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Motivation

• DDoS attacks, malware, spam, ... are rapidly 
increasing 

• Overlay and other end system solutions are 
insufficient and inefficient

• New applications require network support

• Active networks efforts failed due to security
and scalability concerns

• Can we resolve these security and scalability 
concerns, and allow users to customize and 
virtualize the Internet?
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Research Agenda

• Programmability
– A library of packet manipulation routines

– Language to compose routines

• Verification technology
– Extend PCC with a safety policy (to check security and 

scalability)

– Generate compact, composable, easy-to-check proofs

• Client-server protocols and scheduling
– Securely transmit program, proof, payment

• Execution environment
– Constrain programmability and use adaptive optimizations

• Emulation technology
– Study performance, security, scalability limits, reliability, 

placement, partial deployment, under realistic scenarios



Packet Manipulation Routines

• DISCARD(Packets)

• GENERATE(SrcIP,DestIP,Content)

• GROUP_BY_DESTINATION(Packets,DestIP): Packets

• GROUP_BY_DESTINATION(Packets): Packets(i), 
DestIP(i)

• GROUP_BY_SOURCE(Packets,SrcIP): Packets

• GROUP_BY_SOURCE(Packets): Packets(i),SrcIP(i)

• GROUP_BY_CONTENT(Packets): DestIPs, Content

• CONATINS_STRING(Packets,String): Boolean



Example: Virtual Firewall

• LIFETIME = 2 days  f(Complexity,lifetime) ≤

Costup

• MyPackets = 

GROUP_BY_DESTINATION(AllPackets, 

THIS_IP);

• BadPackets = 

GROUP_BY_SOURCE(MyPackets, SrcIP);

• DISCARD(BadPackets);



Example: Virtual Spam Filter
• LIFETIME = 5 days

• MyPackets = 

GROUP_BY_DESTINATION(AllPackets,THIS_IP);

• SourceIP(i),Packets(i) = 

GROUP_BY_SOURCE(MyPackets);

• Foreach i do

– If CONTAINS_STRING(Packets(i),Word1) and 

CONTAINS_STRING(Packets(i),Word2)

• DISCARD(Packets(i);



Example: Multicast

• LIFETIME = 5 hours

• MyPackets = GROUP_BY_DESTINATION(AllPackets, 
THIS_SUBNET_IP);

• Broadcast = 
GROUP_BY_SOURCE(MyPackets,BroadcastIP);

• Destinations,Content = 
GROUP_BY_CONTENT(Broadcast);

• GENERATE(BroadcastIP,THIS_IP,Destinations);

• GENERATE(BroadcastIP,THIS_IP,Content);

• DISCARD(Broadcast);



Example Safety Policy



Proof of Safety Policy
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Related Work

• Active networks, e.g., ANTS, PLAN, … 
http://nms.lcs.mit.edu/activeware/
– Need useful programmability, while balancing security and 

scalability

• Liquid software project http://www.cs.arizona.edu/liquid/
– We restrict programs to compositions of well-defined routines, 

and reuse lemma library

• Model checking
– We place less responsibility on servers and use a higher level 

programming language

• Overlay networks
– We allow efficient, network-level, operations

• Emulation, e.g., Click modular routers
– Does not address remote programmability, security, or scalability

http://nms.lcs.mit.edu/activeware/
http://www.cs.arizona.edu/liquid/


Conclusions and Planned Work

• Virtualizing the Internet enables several exciting 
services and a better Internet

• Security and scalability constraints and a library 
of lemmas enable efficient and secure 
virtualization using PCC

• Planned research on programmability, 
verification technology, client-server protocols 
and scheduling, execution environment, and 
emulation technology


