On the Impact of Filters on Analyzing Prefix Reachability in the Internet

Ravish Khosla, Sonia Fahmy, Y. Charlie Hu Purdue University ICCCN 2009

Background

- Border Gateway Protocol (BGP)
 - Inter-domain policy based Routing Protocol
 - Advertises IP prefixes belonging to Autonomous Systems (ASes)

Goal

- Study prefix reachability
 - Existence of announced paths from vantage points
 - Impacts prefix availability
- For those paths:
 - Mean Time to Failure (MTTF)
 - Mean Time to Recovery (MTTR)
- Dataset: RouteViews
 - Routing tables sampled every 2 hours
 - Updates collected in 15 minute durations
 - Announcements
 - Withdrawals

Contributions

- How to process data to compute average prefix reachability in the Internet?
 - Which *prefixes* to consider?
 - Do we have *sufficient* data for these prefixes?
 - Which *updates* to consider?
 - Filter: Remove biased data points
- Tuning filter strength (parameters)
 - Impact of filter strength on reachability results
- Internet reachability results
 - Normal operation
 - With stress events
 - Undersea cable cut in the Middle East (2008)

Preprocessing Datasets

- Removing routing table transfers
 - Updates include those caused by peering session resets between a peer and monitor
- Used Minimum Collection Time (MCT) algorithm¹ to identify transfers
- Peer: Any vantage point that exists in one routing table entry and at least one update
 - 45-47 peers in our dataset
- Execute scripts w.r.t. every peer
 - Filter updates in identified transfer

Computing MTTF and MTTR

- Unit of combination: (peer, prefix) tuple
- Combination state: Up (U)/Down (D):
 - Currently advertised path exists/doesn't exist to the prefix by the peer

Boundary effects

• Initial state and ending state

Filter Design

- Observed Combinations filter
 - Eliminates boundary effects
 - Look at combinations in the first routing file or first α % of update files
 - Results with Observed Combinations filter called *"Initial Filtering"* results
- Stable prefixes filter
 - \bullet Prefixes existing in more than β % of routing tables
- Route Convergence filter
 - \bullet Count multiple failures within γ seconds as a single failure
 - Remove updates while routes are still converging

Effect of filters on MTTF, MTTR

Filter	Effect on MTTF	Effect on MTTR
Observed Combinations	α ↑ ⇒ MTTF↓	$\alpha \uparrow \Rightarrow MTTR \uparrow$
Stable Prefixes	$\beta \uparrow \Rightarrow MTTF \uparrow$	$\beta \uparrow \Rightarrow MTTR \downarrow$
Route Convergence	$\gamma \uparrow \Rightarrow MTTF \uparrow$	$\gamma \uparrow \Rightarrow MTTR \uparrow$

Choosing Filter Parameters

- Observed Combinations Filter α
 - Enough data for the combinations
 - Eliminates combinations first advertised at end of dataset
 - Try $\alpha = 10,25 \& 50 \%$
 - Studied 20 cases of α with/without the other two filters and used all typical values of β & γ
 - Which α gives largest increase in (MTTF-MTTR) w.r.t. Initial Filtering case on average?
 - MTTF-MTTR monotonic in α , so choose $\alpha = 10\%$
 - Retain 91% (9 million) of combinations for Jan. 07 data

Filter Parameters (Contd.)

- Stable Prefixes Parameter β
 - Implemented observed combinations filter with $\alpha = 10\%$ with this filter and different β
 - $\beta = 0\%$ different than initial filtering
 - Transient "hidden" prefixes
 - $\beta = 100\%$ typically doesn't yield any prefixes
 - Greatest increase in MTTF-MTTR vs. Initial filtering was for high β
 - .:. Choose β as high as possible

Filter Parameters (Contd.)

• # of prefixes visible vs β :

Jan. 07

Jan. 05

β (%)	# of output prefixes	% of total prefixes	β (%)	# of output prefixes	% of total prefixes
0	233,537	100	0	180,229	100
30	225,685	96.64	30	171,289	95.04
60	221,620	94.89	60	166,447	92.35
90	217,607	93.18	90	162,619	90.23
98	212,883	91.16	98	145,633	80.8

Filter Parameters (Contd.)

- Route convergence filter parameter γ
 - Both MTTF and MTTR increase on increasing γ
 - MTTF-MTTR \downarrow as γ 1
 - Choose smallest γ indicative of route convergence
 - Typical values: 200-300 sec 1,2

¹ S. Burkle, "BGP convergence analysis," Ph.D. dissertation, 2003.

² C. Labovitz, A. Ahuja, A. Abose, and F. Jahanian, "The Problem with BGP," http://www.nanog.org/mtg-0002/converge2.html, 2000

Results for a 9 month period

- Mar.-Nov. 07
- Longer duration
 - # of combinations exceed combinations in one month
 - \bullet % prefixes available reduction more with β

β (%)	# of output prefixes	% of total prefixes
0	341,122	100
60	227,291	66.63
99.5	180,489	52.91

Mar. - Nov. 07 results

- Initial Filtering results
 - MTTF : 9.5 days
 - MTTR : 1.5 days
 - Median uptime : 16 minutes
 - Median downtime : 1 minute
- Stable prefixes filter –53% of the more stable prefixes have
 - MTTF : 2 weeks
 - MTTR :10 hours
 - Median uptime : 1.4 hours
 - Median downtime : 53 seconds

Mar. - Nov. 07 results (Contd.)

- Stable prefixes + route convergence filter
 - MTTF goes up with β and γ
 - Min MTTF is 25.5 days
 - Max MTTF is 60 days
 - MTTR 1 than I.F. for $\gamma > 300$ s except $\beta = 0\%$
 - Min MTTR: 27 hours (-25%)
 - $\beta=0~\%$; $\gamma=200~s$
 - Max MTTR: 6.6 days (340%)
 - β = 0 % ; γ = 900 s
 - Highest MTTF-MTTR
 - $\beta=99.5~\%$; $\gamma=900~s$
 - MTTF is 60 days \Rightarrow 540% \uparrow than Initial Filtering (I.F.)
 - MTTR is 2.1 days

Mar. - Nov. 07 results (Contd.)

- Comparison with Labovitz's results in ¹
 - MTTF :12 days , MTTR :15 minutes
 - β =99.5 % ; γ =900 s \Rightarrow MTTF 410% \uparrow , MTTR 19,300% \uparrow
 - MTTF $\uparrow \Rightarrow$ Internet is getting healthier
 - Backbone paths studied in ¹ explains MTTR \uparrow
 - Our median downtime is 17 minutes to 1 hour

Impact of cable cuts

- Jan. and Feb. 2008 data
- 1 week sliding window
 - 60 days & 54 windows

Initial Filtering results > Lowest uptime : 28th

- window and is about 28% lower
- Cable cut happened around 26th window

Filtering for cable cuts data

- Used stable prefixes and route convergence filters
 - $\beta = 60\%$, $\gamma = 900$ s (same as in Labovitz's work)

Implications

- Filter parameters have to be chosen according to the goals of the study
- Goal: Observe stress events
 - Use Initial filtering case
- Goal: Study general health of the Internet
 - Use filters with carefully chosen parameters
 - Filter parameters can be chosen to make Internet look healthy or unhealthy
 - Results can vary by orders of magnitude

Filter parameters revisited

Filter	Effect on MTTF	Effect on MTTR	Values in [1]	"Healthy" values
Observed Combinations	$\alpha \uparrow \Rightarrow MTTF \downarrow$	$\alpha \uparrow \Rightarrow MTTR \uparrow$	Not used	10%
Stable Prefixes	β \uparrow \Rightarrow MTTF \uparrow	$\beta \uparrow \Rightarrow MTTR \downarrow$	60 %	~99.5%
Route Convergence	$\gamma \uparrow \Rightarrow MTTF \uparrow$	$\gamma \uparrow \Rightarrow MTTR \uparrow$	900 s	200s

¹ C. Labovitz, A. Ahuja, and F. Jahanian, "Experimental Study of Internet Stability and Backbone Failures," FTCS, 1999 8/4/2009

Conclusions

- Filters offer significant power in eliminating pathological updates and unstable prefixes
 - However, they should be used judiciously
- Internet is now "healthier"
- 53% of the most "healthy" prefixes
 - MTTF : two weeks
 - MTTR :10 hours
 - Median uptime : 1.4 hours
 - Median downtime : 53 seconds
- Future work: Tying prefix reachability to Internet resilience

Questions

Backup Slide 1: Data Sets

- RouteViews¹
 - Routing tables sampled every 2 hours
 - Updates collected in 15 minute durations
 - About 25 GB per month of zipped data
- Months studied
 - Mar.-Nov. 07: 9 months to match Labovitz's work
 - Jan and Feb. 08 for cable cuts
- Preprocessing
 - Convert to text format
 - Remove unused fields
 - Keep timestamp, peer, prefix, update type
 - 13-15 GB of gzipped, processed data/month

Backup Slide 2: Future work

- Study prefix lifetime distribution and routing update arrivals for better filter parameter selection
- Studying prefix aggregation
- Tying prefix reachability to Internet resilience