
Synergy: An Overlay Internetworking Architecture
Minseok Kwon

Department of Computer Science
Rochester Institute of Technology

Rochester, NY 14623–5608
E-mail: jmk@cs.rit.edu

Sonia Fahmy
Department of Computer Science

Purdue University
West Lafayette, IN 47907–2066
E-mail: fahmy@cs.purdue.edu

Abstract— A multitude of overlay network designs for resilient
routing, multicasting, quality of service, content distribution,
storage, and object location have been recently proposed. Overlay
networks offer several attractive features, including ease of de-
ployment, flexibility, adaptivity, and an infrastructure for collab-
oration among hosts. In this paper, we explore cooperation among
co-existing, possibly heterogeneous, overlay networks. We design
Synergy, a utility-based overlay internetworking architecture
that fosters overlay cooperation. Our architecture promotes fair
peering relationships to achieve synergism. Results from Internet
experiments with cooperative forwarding overlays indicate that
our Synergy prototype improves delay, throughput, and loss
performance, while maintaining the autonomy and heterogeneity
of individual overlay networks.

I. INTRODUCTION

Over the past few years, overlay networks have emerged
as a flexible paradigm for sharing information and rapidly
prototyping disruptive technology. Without violating the end-
to-end principle [1], overlays can be used to deploy new
functionality between the core IP network and applications.
Overlay solutions have been designed for the multicasting [2],
inter-domain routing [3], content distribution [4], storage [5],
and peer-to-peer networking [6] problems.

As overlay networks become pervasive, a number of ques-
tions naturally arise. First, can autonomous and heteroge-
neous overlays cooperate? Current overlay networks have both
heterogeneous performance goals and heterogeneous service
goals, e.g., minimum latency versus maximum bandwidth
overlays, or multicast distribution versus unicast forwarding
versus distributed storage. The key incentive for overlay coop-
eration is to exploit the presence of hosts with unique resources
in one overlay, when such resources are absent in other
overlays that need them. Second, can co-existing overlays
interfere? Overlay networks are currently being deployed inde-
pendently. Consequently, several diverse overlay networks may
simultaneously exist and compete for the same resources in the
Internet [7], [8]. Third, can overlay cooperation facilitate the
design and deployment of revolutionary Internet architectures?
Several recent studies propose bold re-designs of the current
Internet architecture [9]. Overlays can provide a framework to
accelerate prototyping such approaches.

In this paper, we explore a spectrum of cooperative ser-
vices among co-existing autonomous overlays, and discuss
associated scalability, and heterogeneity problems (we give
more examples in [10]). As a proof-of-concept, we design

and implement a utility-based overlay internetworking archi-
tecture, Synergy, where overlay agents facilitate inter-overlay
coordination. Overlay nodes may elect to join the Synergy
network which incorporates nodes from several overlay net-
works. Long-lived flows can utilize Synergy forwarding for
better performance. Synergy tackles a number of management
challenges that arise when constructing a shared overlay net-
work comprised of autonomous overlays. The routing protocol
in Synergy considers load at hosts, time intervals between
successive routing decisions, and peering relationships among
overlays, to offer stable, scalable, and fair cooperative routing.
We have implemented a prototype of Synergy cooperative
forwarding, and conducted experiments on the PlanetLab
wide-area experimentation platform [11]. Results indicate that
Synergy improves latency, throughput, and loss, while preserv-
ing overlay heterogeneity.

The remainder of this paper is organized as follows. In
Section II, we discuss routing and management in the Synergy
overlay internetworking architecture. In Section III, we present
our implementation details and preliminary results from our
experiments. In Section IV, we give an overview of related
work. Finally, we summarize our conclusions and future work
in Section V.

II. SYNERGY ARCHITECTURE

The objective of our prototype Synergy architecture is
twofold: (i) to improve routing performance via cooperative
forwarding, and (ii) to be easily extensible to new services.
Given an overlay network o, we define an overlay link or
connection as eo = (ds, η0, . . . , ηl, dr). This comprises a host
ds, followed by a sequence of routers ηi, followed by a host
dr. An overlay flow is a chain of overlay links in which the first
and last hosts are the sender and destination, respectively. A
host in an overlay network is connected to its neighbors in the
overlay via overlay links. A home overlay is defined as the au-
tonomous overlay network which a host originally joins. Each
overlay network executes its own routing protocol, according
to its own optimization metrics, e.g., delay, bandwidth, node
identifier, etc. We now describe the components of the Synergy
architecture. Synergy security issues are discussed in [10].

A. Overlay Agents

Each overlay network periodically designates one of its
hosts as an overlay agent (for brevity, we will refer to it

as an “agent”). The agent facilitates joining Synergy via
identifier assignment and utility estimation (details are given in
Section II-C). Highly loaded or bandwidth-constrained nodes
are eliminated from consideration for becoming agents. The
selected agent can be the host with the estimated (i) highest
number of co-located overlay nodes, or (ii) highest number
of overlays represented in its current or past neighbors in the
Synergy network, or (iii) minimum maximum delay to other
hosts in its home overlay network. In this context, co-located
nodes denote a single host connected to more than one overlay
network, but the definition can be extended to hosts in the same
subnet, or hosts in the same autonomous system (AS).

Hosts with co-located overlay nodes (heuristic (i)) are good
candidates since they can serve as agents for multiple overlays,
and reduce traffic among agents. Traffic can also be reduced
if the agents of different overlays are in close proximity. In
heuristic (ii), a host which is close to hosts from several
other overlay networks is considered a good candidate. In
heuristic (iii), all hosts in the home overlay can rapidly
contact their agent since the agent is closest to the overlay
centroid. Primitives such as those in [12] can supply network
information required for agent selection. Observe that every
agent must have a backup agent, which replaces the overlay
agent when it fails or leaves its home overlay.

All agents form a delay-based overlay mesh, called the
agent network. A bootstrap mechanism allows the discovery
of other overlays and their agents. We assume that the address
of at least one bootstrap node is globally known. Either one
of the agents (which we refer to as the primary agent) or an
independent server can serve as the Synergy bootstrap node.
Each agent is restricted to connect to less than UBA (the upper
bound in the agent network) neighbors on the agent mesh,
where UBA is determined based upon a tradeoff between
performance and scalability.

B. Utilizing the Synergy Network

The Synergy overlay internetwork (or “Synergy network”
for short) constitutes hosts exported (i.e., temporarily con-
tributed) by autonomous, but cooperating overlays. The Syn-
ergy network is a new overlay network that incorporates
selected hosts from more than one overlay network. This form
of cooperation is analogous to the notion of code sharing in
airline systems. For example, a customer who has purchased
a ticket from airline A actually uses airline B if the two air
carriers have an agreement to share certain routes. In this case,
airline A code shares certain routes with airline B, while still
operating its own routes. Airlines employ code sharing for
increased efficiency and better resource utilization. From the
customer perspective, the notion of code sharing can reduce
costs and improve customer experience.

Overlay flows are classified based on the sender and receiver
identities in the packet header. Long-lived flows are better-
suited for exploiting the Synergy cooperative forwarding ser-
vice, since short-lived flows are unlikely to have time to find
Synergy routes that are better than their home overlay routes.
Each sender keeps track of the duration of its flows. A flow is

Long−lived flow

Short−lived flow

Synergy

d

c

b

a

Reclaim

Export

in the home overlay
Original route

Overlay C

Overlay B

Overlay A

Fig. 1. Overlay internetworking architecture: An overlay internetwork is
constructed among exported hosts. Long-lived flows (dash-dot lines) in home
overlays are replaced by Synergy routes (thick lines) if this will improve
performance.

declared long-lived once its time duration exceeds a predefined
threshold. In this case, all the nodes on the overlay flow path
(including sender and receiver) are exported, so that the sender
can utilize the Synergy network to send to the receiver. Once
these hosts are exported, their overlay flows use Synergy rout-
ing paths (instead of home overlay paths) to deliver packets.
Synergy routing paths are computed completely independently
of routing protocols of home overlays. Therefore, Synergy
must support all routing metrics of participating overlays, as
discussed in Section II-D. Observe that Synergy forwarding
need not only be unicast – with replication, multicast and peer-
to-peer overlays can be supported.

While a host is part of Synergy, the host executes both home
overlay routing (for nodes on its home overlay) and Synergy
routing. A host in Synergy thus maintains two forwarding
tables: one for its home overlay, and another for Synergy.
An overlay flow in Synergy routing can exploit hosts from
both its home overlay and other overlays as intermediate hops
on routing paths. This helps circumvent network hot spots by
making a larger pool of hosts available as potential transit
nodes. Fig. 1 depicts an example of Synergy forwarding. In
the figure, the communication from sender host a to receiver
host c in overlay network A benefits from cooperation between
overlays A and B. The route from a to c employs host d

in overlay B as a transit node. This cooperation can yield
shorter (or wider) routes than the routes that only transit hosts
in overlay network A.

C. Host Export

An exported host is assigned a unique identifier (e.g, a serial
number) by the primary agent. Thus, hosts with the same
identifier in different overlays (e.g., same nodeId in two Pastry
overlays) can be easily distinguished in Synergy. An identifier
from a leaving host can later be reused by new Synergy hosts.
A mapping table (SynergyId, IP address) is maintained by
agents and distributed to exported hosts as well as hosts that
utilize Synergy. Packets on Synergy can be thus routed using
Synergy identifiers which map to IP addresses.

Operations for exporting and reclaiming hosts are facili-
tated by overlay agents. Hosts, however, communicate within

Synergy without the intervention of agents once they have
successfully been exported. A host can leave Synergy by
notifying its neighbors. The neighbors then disconnect the
links to that host. When new hosts are exported to the Synergy
network, an approximately equivalent number of hosts previ-
ously exported from the same home overlay (if any) may leave
Synergy, i.e., be reclaimed, to maintain the Synergy network
size manageable. Such hosts are clearly not allowed to leave
Synergy if being used as intermediate nodes by any flow in
the Synergy network.

The choice of which hosts to export (in addition to hosts
in long-lived flows) significantly impacts the performance
of Synergy. At least four heuristics may be used to make
good export choices. First, an exported host should be likely
to be useful to other overlays, either because it possesses
unique resources/capabilities, or because of its strategic lo-
cation. For example, an exported host in close proximity to
several exported hosts may not significantly enhance delay
performance, since it likely offers similar delays to these hosts
in its close proximity. Second, if the exported host is already
heavily loaded, it may not be as useful to other overlays as a
lightly loaded host. Third, loads on different overlays may be
considered, not just loads on hosts. For example, an overlay
which is streaming audio can typically export a larger number
of hosts than an overlay streaming high bandwidth video.
Fourth, a trust-based priority mechanism must be used to
determine which overlays are “cooperative,” as we will discuss
in Section II-D. The export utility of a host can therefore be
computed based upon any subset of these factors.

In our implementation, the export utility approximates the
number of hosts that are likely to transit this host when
forwarding their packets on Synergy, multiplied by their
performance gain when utilizing this host. To estimate this,
we use the number of times this host serves as a next
hop in its home overlay, which gives an indication of how
strategically located this host is, divided by the number of
possible connections. Unfortunately, comparing this number
for all hosts in an overlay is O(n2) (where n is the number
of overlay hosts), which is prohibitive for large overlays.
Therefore, in our implementation, only p random hosts are
used for computing the number of entries (where a host is the
next hop) for q selected hosts. The number of entries examined
in each routing table is limited to r. The agent estimates the
export utility of each of the q hosts as the number of times they
appear as next hop in the selected r entries of the routing tables
of these selected p hosts. As long as p, q, r � n, the export
utility computation is scalable. In the case of application level
multicast, utility can be estimated as the size of the subtree
rooted at that host. The utility value is periodically estimated,
and hosts that exceed a specified threshold are exported, while
those that fall below another threshold are reclaimed.

D. Routing and Priority Mechanisms

Our routing protocol employs three mechanisms to ensure
that the Synergy network is fairly utilized. First, the inbound
load at a host is limited to k overlay flows. This ensures that

the host is not overloaded by many transit flows. Second, only
one overlay flow is allowed to select its routes at a time.
We serialize overlay flows for route updates in the order of
flow identifiers. The primary overlay agent coordinates this
process. Note that packets can still be forwarded concurrently
while routing decisions are serialized. Third, an overlay flow
is allowed to utilize host h as a transit node only if that host
has a lower or equal priority than the source and destination
of the flow, i.e., if maximum(priority(di)) ≥ priority(h),
where di denotes source and destination hosts of a flow.
We define priority(di) as the number of overlay flows that
di has assisted in the recent past by acting as a Synergy
transit node. Our implementation computes priority(di) using
an exponentially weighted moving average (EWMA) of the
number of overlay flows for a certain time duration. At
time t, priority(di) becomes (1 − α) × priority(di) + α ×

NumFlows(t). Observe that maximum(priority(di)) will
increase if the source and destination have recently served as
transit nodes through which other overlay flows have been
routed. This approach ensures basic fairness in relationships
among cooperating overlays. If an overlay network has refused
to export potentially high-priority hosts in the recent past, its
flows are allowed to use fewer hosts from other overlays due
to the lower priority of these flows.

To compute routing paths, Synergy runs a link-state routing
protocol on top of a network with overlay links for all possible
node pairs. Each node maintains overlay link properties to all
the other nodes for different metrics. Bandwidth is the most
appropriate choice for overlays for high-throughput bulk data
delivery (e.g., file download service in peer-to-peer systems),
while real-time streaming overlays are latency-sensitive. An
overlay flow on Synergy chooses the most representative
primary routing metric(s), depending on its home overlay
routing goals. Since each Synergy flow determines its routes
independently of routes in home overlays, overlays with het-
erogeneous performance goals can cooperate. The overlay link
available bandwidth is estimated through the TCP throughput
formula as a function of round-trip latency and packet loss.

III. PERFORMANCE EVALUATION

We have analyzed the performance of our overlay in-
ternetworking implementation via both Internet experiments
and simulations. Due to space limitations, we omit results
from several Internet experiments, and simulation results with
underlying routing pathologies; these results can be found
in [10].

A. Implementation

We have implemented the techniques described in Sec-
tions II-A to II-D as a proof-of-concept for Synergy, with
the exception of heuristic-based agent selection (Section II-
A), which is included in our future work plans. Currently, we
simply assign a random overlay host as the overlay agent. The
primary goal of our implementation is to transparently provide
a host with cooperative overlay services. Synergy is a separate
component running on the same hosts where home overlays

Host 1 Host 2Channel

Synergy
Synergy

Router/

Manager

Overlay
Home

Process

Forwarder
Router/

Original
Channel Overlay

Home
Overlay
Home

Process

Manager

Forwarder

Fig. 2. Synergy implementation

are deployed. Synergy is implemented at the user-level, so as
not to require superuser privileges or kernel modifications.

As shown in Fig. 2, Synergy comprises three modules:
the channel, manager, and router/forwarder. Packets from the
home overlay process are diverted to the Synergy component
using divert mechanisms supported by several operating sys-
tems (e.g., ipchain on Linux). For our experiments, however,
we emulate the divert mechanism via inter-process communi-
cation to avoid requiring superuser privileges. Therefore, our
Synergy component sends periodic signals to a pre-specified
port to which the home overlay process can listen.

The manager controls host export/reclaim, and incoming
packet classification. If a host is exported, packets are sent to
the Synergy channel; otherwise, the manager directs packets
to the home overlay channel. Packets from the home overlay
channel are transmitted following the paths established by
the home overlay. The router/forwarder computes the Synergy
routing paths. We reuse part of the RON implementation [3],
specifically (i) classified routing and forwarding for different
routing metrics (but no policy routing), (ii) ping protocols, and
(iii) the performance database. The Synergy channel forwards
its packets to the Synergy component at the next hop computed
by this router/forwarder. When a packet arrives at the Synergy
channel of the final destination, the channel passes the packet
to the home overlay process at that destination.

B. Experimental Setup

We have implemented Synergy in C++ and conducted
Internet experiments on PlanetLab [11]. We experiment with 8
RON overlays where each overlay contains 8 hosts. Therefore,
we have a total of 64 nodes: 43 nodes belong to universities
or companies in the United States, and the remaining 21
are located in Asia, Europe, Canada, and Australia. All the
overlays except one have at least one host which is located
outside the United States. Our experiments were conducted
over several days in April−June 2004. We present in this paper
a representative subset of the results.

In each overlay, a randomly chosen data source generates
data streams to three other overlay nodes. Two streams are
generated per source-destination pair, i.e., the total number of
overlay flows is 2× 3× 8 = 48. For the two streams per pair,
one stream is transmitted over the home overlay only, while
the other stream is concurrently transmitted over the Synergy
network. The flows are bulk data transfers with application
rate 1.7 Mbps. We use r = 5 for computing the export utility
(p and q are set to all overlay hosts). The export algorithm

uses utility threshold values 0.2 and 0.02. The time duration
to detect long-lived flows is set to 5 seconds. The priority is
updated every 14 seconds with α = 0.1, and we use k =
3 for the inbound load. Latency and loss are measured by
generating probe packets, and throughput is estimated from
the TCP equation.1

C. Experimental Results

Fig. 3(a) illustrates the cumulative distribution of the ratio
of latency observed with Synergy and that observed with
independent home overlays, averaged for all hosts. The x-
axis indicates the value of the ratio and the y-axis denotes
the percentage of hosts that have latency ratios less than this
value. The results are collected from a total of 120,000 latency
samples from the sources to receivers. We find that Synergy
reduces the latency of approximately 50% hosts compared to
home overlays (30% hosts show substantial decrease while
20% exhibit marginal decrease). Synergy improves latency by
a factor of five or more for many home overlay routing paths.
About 45% of hosts exhibit a ratio close to one. The latency
ratio for less than 5% of hosts is larger than one, due to
overhead from the Synergy divert mechanism (inter-process
communication overhead) and due to overloaded hosts.

Synergy also increases throughput for most participating
hosts. To compare throughput with and without Synergy, we
again measured and averaged 120,000 throughput samples
at receivers. In Fig. 3(b), we plot the cumulative distribu-
tion of the ratio of the average Synergy throughput to the
average throughput achieved by independent home overlays.
The distribution reveals that about 52% of the hosts achieve
higher throughput via Synergy than home overlays alone by a
maximum factor of seven (9% hosts show substantial increase
while 43% exhibit marginal increase). Among the remaining
hosts, 44% use the same paths, while 4% traverse worse paths
in Synergy than in their home overlays.

Fig. 3(c) illustrates the cumulative distribution of the ratio
of loss percentage results obtained from Synergy and those
observed with independent home overlays in the same experi-
ment. About 50% of hosts in Synergy improve loss 1 to 5 times
over independent home overlays. The remaining 50% exhibit a
ratio close to or slightly larger than one. Again, Synergy packet
processing overhead and overloaded hosts are possible reasons.
In addition, the mechanism for RON loss measurements and
averaging may give inaccurate long-term averages. Finally,
RON uses bi-directional link information for uni-directional
loss measurement assuming symmetric loss percentages. Net-
work paths, however, are found to be asymmetric in losses.
Our results also indicate that a route optimized for one of the
three metrics promises high performance in terms of the other
two metrics (see [10] for details).

To study how heterogeneous overlays maintain their indi-
vidual performance goals, we examine the performance of

1To compute latency, the source timestamps each data packet sent. The
latency is estimated when the packet arrives at the destination, and hence
clock skew can introduce inaccuracies. Since our purpose is coarse granularity
comparison between home overlays and Synergy, the results obtained are
considered acceptable.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2 2.5 3

P
er

ce
nt

ag
e

of
 h

os
ts

 (%
)

Ratio of latency between cooperative and non-cooperative overlays

(a) Cumulative distribution of the
ratio of average latency with Syn-
ergy to that achieved by indepen-
dent home overlays.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

of
 h

os
ts

 (%
)

Ratio of throughput between cooperative and non-cooperative overlays

(b) Cumulative distribution of the
ratio of average throughput with
Synergy to that achieved by inde-
pendent home overlays.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

P
er

ce
nt

ag
e

of
 h

os
ts

 (%
)

Ratio of percentage loss between cooperative and non-cooperative overlays

(c) Cumulative distribution of the
ratio of average loss percentage
with Synergy to that achieved by
independent home overlays.

Fig. 3. Latency, throughput, and loss comparison of cooperative and independent overlays.

Synergy versus independent home overlays for the particu-
lar metric of importance to each overlay (latency, loss, or
throughput) in Table I. Synergy gives improvements in all the
overlays for their respective metrics, except overlay 4. Overlay
5 suffered from performance variation as conditions changed
significantly among experiments. Latency exhibits the most
significant improvement – approximately 10% or more for
overlays 1-3. Thus, Synergy allows heterogeneous overlays to
maintain their routing goals while cooperating. More complex
scenarios with multiple independent constraints, and overlays
with heterogeneous service goals will be investigated in our
future work.

TABLE I

EXPERIMENTAL RESULTS FOR THREE PERFORMANCE GOALS

Overlay Metric Mean Max Min

1 Latency 0.8986 1.0002 0.6347
2 Latency 0.8388 1.0003 0.2587
3 Latency 0.9363 1.0000 0.6898
4 Throughput 0.9997 1.0056 0.9817
5 Throughput 1.1341 2.9992 0.3708
6 Throughput 1.0011 1.0039 0.9999
7 % Loss 0.9663 1.0235 0.8392
8 % Loss 0.9573 1.0022 0.7945

The primary objective of cooperative forwarding is to
overcome path outages that are commonly experienced in the
Internet. As discussed in [3], an outage can be defined as the
length of time during which no packets get through a path.
We consider 30 and 50% loss as points at which performance
is unacceptable. To measure outages in home overlays and
Synergy, we compare the averaged packet loss in both cases,
following a methodology similar to [3]. Fig. 4 shows that the
majority of points in the scatter plot are located below the
y = x line, i.e., Synergy has lower packet loss than home
overlays in most cases. There is a higher number of points for
home overlays above 0.3 or 0.5 loss (corresponding to 30 or
50% loss) than Synergy. This means that Synergy decreases
the number of path outages. The figure also illustrates that
there are approximately 10 points with x = 1 and y < 1.
For such network paths, Synergy helps overlay connections
route around outages existing in home overlays. Many points

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
ta

ge
 lo

ss
 in

 S
yn

er
gy

Percentage loss in home overlays

Fig. 4. Average packet loss for 660 network paths in home overlays and
Synergy, where half of the paths are in home overlays and the other half is
in Synergy. In the figure, 112 points exceed 0.3 for Synergy (horizontal line)
while 128 points exceed 0.3 for home overlays (vertical line). In addition, 89
points exceed 0.5 for Synergy, but 105 points exceed 0.5 for home overlays.

are concentrated around the point of x = 0 and y = 0.
Some points, however, can also be found around the point
of x = 1 and y = 1. The packet loss for Synergy exceeds
home overlays for a few of these points. We also observe that
only 10% of transit nodes participate in relaying over 10,000
packets (see [10]). This result validates the conjecture that a
few strategically located hosts can play a major role in Synergy
routing, which confirms the effectiveness of our host export
mechanism.

As previously discussed, Synergy imposes additional delay
for diverting between the Synergy component and the ports
of a home overlay. This is similar to the delay incurred by
divert sockets to forward data in the home overlay itself, which
is about 220 ms [3]. Since the current version of Synergy
reuses the routing and probing mechanisms of RON, a similar
overhead is added. Based upon [3], RON routing and probe
traffic would be about 14 kbps for 32 hosts (this is the number
of hosts which use Synergy in our experiment).

In addition to routing and probe traffic, Synergy injects extra
traffic to broadcast the export utility and priority of each host.
We analyze this overhead similar to the analysis in [3]. Our
analysis shows that the bandwidth consumed by this traffic is
1280m(m−1)

14 = 91.43m(m−1) bps where m is the number of
hosts in the home overlay. Hosts also compute and send their
priority value to the agent. The traffic consumed by an overlay
in this case is 58n+60+10n+(48+10l)(n+1) bytes where
l = 8n (details in [10]). This overhead is reasonable, and can

be reduced by increasing the intervals, or the values of p and
q.

IV. RELATED WORK

The idea of overlay cooperation has been studied in different
contexts. A grand challenge in networking research discussed
in a recent NSF-sponsored workshop report [7] is “simultane-
ously co-existing overlays.” Broadcast Federation [13] investi-
gated cooperation among multicast/broadcast overlay and IP-
level networks. Our focus, however, is not limited to overlay
broadcasting – we consider more general characteristics of
overlay interactions. Nakao et al. [12] have designed a shared
routing underlay that provides large-scale and coarse-grained
network layer information to overlay nodes. Tomography-
based overlay network monitoring that requires O(n) mea-
surements for all the O(n2) overlay paths was proposed
in [14]. The approach reduces measurement overhead, at the
expense of computational overhead. MACEDON [15] is an
infrastructure that enables users to generate code for overlay
algorithms using a concise script language. Operating system
support and network management for large-scale overlay net-
works were studied in [16]. Open DHT [17] is a publicly
accessible distributed hash table (DHT) service that clients
can use instead of running their own DHT nodes. The primary
focus of Open DHT is on DHT service availability while ours
is on general overlay interactions.

Several theoretical studies (e.g., [18], [19]) have recently
shown that selfish routing may cause suboptimal performance.
In contrast, Qiu et al. [8] have reported that selfish source
and overlay routing indeed achieve close to optimal average
latency in Internet-like environments, at the expense of signifi-
cantly increased congestion on certain links. Overlay networks
that detect performance degradation of current routing paths
and re-route through other hosts include RON [3]. Rewaskar
and Kaur [20] recently studied the tradeoff between perfor-
mance gain in an overlay network and overhead incurred.

V. CONCLUSIONS AND FUTURE WORK

We have designed an overlay internetworking architecture,
Synergy, that supports transparent interactions among au-
tonomous, possibly heterogeneous, overlay networks to im-
prove performance and promote information sharing. To the
best of our knowledge, this is the first work to propose
a deployable and general overlay internetworking system.
We have implemented a Synergy prototype and performed
experiments on PlanetLab. We found that Synergy improves
the performance of overlay connections with respect to latency,
throughput, and loss.

We plan to conduct larger-scale experiments with het-
erogeneous overlays (e.g., complex constraint-based routing
systems, overlay multicast, and peer-to-peer systems). These
experiments will allow us to quantify the effectiveness and
practicality of overlay cooperation in realistic environments.
We will also extend Synergy to support other types of coopera-
tive overlay services, and study the complexity, scalability, and
security issues involved. Eventually, we hope that our Synergy

system can serve as an enabler for the design and evaluation
of revolutionary Internet routing and service architectures.

VI. ACKNOWLEDGMENTS

This research has been sponsored in part by NSF grant ANI-
0238294 (CAREER). The authors would like to thank David
G. Andersen (CMU) for the RON code; Suman Banerjee (U. of
Wisconsin) for the myns simulator; Akihiro Nakao (Princeton
U.) for answering many of our questions; and Kihong Park,
Dongyan Xu, and David Yau (Purdue U.) for several inspiring
discussions.

REFERENCES

[1] J. Saltzer, D. Reed, and D. Clark, “End-To-End Arguments In System
Design,” ACM Transactions on Computer Systems, pp. 277–288, Novem-
ber 1984.

[2] Y. Chu, S. Rao, S. Seshan, and H. Zhang, “Enabling Conferencing
Applications on the Internet using an Overlay Multicast Architecture,”
in Proc. of ACM SIGCOMM, August 2001, pp. 55–67.

[3] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris, “Resilient
Overlay Networks,” in Proc. of ACM SOSP, October 2001, pp. 131–145.

[4] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed
Content Delivery Across Adaptive Overlay Networks,” in Proc. of ACM
SIGCOMM, August 2002.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-
area Cooperative Storage with CFS,” in Proc. of ACM SOSP, 2001, pp.
202–215.

[6] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location and Routing for Large-scale Peer-to-Peer Systems,” in Proc.
of ACM/IFIP Middleware, 2001.

[7] M. Ammar and Co-authors, “Report of the National Science Founda-
tion Workshop on Fundamental Research in Networking,” April 2003,
http://www.cs.virginia.edu/∼jorg/workshop1.

[8] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker, “On Selfish Routing
in Internet-Like Environments,” in Proc. of ACM SIGCOMM, August
2003.

[9] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield, “Plutarch:
An Argument for Network Pluralism,” in Proc. of the ACM SIGCOMM
Workshop on Future Directions in Network Architecture, August 2003.

[10] M. Kwon and S. Fahmy, “Synergy: An Overlay Internetworking
Architecture,” Technical Report, July 2005, available at
http://www.cs.purdue.edu/homes/fahmy/.

[11] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A Blueprint for
Introducing Disruptive Technology into the Internet,” in Proc. of the
HotNets-I, October 2002.

[12] A. Nakao, L. Peterson, and A. Bavier, “A Routing Underlay for Overlay
Networks,” in Proc. of ACM SIGCOMM, August 2003.

[13] Y. Chawathe and M. Seshadri, “Broadcast Federation: An Application-
layer Broadcast Internetwork,” in Proc. of ACM NOSSDAV, May 2002,
pp. 117–126.

[14] Y. Chen, D. Bindel, and R. Katz, “Tomography-based Overlay Network
Monitoring,” in Proc. of ACM SIGCOMM Internet Measurement Con-
ference, October 2003.

[15] A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A. Vahdat, “MACE-
DON: Methodology for Automatically Creating, Evaluating, and De-
signing Overlay Networks,” in Proc. of USENIX NSDI, March 2004.

[16] A. Bavier et al., “Operating System Support for Planetary-Scale Network
Services,” in Proc. of USENIX NSDI, March 2004.

[17] B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker, “Spurring Adoption
of DHTs with OpenHash, a Public DHT Service,” in Proc. of IPTPS,
February 2004.

[18] E. Koutsoupias and C. Papadimitriou, “Worst-Case Equilibria,” in Proc.
of the 16th Annual Symposium on Theoretical Aspects of Computer
Science, 1999, pp. 404–413.

[19] T. Roughgarden and E. Tardos, “How Bad is Selfish Routing?” Journal
of ACM, vol. 49, no. 2, pp. 236–259, 2002.

[20] S. Rewaskar and J. Kaur, “Testing the Scalability of Overlay Routing
Infrastructures,” in Proc. of the Passive and Active Measurements
Workshop, April 2004.

