects and methods, and garbage collection,
while dispensing with variant records, and the ability to nest modules. Exception handling and
generics do not raise any novel issues here, so we will not discuss them further. While threads do
have implications for concurrency control and transactions in a persistent system, for the purposes of
this paper we ignore these issues by treating an executing program as one transaction, whose changes
to the persistent store are effectively committed when the program terminates. Understanding the
remaining extensions requires some explanation of the type system of Modula-3.

Modula-3 is strongly typed: every expression has a unique type, and assignability and type
compatibility are defined in terms of a single syntactically specified subtype relation. If T is a
subtype of U (written T <: U), then every instance of type T is also an instance of type U. Any
assignment satisfying the following rule is allowed: a T is assignable to a U if T is a subtype of
U. In addition, there are specific assignment rules for ordinal types (integers, enumerations, and
subranges), references (pointers), and arrays. We discuss only some specifics of reference types
here, omitting unnecessary details.

Reference types are traced. A reference (of type ref T) refers to storage (of type T) that is
automatically reclaimed by the garbage collector whenever there are no longer any references to
it. The type null contains only the reference value nil.

Object types are also reference types. An object is either nil or a reference to a data record
paired with a method suite: a record of procedures that will each accept the object as a first
argument. Since they are references, objects are also traced. Every object type has a supertype,
inherits the supertype’s representation and implementation, and optionally may extend them by
providing additional fields and methods, or overriding the methods it inherits with different (but
type correct) implementations.

This scheme is designed so that it is (physically) reasonable to interpret an object as an instance
of one of its supertypes. That is, a subtype is guaranteed to have all the fields and methods defined
by its supertype, but possibly more, though it may override its supertype’s method implementations
with its own.

An object type is specified by the following syntax:

T object fields
methods methods
override overrides

end

This specifies an object subtype of T, with additional fields fields, additional methods methods,
and overriding methods overrides. There is a built-in object type, having no fields or methods,
from which all object types are descended: root.

We can summarize the subtype rules for references as follows:

null <: ref T
null <: T object: : :end <: T, for some object type T

Let us briefly consider an implementation for objects. Because an object can be interpreted
according to many different types, it must carry some sort of type code with it so that we can

2

methods pointer

fields

type code

method addresses

method
offset

field
offset

Variable

object shared method suite

Figure 1: An implementation of Modula-3 objects

determine its actual type at run time (e.g., for garbage collection). Further, since the methods
vary by object type, we need some way to find the methods when they are invoked. The expected
implementation is for the object fields to be preceded by a pointer to the method suite. This is
simply a vector of addresses of procedures, preceded by the type code. Because Modula-3 offers
single (not multiple) inheritance the offset of a given method within the method suite is static, so
no run-time search is required to find the code to run on method invocation. Similarly, field offsets
are statically known. The method suite for a particular object type is shared by all of its instances.
This implementation approach is illustrated in Figure 1.

2.2 Extensions for persistence

To incorporate persistence in Modula-3 we have extended its type system with another class
of reference types: persistent references, similar to the db types of the E database programming
language [Richardson and Carey, 1987]. A persistent reference type is indicated by the keyword
persistent. A persistent reference indicates a specific data item, but that item may or may not be
resident in memory. In addition, we permit any top-level variable (i.e., a variable declared in the
outermost scope of a module) to be declared persistent using the persistent var construct, just
as var is used for non-persistent variables. This indicates that the variable should be treated as a
“handle” on a known data item in the persistent store. Our new reference types have subtype rules
analogous to the ordinary reference types; an object type inherits persistence from its supertype.

Finally, analogous to garbage collecting traced data, anything reachable from a top-level per-
sistent var via persistent references will itself persist, so that we must be able to find all persistent
references. There is a question as to whether a persistent data item may contain non-persistent
references. At first glance this may seem to be a little strange, since the data referred to by the
persistent data item will disappear when the program ceases execution, leaving dangling refer-
ences. However, we can give such references special semantics, allowing them to be used to refer
to volatile data while the program is running, but setting them to nil when the persistent data item
is written back to stable storage (or when it is loaded from stable storage).

2.2.1 Binding Issues

There are a number of issues related to the binding of Modula-3 variables to their corresponding
objects within the persistent store: top-level variables must be bound to their values; objects must
be bound to their method code. We have indicated that top-level variables may be declared to be

3

persistent, and that such variables act as “handles” on known objects within the store, from which
other persistent data may be reached. The question remains as to when these known persistent
objects are allocated and initialized. There is also the question of binding objects to their method
code when they are made resident, raising the whole issue of code residing in the store.

2.2.2 Orthogonality Issues

The design we have just described yields non-orthogonal persistence: there is a separate
hierarchy of persistent types, independent of the ordinary transient types. The type rules of
Modula-3 prohibit the assignment of pointers from one hierarchy to pointer variables of the other
hierarchy. In Modula-3 dynamic storage is allocated by the new statement:

ref := new(ref T);

This allocates storage for a traced data item of type T, and returns a transient reference to it. Since
a ref T cannot be assigned to a variable of type persistent ref T, and persistence is based on
reachability via persistent references, the potential longevity of a data item is determined when it
is created—if a persistent reference is requested then the item may persist, otherwise it cannot.

A type orthogonal language design could be achieved by collapsing the distinction between
ordinary and persistent references. However, we have reasons for maintaining the distinction.
Rather than designing persistent programming languages, we are interested in exploring the per-
formance ramifications of persistence. A non-orthogonal design serves this interest best since it
permits easier performance evaluation. Clearly, dereferencing a persistent reference will in general
be more expensive than dereferencing an ordinary reference, since it will involve a check to make
sure that the data item referred to is resident. By maintaining the distinction, we are better able
to compare the relative performance of persistent references, and get a better understanding of the
overheads of persistence.

Another justification for maintaining the distinction may be found in Modula-3 itself. We
have not yet mentioned that Modula-3 also provides another, separate, hierarchy of untraced
references. These are just like Pascal pointers—the storage they refer to must be explicitly
deallocated, rather than being reclaimed by the garbage collector. This allows programmers to
indicate explicitly whether they accept the overhead of garbage collection. Similarly, a separate
hierarchy of persistent references allows programmers to indicate explicitly whether they accept
the overhead of persistence. If we can make this overhead small, then collapsing the distinction
may be justifiable. This will likely depend on the quality of the optimizations we describe later in
this paper.

3 Implementation

Our implementation of Persistent Modula-3 is inspired by the following requirements. We
wish to support the language on a number of different hardware and operating system platforms.
For this reason any implementation must be portable. Moreover, we are interested in exploring
performance issues by evaluating different approaches to persistence, so the implementation should
be flexible enough to allow variation.

There are two approaches we can take to detecting non-residency of persistent data:

4

� Use a hardware page protection scheme to trap references to non-resident data, so that
residency checks are subsumed by ordinary memory access.

� Use a software scheme, thereby incurring some marginal cost in residency checks.

The chief advantage of the first approach is that there is no overhead for residency checks over
and above the memory management overhead already in place. It also requires little additional
mechanism. However, it does suffer from a number of disadvantages. First, there is sufficient
variation between operating systems and hardware to pose a portability problem (e.g., some ma-
chines do not offer paging hardware). Second, many operating systems do not reflect page faults
back to application programs particularly efficiently, so that performance may be compromised.
Third, the memory location of an object is fixed in advance, so that we cannot easily change the
size of persistent objects, or move them. Finally, taking a hardware approach ties us to a particular
strategy, preventing us from evaluating different approaches.

For these reasons we have devised a software scheme, called object faulting. By taking
a software approach we assume some marginal cost associated with checking the residency of
persistent data. Having accepted this cost, we would like to minimize its impact on the performance
of our persistent programs. This will require reasonably sophisticated compile-time optimization
of these programs.

We have chosen the GNU C compiler as a base on which to build, its portability meeting the first
of our requirements, and its optimization phase allowing us to attack the problem of performance.
Our implementation effort involves the construction of a Modula-3 front end to the compiler, along
with the necessary modifications to the back end to support persistence and garbage collection.

3.1 Object Faulting

Object faulting is a mechanism that detects when a pointer to a non-resident object is deref-
erenced. An object fault causes the object to be retrieved from the persistent store, converted as
needed, and made available to the running program in virtual memory.

Our approach to object faulting is similar to that used in LOOM [Kaehler and Krasner, 1983].
Specially marked resident pseudo-objects called fault blocks stand in for non-resident objects.
Every memory reference to a non-resident object is actually a pointer to a fault block. In this way,
pointers to non-resident objects may be distinguished from pointers to resident objects by checking
whether they refer to a fault block.

The approach is illustrated in Figure 2. In Figure 2(a) we see that a non-resident object is
referred to by pointers to its fault block, that contains sufficient information to locate the object
on secondary storage. When a pointer to the fault block is dereferenced, a fault occurs, bringing
the non-resident object into memory (Figure 2(b)). The fault block is overwritten with an indirect
block that contains a pointer to the now resident object in memory. Note that the newly resident
object may contain references to other persistent objects. These will typically be represented as
object identifiers in the persistent store, but must be converted to in-memory pointers when the
object is made resident. This process of converting objects from their persistent format to the
in-memory format expected by the program is known as swizzling.1 Note also that there is now
a level of indirection via the indirect block. This overhead will eventually be eliminated by the

1We are trying to determine the etymology of this term but have no definitive origin yet.

5

(b) Target object faulted in(a) Fault blocks stand in for non-resident objects

 fault block

 indirect block

 non-resident object

 resident object

(c) Indirect block bypassed by garbage collector

Figure 2: Object Faulting

garbage collector—any reference to an indirect block will be updated to point to the real object,
and the space for the indirect block can then be reclaimed (Figure 2(c)).

3.2 Residency Checks and the Compiler

Implementing object faulting in Modula-3 is simply a matter of having the compiler generate
code to perform a residency check wherever a persistent ref is dereferenced, and to handle the
object fault if the residency check fails. The compiler can also ensure that the source of the reference
that caused the fault is updated to point directly at the resident object, immediately bypassing the
indirect block, rather than deferring to the garbage collector to bypass it later.

We can implement field access for persistent object types similarly to persistent ref types. For
method invocation, however, we can use the following technique to eliminate conditional code in
the residency check. Given that we have a fault block standing in for the resident object, we supply
a fake method suite for the fault block. The fake method suite contains only procedures that fault
in the real object before forwarding the call to the object’s real methods. At fault time, when the
fault block is overwritten with an indirect block that points to the real object, we set up another
fake method suite for the indirect block to forward calls to the real object.2

3.3 Handling an Object Fault

Object faults are handled by calls to an underlying object storage subsystem. We use the Mneme
persistent object store [Moss, 1990a], but we could just as easily use some other storage system
such as the EXODUS storage manager [Carey et al., 1986; Carey et al., 1989]. Given a unique
persistent identifier for an object, the persistent object store will return a pointer to that object in

2This technique can also be used for field access if we are willing to turn field access into method
invocation; this is probably more expensive than a conditional residency check.

6

its buffers, retrieving it from secondary storage if necessary. These persistent identifiers are stored
directly in the fault blocks, to be used at fault time.

Retrieving just one object at every object fault has been shown to be extremely inefficient. For
this reason Mneme groups objects together into segments for retrieval. When one of the objects in
the segment is to be made resident the entire segment is placed in a buffer in memory.

3.3.1 Swizzling

We have mentioned the need to swizzle objects from their persistent format to the in-memory
format expected by the program. We perform copy swizzling3: when an object is first faulted we
make a swizzled copy of it in a specially managed persistent area of the heap. The persistent form of
the object may contain references to other persistent objects. These references are typically stored
as persistent identifiers, and must be converted to in-memory pointers. To avoid both conditional
code and lookup cost in swizzling we convert all such references into newly allocated fault blocks.
This means that there may be more than one fault block for any given object and implies that a
fault block may refer to an object that is already resident. To avoid making more than one copy of a
persistent object we must keep track of which objects have been swizzled by maintaining some sort
of correspondence table mapping persistent identifiers to their swizzled copies; Mneme supports
this mapping efficiently.

3.4 Writing Objects Back

When a program finishes execution, all of its persistent objects must be written back to disk.
This means that the buffers of the storage manager must be updated to reflect any changes before
the storage manager is asked to write those buffers out to secondary storage. Updating the buffers
involves unswizzling all modified objects in the buffer: every in-memory pointer is replaced with
the persistent identifier of the object it refers to. To enable this we store the persistent identifier
with each swizzled copy. If a pointer refers to an object that has no persistent identifier stored with
it, then the object is newly created and must be promoted: space must be allocated for it in the
persistent store and it must be assigned a persistent identifier. In its turn it will also eventually need
to be unswizzled, perhaps dragging further new objects with it into the persistent store.

If large amounts of persistent data are to be manipulated over the period of a program’s execution
it is likely that buffer management will need to be performed so that memory is not tied up with
data that no longer needs to be resident. This means that we must be able to remove buffers from
memory incrementally. In addition to unswizzling, we must decide what to do with the swizzled
copies in the persistent area of the heap. The approach we take is illustrated in Figure 3. The
swizzled copy is overwritten with an indirect block that points to a newly allocated fault block for
the object (Figure 3(b)). If the target object is accessed again in the future it will be faulted back
into memory. As we shall describe, the extra indirection imposed by the indirect block allows
us to reclaim the space that was used by the swizzled copies, after the indirect blocks have been
bypassed (Figure 3(c)).

3For a performance evaluation of this and other swizzling techniques see [Moss, 1990b]

7

 fault block

 indirect block

 non-resident object

 resident object

(c) Indirect block bypassed

(a) Resident objects point to target for removal (b) Target object written to disk

Figure 3: Removing Buffers

3.5 Managing the Persistent Area

We have mentioned that persistent objects are copy swizzled into a separately managed per-
sistent area of the heap, separate from the volatile area in which all new objects, both transient
and persistent, are allocated. The volatile area is garbage collected to reclaim free memory. In
the presence of incremental buffer removal we would like to reuse any memory freed up in the
persistent area of the heap. Here we describe our scheme for managing this area.

The persistent area is divided into chunks; these chunks are the unit of reclamation in the area.
The life cycle of a chunk in the persistent area is illustrated in Figure 4. To reclaim a live chunk
we process it as follows. First, we close the chunk so that no more swizzled persistent objects are
allocated in it. Then we begin scanning the chunk, evacuating all objects in it, leaving indirect
blocks in their place. To evacuate an object we can either unswizzle it into the storage manager’s
buffers—thence to be written back to disk as we have described—or we can copy it to some other
live chunk. When this scan is finished we can mark the chunk as evacuated—there may still be
pointers into the chunk from other parts of memory, but they will all point at indirect blocks. As we
have mentioned earlier these indirect blocks will eventually be bypassed by the garbage collector.

In order to proclaim an evacuated chunk free we must ensure that there are no pointers into the
chunk. We could scan the entire heap updating all pointers that refer to indirect blocks in evacuated
chunks. To avoid scanning the entire heap we can keep track of all pointers into a chunk; for details
of such an approach see [Ungar, 1984].

4 Optimizing Persistent Programs

The previous section indicated a straightforward implementation of persistence for Modula-3.
In this section we look at improving the performance of persistent programs using compile-time
optimization techniques. First we outline the costs incurred by persistence.

8

Live

Evacuated

ClosedFree

identified as a
candidate for
reclamation

objects moved,
overwritten with
indirect blocks

indirect
blocks
bypassed

reused for
allocation

Figure 4: Managing the Persistent Area

4.1 Costs of Persistence

We can decompose the cost of dealing with non-resident data into two components:

� CPU costs: the time spent detecting and managing non-residency. This includes the over-
heads of residency checks, swizzling, unswizzling, and promotion.

� I/O costs: the time spent accessing secondary storage (bringing data into memory and
committing it to stable storage). This is influenced by the amount of data to be retrieved, the
clustering of data into segments for retrieval, and the size of the available buffer space.

The first cost can be attacked using typical compile-time optimization techniques, such as global
(intra-procedural) data flow analysis, to detect redundant residency checks. We can also make use
of co-residency information to reduce residency checks. If a pair of data items can be guaranteed
to be resident in memory at the same time then they are said to be co-resident. Reducing I/O
costs implies the use of techniques typically found in database systems to cluster data for retrieval.
There is some interplay between the two costs, since data flow analysis may reveal co-residency
information about data, that may influence clustering decisions. Similarly, clustering information
may affect what residency checks need to be performed.

4.2 Eliminating Residency Checks

Our implementation inserts a residency check (along with the fault handling call to the storage
manager) wherever a persistent pointer is dereferenced. Let us assume that residency checks are
idempotent: once a data item is faulted in then it remains resident. If this is the case then many
residency checks will be redundant. Consider the following Modula-3 code:

9

type
rec = record

field: integer; : : :
end;

var
ptr: persistent ref rec:= : : : ;
x, y: integer;

begin
y:= ptr".field; need residency check here
: : :

ptr".field := x; check redundant if ptr unchanged
end;

Under our idempotency assumption, so long as ptr is not updated, the second time ptr is dereferenced
a residency check is superfluous.

To optimize away redundant residency checks we perform data flow analysis similar to common
sub-expression elimination (CSE). However, unlike CSE, which saves the value of a computation
for use in a later expression that makes use of the same computation, residency checks have a side
effect, turning the checked reference into a pointer to an in-memory object. Thus, residency check
elimination requires the addition of a new optimization.

In the presence of incremental buffer removal we can no longer assume the idempotency of
residency checks, since a data item may become non-resident at any time. For this reason we
must maintain a contract between the compiler and the run-time system, so that any residency
assumptions made by the compiler will be maintained by the buffer manager. We could simply
disallow run-time removal of buffers; this is likely to be unacceptable. Instead, we arrange to have
residency assumptions re-established after a buffer is removed. One way to do this is to have the
buffer manager scan the stack to re-fault any object that was assumed resident. To support this,
the compiler must generate information about the residency assumptions for each stack allocated
variable at all points in the program at which a buffer may be removed. Alternatively, the buffer
manager can modify the return addresses of each stack frame so that when a frame is returned
to it first re-establishes its residency assumptions before continuing. Once again, the compiler
must support this by generating a code fragment to re-establish the residency assumptions for each
potential buffer removal point in the program, along with the information needed to patch the return
address.

4.3 Co-residency

Object faulting treats the persistent store as a directed graph: the nodes of the graph are the
objects, while the edges in the graph are the references from one object to another. A computation
traverses the object graph, which is only partially resident in memory; traversing an edge from a
resident object to a non-resident object causes an object fault. Let us call the objects referred to
by an object its children, and the object itself the parent.4 We partition the children of an object
into two categories: those that are co-resident with the parent, and those that are not. Whenever

4This terminology is not intended to reflect the existence of any hierarchy of objects, but rather the
directedness of the pointer relationship.

10

we fault the parent, each pointer to a co-resident child is swizzled to point directly at the child,
instead of a fault block for the child. If the child is not yet resident it must also be faulted. The
compiler can then omit any residency check where a pointer from a parent to its co-resident child
is dereferenced, since the pointer is guaranteed to refer directly to the memory-resident child.

The question remains as to how such co-residency information can be presented to the compiler.
The type graph of a program is an abstract and static representation of the potential graph structure
of the persistent store. Its nodes are the types of the program. If an object of type T contains a
pointer to an object of type U then there will be an edge from T to U in the type graph. We annotate
the edges of the type graph to represent co-residency constraints. One way to do this is to annotate
the types of a program as in the following Modula-3 code:

type
RT = record

field: cores persistent ref T;
val: integer;

end;
var
p: persistent ref RT:= : : : ;
t: T;

begin
p".val := 4; faults both p" and p".field"
: : :

t := p".field"; no residency check needed since p".field" already resident
: : :

end;

Here, dereferencing the field pointer of the record does not need a residency check, since the item
it refers to has already been made resident.

Co-residency declarations must be considered an integral part of a type’s definition. Since
Modula-3 uses structural type equivalence to determine if two types are the same, this means types
having different co-residency declarations cannot be equivalent. While it is tempting to consider
relaxing this requirement, without it co-residency declarations will not be useful to the compiler.
Suppose that T and U have different co-residency declarations, but are otherwise structurally
equivalent. If we consider them to be the same type then a variable of type persistent ref T can
actually be used to refer to an instance of type U at run time. This instance will not have the same
co-residency declarations enforced on it as an instance of T, so the compiler cannot safely eliminate
residency checks based on the declared type of the variable, rendering the co-residency constraints
useless. For the same reason, a subtype must inherit its supertype’s co-residency declarations.

Recursively defined types form cycles in the type graph. We treat co-residency declarations
that form a cycle as deliberate indications that the entire recursively defined structure is to be made
co-resident. Consider a type definition for the nodes of a binary tree:

type binaryTreeNode = record
value: integer;
left: cores persistent ref binaryTreeNode;
right: persistent ref binaryTreeNode;

end;

11

Whenever a node of the tree is made resident, the entire left spine of the subtree rooted at that node
will also be made resident. Similarly, we treat co-residency declarations on pointer elements of an
open array type as indicating that every item referred to by the array is to be made resident.

Finally, even though our examples have annotated the type declarations in the code, it is perhaps
preferable for co-residency declarations to be maintained by some tool, in files auxiliary to the
code. An ill-placed co-residency constraint will retrieve more objects than are needed, and so
will be more damaging to performance than if it was omitted. Thus, it is important that good
co-residency declarations be derived. This requires an understanding of both the dynamic behavior
of the programs using those declarations and the physical characteristics of the persistent store.
Static analysis can provide some information about the dynamic behavior of a program. This
analysis can be supplemented by statistics gathered at run time. The compiler can support such
profiling by inserting statistics-gathering code at interesting points in the program at compile time.
We envision the analysis and profiling of whole suites of programs, so that a global perspective
can be obtained by which the combined behavior of all the programs acting on the persistent store
may be better understood.

4.4 Clustering

We have mentioned that storage managers may place objects physically close together on disk,
so that they may all be retrieved with one disk access. This is known as clustering. A good
clustering will group objects that have a high probability of being accessed at the same time. Note
that we do not mean clustering for virtual memory, where the unit of clustering is a fixed size page;
our clusters may comprise multiple pages.

We have used co-residency information to indicate objects that must be made resident at the
same time, so that their retrieval is triggered by just one residency check. If these objects can be
clustered, then the retrieval itself will be performed with fewer disk accesses. In this way we can
see co-residency as driving clustering decisions: when new data items are made persistent their
co-residency constraints are a useful basis on which to cluster them.

The programs that manipulate the store influence its clustering decisions. However, recompiling
a program is less expensive than re-clustering a large persistent store, so we should consider turning
the dependency around. After adapting a program’s co-residency constraints to match the prevailing
clusters in the store, the program can be recompiled with those new constraints. Like co-residency,
clustering decisions can be made based on edge traversal statistics gathered with the support of the
compiler.

It is important to realize that clustering is likely to have a bigger impact on performance
than any of the other optimizations we have described, since the performance gains of CPU-time
optimizations are likely to be dominated by those of I/O optimizations (most likely by an order of
magnitude).

4.5 Swizzling

We can use the compiler to support efficient swizzling and unswizzling. For each type in
a program the compiler generates a pair of routines to perform the swizzling and unswizzling
operations for instances of the type (these can be implemented as hidden methods). When an
object is first faulted it will be swizzled by a call to the swizzling routine of its type. Likewise,

12

when it is to be removed from memory it will be unswizzled by a call to its unswizzling routine. To
meet the co-residency constraints of an object, its swizzling routine will call the swizzling routines
of any co-resident children. Similarly, an object’s unswizzling routine will call the unswizzling
routines of its co-resident children, making placement requests on the storage manager so that
newly created co-resident children are clustered with their parents.

The alternative to type-specific compiler-generated swizzling routines is an interpreted ap-
proach: a general-purpose routine swizzles each object based on descriptor information stored with
its type code. Clearly, this will suffer from the overhead of having to decode the descriptor for
each object. In the compiled approach this overhead is eliminated in favor of fast, straight-line,
compiled code.

4.6 Evaluation

We can characterize the behavior of many persistent programs as a traversal of a persistent
directed graph, starting from a known root node, and performing some work at each node visited.
Each node of the graph is stored as a single object in the persistent store. We would expect
redundant residency check elimination to reduce the number of residency checks to 1 check per
node visit.

If a strictly object-oriented programming style is observed we would expect the number of
residency checks to be reduced to less than 1 per node visit, since the implementation for method
invocation on a persistent object (as described in Section 3.2) folds the residency check on the
object into the dynamic binding of the call. Of course, any gain here is offset by the dynamic
nature of the call binding mechanism. In the case that a particular method invocation can be bound
statically, or if it is inlined, residency checks will need to be inserted in the method code, so that
the figure will be closer to 1 check per node visit.

We can expect co-residency information to reduce the number of residency checks to 1 check
per pointer variable, so long as only co-resident objects are accessed from that variable. Even
if we only visit the co-resident children of an object once, we still expect the retrieval style that
co-residency allows—where a group of co-resident objects are retrieved together at the cost of one
residency check—to result in some overall improvement.

These observations give us an insight into the effectiveness of compile-time optimizations for
persistent programs. Our goal is to undertake a quantitative performance evaluation of compiler
support for persistence. Not only will this better allow us to evaluate the optimizations we have
described, we will also be able to obtain an appreciation for the gains that compilation provides for
swizzling, unswizzling, and profiling.

5 Related Work

The only other work of which we are aware on optimizing persistent programs at compile time
is that undertaken by Richardson in his database programming language E [Richardson, 1989]. He
performs an optimization much like the redundant residency check elimination we have described.
However, the other optimizations we have described are not performed in E. Importantly, an E
object is always accessed via a level of indirection. Our object faulting techniques and co-residency
optimization eliminate such indirection.

13

Some progress has been made towards understanding clustering issues in persistent object
stores [Benzaken, 1990; Benzaken and Delobel, 1990; Shannon and Snodgrass, 1990]. However,
none of this work considers using clustering information at compile time to generate programs that
run efficiently against the persistent store.

There is a large body of background work on persistent programming languages, database
programming languages, and persistent object stores. Published accounts of this work may be
found in the relevant journals, conferences, and workshops.

6 Conclusions

We have devised an implementation approach to persistence that allows the compiler to sig-
nificantly improve the performance of persistent programs. In so doing we have framed the
performance problem for persistent programs in terms of two cost components: CPU-time costs
and I/O costs. We have identified a number of optimizations that may be applied to help reduce
these costs, and have made intuitive arguments as to the performance enhancements to be gained by
them. We look forward to confirming these intuitions with quantitative performance evaluation.

References
[Atkinson et al., 1983] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and

R. Morrison. An approach to persistent programming. The Computer Journal 26, 4 (Nov.
1983), 360–365.

[Atkinson and Morrison, 1985] Malcolm P. Atkinson and Ronald Morrison. Procedures as
persistent data objects. ACM Trans. Program. Lang. Syst. 7, 4 (Oct. 1985), 539–559.

[Benzaken, 1990] Véronique Benzaken. An evaluation model for clustering strategies in the O2

object-oriented database system. Tech. Rep. 49-90, Altaı̈r, BP105, 78153 Le Chesnay Cedex,
France, Aug. 1990.

[Benzaken and Delobel, 1990] Véronique Benzaken and Claude Delobel. Enhancing
performance in a persistent object store: Clustering strategies in O2. In [Dearle et al., 1990].

[Cardelli et al., 1989] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill
Kalsow, and Greg Nelson. Modula-3 report (revised). Tech. Rep. DEC SRC 52, DEC Systems
Research Center/Olivetti Research Center, Palo Alto/Menlo Park, CA, Nov. 1989.

[Carey et al., 1986] M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J. Shekita. Object and file
management in the EXODUS extensible database system. In Proceedings of the Twelfth
International Conference on Very Large Data Bases (Kyoto, Japan, Aug. 1986), Morgan
Kaufmann, pp. 91–100.

[Carey et al., 1989] Michael J. Carey, David J. DeWitt, Joel E. Richardson, and Eugene J.
Shekita. Storage management for objects in EXODUS. In Object-Oriented Concepts,
Databases, and Applications, Won Kim and Frederick H. Lochovsky, Eds. ACM
Press/Addison-Wesley, New York, New York, 1989, ch. 14, pp. 341–369.

[Dearle et al., 1990] Alan Dearle, Gail M. Shaw, and Stanley B. Zdonik, Eds. Implementing
Persistent Object Bases: Principles and Practice. Fourth International Workshop on Persistent
Object Systems: Design, Implementation, and Use (Martha’s Vineyard, Massachusetts, Sept.
1990), Morgan Kaufmann, 1990.

14

[Jensen and Wirth, 1974] Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report,
second ed. Springer-Verlag, 1974.

[Kaehler and Krasner, 1983] Ted Kaehler and Glenn Krasner. LOOM—large object-oriented
memory for Smalltalk-80 systems. In Smalltalk-80: Bits of History, Words of Advice, Glenn
Krasner, Ed. Addison-Wesley, 1983, ch. 14, pp. 251–270.

[Moss, 1990a] J. Eliot B. Moss. Design of the Mneme persistent object store. ACM Trans. Inf.
Syst. 8, 2 (Apr. 1990), 103–139.

[Moss, 1990b] J. Eliot B. Moss. Working with persistent objects: To swizzle or not to swizzle.
COINS Technical Report 90-38, Department of Computer and Information Science, University
of Massachusetts, Amherst, MA, May 1990. Submitted for publication.

[Richardson, 1989] Joel Edward Richardson. E: A Persistent Systems Implementation Language.
PhD thesis, Computer Sciences Department, University of Wisconsin, Madison, WI, Aug.
1989. Available as Computer Sciences Technical Report #868.

[Richardson and Carey, 1987] Joel E. Richardson and Michael J. Carey. Programming constructs
for database system implementations in EXODUS. In Proceedings of the 1987 ACM SIGMOD
International Conference on Management of Data (San Francisco, California, May 1987),
ACM SIGMOD Rec. 16, 3 (Dec. 1987), pp. 208–219.

[Shannon and Snodgrass, 1990] Karen Shannon and Richard Snodgrass. Semantic clustering. In
[Dearle et al., 1990].

[Ungar, 1984] David Ungar. Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments (Pittsburgh, Pennsylvania, Apr.
1984), ACM SIGPLAN Not. 19, 5 (May 1984), pp. 157–167.

[Wirth, 1983] Niklaus Wirth. Programming in Modula-2, second, corrected ed. Springer-Verlag,
1983.

15

