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ABSTRACT

A number of active queue management algorithms have been studied since Random Early Detection (RED) was
first introduced in 1993. While analytical and experimental studies have debated whether dropping/marking
should be based on average or instantaneous queue length or, alternatively, based on input and output rates
(or queue length slope), the merits and drawbacks of the proposed algorithms, and the effect of load-based
versus queue-based control have not been adequately examined. In particular, only RED has been tested in
realistic configurations and in terms of user metrics, such as response times and average delays. In this paper,
we examine active queue management (AQM) that uses both load and queuing delay to determine its packet
drop/mark probabilities. This class of algorithms, which we call load/delay controllers (LDC), has the advantage
of controlling the queuing delay as well as accurately anticipating incipient congestion. We compare LDC to a
number of well-known active queue management algorithms including RED, BLUE, FRED, SRED, and REM in
configurations with multiple bottlenecks, round trip times and bursty Web traffic. We evaluate each algorithm in
terms of Web response time, delay, packet loss, and throughput, in addition to examining algorithm complexity
and ease of configuration. Our results demonstrate that load information, along with queue length, can aid in
making more accurate packet drop/mark decisions that reduce the Web response time.

Keywords: B uffer Management, Active Queue Management (AQM), Congestion Control, Random Early
Detection (RED)

1. INTRODUCTION

Active queue management in Internet routers can improve application goodput and response times by detecting
congestion early and improving fairness among flows. The Internet Research Task Force (IRTF) recommends
the deployment of router-based congestion control, especially Random Early Detection (RED), in RFC 2309.
The main goal of RED? is to drop/mark packets before buffer overflow in order to give early warning to sources,
avoid TCP synchronization and bias against bursty connections, and punish misbehaving sources.

Since RED development in 1993, a number of RED variants have appeared including Flow RED (FRED),?
Stabilized RED (SRED)* and BLUE.® Although RED and its variants improve performance over simple drop
tail queues, they exhibit two main weaknesses. First, it is difficult to configure their parameters. Second, they
are insensitive to current queue arrival and drain rates, and rely on long term queue length averages. Recently,
a number of algorithms including REM,5 8 AVQ? 10 and the PI controller!! have been proposed to remedy
the insensitivity to load problem. While these algorithms are effective from a control-theoretic perspective,
they have not been carefully tested in realistic Internet-like configurations with bursty traffic and variable
delays, and especially without Explicit Congestion Notification (ECN) marking!? which they recommend or
require. Some are difficult to configure, and some are complex to implement. While many studies have debated
whether dropping/marking should be based on queue length or on input and output rates (or alternatively the
queue length slope over time), the merits and drawbacks of various algorithms and the effect of load-based
versus queue-based control has not been adequately examined. No thorough comparisons have been made of
all algorithms in terms of user-perceived metrics such Web response time (as is done with RED in'?).

This research has been sponsored in part by the Purdue Research Foundation and the Schlumberger Foundation
technical merit award. The authors can be reached through e-mails: {kwonm,fahmy}@Qcs.purdue.edu, telephone:+1-765-
494-6183, fax: +1-765-494-0739
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(a) Queue length in BLUE (b) Packet drop probability in BLUE
Figure 1. BLUE drop relies on queue overflow/underflow history

This paper has two main contributions. First, we examine a class of active queue management algorithms
which incorporate both load and queuing delay metrics (we call this class of algorithms Load/Delay Controllers
(LDC)). LDC uses a load factor, computed as the ratio of the queue arrival and drain rates, in addition to the
queuing delay to determine the drop/mark probability (similar to our ERICA ATM-ABR algorithm!%1%). The
objective of LDC is to keep the average queuing delay under a specified target, thus reducing Web response
time, without significantly affecting application throughput and link utilization.

Our second contribution is to compare LDC with a number of well-known active queue management algo-
rithms including RED, BLUE, FRED, SRED, and REM in realistic network configurations with bursty Web
traffic. We evaluate each algorithm in terms of response time, packet delay, packet loss rate and throughput,
in addition to examining its complexity and ease of configuration. OQur simulation results, especially in terms
of Web response time demonstrate the importance of the load factor along with the queue length as congestion
indicators. We classify the schemes as primarily load-based or primarily queue-based.

We focus on drop and drop probability in this paper, though “drop probability” throughout the paper
(except for results) can be replaced by “marking probability.” We defer the study of ECN-capable networks to
future work, since some Internet firewalls are not yet ECN-aware.!'® The remainder of this paper is organized
as follows. Section 2 discusses related work. Sections 3 and 4 examine load, queue length and queuing delay
as congestion indicators, and discuss methods for combining them. Section 5 analyzes the performance of the
different algorithms in a number of network configurations. Finally, section 6 summarizes our conclusions and
discusses future work.

2. BACKGROUND AND RELATED WORK

Active queue management has been extensively researched since the early 1990s. RED? detects congestion at
network routers in order to promptly notify sources to reduce their rates, punish misbehaving flows without
being biased against bursty traffic, and avoid global synchronization. RED maintains a long term average of
the queue length (buffer occupancy) of the router, and randomly drops packets in proportion to this buffer
occupancy value. RED, however, is difficult to configure since it relies on the buffer thresholds maz,p, ming,
the weight used in averaging, and the maximum drop probability maz, as parameters. RED performance is
extremely sensitive to these parameters. It is difficult to tune the parameters to reflect whether short queuing
delay is more important than link utilization or vice versa.

Other weaknesses of RED have been reported and several approaches to overcoming them have later been
proposed. Lin and Morris® proposed Flow RED (FRED) to overcome problems observed when RED is evaluated
over three different traffic types categorized according to their response behaviors to congestion. When a mix
of these traffic types share a link, RED allows unfair bandwidth sharing since RED imposes the same loss rate
on all flows regardless of their bandwidths. To remedy this weakness, FRED uses per-active-flow accounting to
impose on each flow a loss rate depending on the flow buffer occupancy. Stabilized RED (SRED)* is another
variant of RED where the packet marking probability depends on the instantaneous buffer occupancy as well
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Figure 2. RED drop relies solely on average buffer occupancy

as on the estimated number of active flows. This feature helps SRED stabilize its buffer occupancy at a level
independent of the number of active connections.

BLUE? uses packet loss and link utilization rather than the average queue length. It increments the packet
drop probability when packet loss occurs and decrements the packet drop probability if the link is idle. BLUE
may thus lose the early warning advantage of RED. Figure 1 shows the actual queue length and the packet drop
probability of BLUE in a simple Web configuration (figure 7(a)). The BLUE drop probability does not increase
until the queue becomes full, and does not decrease until the queue becomes idle.

Queue management has also been studied in the context of Kelly’s utility framework.6-1:17-1%  Lapsley
et al.5% 17 argue that RED parameters can be tuned to either provide high utilization or low queuing delay
but not both. They propose Random Early Marking (REM) to achieve high utilization with negligible delays
and loss, regardless of the number of sources. This is accomplished through decoupling congestion measures
(price) and performance measures such as loss or delay. The congestion measure is computed by each link
and fed back to the sources through packet dropping or marking. Thus, sources reach a globally optimal
equilibrium. Kunniyur et al.? !¢ consider a penalty function formulation instead of the dual formulation in
REM, for designing congestion controllers. A decentralized design of ECN marking rates at each node is used
to ensure global loss-free operation of a fluid model of the network. This class of algorithms, which also includes
the recent PI controller,!! is mainly designed for marking (ECN) and has not been adequately studied without
ECN.

Finally, Firoiu and Borden?? show how RED can induce network instability if not properly configured. RED
performance is analytically studied in,2! and selection of RED parameters and their effect on web traffic is
studied in.'3

3. QUEUE-BASED VERSUS LOAD-BASED ACTIVE QUEUE MANAGEMENT
(AQM)

Is queue length (as used in RED) a sufficient congestion indicator? Is the load information sufficient? What
about queuing delay versus queue length? This topic has been recently debated in a number of forums, such as
the IRTF end-to-end group. We classify active queue management (AQM) algorithms into two classes based on
the primary metric used for detecting congestion. The first class, queue-based AQM, uses only queue length as
an indicator. RED and FRED?™* belong to this class. The second class, load-based AQM, uses load information
for congestion detection. REM and AVQ5-1017 belong to the second class.

3.1. Queue-based AQM

RED,? FRED? and SRED* belong to the queue-based AQM class for the following reason. RED uses a long-
term average of the queue length to absorb temporary burstiness. This is the sole congestion indicator in RED,
which assumes queue length indirectly reflects network load and queue drain. Figure 2 illustrates one situation
where this may be problematic. The figure shows the actual queue length and packet drop probability of RED
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Figure 4. Queue length as the sole congestion indicator

with Web traffic. (We use the simple Web configuration illustrated in figure 7(a)). Between time 60 and 70
seconds, the actual queue length approaches zero, but the packet drop probability stays high. The fact that the
queue may be large but draining rapidly, or small but building up rapidly is not reflected in the drop probability.

Figure 3 explains this situation. In the upper half of the figure, although the queue arrival rate is greater than
the drain rate (indicated by the size of the arrow), the router uses a small packet drop probability due to the
short queue length (since traffic is bursty). The lower part of the figure depicts the opposite scenario. A queue
is drained rapidly since the queue service (drain) rate is higher than the arrival rate. Nevertheless, Pyrop is high
due to an initially large queue length, resulting in excessive drops and subsequent underutilization. A similar
argument can be made when the drain rate is variable (small queue but small drain rate, large queue but high
drain rate). The load insensitivity problem can be observed in figure 4. We run the simple Web configuration
(described in section 5.1) for 100 seconds. The figure shows the actual queue length, drop probability if based
on queue length only, and load information from 80 to 100 seconds. The point labeled “a” illustrates the upper
case of figure 3. There, the load is high but Pgyp is low since Qqyq is low. Qqyg grows afterwards, causing Pgyrop
to increase. At point “b” between 85 and 90 seconds, Py, op is high due to high Q4,,. However, the load at that
point is not high. Pg.,p need not be as high since the queue will be depleted shortly. Thus load information is
a good congestion indicator.



3.2. Load-based AQM

Load information is used in REM, AVQ and the PI controller.5':17  The load information speeds up the
response, but must be carefully used in order to avoid instability. The advantages of using the load information
are studied in.'1 1819 The load information in such schemes is measured in various forms, such as the queue
length slope, or the difference between input rate and output rate. A simple load indicator that we will use is
the load factor defined as the ratio of periodically measured arrival rate (input) and service rate (output):

Input_Rate

Load_Factor = ————.
cag-fractor Output_Rate

1)
Output_Rate is the link capacity for this particular queue (i.e., not being used by higher priority queues) in a
quality of service (QoS) network. Thus, Output_Rate is the remaining capacity after subtracting higher priority
traffic from output link capacity. When only one class exists (e.g., in a best effort network), Output_Rate is
the same as output link capacity. A high load factor value indicates congestion and a low value indicates link
underutilization. Both cases are undesirable. The router should maintain the load factor less than (but close
to) 1 in steady state.

Is queue length information still important even when the load factor is used? Clearly, queue length is
a function of load. However, queue length gives a more stable (slower) congestion indication. In addition,
queue length information may be helpful when making dropping decisions, in order to allow drainage of queue
backlogs. This ensures that queuing delay is low and remaining buffer capacity can be used to absorb packet
bursts.

What about using queue length versus queuing delay? The queuing delay has two benefits over the queue
length. First, a target queuing delay is a meaningful measure for users (unlike target queue length, which
depends on buffer sizes and link speeds). Second, queuing delay is independent of output link rate, in contrast
to queue length. A target queue size of 100 packets produces entirely different results when the drain rate is 1.5
Mbps from when it is 10 Mbps. The user-specified target queuing delay is converted to a target queue length
for a certain drain rate as follows:

Qtarget = Dtarget x Qutput_Rate. (2)

where Qtarget is target queue length, Dyarges is target queuing delay, and Output_Rate is the output link rate.

4. LOAD/DELAY CONTROL (LDC)

In this section, we describe a generic class of active queue management algorithms: LDC (Load/Delay Con-
trollers). We maintain the misbehaving (but not bursty) flow punishment and global synchronization avoidance
benefits of RED, but the algorithm provides better load (input/output rate) response, and more intuitive param-
eters. LDC does not assume a particular (different from TCP) source behavior. Explicit congestion notification
(ECN) can improve performance, but it is not necessary for LDC operation. Throughout the remainder of
this paper, we use the term packet drop probability, though this can be replaced by packet mark probability if
ECN-compliant end systems are used.

The goals of LDC algorithms are (1) to maintain queuing delay below a target value, and (2) to maintain
queue arrival rate at or below queue service rate. Given the arrival rate, service rate, queue length and target
queuing delay, we design an example LDC algorithm in this section.

4.1. Measuring the Load Factor and Queue Length

RED computes the average queue size with every packet arrival as an Exponential Weighted Moving Average
(EWMA) with w, (the weight for the current sample) of 0.002. The primary goal of the average queue size in
RED is to avoid bias against bursty traffic. LDC calculates queuing delay at fixed time intervals, 7, not with
the arrival of each packet. Thus computation of the queuing delay is synchronized to that of the load factor.
Should average input/drain rates or instantaneous rates be used in load factor computation? The same question
also applies to queue sizes. In our experiments, we use 0.002 as the weight for the current queue size sample,
and 0.002 as the weight for previous input/drain rates for the load factor. Averaging for both is necessary to
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Figure 6. Packet drop probability of LDC

avoid sensitivity to the time interval 7. The queue size average places significant weight on queue size history to
avoid bias against bursty traffic. The input and drain rate averages place more emphasis on the current sample
to increase responsiveness of the algorithm to current traffic load.

4.2. The Packet Drop Probability Function

LDC employs concave probability functions as shown in figure 5. The concave function eliminates the need for
a minimum threshold and avoids discontinuities (e.g., as seen in non-gentle versions of RED). The potential
drawback of the concave function is higher computational complexity. This problem can be avoided by using
small exponent values (less than 4) to limit multiplication operations. LDC computes the ratio of the load
factor and its desired value, and the ratio of the queue length and its target value. A ratio of 1 means that
the congestion indicator is at its target value. Using a ratio rather than a difference simplifies the design of
the concave Pj,,, function (figure 5). The two ratios are combined additively to calculate the packet drop
probability. Addition clearly divides the contribution of the two congestion indicators and simplifies configuring
LDC to give more emphasis to one indicator over the others. One example of an LDC function is:

Ravg

1
Pirop = §mz'n(l, (7@“}9 ) + —min(1, (
Rtarget

n
. 3
4 Qtarget 4 ) ) ( )
The contribution of each of the load factor and the average queue length is upper-bound by 1. Multiplicative
factors of % and i are used with the queuing delay and load respectively to normalize the sum, guaranteeing
that Pgy,p is upper-bound by 1. Other factors (instead of % and %) can be used, as long as they add up to one.
This example packet drop probability function is illustrated in figure 6.

5. PERFORMANCE EVALUATION

In this section, we compare the performance of LDC, RED, SRED, FRED, BLUE, and REM. For RED and
REM, we use the ns (ns-2.1b7%2) implementations provided by the authors of the algorithm, while we implement
SRED, FRED and BLUE (in addition to LDC) according to the pseudo-code given in the papers where they
first appeared. We have validated our results by replicating the experiments given in the original papers.



Table 1. Performance metrics

| Metric | Description
Response The (mean and maximum) time elapsed (in seconds) between the time at which the request
Time of a web client is triggered and the time at which the last requested page from a server arrives
at this client.
Delay The (mean and maximum) time elapsed (in seconds) between when a sender sends a packet

and when a receiver receives that packet.

Throughput | The total amount of data received at the receiver application layer during the entire simulation
time, divided by the entire simulation time. We give goodput values in Mbps.

Packet The ratio of dropped packets to the total number of packets sent during the simulation time.
Drop Ratio

Table 2. Simulation parameters

Algorithm | Parameter Settings |
RED thmin = 15 % buffer, thma, = 1 x buffer, (3 X thpin), wgy = 0.002, maz, = 0.1 (as recommended
by RED designers2?), gentle version used

SRED Full SRED is used, maz, = 0.15, M = 1000, p = 0.25

FRED min, = 4, others same as RED

BLUE decrement = 0.02, increment = 0.2, freeze_time = 0.1 s
REM a=0.1, vy =0.005, ¢ = 1.001, w, = 0.002, time interval 7 = 0.002 s
LDC Digrger = 4.0 s, (wg = 0.002, w, = 0.998, n = 3, Rigrger = 0.95, time interval 7 = 0.002 s,

weights of 2 and 1 for the delay and load components)

5.1. Simulation Model

Today’s Internet has two important characteristics. First, web traffic dominates the Internet (more than 80%).24
Web traffic is short-lived and bursty, not long-lived and steady like large FTP transfers that are used in most
active queue management simulations. Second, streaming and real-time audio/video applications are slowly
emerging in the Internet. Some of these applications do not use TCP or TCP-friendly mechanisms like,2% thus
maintaining a fixed rate and not reducing their rates on packet loss.

We use 3 simulation models. The first model, shown in figure 7(a), only uses one web server and 10
clients, for simplicity. All connections share one bottleneck link, with a link capacity of 0.1 Mbps. 20 HTTP-
TCP connections are used, in addition to one CBR-UDP connection sending at 50 kbps, which is half of the
bottleneck link capacity. The web traffic is generated by a Poisson Process where the inter-object, inter-page
and inter-session times are defined by an exponential distribution. We fix the random number generator seed
for each run to obtain comparable results when we compare different algorithms. We refer to this dumbbell
configuration as “The simple web configuration.” The total simulation time for the simple web configuration is
900 seconds.

The purpose of our second model is to compare LDC to algorithms proposed in the literature in a more
realistic setup. We use the Generic Fairness Configuration 2 (GFC-2) shown in figure 7(b). The configuration
has multiple bottleneck links and connections with different link capacities and different round trip times. We
use D = 5 ms. 22 HTTP sessions created as discussed above, in addition to one 12 kbps CBR-UDP flow, and one
unlimited FTP (on TCP-Reno) flow. Servers reside at the receivers while clients are at the senders. CBR-UDP
runs on node F and unlimited FTP on node H. The HTTP sessions are created on each sender/receiver pair.
The CBR-UDP flow shares the bottleneck link between R3 and R4 while the FTP flow shares the link from
R4 to R5 with several HT'TP sessions. Total running time is 900 seconds. We run 5 simulations with different
random number generator seeds, and average the results.
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Figure 8. Target delay guarantee of LDC algorithms

The third model is a simple configuration with large FTP transfers, and its purpose is to simplify examining
and comparing LDC parameter values. Figure 7(c) shows 4 sender-receiver pairs with one bottleneck link. 100
FTP connections are running on TCP Reno- 25 on each sending node. Dy, gt is set to 0.2 seconds for this
experiment only (outgoing link capacity is 1 Mbps). To evaluate each algorithm, we use the performance metrics
described in table 1. The parameters for each algorithm used in the simulations are summarized in table 2. We
use a TCP timer granularity of 100 ms and segment size of 1000 bytes. The buffer sizes used are 120 kB.

5.2. Performance Results

In this section, we compare various algorithms by simulations on the configurations discussed above.

5.2.1. LDC Delay Control

Figure 8 shows the delay guarantee property of LDC. We simulate the simple web configuration for 300 seconds

with Dyqpger of 1.6 seconds. Since the output rate is fixed (0.1 Mbps), the target delay can be converted to a
target queue length of 20 kB (% = 20kB). The figure shows that, throughout the entire simulation
period, the queuing delay never exceeds the target delay.

5.2.2. Multiple-bottleneck Configuration

The results for the GFC-2 configuration are shown in tables 3 and 4. Note that throughput is indicated in Mbps.
For web applications, the crucial factor is user response time.!'® From the table, FRED exhibits the shortest
response time, and also achieves high throughput. This is because FRED is designed to control misbehaving
(CBR-UDP) flows and protect TCP flows, using per-flow accounting. REM achieves low response time but loses
some throughput. LDC also exhibits good response time at the expense of some throughput degradation. RED



Table 3. Comparison of queue management algorithms on GFC-2: Mean

Algorithm | HTTP Response Time | UDP Delay Throughput Packet Drop Ratio

Mean | Max Mean | Max | HTTP | UDP | FTP | HTTP | UDP | FTP | Total
DropTail 79.070 1094.46 0.950 | 6.983 | 0.110 | 0.012 | 0.134 | 3.012 0.956 | 0.000 | 1.317
RED 69.358 1138.04 0.465 | 7.036 | 0.098 | 0.012 | 0.134 | 6.356 1.808 | 0.196 | 2.868
SRED 74.183 1054.85 1.308 | 7.941 | 0.100 | 0.012 | 0.129 | 4.005 0.589 | 0.031 | 1.752
FRED 52.856 931.835 0.301 | 4.595 | 0.132 | 0.011 | 0.127 | 6.378 | 11.431 | 1.057 | 4.282
BLUE 79.029 1177.68 1.409 | 8.261 | 0.096 | 0.012 | 0.132 | 3.287 1.623 | 0.000 | 1.474
REM 62.342 1008.96 0.406 | 5.246 | 0.093 | 0.012 | 0.125 | 7.372 2.437 | 0.183 | 3.280
LDC 58.851 1126.74 0.227 | 2.225 | 0.088 | 0.012 | 0.129 | 9.444 | 2.133 | 0.588 | 4.273

Table 4. Comparison of queue management algorithms on GFC-2: Standard deviation
Algorithm | HTTP Response Time | UDP Delay Throughput Packet Drop Ratio

Mean | Max Mean | Max | HTTP | UDP | FTP | HTTP | UDP | FTP | Total
DropTail 26.729 286.220 0.668 | 3.010 | 0.017 | 0.000 | 0.001 | 1.783 | 1.003 | 0.000 | 0.745
RED 24.238 335.954 0.100 | 1.778 | 0.014 | 0.000 | 0.002 | 1.316 | 0.941 | 0.024 | 0.574
SRED 24.179 366.155 1.016 | 2.285 | 0.009 | 0.000 | 0.009 | 0.946 | 0.384 | 0.014 | 0.399
FRED 21.349 270.126 0.099 | 0.855 | 0.036 | 0.001 | 0.003 | 2.599 | 4.434 | 0.363 | 0.897
BLUE 26.950 286.664 0.598 | 2.167 | 0.012 | 0.000 | 0.002 | 1.899 | 1.236 | 0.000 | 0.841
REM 23.722 276.992 0.160 | 0.629 | 0.014 | 0.000 | 0.012 | 1.947 | 1.192 | 0.080 | 0.817
LDC 19.899 331.829 0.047 | 0.174 | 0.006 | 0.000 | 0.005 | 1.037 | 0.750 | 0.105 | 0.506

performs reasonably well. All other algorithms span similar ranges, with somewhat high response time, but
high throughput. BLUE and SRED perform well in terms of packet drop ratio. Standard deviation is highest
for drop tail, but all the algorithms are comparable.

5.3. Robustness

Although LDC has one main parameter, the target queuing delay, its other parameters, such as averaging
weights, can also be modified. Small values of w, such as 0.002 to 0.2, and large values of w, such as 0.8
to 0.998 are recommended as the weights for the current sample in Q4,4 and R, respectively (as discussed
in section 4). We use n = 3 in the Py, function. We observe that throughput and delay do not vary with
different n values and various time interval 7 values (results not shown in the paper). If n is large, however,
implementation complexity may be high. The contributions of the queuing delay and load components to the
Py,,p function can also be varied. Table 5 shows results for the FTP configuration when we use (1,0), (0,1),
(3.1), or (2,1) as weights for the queuing delay and load components of LDC, respectivaly. Queuing delay
incorporates the drain rate, so queuing delay indirectly incorporates load information. From the table, (%,i)
exhibits the lowest packet delay and reasonably high throughput.

The time interval 7 used is 2 ms, though complexity can be reduced by using a larger interval. Values of
0.9 or 0.95 are recommended for Ri,rget, but we have obtained good results with higher values as well, since we
always start dropping earlier than the target. The user primarily needs to set the parameter, D¢qrget, the target
queuing delay. If input traffic is not bursty, a small Disrger gives good delay without degrading throughput
considerably. However, web traffic is bursty and a very low Dygrget is not recommended since it causes timeouts
and TCP retransmissions.



Table 5. Load factor versus queuing delay (FTP traffic)
LDC(Q,p) | Delay | Throughput | Drop Ratio

LDC (3, 1) [ 01335 [ 0.9796 25.01
LDC (1, 1) [ 0.1470 | 0.9765 23.12
LDC (1,0) | 0.1470 |  0.9821 25.55
LDC (0,1) | 0.7086 |  0.9976 3.88

5.4. Merits and Drawbacks of Various Approaches

Table 6 summarizes the advantages and disadvantages of the active queue management algorithms we have
investigated. From the table, it is clear that complexity of the algorithms depends on quantities they measure,
their sampling frequency, the algorithm employed to determine drop, and the state they maintain. An important
question is whether active queue management can achieve low delay and high throughput simultaneously. A
non-zero queue size ensures high utilization/throughput with bursty traffic. But a non-zero queue size leads
to queuing delay, increasing end-to-end delay. The class of algorithms based on Kelly’s framework, such as
REM, combines active queue management with ECN and end system behavior to keep user utilities high. LDC
algorithms allow control over the desired operating point through the target queuing delay parameter value.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have compared a number of active queue management algorithms with a class of generic load
and queue based algorithms. Queue-based algorithms like RED, and especially FRED, performed reasonably
well but were difficult to configure. Load based algorithms like REM reduced queuing delay, but exhibited
low throughput for Web traffic when used without ECN. Using both load and queuing delay as congestion
indicators in LDC reduces response time and delay, but sometimes adversely affects throughput, in both single
and multiple bottleneck cases, and with web and FTP traffic and UDP background. Moreover, LDC keeps
actual queuing delay under the target queuing delay. LDC gives the user the freedom to control the queuing
delay versus goodput tradeoff.

A number of issues remain unresolved. We need to study the effect of ECN in the context of LDC. ECN
allows active queue management at the router and TCP at the sender to cooperate, reducing queuing delay
and packet loss. This will allow us to include schemes such as AVQ and the PI controller in our comparisons.
Parameter values of LDC algorithms need further study as well. Finally, we need to study the effect of variable
output rate in the context of multiple queues. This study may be extended to multiple service classes such as
a differentiated services network with TCP-friendly traffic conditioners, as in.2%

Acknowledgements

We would like to thank Srinivas R. Avasarala (former student of the second author (Sonia Fahmy); now with
Andiamo Systems) for providing us with his FRED and SRED ns-2 implementations; and Sanjeewa Athuraliya
and Victor Li (with the California Institute of Technology) for providing us with their REM ns-2 implementation.

REFERENCES

1. B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Min-
shall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang, “Recom-
mendations on queue management and congestion avoidance in the internet.” RFC 2309, April 1998.
http:/ /info.internet.isi.edu:80/in-notes/rfc/files /rfc2309.txt.

2. S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” IEEE/ACM
Transactions on Networking 1, pp. 397-413, August 1993. ftp://ftp.ee.lbl.gov/papers/early.ps.gz.

3. D. Lin and R. Morris, “Dynamics of random early dectection,” in Proceedings of the ACM SIGCOMM, 27,
pp- 127-136, September 1997.



Table 6. Advantages and disadvantages of active queue management algorithms

Algorithm | Advantages | Disadvantages | Complezity
RED —Early congestion detection —Difficulty in parameter setting —High Q sampling frequency
—Bias against bursty traffic miti- | —Insensitivity to traffic load and | -Computational =~ Complexity:
gated drain rate +, —, X, +, comparison, RNG
(random number generator)
—Global synchronization miti-
gated
SRED —Stabilized queue occupancy —Some per-flow state (zombie | —High Q sampling frequency
list)
—Protection from misbehaving | -RED disadvantages -O(M) space complexity
flows
—Computational ~Complexity:
+, X, =+, comparison, RNG,
hashing
FRED —Good protection from misbe- | —Per-flow state —High Q sampling frequency
having flows
-RED disadvantages —O(number of active flows)
space complexity
—Computational ~Complexity:
+, —, X, =, comparison, RNG
BLUE —Easy to understand —No early congestion detection —High Q sampling frequency
—High throughput (Parop updated only with queue | -Computational —Complexity:
overflow or link idle) +, —, comparison, RNG, timer
—Slow response and dependency
on history
REM —Low delay and small queues —Some complexity due to param- | —Low Q sampling frequency but
eters measures load
—Independence of the number of | —Low throughput for Web traffic | -Computational = Complexity:
users +, —, X, +, exponent, RNG,
timer
—Inconsistency with TCP sender
mechanism; works best with ECN
LDC —Sensitivity to traffic load and | -Some complexity due to param- | —-Low Q sampling frequency but
drain rate eters measures load
—Low delay and some losses of —Computational Complexity:
throuput +, —, X, =+, exponent, RNG,
timer
—Target delay achieved
—Intuitive parameters, meaning-
ful to user (target delay)




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED: Stabilized RED,” in Proceedings of the IEEFE
INFOCOM, March 1999.

W. Feng, D. Kandlur, D. Saha, and K. Shin, “BLUE: A new class of active queue management algorithms.”
U. Michigan CSE-TR-387-99, April 1999. http://www.eecs.umich.edu/~wuchang/blue/. Also appears in
NOSSDAV 2001.

D. E. Lapsley and S. H. Low, “Random Early Marking for Internet Congestion Control,” in Proceedings of
the IEEE GLOBECOM, December 1999.

S. H. Low and D. E. Lapsley, “Optimization flow control, I: basic algorithm and convergence,” IEEE/ACM
Transaction on Networking , December 1999. http://www.ee.mu.oz.au/staff/slow /research/.

S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “REM: Active Queue Management,” IEEFE Network ,
May/June 2001. http://netlab.caltech.edu/netlab-pub/.

S. Kunniyur and R. Srikant, “End-To-End Congestion Control: Utility Functions, Random Losses and
ECN Marks,” in Proceedings of the IEEE INFOCOM’2000, March 2000.

S. Kunniyur and R. Srikant, “A Time-Scale Decomposition Approach to Decentralized ECN Marking,” in
Proceedings of the IEEE INFOCOM’2001, April 2001.

C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “On Designing Improved Controllers for AQM Routers
Supporting TCP Flows,” in Proceedings of the IEEE INFOCOM’2001, April 2001. http://www.ieee-
infocom.org/2001/.

K. Ramakrishnan and S. Floyd, “A proposal to add explicit congestion notification (ECN) to IP.” RFC
2481, January 1999.

M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith, “Tuning RED for web traffic,” in Proceedings of the
ACM SIGCOMM, August 2000.

S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B. Vandalore, “The ERICA Switch Algorithm for ABR
Traffic Management in ATM Networks,” IEFE/ACM Transactions on Networking 8, pp. 87-98, February
2000. http://www.cis.ohio-state.edu/~jain/papers/erica.htm.

B. Vandalore, R. Jain, R. Goyal, and S. Fahmy, “Dynamic queue control functions for ATM ABR
switch schemes: Design and analysis,” Journal of Computer Networks 31, pp. 1935-1949, August 1999.
http://www.cis.ohio-state.edu/~jain/papers/cnis_qctrl.htm.

“ECN reachability tests.” http://www.aciri.org/tbit/ecn.html, September 2000.

S. Athuraliya, D. E. Lapsley, and S. H. Low, “An Enhanced Random Early Marking Algorithm for Internet
Flow Control,” in Proceedings of the IEEE INFOCOM, March 2000.

C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “A Control Theoretic Analysis of RED,” in Proceedings
of the IEEE INFOCOM’2001, April 2001. http://www.ieee-infocom.org/2001/.

F. Kelly, P. Key, and S. Zachary, “Distributed admission control,” IEEE Journal on Selected Areas in
Communications 18, 2000.

V. Firoiu and M. Borden, “A study of active queue management for congestion control,” in Proceedings of
the IEEE INFOCOM, March 2000. http://www.ieee-infocom.org/2000/papers/405.pdf.

T. Bonald, M. May, and J.-C. Bolot, “Analytic evaluation of RED performance,” in Proceedings of the
IEEE INFOCOM, March 2000. http://www.ieee-infocom.org/2000/papers/369.ps.

UCB/LBNL/VINT groups, “UCB/LBNL/VINT Network Simulator.” http://www.isi.edu/nsnam/ns/,
May 2001.

S. Floyd, “RED web page.” http://www.aciri.org/floyd/red.html, August 2001.

CAIDA, “The CAIDA Web Site.” http://www.caida.org/.

S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion control for unicast applica-
tions,” in Proceedings of the ACM SIGCOMM, August 2000. http://www.aciri.org/tfrc/.

A. Habib, S. Fahmy, and B. Bhargava, “Design and evaluation of an adaptive traffic conditioner for differ-
entiated services networks,” in Proceedings of IEEE ICCCN, pp. 90-95, October 2001.



