
Design of an Object Faulting Persistent Smalltalk�

Antony L. Hosking J. Eliot B. Moss Cynthia Bliss

COINS Technical Report 90-45
May 1990

Object Oriented Systems Laboratory
Department of Computer and Information Science

University of Massachusetts
Amherst, MA 01003

�This project is supported by National Science Foundation Grants CCR-8658074 and DCR-8500332,
and by Digital Equipment Corporation, GTE Laboratories, and the Eastman Kodak Company.



Abstract

We present an approach to supporting persistence in heap-based programming lan-
guages, called object faulting. By modifying the language run-time system, we provide
the illusion of a large heap of objects, only some of which are actually resident in mem-
ory. When the run-time system detects a reference to the contents of a non-resident
object, an object fault occurs, causing the object to be made resident. We discuss
an implementation of these techniques for Smalltalk that uses the Mneme persistent
object store as the underlying storage manager.



1 Introduction

This work is motivated by the need for exploration of the boundary between programming

languages and databases. Computer-aided design, computer-aided software engineering, document

preparation, and office automation are examples of data-intensive applications that must store and

retrieve large amounts of highly structured information, and be able to share that information

among multiple cooperating users. Environments that can successfully integrate features from

programming languages and databases will enable us to build and maintain such applications

more easily. Successful integration has been described as overcoming the impedance mismatch

[Copeland and Maier, 1984] between programming language data models and database data models.

Traditional database systems require users to cast their problems first in one model and then

the other. Applications programmers would benefit enormously from being able to manipulate

persistent data (data that outlive the execution of the program) just as they do non-persistent data.

Persistent programming languages such as PS-Algol [Atkinson and Morrison, 1985] have shown

that persistence can, and ought to, be an orthogonal property of data: any data item can potentially

persist, independently of its other properties, including its type.

There are significant gains to be made from using object-orientation as a means to language-

database integration. Object-orientation is one meeting ground of the programming language and

database sub-cultures. A number of object-oriented database systems have been or are being

developed, examples of which are GemStone [Maier et al., 1986], Orion [Banerjee et al., 1987],

and Iris [Fishman et al., 1987]. For programming languages there are Smalltalk [Goldberg and

Robson, 1983], Trellis1[Schaffert et al., 1986] and CLOS [Bobrow et al., 1988], among many others.

Integration efforts can build on the experiences of both the database and programming language

worlds. More significantly, object-orientation provides encapsulation of data and operations in

such a way as to enhance the reusability, maintainability, and extensibility of systems. These are

particularly desirable features in an experimental context where exploratory methods are used to

evaluate different research ideas as quickly as possible.

Our choice of Smalltalk as a vehicle for exploring the interface between languages and databases

was made for the following reasons. First of all, Smalltalk is object-oriented, having the advantages

outlined above. Secondly, almost the entire Smalltalk environment (including browsers, compiler,

debugger, etc.) is written in Smalltalk. Everything in Smalltalk is an object, including data, code,

and run-time stack frames. This machine-independent part of Smalltalk is known as the virtual

image. To build a running Smalltalk system, we need only implement the underlying Smalltalk

virtual machine, comprising a stack-oriented interpreter for Smalltalk’s instruction bytecodes and

a memory management subsystem. It is the virtual machine that gives dynamics to the objects in

1Trellis is a trademark of Digital Equipment Corporation.

1



the virtual image. This last point is important, since our approach to persistence in Smalltalk is to

modify the virtual machine to provide the illusion of a large heap of objects, only some of which

are actually resident in memory. That is, the techniques we shall use are dynamic, affecting only

the run-time system. When the run-time system detects a reference to the contents of an object that

is not in memory it causes what we call an object fault: the required object is brought into memory

from disk, and a pointer to it is made available.

While we are taking a dynamic approach to persistence here, static techniques may be applied

in languages that permit compile-time analysis of programs. In such languages we may be able

to optimise away residency checks, by scheduling object faults at compile-time, generating code

that will ensure that the object is resident when it is needed at run-time. Dynamic techniques are

useful for languages such as Smalltalk, that are only weakly typed, although some static analysis

might be of benefit. Static techniques may prove to be highly effective for languages that submit

to stronger static analysis.

2 Object Faulting

Object faulting is a technique for managing persistence that is language-independent. Its only

requirement is that there be some notion of pointer to a data item, and the ability to express

traversals across such pointers. The area in which all such referenced data items, or objects, are

stored is commonly called the heap. Analogous to paged virtual memory systems, object faulting

provides what might be called a virtual heap. The heap is not preloaded into memory; rather,

objects are faulted on demand.

It will serve our discussion best to consider another analogy: the heap as a directed graph.

The nodes of the graph are the objects, and the edges of the graph correspond to pointers from

one object to another. A computation involves traversing the object graph, which is only partially

resident in memory. Traversing an edge from a resident object to a non-resident object causes an

object fault, and the link is snapped to point to the newly resident object. It is important to note

here that merely naming an object does not cause an object fault. Only when the contents of the

object need to be accessed, and so the link to the object must be traversed, is it required that the

object be made resident.

The run-time system must have some way of detecting the traversal of links from resident to

non-resident objects. There are effectively just two ways of achieving this:

� Mark the edges of the graph that are links to non-resident objects, distinguishing them from

links to resident objects (see Figure 1).

2



link to resident object
link to non-resident object

Figure 1: Marking edges

resident object

non-resident object

Figure 2: Marking nodes

� Mark the nodes of the graph to distinguish resident objects from non-resident objects (see

Figure 2).

Edge marking is relatively easy to implement by tagging pointers. Checking whether a pointer

refers to a resident object or not is simply a matter of checking the tag. When a marked link is

traversed, we must first make sure that the object it refers to is resident, faulting it in if necessary

(the object may already be resident if some other link to it has previously been traversed), then

the link is snapped to point to the resident object (see Figure 3). Note that it is legal (though

suboptimal) for a marked edge to refer to a resident object, but an unmarked edge may never refer

to a non-resident object.

Node marking is complicated by the fact that the non-resident objects are just that, non-resident,

link to resident object
link to non-resident object

Figure 3: Object faulting with edge marking

3



resident object

non-resident object

fault block

Figure 4: Fault Blocks

resident object

non-resident object

fault block

traversed link

Figure 5: Object faulting with fault blocks

resident object

non-resident object

fault block
updated link

Figure 6: Updating the traversed link

4



and must (paradoxically) be in memory for them to be checked. To overcome this we can use an

approach similar to leaves in LOOM [Kaehler and Krasner, 1983]. A leaf is a specially marked

resident pseudo-object that stands in for a non-resident object. We call such fake objects fault

blocks. All references from resident objects to non-resident objects are actually pointers to a fault

block (see Figure 4). When a link is traversed to a fault block, we must check if the corresponding

object is resident, faulting it in if necessary. “Snapping the link” in this case involves setting the

fault block to point to the resident object (see Figure 5). We must also create fault blocks for any

objects to which the newly resident object refers. Note that there is now a level of indirection via

the fault block; this may be bypassed by also updating the traversed link to point to the object in

memory (see Figure 6).

The preceding discussion assumes that we have some way of locating non-resident objects, in

order to obtain a pointer to them. We assume the existence of an underlying object manager that,

given some unique object identifier, will return a pointer to the object in memory, faulting it in if

necessary. We thus need somewhere to store the identifier that we pass to the object manager to

obtain the address of the object. In the edge marking scheme we store the identifier in the bits of

the pointer that are not reserved for the tag. In the node marking scheme we store it in the fault

block.

Note that these schemes are not mutually exclusive, and may work side by side. They each have

their advantages. A particular fault block may be referenced by many resident objects. This means

that the object manager need only be called once per fault block, to obtain a memory pointer to the

corresponding object, when the first link to the fault block is traversed. The memory address is

then cached in the fault block so that subsequent traversals of links to that fault block can pick it up

from there, without additional calls to the object manager. However, there are overheads associated

with fault blocks: storage management for fault blocks; creation of fault blocks for all the objects

referred to by a non-resident object when it is faulted in; and the extra level of indirection that fault

blocks imply.

Edge marking has the advantage of eliminating the space consumed by fault blocks, and the

level of indirection associated with them. Its disadvantage is that the only link that is “snapped”

when an object is faulted in is the link that is traversed. All other links to the object are still marked

as pointing to a non-resident object. This means that every traversal of a marked link will result in

a call to the object manager to determine the object’s address, regardless of whether the object is

already resident or not.

5



3 Faulting Smalltalk Objects

Our implementation of Smalltalk is based on the definition of the Smalltalk-802language found

in the “blue book” [Goldberg and Robson, 1983]. We have made only minor extensions to the

virtual image. While we have retained the standard bytecode instruction set, our implementation

of the virtual machine is somewhat different from that defined in the blue book.

The blue book implementation of the heap used an object table. All object references were

actually indices into this table. Each object table entry then contained a pointer to the actual object

in memory. There were a number of reasons for this extra level of indirection. One is that when an

object was moved by the garbage collector the only pointer to the object that needed to be updated

was the pointer in the object table entry for that object. Also, given that the blue book design was

for a 16-bit architecture, using an object table realised a significant gain in address space. Since

object table entries were significantly smaller than the average size of an object, more objects

could be referenced by indirecting through the object table than could be directly addressed. More

recently, generation scavenging garbage collection schemes have been devised that eliminate the

need for an object table, while retaining performance [Ungar, 1984, Ungar, 1987]. Furthermore,

our implementation is for a 32-bit paged virtual-memory architecture, reducing addressability

concerns.

We have implemented Smalltalk on VAX3hardware, with no object table, using a variant of

generation scavenging garbage collection. Object pointers are 32-bit tagged entities. We allocate

objects on 32-bit word boundaries so that on a byte-addressed machine we have two bits left over

for tagging. One bit is used to distinguish immediate4values from memory pointers. The other

bit distinguishes immediate 30-bit signed integers (of class SmallInteger in Smalltalk) from a few

other immediate values (points, characters, true, false, nil), that are distinguished from one another

by extending the tag (see Table 1).

Our design of object faulting for Smalltalk uses the Mneme persistent object store [Moss and

Sinofsky, 1988, Moss, 1989a, Moss, 1989b] as the underlying object manager. Edge marking is

achieved by making use of the as yet unassigned tag value, 0001, to tag pointers to non-resident

objects, with the rest of the pointer being used to store the 28-bit object identifier expected by

Mneme. For node marking we use fault blocks that are faked up to look like the object header of

a memory-resident object, with a 32-bit flags field and a 32-bit class field. However, in place of

the object’s class, we store the tagged Mneme identifier, overwriting it with a pointer to the object

when it is faulted. A bit in the flags field indicates that this is actually a fault block (see Figure 7).

2Smalltalk-80 is a trademark of Xerox Parc.
3VAX is a trademark of Digital Equipment Corporation.
4Immediates are values stored directly in the object pointer.

6



memory pointer : : :00

unassigned : : :0001

immediate point : : :0101

immediate character : : :1001

nil 0 : : : 0001101

false 0 : : : 0011101

unassigned : : : 101101

true 0 : : : 0111101

unusable : : :10

immediate integer : : :11

Table 1: Tagging Object Pointers

“class” : : : TAG
flags : : : F

TAG : object pointer tag
F : 1 = fault block,

0 = object header

Figure 7: Format of a fault block

Whether the “class” field contains a Mneme object identifier or a pointer to the object in memory

is determined by the low-bit of the tag: a zero indicates that the value stored is a pointer, a one

indicates that it is an identifier5.

3.1 Efficiency Issues

Computation in Smalltalk proceeds by sending messages to objects. A message consists of

a message selector and a number of arguments. The effect of sending a message is to invoke a

method on the receiver of the message. Invoking a method may be thought of as a procedure call.

A stack frame is initialised for the call, the arguments are pushed on the stack and the object code

for the method is executed. The method to be executed is determined at run-time, based on the

message selector and the class of the receiver. Every class object in Smalltalk has a pointer to a

method dictionary that associates selectors with compiled methods. A compiled method consists

of the bytecodes that implement the method, along with a literal frame, containing the shared

variables, constants, and message selectors used by the method’s bytecodes. Determining which

method to execute when a message is sent proceeds as follows. The receiver’s class is checked

to see if its method dictionary contains the message selector. If it does then the corresponding

5The “class” field of a fault block should never contain any other immediate value, allowing this to be a
single-bit check!

7



compiled method is invoked. Otherwise, the search continues in the superclass of the object, and

so on, up the class hierarchy. If no matching selector is found then a run-time error is signalled.

Looking up methods as just described is an expensive process. To reduce this lookup cost a

method lookup cache is used. Entries in the cache store a selector, class pointer, and compiled

method pointer. Before proceeding to a full method lookup, the selector and class are hashed to

index an entry in the cache. If the selector and class of the cache entry match those of the message

send, then the compiled method has been found. If they do not, then a full lookup must take place,

updating the corresponding cache entry as well.

The object faulting approach is dynamic, imposing a check on every traversal of a link. Our

discussion of message sends has illustrated just how many objects must be accessed as computation

proceeds. For performance reasons it is crucial that the bytecode interpreter not be overly taxed

by having to perform a residency check on every object that it needs to access. To overcome this

we preload a number of these critical objects, the result of which is to restrict residency checks to

message sends.

Because computation is driven by the sending of messages, most objects will become resident

only when a message is sent to them. In send bytecodes, a residency check must be performed on

the receiver, since the receiver’s class is required for method lookup. To eliminate other residency

checks from sends, whenever an object is made resident we insist that its class object and all its

superclasses be made resident, along with their method dictionaries and the message selectors in

those dictionaries. If we also make sure that only resident methods are entered in the method

lookup cache, then all references in the cache will be to resident objects. This means that the

method lookup code will not have to perform residency checks unless it takes a cache miss and is

forced to do a full lookup. A full lookup must make sure the method is resident before its cache

entry is loaded.

Whenever a method is made resident (usually through its invocation), we require that the

literals in its literal frame be made resident. This forces the selectors, constants, and shared

variables (Association objects with two fields, one for a name and one for a value) referred to

by the bytecodes to be resident. It does not force the objects referred to by the shared variable

associations to be resident. This permits the bytecodes accessing the selectors, constants, and

shared variables of the literal frame to do so without performing residency checks. In short, there

is no need for residency checks in the stack bytecodes.

Stack frames are also objects in the Smalltalk system, known as contexts, and so may be

persistent. By requiring all context objects to be resident we eliminate residency checks in return

bytecodes. Otherwise we must check whether the context being returned to is resident or not.

In summary, by preloading objects that are critical to the forward progress of computation, we

8



are able to restrict all residency checks to message sends6. Furthermore, when everything is resident

the execution overhead is just one check per message send.

3.2 Heuristics

Depending on whether we are using node marking or edge marking we may also apply a number

of heuristics. We have already mentioned some heuristics that may be employed with fault blocks,

to avoid extra calls to the object store and to eliminate the indirection that fault blocks imply.

In the case of edge marking, we are faced with the problem that since most objects are made

resident when a message is sent to them, the marked link that ends up getting snapped (the receiver)

is on the stack of the virtual machine. We cannot update the receiver link at its source, in the object

from which it was pushed onto the stack, so snapping the link buys us nothing. However, a heuristic

we can apply is to scan the active context, and possibly further up the stack, updating all other

marked links to the object. How far to scan is a parameter that we can tune, based on our experience

with the running system.

If it turns out that doing a scan every time a marked link is traversed is too expensive, we can

perform the scan only when we traverse a marked link to a resident object (i.e., traversing the link

does not cause an object fault). We are betting here that traversing a second marked link to an

object is an indicator that there are further marked links to it floating around, so scanning the stack

for them would be helpful.

Our intention is that these heuristics, along with preloading of critical objects, will allow

object faulting to have minimal impact on the performance of the Smalltalk system when only

resident objects are being accessed. Only when the system is fully implemented will we be able to

experiment with, and evaluate, these techniques.

4 Object Faulting and the Mneme Persistent Object Store

So far we have been concerned solely with the impact of object faulting on the programming

language. We now discuss the interactions between the run-time system and the object store.

The Mneme object store provides the illusion of a large, shared, persistent heap of objects,

directly accessible from client applications. A Mneme object is a collection of slots and bytes,

along with a 1-byte attributes field. Mneme does not specify what the attributes are to be used for.

The bytes part is simply a vector of 8-bit bytes. The slots part is a vector of 32-bit slots. Each

slot contains one of two things, depending on the sign bit of the slot: an immediate 31-bit integer

value, or an object identifier. There is a distinguished empty object identifier.

6Primitives may need to perform additional residency checks on objects they need to access.

9



Mneme groups objects together into units called files. A file of objects can be separately named

and located within the overall store. Files are a convenient unit for storage, providing modularity of

the object space, and are intended to be reasonable units of backup, recovery, and transfer between

different Mneme stores.

Files also allow us to take advantage of modularity of name space. Persistent object identifiers,

as stored in objects within the Mneme store, always name objects within the same file as the object

containing the identifier. This allows identifiers to be relatively short (28 bits). References to

objects in other files are made by referring to forwarder objects within the same file. A forwarder

contains enough information to name and locate the intended target object.

Because clients (e.g., Smalltalk) may have many files open at the same time during a session

of interaction with the store, a persistent identifier, which is unique only within one file, must be

converted into a client identifier for use by the client. An object’s client identifier is guaranteed

to name the object uniquely for the duration of a Mneme session. This also permits the persistent

identifiers to be reassigned between sessions, allowing reclustering, garbage collection, reuse of

the limited space of identifiers, and even explicit deletion. Since identifiers can be reassigned by

the object store between sessions they cannot simply be synthesised and presented to the store with

any reliability. Thus it is essential that each file have a distinguished root: a slot that can be set at

will to indicate a starting place for naming objects in the file.

A Mneme session is a period of interaction with the store, establishing a context of use, including

open Mneme files and identifiers of objects within those files. We can view a session as being a

window onto the store. While the limited size of Mneme client identifiers does limit the number of

objects that may be uniquely addressed during any one Mneme session, it does not limit the overall

number of objects in the store.

The unit of retrieval in Mneme is the physical segment. A physical segment physically groups a

number of objects together. When one of the objects in the physical segment is to be faulted in, the

whole segment is placed in a buffer in memory. A file constitutes a number of physical segments.

When a client requires access to a persistent object it presents a client identifier to Mneme. If

the object is already resident Mneme simply returns a pointer to the object in virtual memory. If the

object is not already resident, Mneme allocates a buffer in memory in which it places the object’s

physical segment, and then returns a pointer to the requested object within that buffer.

4.1 Client Interaction with the Store

Objects stored within Mneme files and faulted into Mneme buffers have a format substantially

different from that expected by Smalltalk. Mneme objects have their own header information,

followed by the slots and then the bytes. The slots may contain persistent object identifiers, or

10



immediates. We store a Smalltalk object in a Mneme object as follows. The Smalltalk object’s

header fields are stored in the first few slots of the Mneme object as immediates, except for the class

field, which is stored as a persistent identifier. The bytes or words fields of a Smalltalk object are

uninterpreted, so they may be stored in the bytes part of a Mneme object. The object pointer fields

must be converted, however, for storage in a Mneme slot. Since Smalltalk immediates always

have the low bit set we can store the remaining 31 bits in a Mneme immediate. Memory pointers

must be converted to a persistent identifier for the object they address. Mneme provides routines

for converting client identifiers to persistent identifiers, and vice versa. To convert a pointer to

an object in a Mneme buffer to an identifier, we store the identifier in the first slot of the Mneme

object.

Whenever a persistent object is made resident we must convert it from the external Mneme

format to the internal Smalltalk format. We use one of the Mneme object’s attribute bits to indicate

whether the object is converted or not. When Smalltalk requests a pointer to a persistent object we

check this bit, to determine if we need to convert the object. If conversion is necessary we proceed

as follows. We first set the attribute bit to indicate that the object has been converted. If a slot

contains an immediate, then we convert it by shifting and then setting one bit. If a slot contains a

persistent identifier we must convert the identifier to a client identifier using the Mneme routines

provided. Then, if we are using fault blocks, we allocate one, storing the (appropriately tagged)

client identifier in it, and overwrite the original slot with a pointer to the fault block. Otherwise we

simply store the (appropriately tagged) client identifier back in the slot. As for the bytes part of a

Mneme object, we have already indicated they do not need converting.

Our discussion so far has only considered bringing objects into memory from the object store.

We must also deal with writing Mneme buffers back to disk. This is complicated by the fact that

a buffer about to be written out, and the rest of object memory, are in what might be termed a

“deadly embrace.” Objects in the buffer refer to objects outside the buffer and vice versa. Before

we can write out the buffer we must disentangle it from the rest of memory. First, there may be

some volatile objects that must now be made persistent, since objects in the buffer refer to them.

We must perform a transitive closure operation to make persistent each volatile object that can be

reached from the buffer, copying its contents into a Mneme buffer, and leaving in its place a fault

block that points to the now persistent object in the Mneme buffer. The next step is to convert all

the objects in the buffer to Mneme format, reversing the conversion procedure described earlier.

Finally, all external pointers to objects in the buffer must be found and updated to point to a fault

block, or, if we are using edge marking, marked to indicate they refer to a non-resident object.

To perform this last operation (updating all the external references to objects in the buffer) is not

as formidable as it seems. We use a technique that is already employed by the generation scavenging

garbage collector. A remembered set is associated with each buffer to record the memory location

11



of all pointers into the buffer. Since generation scavenging requires the maintenance of such sets

for each generation, maintaining the same information for Mneme buffers requires little additional

mechanism.

5 Related Work

We have already mentioned LOOM as incorporating techniques similar to those we have used

for object faulting. It uses a node marking scheme, with leaves having a similar function to our

fault blocks. However, our object faulting model is an advance over LOOM in that we incorporate

edge marking as well. The goal of LOOM was to provide extended virtual memory support for

Smalltalk systems on machines with a narrow (16-bit) word width. Object pointers are stored in

32 bits on disk, and an object table is used to translate between the short and long forms. When

an object is brought into memory, its 32-bit persistent pointer is hashed to find an entry for it in

the object table. All in-memory references to the object are then indirected through its object table

entry. LOOM uses a reference counting garbage collector, and takes advantage of this to recycle

the object table entries. LOOM permits up to 231 objects to be addressed, although only 216 objects

may actually be resident at any time. An important difference between our design for persistent

Smalltalk and LOOM is that we do not use an object table, and use generation scavenging instead of

reference counting for garbage collection. More significantly, our goals are much more ambitious

than virtual memory for Smalltalk. We can store many more objects in our object store than will

fit in virtual memory.

We also believe that our implementation of persistent Smalltalk will have much better per-

formance than LOOM, which suffered because an object fault caused the retrieval of just one

object. Smalltalk objects are too small a unit for retrieval. Our design, using Mneme, makes the

physical segment (containing possibly thousands of Smalltalk objects) the unit of retrieval. Using

the extensible policy mechanisms of Mneme we intend to cluster related objects in each physical

segment, so that retrieving one object will retrieve objects related to it as well. This will result in

a marked improvement in performance over LOOM. We also intend to make provision for sharing

and reliability by building on Mneme’s concurrency control and recovery facilities.

The Alltalk system [Straw et al., 1989] shares many of our goals. However, the approach

it takes is very similar to LOOM, using an object table to translate between object pointers and

memory addresses. Alltalk does not translate objects between disk and memory formats, so that

its object pointers are always external identifiers, and consequently must always be looked up.

We permit object pointers to be both real memory addresses and object identifiers, and our design

demonstrates an alternative approach to persistence that does not require an explicit object table.

GemStone [Purdy et al., 1987], is another effort to expand the Smalltalk heap to include objects

12



on disk. However, it extends Smalltalk to provide considerable database functionality, including

queries and an execution model. Integration with Smalltalk systems is not totally “seamless,” since

the virtual image is modified to include proxy objects that act as forwarders to GemStone objects.

Proxies, because they are objects in the virtual image, are visible to applications programmers. Our

approach to persistence does not modify the virtual image, providing a more seamless environment.

Our approach to persistence is to modify the run-time system of the programming language,

building from the programming language down to the database. Object-oriented databases, such as

Orion [Kim et al., 1988], and Exodus [Carey et al., 1986], approach language-database integration

from the database up. Persistence in our object-faulting Smalltalk is orthogonal, unlike Orion and

the Exodus database implementation language, E [Richardson, 1989].

6 Conclusions and Future Work

We believe that the object-faulting approach to persistence will prove to be effective. We have

demonstrated that persistence does not require an explicit object table for translation of persistent

identifiers to memory addresses, and that consequently generation scavenging garbage collection

techniques may be applied. We have also restricted the essential overhead for persistent Smalltalk

to one residency check per send. Without modifying the Smalltalk compiler (or adding some

native code translation scheme) to perform some static analysis of Smalltalk methods, we cannot

further reduce this overhead. Static approaches could be inspired by the techniques used in the Self

compiler [Ungar and Smith, 1987, Chambers and Ungar, 1989, Chambers et al., 1989].

Our plans for the future call for completion of our implementation of object-faulting persistent

Smalltalk, allowing us to evaluate the design for performance, and experiment with its variations.

More ambitious goals are to incorporate sharing and reliability. An issue that we have not addressed

here is how to permit Smalltalk users to exert control over the underlying mechanisms of the object

store, such as object placement strategies, checkpointing, and recovery. The object store cannot

make calls back into Smalltalk code, so we must provide some sort of declarative mechanism by

which the user may influence the decisions of the store.

References

[Atkinson and Morrison, 1985] Malcolm P. Atkinson and Ronald Morrison. Procedures as
persistent data objects. ACM Transactions on Programming Languages and Systems 7, 4
(October 1985), 539–559.

[Banerjee et al., 1987] Jay Banerjee, Hong-Tai Chou, Jorge F. Garza, Won Kim, Darrell Woelk,
Nat Ballou, and Houng-Joo Kim. Data model issues for object-oriented applications. ACM
Transactions on Office Information Systems 5, 1 (January 1987), 3–26.

13



[Bobrow et al., 1988] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E.
Keene, Gregor Kiczales, and David A. Moon. Common Lisp object system specification. ACM
SIGPLAN Notices 23, special issue (September 1988). ANSI X3J13 Document 88-002R.

[Carey et al., 1986] M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J. Shekita. Object and file
management in the EXODUS extensible database system. In Proceedings of the Twelfth
International Conference on Very Large Databases (Kyoto, Japan, September 1986), ACM,
pp. 91–100.

[Chambers and Ungar, 1989] Craig Chambers and David Ungar. Customization: Optimizing
compiler technology for SELF, a dynamically-typed object-oriented programming language.
In Proceedings of the SIGPLAN ’89 Conference on Programming Language Design and
Implementation (Portland, OR, June 1989), vol. 24, no. 7 of ACM SIGPLAN Notices, ACM,
pp. 146–160.

[Chambers et al., 1989] Craig Chambers, David Ungar, and Elgin Lee. An efficient
implementation of SELF, a dynamically-typed object-oriented language based on prototypes. In
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications (New Orleans, LA, October 1989), vol. 24, no. 10 of ACM SIGPLAN Notices,
ACM, pp. 49–70.

[Copeland and Maier, 1984] George Copeland and David Maier. Making Smalltalk a database
system. In Proceedings of the ACM SIGMOD International Conference on Management of
Data (Boston, MA, June 1984), vol. 14, no.2 of ACM SIGMOD Record, ACM, pp. 316–325.

[Fishman et al., 1987] D. H. Fishman, D. Beech, H. P. Cate, E. C. Chow, T. Connors, J. W. Davis,
N. Derrett, C. G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M. A. Neimat, T. A. Ryan, and
M. C. Shan. Iris: An object-oriented database management system. ACM Transactions on
Office Information Systems 5, 1 (January 1987), 48–69.

[Goldberg and Robson, 1983] Adele Goldberg and David Robson. Smalltalk-80: The Language
and its Implementation. Addison-Wesley, 1983.

[Kaehler and Krasner, 1983] Ted Kaehler and Glenn Krasner. LOOM—large object-oriented
memory for Smalltalk-80 systems. In Smalltalk-80: Bits of History, Words of Advice, Glenn
Krasner, Ed. Addison-Wesley, 1983, ch. 14, pp. 251–270.

[Kim et al., 1988] Won Kim, Nat Ballou, Jay Banerjee, Hong-Tai Chou, Jorge F. Garza, and
Darrell Woelk. Integrating an object-oriented programming system with a database system. In
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications (San Diego, California, November 1988), vol. 23, no. 11 of ACM SIGPLAN
Notices, ACM, pp. 142–152.

[Maier et al., 1986] D. Maier, J. Stein, A. Otis, and A. Purdy. Development of an object-oriented
DBMS. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (Portland, OR, September 1986), vol. 21, no. 11 of ACM
SIGPLAN Notices, ACM, pp. 472–482.

[Moss and Sinofsky, 1988] J. Eliot B. Moss and Steven Sinofsky. Managing persistent data with
Mneme: Designing a reliable, shared object interface. In Advances in Object-Oriented
Database Systems (September 1988), vol. 334 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 298–316.

[Moss, 1989a] J. Eliot B. Moss. Addressing large distributed collections of persistent objects:
The Mneme project’s approach. In Second International Workshop on Database Programming
Languages (Gleneden Beach, OR, June 1989), pp. 269–285. Also available as University of
Massachusetts, Department of Computer and Information Science Technical Report 89–68.

14



[Moss, 1989b] J. Eliot B. Moss. The Mneme persistent object store. COINS Technical Report
89-107, Department of Computer and Information Science, University of Massachusetts,
Amherst, MA, October 1989. Submitted for publication.

[Purdy et al., 1987] Alan Purdy, Bruce Schuchardt, and David Maier. Integrating an object server
with other worlds. ACM Transactions on Office Information Systems 5, 1 (January 1987),
27–47.

[Richardson, 1989] Joel Edward Richardson. E: A Persistent Systems Implementation Language.
PhD thesis, Computer Sciences Department, University of Wisconsin, Madison, WI, August
1989. Available as Computer Sciences Technical Report #868.

[Schaffert et al., 1986] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie
Wilpolt. An introduction to Trellis/Owl. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (Portland, OR, September 1986), vol. 21,
no. 11 of ACM SIGPLAN Notices, ACM, pp. 9–16.

[Straw et al., 1989] Andrew Straw, Fred Mellender, and Steve Riegel. Object management in a
persistent smalltalk system. Software: Practice and Experience 19, 8 (August 1989), 719–737.

[Ungar and Smith, 1987] David Ungar and Randall B. Smith. SELF: The power of simplicity. In
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications (Orlando, FL, October 1987), vol. 22, no. 11 of ACM SIGPLAN Notices, ACM,
pp. 227–241.

[Ungar, 1984] David Ungar. Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments (Pittsburgh, PA, April 1984),
ACM SIGPLAN Notices, ACM, pp. 157–167.

[Ungar, 1987] David Michael Ungar. The Design and Evaluation of a High Performance
Smalltalk System. ACM Distinguished Dissertations. The MIT Press, Cambridge, MA, 1987.
Ph.D. Dissertation, University of California at Berkeley, February 1986.

15


