
Sonia Fahmy

Department of Computer Science

Purdue University

http://www.cs.purdue.edu/~fahmy/

Joint work with Ana Milanova, David Musser,

Bulent Yener (Rensselaer Polytechnic Institute)

A Secure Programming Paradigm

for Internet Virtualization

Motivation

• DDoS attacks, malware, spam, ... are rapidly
increasing

• Overlay and other end system solutions are
insufficient and inefficient

• New applications require network support

• Active networks efforts failed due to security
and scalability concerns

• Can we resolve these security and scalability
concerns, and allow users to customize and
virtualize the Internet?

Edge

Router

AS

AS

AS

Edge

Router

Virtual Internet

(VInet)

Client Module

at end user

Virtual Internet

(VInet)

Server Module

at Edge Router:

PCC or static analysis

Edge

Router

Edge

RouterDedicated port

Dedicated port

Middleware

VInet Kernel & System Library

Proof

Compiler

Proof(P)

Program(P) Program(P)

Proof(P)

To network From

network

Proof

Checker

Safety

Policy

VInet Kernel & System Library

BGP

router
BGP
router

BGP

router

VInet Server Module at

BGP router

VInet Server Module at

BGP router

users

Edge

Router

users

users

Research Agenda

• Programmability
– A library of packet manipulation routines

– Language to compose routines

• Verification technology
– Extend PCC with a safety policy (to check security and

scalability)

– Generate compact, composable, easy-to-check proofs

• Client-server protocols and scheduling
– Securely transmit program, proof, payment

• Execution environment
– Constrain programmability and use adaptive optimizations

• Emulation technology
– Study performance, security, scalability limits, reliability,

placement, partial deployment, under realistic scenarios

Packet Manipulation Routines

• DISCARD(Packets)

• GENERATE(SrcIP,DestIP,Content)

• GROUP_BY_DESTINATION(Packets,DestIP): Packets

• GROUP_BY_DESTINATION(Packets): Packets(i),
DestIP(i)

• GROUP_BY_SOURCE(Packets,SrcIP): Packets

• GROUP_BY_SOURCE(Packets): Packets(i),SrcIP(i)

• GROUP_BY_CONTENT(Packets): DestIPs, Content

• CONATINS_STRING(Packets,String): Boolean

Example: Virtual Firewall

• LIFETIME = 2 days f(Complexity,lifetime) ≤

Costup

• MyPackets =

GROUP_BY_DESTINATION(AllPackets,

THIS_IP);

• BadPackets =

GROUP_BY_SOURCE(MyPackets, SrcIP);

• DISCARD(BadPackets);

Example: Virtual Spam Filter
• LIFETIME = 5 days

• MyPackets =

GROUP_BY_DESTINATION(AllPackets,THIS_IP);

• SourceIP(i),Packets(i) =

GROUP_BY_SOURCE(MyPackets);

• Foreach i do

– If CONTAINS_STRING(Packets(i),Word1) and

CONTAINS_STRING(Packets(i),Word2)

• DISCARD(Packets(i);

Example: Multicast

• LIFETIME = 5 hours

• MyPackets = GROUP_BY_DESTINATION(AllPackets,
THIS_SUBNET_IP);

• Broadcast =
GROUP_BY_SOURCE(MyPackets,BroadcastIP);

• Destinations,Content =
GROUP_BY_CONTENT(Broadcast);

• GENERATE(BroadcastIP,THIS_IP,Destinations);

• GENERATE(BroadcastIP,THIS_IP,Content);

• DISCARD(Broadcast);

Example Safety Policy

Proof of Safety Policy

SrcIP1 …

…

SrcIPN

DestIP1

DestIP2

…

DestIPK

…

SrcIP2

DestIP1

…

DestIP2

…

Program Space

with Capacity

S1/D1

S1/D2

S2/D2

The sources hashtable

The destinations hashtables

Dynamic Execution Environment

Program classes and adaptive optimizations

PC

Internet

160 Power

Controller

'Boss' Server

User Acct &

Data logging

N x 4 @1000bT

Data ports

N @100bT

Control ports

‘User’ Server

PC PC

…

Control Network VLAN

User

Control

DB

Node Serial

Line Server

Power Serial

Line Server

Web/DB/SNMP,

switch mgmt

User

files

Ethernet Bridge

with Firewall

Programmable Patch Panel (VLAN switch)

'Gatekeeper'

DETER Testbed

Schematic

Source: DETER USC-ISI team; DETER is based on U. of Utah Emulab

Related Work

• Active networks, e.g., ANTS, PLAN, …
http://nms.lcs.mit.edu/activeware/
– Need useful programmability, while balancing security and

scalability

• Liquid software project http://www.cs.arizona.edu/liquid/
– We restrict programs to compositions of well-defined routines,

and reuse lemma library

• Model checking
– We place less responsibility on servers and use a higher level

programming language

• Overlay networks
– We allow efficient, network-level, operations

• Emulation, e.g., Click modular routers
– Does not address remote programmability, security, or scalability

http://nms.lcs.mit.edu/activeware/
http://www.cs.arizona.edu/liquid/

Conclusions and Planned Work

• Virtualizing the Internet enables several exciting
services and a better Internet

• Security and scalability constraints and a library
of lemmas enable efficient and secure
virtualization using PCC

• Planned research on programmability,
verification technology, client-server protocols
and scheduling, execution environment, and
emulation technology

