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Abstract—The Border Gateway Protocol (BGP) maintains the fact.
inter-domain routing information by announcing and withdraw- This paper takes aredictive approach towards the long-
ing IP prefixes, possibly resulting in temporary prefix unreacha- oy control plane (BGP-advertised) availability of prefixes
bility. Prefix availability observed from different vantage points . .
in the Internet can be lower than standards promised by Service from several v;_;m'_[age p(_)lnt_s_ in the Internet. We construct
Level Agreements (SLAs). models for predicting availability, and show that, giveroad-

In this paper, we develop a framework for predicting long-term  enoughlearning durationfor a prefix, we can simply predict
prefix availability, given short-duration prefix information from its future availability to be equal to its past availabil{i$ec-
publicly available BGP routing databases. We compare three tion IV-A). However, if the learning duration is short compél
prediction models, and find that bagged decision trees perform to th diction d ’ fi dat inina based oiiedi
the best when predicting for long future durations, whereas a 0 the prediction dura an,We u_se _aa—mln_lng ased pieaic
simple model works well for short prediction durations. We Mmodels constructed using routing information of other rimé¢
show that mean time to failure and to recovery outperform prefixes (e.g., from RouteViews [15]). A predicted longrter
past availability in terms of their importance for predicting  availability value which falls short of requirements coléed
availability for long durations. We also find that predictability to changes in BGP policies of the ISP regulating the prefix

is higher in the year 2009, compared to four years earlier. Our .
models allow ISPs to adjust BGP routing policies if predicted advertisements. For example, one can change the MED or

availability is low, and the models are useful for cloud computing COMMunity attributes, or increase the penalty threshadas
systems, P2P, and VoIP applications. ated with route flap damping to a high availability requireme

prefix to ensure fewer flaps [3]. Additional applications af o
work include Content Distribution Networks (CDNs), cloud
The Border Gateway Protocol (BGP), the de-facto Internebmputing, VoIP and P2P networks, all of which can use the
inter-domain routing protocol, propagates reachabilitfoi- highest predicted availability replica/server/peer.
mation by announcing paths prefixes Autonomous Systems Internet prefix characteristics can convey valuable inferm
(ASes) maintain these paths to prefixes in their routingesbl tion about other (not necessarily in the same AS) prefixes. We
and conditionally update this information when route updatise randomly selected prefixes from RouteViews to build-data
messages (announcements and withdrawals) are received. @aining based prediction models, which are used to predict
tinuous prefix reachability over time is critical to the srttoo availability of unrelated prefixes. This theme is common in
operation of the Internet. This is captured using the meffic several other disciplines, like medicine, where one usesvkn
availability, defined as the time duration when the prefix isymptoms of patients with a diagnosed disease to try to
reachable divided by the total time duration we are intestdiagnose patients with an unknown condition. To the best of
in. While typical system availability metrics for telephoneour knowledge, no other work has exploited the similarity
networks exceeflve 9s,i.e., 99.999%, computer networks aref prefixes in the Internet; a few studies, e.g., [18], agplie
known to have lower availability [16]. predictive modeling in the context of BGP, but they only
Internet Service Providers (ISPs) usually provide aviditgb examined problem ASes in the path to a particular prefix.
guarantees on their backbone network through Service LevelThe remainder of this paper is organized as follows. We
Agreements (SLAs). However, content providers are modefine the problem that we study in Section Il. Section Il
interested in their service availability as observed frariaus describes our methodology. We evaluate and compare three
points in the Internet, and a routing path being advertised grediction models in Section IV. Section V summarizes sslat
essential to maintaining traffic flow. There have been unsueerk, and Section VI concludes the paper.
cessful attempts at extending SLAs to several ISPs [14] or
estimating service availability between two end points. [8]
Meanwhile, several Internet reachability problems havenbe We define theavailability prediction problemto be the
reported, such as the YouTube prefix hijack which lasted abqrediction of the BGP-advertised availability of a prefiikemn
two hours [20], and several undersea cable cuts, e.g., [2]. its attributes computed by observing BGP updates for the
Measuring prefix availability is non-trivial without an ex-learning duration, and the availability and attributes tieo
tensive measurement infrastructure comprising many gantgrefixes (if needed).
points.Data planemeasurements are inherently discontinuous We compute availability in theontrol planefrom a par-
and increase network traffic. A shortfall in measured atbéHa ticular vantage point by marking the time of an announce-
ity necessitates meactiveapproach to correct the problem aftement/withdrawal of a prefix as the time when it goes up/down

I. INTRODUCTION

II. PROBLEM DEFINITION



w.r.t. the vantage point and matching our predictions ajairstate change was to D and was reported at timend if the
this computed availability. Instead of predicting contios data period ended at timg, as indicated by the timestamp
availability values, we discretize availability, and pi@dhe of the last update, we record a downtime with valye- ¢;.
availability classof a prefix. This is because, for diagnosis ofrhe availability of the combination is computed by dividing
detection purposes, our interest lies in predicting whethe the total time that the combination was up by the total time
availability value is above or below an acceptable thrashgberiod, only if it has at least one recorded uptime or dowatim
(e.g., that advertised in an SLA), and not the specific vafue g0 that its availability is non-trivial.
the availability. Discretizing gives us the added advaetafj We discretize the continuous availability value into two
using confusion matrix-based measures, e.g., false pesiti availability classes, namelhhigh and low using a single
to assess prediction performance. threshold of 0.99999. The percentage lufjh availability
We address the following questions: combinations is 56.10%, 60.76%, 62.17%, and 68.75% for the
1) How to discretize availability? How many classes angionths of Jan. 05, Jan. 07, Feb. 08, and Mar. 09 respectively.
what threshold value_s ShOL.”d be us_ed? . C, Model Space and Performance Metrics
2) Given a set of prefixes with associated attributes and ) i o ) )
availability classes, how accurately can one predict theW_e |_nvest|gate three predlctlon_ r_nodels: a S|mp_le_basellne
availability classes of other prefixes, and which predi(p_redmtlon model, and two data-mining based prediction -mod

tion models work best? els, namely Néve Bayes, and decision trees (with and without
3) Which attributes of a prefix are most important if299ing) [17], as presented in [9]. The performance of each
predicting availability? prediction model is studied using-fold incremental cross-
4) How long should one observe prefix attributes so th¥glidation[17], with n = 10, appliedk = 5 times.
its availability can be accurately inferred? We use the confusion matrix-based measures of Accuracy,
True Positive Rate (TPR), False Positive Rate (FPR), and
[1l. METHODOLOGY Kappa statistic [17] to evaluate the performance of présfict
A. Datasets models. Unfortunately, confusion matrix-based measuses c

We utilize routing tables and updates from RouteViews [1%5)¢ Misleading with a skewed class distribution. A betterrivet
for the months of January 2005, January 2007, February 208goPtained by using Receiver Operating CharacteristicGRO
and March 2009 to build and test our prediction model§UTves [17], [5], which plot the TPR versus the FPR, and are
The months span a reasonable time period. This prevelfdependent of class skew. We use the Area Under the ROC
biasing our model selection process towards datasets frony@Ve (AUC) as a performance metric. This is the probability
particular timeframe when some event (e.g., undersea cap|at the model will rank a randomly chosémgh instance
cut) may have occurred. We filter routing table transfers @igher than a randomly choséow instance. A purely random
described in [9]. In most of this paper, we study one month gtassifier (which randomly selec_t_s the class label) has a@ AU
data at a time, with the task of predicting the availabilify o°f 0-5: whereas a perfect classifier has an AUC of 1.
combinations observed in the month using attributes okserv
in the first 25% of the month, i.e., about one week (we val
the learning duration in Section IV-E).

IV. PREDICTION MODELS
HX. Simple Prediction

We first consider a simple model, which does not learn
based on other combinations, but merely predicts the future

For the RouteViews data, the vantage points, with respestailability of a combination to be the same as pfast
to which prefix availability is computed, are the RouteViewavailability (its availability during the learning duration). Thus,
peers. We define @ombinationas a (peer, prefix) tuple, if the past availabilityof a combination exceeds 99.999%, the
indicating that the prefix was observed by the peer in theredicted class label isigh, otherwise it islow.
dataset. We compute attributes of these combinations amd usThe performance metrics computed for the simple model
that for building and evaluating our prediction models. Ifior the four months of data, and averaged onkr= 50 runs,
what follows, a combination isip or down when the peer are listed in Table I. The results show that, while the TPR of
associated with the combination has the correspondingxprefie simple model is high, its FPR is high as well. However, the
in an announced or withdrawn state respectively. simple classifier outperforms a random classifier (as itdita

The computation of the availability of a combination for @&y thex statistic), and hence forms a baseline model to which
particular time period proceeds as follows. The first ragtinother sophisticated models can be compared.
table of the period is used to initialize the state of each The simple model does not rank instances in terms of prob-
combination present in the table tp (U). We maintain the abilities of being classified akigh/low, and hence produces
state of each combination at each point in time, and at the tira single point in the ROC space. For computing ROC based
of each state change due to an update, we record a downtimetrics, we take a typical run of the model with confusion
or an uptime depending on the state change. After processingtrix measures close to their average values. The ingance
all the update files, we add an extra up or downtime dependiwhich are classified akigh andlow are randomly reordered
upon the last state of the combination. For example, if tee lawithin their respective groups, and then are ranked with the

B. Defining and Discretizing Availability



RESULTS WITH THE SIMPLE PREDICTION MODEL

TABLE |

C. Decision Trees
We implement decision trees using the C4.5 algorithm

0,
[ Month | Accuracy (%)| TPR | FPR | « | AUC | in Weka [17] (open-source data mining software) and use
Jan. 05 67.68 0.9946 | 0.7195 0.2959 | 0.6319 . . .
Jan. 07 2508 0.9961 1 0.6905 | 0.3444 | 06223 Reduced Error Pruning (REP) as the pruning technique. The
Feb. 08 77.97 0.9971 | 0.5704 | 0.4778 | 0.7076 high variance of decision trees can be reducedbgtstrap
Mar. 09 83.34 0.9977 | 0.5466 | 0.5327 | 0.7208 aggregating (baggn’]g]l?]

We apply the bagged decision tree classifier to predict
availability for the four months of data. The results are
(predicted) highs higher than thdows. We now vary the presented in Table Il. We perform the Wel¢ttest [10] to
prediction threshold, as in Algorithm 2 of [5] to computdest for statistical significance w.r.t. the simple modethwi
the points on a ROC curve. The AUC is computed, usimgndomization. We find that the average AUC performance
Algorithm 3 of [5], for the typical run and averaged across S5@icrease of 9.03% is significant at 1% significance level,

runs. whereas the accuracy changes are not significant. Hence, we
conclude that bagged decision trees outperform the simple
o : model with a higher ranking quality (AUC) and no significant
E‘—i os | change in accuracy. We also apply bagged decision tree sodel
g el using each of Jan. 05, Jan. 07, and Feb. 08 training data to
e predict Mar. 09 availability. We find that no AUC changes
g o : ROC plot 1 were significant at 5% significance level, though a significan
g % - Average Performance K | reduction in accuracy was observed when using Jan. 05 and
0 LT RendemcResiier ) Jan. 07 to predict Mar. 09 results. This shows that one can
False Positive Rate (FPR) apply models trained with data from a year earlier with no
Fig. 1. ROC plots for the simple prediction model for Jan 07 significant performance degradation, facilitating admptinto

a prediction infrastructure.

TABLE I
RESULTS WITH BAGGED DECISION TREE$% CHANGE FROM SIMPLE
MODEL GIVEN WITHIN PARENTHESES

The ROC curve for the simple prediction model for a
typical month is depicted in Fig. 1. The plots show the
original model performance (in Table 1) as a point (“star”)

on the ROC plots, along with the performance of a random [ Month | Accuracy (%)] TPR [ FPR | AUC |
classifier. The performance of simple prediction is clearly | Jan- 05 67.83 0.9616 | 0.6746 | 0.7005
better than a random classifier, but there are occasions when (0.23%) (3:32%) | (6.24%) | (10.86%)
be : Jan. 07 72.50 0.9779 | 0.6530 | 0.7094
it performs as good as a random one. Recent months show (0.58%) (-1.83%) | (-5.44%) | (14.00)%)
better performance, with a TPR close to 1 being reached for | Feb. 08 77.80 0.9927 | 0.5682 | 0.7483
2 smaller EPR (-0.22%) | (-0.44%) | (-0.39%) | (5.75%)
. Mar. 09 83.24 0.9976 | 05501 | 0.7605
(-0.12%) | (-0.01%) | (0.64%) | (5.51%)

B. Computing Attributes

In this section, we study the attributes of a combinatio?- Classification Attributes
which are computed from RouteViews data and used towe now explore the importance of the attributes used
train data-mining based prediction models. The attribai®s in prediction. We start with the results from Table Il, and
selected to relate to the availability of the combinationd a remove certain attributes of the combinations, which ate fe
to be easily computable so that the learning system is fagf.the bagged decision tree model. The degradation in \@&riou
It is important to note that these attributes do not necégsarperformance metrics is studied; as degradation incredises,
cause high/low availability; we are looking for correlatinot importance of the removed attribute subsets increases. We
causality Correlation is sufficient for a prediction model to beyresent typical results of removal of some of the attributes
successful. in Table Ill. The first column of the table indicates which

We compute the following attributes of each combinatioattributes of the combinations were used for predictior. Fo
for the learning period: (1) Prefix length, (2) Update freeomparison, we build a decision tree model using quét
guency, (3) Mean Time to Failure (MTTF), and (4) Mearavailability, which was used in the simple prediction model.
Time to Recovery (MTTR). We investigate these attributes We conclude that the performance degrades significantly
further in [9], and show that they are statistically sigrdfily when only past availability is used as a single attributénhwit
different between thehigh and low classes. Although we lower AUC (5-9%) and significantly higher FPR (6-11%).
compute the attributes of every combination with at leagt offogether with the simple model results, this implies thagtpa
recorded uptime or downtime, we randomly downsample thésailability is inadequate for prediction of future availéy
set of combinations to a set of 5000 combinations with theivthen predicting for future durations longer than the learn-
attributes, and use that to build and test models. ing duration. Prefix length and update frequency are weaker



TABLE Il
PERCENTAGE CHANGES IN PERFORMANCE METRICS WITH SUBSETS OF

0.98
ATTRIBUTES FORMAR. 09. ALL PERCENTAGE CHANGES ARE WR.T. MAR.

09 RESULTS INTABLE Il 0.9
0.82
Attributes used | % change | % change| % change| % change S o7al .
for prediction | in accuracy| in TPR in FPR in AUC = R
Past availability 203 0.24 11.11 533 066 ' / Bagged Decision Trees
Prefix length, -10.37 -9.83 10.71 6.63 0.58 - Naive Bayes -
Update frequency 05 Simple Model
MTTF -0.85 -154 223 -4.40 © 10 20 30 40 S0 60 7O
MTTR -0.005 0.01 0.07 -4.63 Learning duration (%)
MTTR, 0.03 0.02 -0.05 -0.35 (a) AUC
Prefix length
Update frequency|
MTTF, -0.88 -152 -1.97 0.09
Prefix length o5
Update frequency| 82 |
=
= 69
attributes since using them causes the AUC to decline by 4- 8 /~—Bagged Decision Trees
8%. MTTF and MTTR are most important since using either 3 Simple Model -
. . . . / Naive B
causes the least drop in AUC among any single item attribute P a'“jo ay:: —
set. We also experimented with addipast availability to Learning duration (%)

these attribute subsets and found that the performanceadid n
change significantly. The prediction model selects MTTF and
MTTR aTQ' th.e most |r_nportant attributes for pred_lct|.ng ICmglsig. 2. Effect of learning duration on prediction performarfor Jan.-Dec.
term availability, showing that they shed valuable inssghto 7
the future.

(b) Accuracy

E. Learning Duration

Lowering the learning duration (thus far at 25%) will leadFi9- 2)- At lower leaming duration percentages, bagged
to a deterioration in prediction results, since we have led§cision trees have a much higher accuracy than other models
information for prediction. We study this for a 12 montnd an AUC that maiches that of Na Bayes. At higher
prediction duration (January to December 2007). The variat Percentages, i.e. when predicting for a future durationctvhi
of AUC and accuracy versus the learning duration percentd§etoout the same as the learning duration, the simple medel i
is shown in Fig. 2. It is surprising to note that the accurady€ferred for its simplicity. Lower percentages pose a éard
for a Néve Bayes model and the simple model is extremeRfed'Ct'O“ p_roblem which is best tackled by a data mining
low for lower percentage durations, most likely becausgy th@ased solution.
are not ensemble predictors like bagged decision trees. Thd he results in Fig. 3 suggest that for more recent months,
decision tree model performs very well compared to the oth@¥ Prediction models perform better in terms of both accyra
two, especially at short learning durations (importantlérg and AUC. The.reason_|s that the behavior of .thel combma‘uon_s
duration prediction), with accuracy never falling belowe@7 ©OVer the learning period become§ a be.tter indicator of their

With a 5% learning duration, the accuracy and AUC for thi!ture performance. We can consider this to be a measure of
decision tree model are 75.5-79% and 0.69-0.75 respegtivelnternet health” because a more predictable Internet ¢dn a
If these performance levels are acceptable, one can predictault diagnosis. This new dimension of Internet healtans
availability for about 20 times the learning duration. If weddition to observations made by &t al. [11].
require about a 90% accuracy and about 90% AUC, we must
learn from about 50% of the duration. Our prediction frame- _ _ _ o _
work allows the system administrator to trade off accurauny a Prefix attributes like activity, update count, reachapiiiom

V. RELATED WORK

prediction duration with the model complexity. various monitors, prefix churn, and growth, have been stiidie
_ ) e.g., in [1], [19], [13], [6], but the attributes are not used
F. Discussion classify prefixes or predict prefix features, as in this paper

A comparison of prediction models on the four months of Changet al.[4] cluster routing updates into events based on
data with 25% learning duration is depicted in Fig. 3. Ththe announcing peers and AS path similarity usiegcriptive
results show that bagged decision trees perform best arhengrmodeling as the data mining technigue, which is used for
models considered for all four datasets as they have thesighunderstanding the data. In contrast, we pislictive modeling
AUC, a 9% average AUC gain over the simple predictioto predict prefix behavior, specifically availability, givehe
model, with about the same accuracy. observed prefix attributes and a learned prediction model.

Bagged decision trees also perform the best for low learnidipanget al. [18] predict the impact of routing changes on the
duration percentages in terms of both accuracy and Aliata plane. They aim to predict reachability problems based
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Fig. 3. Results for four months.

to recovery and to failure are the most important attributes
for prediction, and past availability is not a good indicabd
future availability for long-term prediction. To the bedtaur
knowledge, this is the first work that uses the similarity of
prefix behavior in the Internet to predict properties such as
availability.

We plan to extend our framework to predict availability of
an arbitrary end point as viewed by an arbitrary vantagetpoin
by using techniques similar to [12]. We will also investigat
additional prefix attributes, such as the ASes to which the
prefixes belong, and the AS paths to the prefixes. Finally, we
will rigorously compare control plane to data plane avaligb
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