
On the Effectiveness of GC in Java

Ran Shaham
Tel-Aviv University and

IBM Haifa Research
Laboratory

rans@math.tau.ac.il

Elliot K. Kolodner
IBM Haifa Research

Laboratory

kolodner@il.ibm.com

Mooly Sagiv
Tel-Aviv University

sagiv@math.tau.ac.il

ABSTRACT
We study the effectiveness of garbage collection (GC) algo-
rithms by measuring the time difference between the actual
collection time of an object and the potential earliest collec-
tion time for that object. Our ultimate goal is to use this
study in order to develop static analysis techniques that can
be used together with GC to allow earlier reclamation of ob-
jects. The results may also be used to pinpoint application
source code that could be rewritten in a way that would
allow more timely GC.

Specifically, we compare the objects reachable from the root
set to the ones that are actually used again. The idea is that
GC could reclaim unused objects even if they are reachable
from the root set. Thus, our experiments indicate a kind of
upper bound on storage savings that could be achieved. We
also try to characterize these objects in order to understand
the potential benefits of various static analysis algorithms.

The Java Virtual Machine (JVM) was instrumented to mea-
sure objects that are reachable, but not used again, and to
characterize these objects. Experimental results are shown
for the SPECjvm98 benchmark suite. The potential mem-
ory savings for these benchmarks range from 23% to 74%.

Keywords
Compilers, garbage collection, Java, memory management,
program analysis

1. INTRODUCTION
GC does not (and in general cannot) collect all the garbage
that a program produces. Typically, GC collects objects
that are no longer reachable from a set of root references.
However, there are some objects that the program never
accesses again, even though they are reachable. This is il-
lustrated pictorially in Figure 1.

Following [9], we refer to the time interval from the last use

creation last-use collection

drag time

Figure 1: The lifetime of an object.

of an object until its collection as the object’s drag time and
to object itself as a dragged object.

We study the effectiveness of GC algorithms by measuring
the drag time for objects, expressed in bytes allocated from
the time of last use until the time of collection. This provides
an upper bound on the storage savings over current GC
algorithms that could be achieved. The bound is not tight
since it is not clear that all such dragged objects could be
identified by automatic means. A small value for the upper
bound would indicate that the GC reclaims unused memory
in a timely fashion.

1.1 Measuring Dragged Objects
We instrumented Sun’s JDK 1.2 [6] in order to measure
dragged objects. Specifically, we record at regular intervals
(1) the objects reachable at the end of the interval and (2)
the objects that are also used subsequent to the interval. We
call the former the reachable objects and the latter the in-use
objects. Following [1] we measure the space-time product for
each.

To calculate the product for the reachable objects, we plot
the size of the reachable objects as a function of time (where
time is expressed as bytes allocated since the start of the
run) and compute the integral under the curve. We do the
same for the in-use objects. We call these the reachable inte-
gral and the in-use integral respectively. The ratio between
these integrals captures the average space savings.

The measurements were conducted on the SPECjvm98 bench-
mark suite [12]. The differences between the integrals for the
reachable and the in-use objects range from 23% to 74%.

Interestingly, although the total size of dragged objects is
sometimes very small, the potential benefit can still be sig-
nificant. For example, the total size of dragged objects for
jess is less than 1% of the total allocation size; however
the potential benefit is more than 70%. This is due to two
factors: (1) most of the dragged objects have a very large
drag time and (2) the size of the reachable heap is small.

Röjemo and Runciman performed similar measurements for
Haskell, a lazy functional language [9]. Unfortunately, our
results are not directly comparable because they measure
wall clock time where we measure time in bytes allocated.

Our instrumentation could also be used to understand mem-
ory allocation behavior (as done in [9]). We can track mem-
ory leaks and tune performance by inspecting the dragged
objects. Other tools for memory profiling [11, 8] show the
heap configuration and allocation frequency; they also help
in tracking memory leaks by allowing the heap to be in-
spected at points during the execution of the program. As
noted in [11], tracking memory leaks by inspecting dragged
objects is orthogonal to tracking leaks by inspecting the heap
during the course of execution.

1.2 Characterizing Dragged Objects
This research is part of ongoing work to identify static anal-
ysis algorithms (both new and existing) that can be used to
reduce drag time and to measure their effectiveness. Our
work is at a preliminary stage. In the immediate future we
intend to redo our experiments using precise GC [2, 5, 4] in
order to check the savings due to precise stack scanning for
Java.

Our experiments indicate that for some benchmarks, such
as jack, most dragged objects are also reachable from roots,
which are not local variables. For these benchmarks, tech-
niques such as live-precise collection [1], which are based
on liveness analysis of local variables, should have a small
impact. Our experiments also indicate that most of these
objects are reachable from non-private fields; dealing with
this case would require analysis of the entire program.

Another interesting fact that we found is that dragged ob-
jects exist along very deep heap paths (e.g., a path length of
1231 for the javac benchmark). This fact suggests that stat-
ically analyzing heap paths, e.g., through shape analysis [3,
10], may result in reclaiming more memory.

Finally it should be noted that in some programs it might
be hard if not impossible for any static analysis algorithm to
identify all dragged objects. For example, in the db bench-
mark a random access database is maintained. Thus, static
analysis of such a database is expected to conservatively de-
termine that all parts of the database are in use.

1.3 Outline of the Rest of this Paper
The remainder of the paper is as follows. Section 2 describes
the framework of our experiment. In Section 3 experimental
results are given. We conclude in Section 4.

2. THE SCENE
2.1 The Concept
In order to identify the dragged objects, we associate a time
field with every object. On every use of an object, we record
the current time in its field. Thus, the field always holds the
time at which the object was last used. When the object
is collected, its drag time is calculated as the difference be-
tween the collection time and its last use (see Figure 1). We
measure time in bytes allocated since the beginning of pro-
gram execution. For simplicity, we assume that all uses of an

object in the interval between consecutive garbage collection
cycles are performed at the beginning of the interval.

For every dragged object we also report the kind of its roots.
The major kinds of roots are shown in Table 1. This experi-
ment may indicate the potential benefits of performing live-
ness analysis for some or all of these root kinds, specifically
the benefit of performing local variable analysis [1].

In another experiment we measure the minimal distance of
a dragged object from a root in the Java stack. This may
indicate whether it is important to statically analyze deep
heap paths.

2.2 Implementation
2.2.1 Recorded Information
We attach a trailer to every object to keep track of our pro-
filing information. We do not count the space taken for this
trailer in our data. The information in an object’s trailer is
written to a log file upon reclamation of the object or upon
program termination. An object’s trailer fields include its
creation time, its last use time, its length in bytes, its allo-
cation site, and mark bits to keep track of root reachability.
The length includes the header and the alignment (i.e., the
bytes that were skipped in order to allocate the object on an
8 byte boundary), but excludes the handle and the trailer.
The allocation site holds the object’s type if the object was
allocated from native code. The mark bits for root reacha-
bility contain one bit for each kind of root.

2.2.2 Updating Information
Object information is updated upon the following events:

Object Creation The creation time, length and allocation
site are set.

Object Use The last use time is set. The following events
constitute an object use: (1) getting field information
(e.g., via getfield bytecode), (2) setting field infor-
mation (e.g., via putfield bytecode), (3) invoking a
method on that object (e.g., via invokevirtual byte-
code) (4) entering or exiting a monitor on that ob-
ject (via monitorenter, monitorexit bytecodes) and
(5) derefencing a handle to that object.

GC Before GC we clear the special markbits for all ob-
jects1. During the phase of GC that marks roots, we
set the special markbits for the objects directly reach-
able from the roots according to the kind of root. At
the completion of the trace phase, we perform a spe-
cial trace phase per root kind in order to propagate
the marks according to reachability. During the spe-
cial trace phase for the Java stack root kind, we also
measure the (minimal) distance from the Java stack for
each object, which is reachable from the Java stack.

1Clearing the special markbits before every GC means that
we report only the kind of roots that kept the object reach-
able in the interval just before it became unreachable. We
have found that considering all possible root kinds from the
last moment the object is used adds “white noise” to the
results. For example, if an object dies at a young age, the
native stack slot used to hold the address of the object dur-
ing allocation may still hold the object’s address.

Root Kind Short Description
Java stack root The Java stack is used for maintaining the execution frames of Java methods.

A Java stack root is a memory slot of reference type.
native stack root The native stack is used for maintaining the execution frames of native

(usually C) code. A native stack root is a memory slot of reference type.
static variable root A static reference variable.
other roots For example, Java Native Interface (JNI) global references.

(used by native code to access Java objects)

Table 1: The major kinds of roots recorded.

Benchmark Short Description
javac java compiler
db benchmark simulating a database
jack parser generator
raytrace raytracer of a picture
jess expert system for solving riddles

Table 2: The benchmark programs.

2.2.3 Reporting Information
After every 100 KB of allocation we trigger a deep GC (a
larger interval yields less precise results). A deep GC con-
sists of the following steps: (1) GC, (2) run finalizers for
all objects waiting for finalization, (3) GC. Forcing finaliza-
tion ensures instant reclamation of all unreachable objects
and removes a source of non-determinism (since finalization
would otherwise occur in a separate thread). When an ob-
ject is freed, we log all of the information collected in its
trailer. When the program terminates, we perform a last
deep GC and then we log information for all objects that
still remain in the heap.

The rules for the collection of Class objects are not the same
as for regular objects. Thus, we exclude them and the spe-
cial objects reachable from them (e.g., constant pool strings
and per-class security-model objects) from our reports.

2.2.4 Process Reported Information
An analyzer processes the log file to produce the results
reported in Section 3.

2.3 The Benchmark Programs
We ran our measurements for five of the benchmarks from
the SPECjvm98 benchmark suite [12] and excluded three of
the benchmarks. Two of the excluded benchmarks do not
produce significant amounts of memory (mpegaudio bench-
mark) or significant amounts of objects (compress bench-
mark). The third excluded benchmark is a merely a multi-
threaded version of another benchmark (mtrt benchmark is
the multi-threaded version of raytrace benchmark). We
show the benchmarks that are used in table 2.

3. EXPERIMENTAL RESULTS
3.1 Dragged Object Size
Figure 2 shows total number of bytes allocated and to-
tal number of bytes attributed to dragged objects for each
benchmark. We define a short-lived object to be an object

that is allocated and becomes unreachable in the same mea-
surement interval. We also present the total size of the short-
lived objects, since there cannot be any memory savings for
these objects. Short-lived objects are excluded from the sub-
sequent results, since these objects are not reachable at the
sampling points.

Although in four benchmark less than 10% of the total ob-
ject allocation are dragged objects, the total size of the
dragged objects is large compared to the total size of the
reachable objects, (as shown in Section 3.2), so there is a
potential for a large savings in memory.

3.2 Reachable vs. In-Use Objects
Table 3 compares the reachable integral, with the in-use
integral. We show the integrals when half of the total bytes
have been allocated, labeled halftime, and when the program
terminates. The potential for savings ranges from 23% to
74% of the reachable integral.

Figure 3 compares the reachable object size and the in-use
object size over time. We see that the javac benchmark
operates in several cycles. For every cycle there is an initial
phase of allocating memory, in which almost every reachable
object is in-use. As the program continues, the difference in
sizes between the reachable and the in-use objects increases
until the end of the cycle. At that time the memory con-
sumption of the program drops at once, and another cycle
begins.

For the db benchmark, after an initial phase of allocating
memory, the difference between the reachable and the in-use
objects is constant until the program allocates 40.59 MB.
After that point the size of the reachable objects remains
more or less constant, but fewer objects are used, so that
the difference between the reachable and in-use object sizes
increases. This motivates presenting the reachable and in-
use allocation integrals half way through the program in
Table 3.

jack behaves similarly to javac, and raytrace behaves sim-
ilarly to db.

For jess the difference between the reachable and in-use
object sizes is constant at 0.75 MB. This is further explained
in Section 3.3.

3.3 Drag Time
Table 4 shows the distribution of dragged object size with
respect to drag time. For jess 30% of the dragged object

�

��

���

���

���

���

���

MDYDF GE MDFN UD\WUDFH MHVV

DO
OR
FD

WL
R
Q
��
0
%
�

WRWDO�DOORFDWHG�VL]H

WRWDO�GUDJJHG�REMHFWV�VL]H

WRWDO�VKRUW�OLYHG�REMHFWV�VL]H

Figure 2: Total allocation size, total dragged object size and total short-lived object size.

-9&

�

�

�

�

�

�

�

�

�

� �� ��� ���

DOORFDWLRQ�WLPH��0%�

VL
]H
��0
%
�

LQ�XVH

UHDFKDEOH

'%

�

�

�

�

�

�

�

�

�

� �� �� ��

DOORFDWLRQ�WLPH��0%�

VL
]H
��0
%
�

LQ�XVH

UHDFKDEOH

-$&.

�

���

���

���

���

�

���

���

� �� ��� ���

DOORFDWLRQ�WLPH��0%�

VL
]H
��0
%
�

LQ�XVH

UHDFKDEOH

5<75&(

�

���

�

���

�

���

�

���

� �� ���

DOORFDWLRQ�WLPH��0%�

VL
]H
��0
%
�

LQ�XVH

UHDFKDEOH

-(66

�

���

���

���

���

�

���

���

� �� ��� ��� ���

DOORFDWLRQ�WLPH��0%�

VL
]H
��0
%
�

LQ�XVH

UHDFKDEOH

Figure 3: Reachable object size vs. in-use object size.

Benchmark Halftime Total
Program In-Use Reachable Saving In-Use Reachable Saving

Integral Integral Ratio Integral Integral Ratio
(M Byte2) (M Byte2) (%) (M Byte2) (M Byte2) (%)

javac 345.06 504.48 31.60 692.34 1032.58 32.95
db 160.14 208.93 23.35 271.68 437.84 37.95
jack 28.04 69.40 59.60 57.18 142.12 59.76
raytrace 85.60 152.88 44.01 128.48 317.98 59.59
jess 31.73 122.72 74.15 73.84 261.15 71.72

Table 3: In-Use Integral vs. Reachable Integral.

Pct. javac db jack raytrace jess

90% 0.2 0.3 0.2 0 0.2
80% 2.3 4.7 0.3 0 0.2
70% 4.3 17 0.3 0.1 0.2
60% 6.7 17 0.8 13.4 1.6
50% 9.6 17 1.1 34.8 6.6
40% 12.7 17.1 4.1 43.3 12.7
30% 15.7 33.6 6.7 100.9 241.9
20% 20.3 67.5 7.3 102 241.9
10% 26.2 70.4 8 103.1 245.2

Table 4: Distribution of total dragged object size
with respect to drag time (expressed in MB).

size (which is 0.69 MB) has a drag time of at least 241.9
MB; this is nearly the lifetime of the program. Thus, these
objects are used for their last time near the beginning of the
program, yet they are not collected until the program termi-
nates. As noted before, there is also a constant difference of
0.75 MB between the reachable and in-use objects. These
two facts explain how a seemingly insignificant amount of
dragged objects (less than 1% of the total allocation size)
can result in a 72% savings in the reachable integral (i.e.,
72% of average space savings).

3.4 Distribution of Dragged Objects by Root
Kind

Figure 4 shows the distribution of the dragged objects by
the types of the roots that keep them reachable. In most of
the benchmarks (3 out of 5), most of the dragged objects
have just one kind of root, the Java stack. For example,
in javac close to 88% of the dragged objects are reachable
solely through the Java stack.

For db, close to 97% of the dragged object are reachable
from the Java stack, as well as from the native stack. db
maintains a database; all objects in the database are reach-
able from the database root object of type
spec.benchmarks. 209 db.Database. This database root
object is directly referenced from the native stack for the
entire course of the program; thus, all database objects
are considered as native stack reachable. In this case, live-
precise collection should have little impact.

For the jack benchmark, close to 30% of the dragged objects
are reachable only from static variables. Another 50% of the

Benchmark Average Maximum
Program Distance Distance
javac 20.47 1231
db 6.24 20
jack 6.78 25
raytrace 22.19 1412
jess 6.72 28

Table 5: Distance of dragged objects from Java
stack.

dragged objects are reachable from both the Java stack and
from static variables. Investigating the bytecode we found
that the relevant static fields have public access; thus, in
order to perform liveness analysis for these variables the
entire program would need to be analyzed. This could be
very expensive and is difficult to apply to Java.

3.5 Distance from the Stack
Table 5 shows the average distance and maximum distance
of dragged objects from the Java stack. For 3 out of 5 bench-
marks the average distance for dragged objects is around
6.5. This seems like a reasonable number for object-oriented
languages. javac and raytrace benchmarks have a much
larger average distance from the Java stack. This is due to
the presence of long linked lists (of length 1231 and length
1412, respectively) containing dragged objects. In javac
this linked list represents the bytecodes of a method being
compiled, while in raytrace this linked list represents the
vertices of a complex polygon. Using shape analysis [3, 10]
to analyze these paths may provide a memory savings.

4. CONCLUSION AND FUTURE WORK
We give an upper bound for the effectiveness of an existing
garbage collector in Java. There is a potential benefit of
23% to 74% of space savings. We are continuing to work to
identify the static analysis methods that can realize some
of this potential. For example, by measuring the dragged
objects of TVLA [7], a tool for three-value logic analysis we
are already able to point out some code rewriting that can
be done in order to save space.

5. ACKNOWLEDGEMENTS
We would like to thank Hans Boehm for giving us a reference
to the work of Röjemo and Runciman.

The first author is supported in part by the Binational Sci-

��

���

���

���

���

���

���

���

���

���

����

MDY
DF GE MDF

N

UD
\WU
DF
H

MHV
V

RWKHU
QR�URRW
VWDFN�URRW���VWDWLF�URRW
VWDFN�URRW���QDWLYH�URRW
VWDWLF�URRW
VWDFN�URRW

Figure 4: Distribution of dragged objects by root kind.

ence Foundation, grant number 96-00337.

6. REFERENCES
[1] O. Agesen, D. Detlefs, and E. Moss. Garbage

Collection and Local Variable Type-Precision and
Liveness in Java Virtual Machines. In SIGPLAN
Conf. on Prog. Lang. Design and Impl., pages
269–279, June 1998.

[2] A. W. Appel. Runtime tags aren’t necessary. Lisp and
Symbolic Computation, 2:153–162, 1989.

[3] A. Deutsch. Interprocedural may-alias analysis for
pointers: Beyond k-limiting. In SIGPLAN Conf. on
Prog. Lang. Design and Impl., pages 230–241, New
York, NY, 1994. ACM Press.

[4] A. Diwan, E. Moss, and R. Hudson. Compiler support
for garbage collection in a statically typed language.
In SIGPLAN Conf. on Prog. Lang. Design and Impl.,
pages 273–282, San Francisco, CA, June 1992.

[5] B. Goldberg. Tag-free garbage collection for strongly
typed programming languages. ACM SIGPLAN
Notices, 26(6):165–176, 1991.

[6] Sun JDK 1.2. Available at http://java.sun.com/j2se.

[7] T. Lev-Ami and M. Sagiv. TVLA: A framework for
kleene based static analysis. In SAS’00, Static
Analysis Symposium. Springer. Available at
”http://www.math.tau.ac.il/∼ tla”.

[8] W. D. Pauw and G. Sevitski. Visualizing reference
patterns for solving memory leaks in java. In
ECOOP’99, pages 116–134, Lisbon, Portugal, 1999.

[9] N. Röjemo and C. Runciman. Lag, drag, void and
use—heap profiling and space-efficient compilation
revisited. In Proceedings of the 1996 ACM SIGPLAN
International Conference on Functional Programming,
pages 34–41, Philadelphia, Pennsylvania, 24–26 May
1996.

[10] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. In Symp. on Princ. of
Prog. Lang., 1999. Available at
“http://www.cs.wisc.edu/wpis/papers/popl99.ps”.

[11] M. Serrano and H.-J. Boehm. Understanding memory
allocation of scheme programs. Submitted to ICFP’00,
2000.

[12] SPECjvm98. Standard Performance Evaluation
Corporation (SPEC), Fairfax, VA, 1998. Available at
http://www.spec.org/osg/jvm98/.

