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Abstract—Instantiating a distributed application that involves
extensive inter-node communication onto infrastructure is a
challenging task. In this work, we focus on the special case
of mapping a network emulation experiment onto a cluster
comprising several (possibly heterogeneous) physical machines.
We automatically profile the available physical machine resources,
and use this information, together with the characteristics of
the experimental topology, to determine an efficient mapping
that preserves performance fidelity. We design an algorithm,
which we call the “Waterfall” algorithm, and integrate it into a
complete framework for profiling and mapping. We demonstrate
the effectiveness of our framework via simulations and two
sets of Crossfire Distributed Denial of Service attack testbed
experiments.

I. INTRODUCTION

In today’s cloud computing systems, efficiently mapping a
distributed/networked application onto a cluster of machines is
extremely important. In this paper, we consider a special case
of this problem: mapping a network emulation experiment onto
a cluster of possibly heterogeneous physical machines (PMs).
A key requirement for network emulation is maintaining high
performance fidelity for any network experiment. By perfor-
mance fidelity, we mean that the performance results of the ex-
periment (e.g., packet latency, packet loss and flow completion
times) should match the results obtained from an experiment
conducted on a physical topology identical to the experimental
topology. When the experimental topology is large or the
experiment is highly traffic-intensive, a physical machine (PM)
running the experiment may become overloaded, leading to
fidelity loss [1], [2]. A natural way to address this problem is
to extend the network emulator to run across multiple PMs –
often referred to as “cluster mode” [3], [4].

In this paper, we consider a cluster comprising a set of PMs
connected via a powerful switch as shown in Fig. 1. The PMs
may include various types of hardware, possibly purchased at
different times. For example, the GENI [5], DETER [6], [7],
and Emulab [8] clusters each have many types of machines,
since upgrades cannot be performed for the entire cluster at
the same time. Heterogeneity is likely to increase with the
proliferation of testbeds and cloud environments with different
virtualization technologies. Taking full advantage of each PM
in the cluster while maintaining high performance fidelity for
the experiment is a key challenge.

To address this challenge, we design a complete framework
for mapping a network experiment onto a (possibly heteroge-
neous) cluster. We leverage MaxiNet [9], which extends the
popular Mininet network emulator [4], [3] to run on a set of
physical machines. Our framework quantifies the capacity of
the PMs in the physical cluster, and uses this information to
map an input experimental topology onto some or all of the
cluster PMs. We design an algorithm, the Waterfall algorithm,

Fig. 1. Mapping onto a (possibly heterogeneous) cluster.

that leverages a popular graph partitioning algorithm (we
choose METIS [10], [11] in this paper), and we plug it into
our framework.

Our design is guided by the following principles:
(1) Integrity and Fidelity: The network components of the
original experiment (hosts, switches, routers, or links) must
all be correctly mapped. Fidelity includes two aspects: (i) not
overloading any machine and (ii) not overloading the links
between those machines.
(2) Best effort: Performance fidelity is preserved when possi-
ble. Mapping is completed, however, even when the resources
required by the experiment exceed available PM resources.
In this case, a best effort experiment can be conducted. The
user is warned about potential fidelity loss and can employ
techniques like time dilation [12], [13] or add more resources
to the cluster.
(3) Judicious use of resources: When there are sufficient
PMs to accommodate the experiment, we use as few PMs as
possible without jeopardizing fidelity. This allows more than
one user to utilize the cluster at the same time when possible.

The key contributions of this work include: (1) We in-
troduce a capacity function for each PM that models its
traffic processing capacity as a function of its CPU share.
The capacity is compared to the resource requirements of the
experimental topology during the mapping process; (2) We de-
sign the Waterfall algorithm, which iteratively invokes a graph
partitioning algorithm [10], as a plugin for our framework. The
Waterfall algorithm partitions and maps experimental nodes
onto possibly heterogeneous PMs, reducing inter-PM traffic.
The algorithm preserves the fidelity when there are sufficient
resources, but uses only a subset of the physical machines
when possible (which a direct application of graph partitioning
cannot accomplish); and (3) We evaluate our framework via
simulations and testbed experiments with Crossfire distributed
denial of service (DDoS) attacks, and demonstrate that it
achieves higher fidelity than approaches that are agnostic to



cluster or experiment characteristics, while efficiently using
cluster machines.

The remainder of the paper is organized as follows. Sec-
tion II summaries related work. Section III describes the design
of our framework and our Waterfall algorithm. We evaluate our
framework in Sections IV and V, and conclude in Section VI.

II. RELATED WORK

Mapping a network experiment onto available PMs is a
classic resource allocation problem. A network experiment
can be modeled as a weighted graph representing the network
topology and (potentially) information about network traffic
flows. Hence, the mapping problem can be translated into a
graph partitioning problem that attempts to minimize the edge
cut weights.

Graph partitioning is known to be NP-hard and has been
studied for decades. The Kernighan-Lin (KL) algorithm [14]
is one of the earliest effective heuristics to address 2-way
partitioning by swapping vertices in the two initial partitions to
achieve a smaller edge-cut. Spectral algorithms [15], [16] par-
tition a graph by computing the eigenvectors of the adjacency
matrix of the graph.

The multilevel approach proposed in [10], [11], [17],
[18] constructs a sequence of increasingly coarsened graphs
and partitions the smallest graph. It eventually uncoarsens
the partitioning results back to the original graph. Heuristics
are used in each phase to increase the partitioning quality.
These algorithms take as input the number of partitions and
the shares of each partition. We leverage single-objective,
multi-constraint METIS [10], [11] in this paper, and focus
on balancing the seemingly-conflicting goals of performance
fidelity and judicious use of resources.

Another related line of work is work on service placement
in data centers. The Virtual Machine (VM) placement prob-
lem [19], [20], [21] allocates VMs to reduce traffic/latency
and achieve high PM utilization. The requests do not typically
include network devices, such as switches and routers, though.
The virtual network embedding problem [22], [23] determines
a solution to map each virtual network to a substrate network,
addressing potentially different performance objectives (e.g.,
latency or throughput). While this is similar to our problem in
that the underlying resources to be allocated include physical
network infrastructure (switches, routers and links), our work
considers an additional factor: the traffic processing capacity
of a physical machine.

Testbed mapping [24], [7], [5], [1] instantiates a testbed
user’s experiment onto physical resources. This includes both
one-to-one mapping (one experimental or virtual node (vnode)
to one physical machine (PM)) and many-to-one mapping
(multiple vnodes to one PM) [25]. Once users “swap in”
their experiments, they usually last for a long time [24],
[7]. Historical records can be used to improve the allocation
solution (as in DETER assign+ [7]). Flow-based scenario
partitioning (FSP) [26] partitions a network experiment based
on traffic flow information and combines the results from
partitions. EasyScale [1] is a framework for leveraging multiple
scaling techniques. Our work is complementary to this work,
and can be used to map an individual EasyScale sub-topology,
for example.

Virtualized Emulab [27] is closely related to our work.
It extends the assign algorithm [24] used in Emulab with
heuristics to enable large scale network emulation. It does not,
however, develop a unified resource capacity abstraction for
physical nodes and the experimental topology. Virtualized Em-
ulab divides a physical node into a number of slots and asks the
user to provide information on how many slots an experimental
(virtual) node needs. The capacity of the “loopback” device
that carries traffic among virtual nodes on the same physical
node is not quantified. VT-Mininet [28] proposes an adaptive
virtual time system [12], [13] to scale Mininet [4], [3]. Time
dilation [12], [13] prolongs the experiment duration, and can
be used in conjunction with our work in cases when resources
are insufficient.

Finally, MaxiNet [9] develops a framework for cluster-
mode Mininet. By default, MaxiNet employs the METIS
graph partitioning software [11] to split a network topology
into a given number of partitions (sets). Each partition can
then run on a PM in the cluster. MaxiNet with METIS
does not profile the physical machines or consider CPU
requirements of experimental nodes, which we focus on in
this paper. Mininet 2.2.0 also introduced an experimental
cluster mode. The cluster mode provides several simple place-
ment algorithms (SwitchBinPlacer, RandomPlacer,
RoundRobinPlacer), none of which addresses fidelity con-
cerns.

III. RESOURCE ALLOCATION FRAMEWORK

Current network emulators use virtualization technologies
such as virtual machines, containers, and software switches to
emulate a network. Performance fidelity loss occurs when there
are insufficient physical resources (e.g., CPU and memory) to
process emulation events. For instance, fidelity loss may occur
when a large number of flows are transmitting at the same time
from different end hosts.

Our framework considers the experiment mapping problem
from a resource allocation perspective. We design and imple-
ment new modules that take the network experiment descrip-
tion from the network emulator, partition the experiment, and
allocate physical resources to each partition. Any cluster of
available machines – which may not all be identical [7], [5]
– can be used to transparently conduct network experiments
using our software and a distributed emulator. Our new mod-
ules, which together constitute a resource allocation middle
layer, interface with MaxiNet [9], which extends the popular
Mininet-HiFi emulator [3] to cluster mode.

The key questions in devising this mapping and resource
allocation framework include: (1) How do we quantify the
physical resources available in the (possibly heterogeneous)
cluster? (2) How do we partition a network experiment to
match the available underlying physical resources to achieve
high performance fidelity? and (3) How do we reduce the
number of allocated PMs, to allow other users to also utilize
the cluster when possible?

A. Resource Quantification

In the context of network emulation, preserving perfor-
mance fidelity means assuring users not only correct connec-
tivity of their topology, but also accurate performance (e.g.,



link bandwidth, delay, and loss rate) of switches and end
hosts. For software switches (which handle network traffic
in network emulators), in particular, performance is limited
by their implementation and available physical resources. Per-
formance fidelity is degraded when the software switches are
overwhelmed by network traffic in an experiment. Therefore,
we need to quantify both the hardware specifications such as
CPU type and memory size, and the traffic processing capacity
of software switches for each PM. While a quantitative repre-
sentation of physical resources is necessary to optimally map
experimental nodes onto heterogeneous PMs, to the best of our
knowledge, no systematic approach to do so exists today. In
our framework, we model a PM by the properties in Table I.

TABLE I. PROPERTIES OF PM i

Property Description
θi A multiplier to normalize the single core performance of CPU.
Ui Maximum number of CPU shares available.
Ui

smin Minimum number of CPU shares for packet processing.
Ui

smax Maximum number of CPU shares for packet processing.
ui
s Number of CPU shares for packet processing.
ui
h Number of CPU shares for emulated hosts.
Ci(ui

s) Capacity function of the PM with domain [Ui
smin, U

i
smax].

1) Modeling CPU Performance: Several factors affect the
performance of modern CPUs. Our PM model includes the two
dominating factors for modeling CPU performance: single core
performance and number of cores. Each core offers 100 CPU
shares; therefore, U i is usually set to (100 × total cores), but
can be set to a smaller value to take system overhead into
consideration (e.g., reserve 10 shares for OS overhead).

Since PMs may be heterogeneous, the model must also take
the difference in single core performance into account, which
is reflected by θ. θ reflects the relative strength of single core
performance. For instance, if θi = 1 and θj = m for PM i and
PM j, then the single core performance of PM j is m times
as fast as that of PM i. This property can be set using results
from benchmarking tools, but using CPU frequency suffices in
many cases.

While certain factors that affect CPU performance, such as
SMT, can be modeled by the properties we use, other factors
like dynamic frequency scaling cannot. We assume that due
to the nature of network experiments, all cores are heavily
utilized, so θi reflects single core performance when all cores
of the PM are actively utilized.

Our model does not take the difference in memory capacity
limit of each PM into consideration mainly because network
experiments are not typically memory-intensive. However, the
model can be easily extended to support memory limits by
adding a memory capacity property for each PM, specifying
the memory requirements of switches and end hosts in the ex-
perimental topology and using this as an additional partitioning
constraint.

2) Modeling Packet Processing Capability: We determine
the traffic processing capacity by running a set of experiments
on each type of PM. This is challenging because (1) imple-
mentations of different software switches exhibit significantly
different performance and resource usage on the same machine
(e.g., Open vSwitch (OVS) [29], Indigo Virtual Switch (IVS),
or the Stanford reference switch (UserSwitch)), (2) throughput
varies based on packet size, type of traffic, and switch instances

in the network topology to be emulated, and (3) different
hardware features may lead to different packet processing
performance (e.g., SR-IOV and number of queues on a NIC).
We do not compute the impact of different software switch
implementations or hardware features because the goal of our
resource quantification module is to characterize the relation-
ship between throughput of software switches and resource
utilization for a given PM and software switch. If hardware is
upgraded or a new software switch is introduced, our capacity
functions need to be updated.

Our measurements show that most software switches are
CPU-intensive. Therefore, we focus on CPU utilization in this
paper and leave other types of resource limits for future work.
We compute the packet processing capacity function P i(uis)
of PM i in packets per second, U ismin ≤ uis ≤ U ismax.
For instance, P i(50) denotes the maximum traffic rate that
PM i can handle when allocating 50 CPU shares to packet
processing.

The motivation for quantifying the traffic processing ability
of a PM using a capacity function rather than a single value
representing the maximum processing capacity is that, in
network emulation (or any distributed task), a user may run
on end hosts custom programs (running in containers in the
case of Mininet/MaxiNet) that compete for resources with
software switches. Some network emulators provide interfaces
for a user to set an upper bound on how much CPU they
prefer to use for each end host. For instance, a user can use
CPULimitedHost in Mininet to limit the CPU usage of an
end host. Therefore, abstracting packet processing capability to
a single value is insufficient, and more dynamic representations
such as capacity functions are more desirable.

Capacity functions are determined by running our resource
quantification module on a simple linear topology as illustrated
in Fig. 2. When measuring capacity versus CPU usage, we
run the traffic generator and receiver on adjacent PMs to
avoid including the CPU usage of the traffic generator in our
function. Each experiment is repeated 10 times.

Fig. 2. Linear topology used for resource quantification

We investigated six packet sizes: 64 Bytes, 128 Bytes, 256
Bytes, 512 Bytes, 1024 Bytes, and 1250 Bytes, and observed
that throughput in Mbps varies significantly at the same CPU
usage for certain software switches (e.g., UserSwitch), while
throughput in packets per second remains stable. We therefore
compute the capacity function in packets per second. Since
many network emulators (e.g., Mininet) and testbeds require
users to specify bandwidth in bits per second, we design our
partitioning module to accept both unit systems, but require
hints from the users to convert capacity functions to Mbps.

During each test, we measure the reception rate (Rx)



and transmission rate (Tx) of all switch instances and their
CPU utilization. Fig. 3 shows the results for 6 PMs (2 PMs
are of the same model) in a cluster with dual-core CPUs
and quad-core CPUs, 1.20 GHz to 2.40 GHz frequency and
4 GB to 16 GB RAM, on 4 linear topology sizes, running
UserSwitch. Tests with different numbers of switches yield
similar results. The relationship between CPU usage and
total PM throughput is close to linear. With more cores,
this relationship becomes less linear when CPU utilization
increases. When CPU usage exceeds 90%×U i, the throughput
becomes unstable. Therefore, we discard data at more than
90% × U i. Correspondingly, we limit the maximum number
of CPU shares allocated to software switches to U ismax in our
algorithm in Section III-C. Users can also set the minimum
number of CPU shares for packet processing, U ismin. We
perform up to fifth-order polynomial regression on the dataset
we collected and select the model with least mean squared
error (MSE) using 5-fold cross validation. A user can choose a
different regression model, if desired. The four different traffic
processing capacity functions we derived are as follows, where
U ismin ≤ u ≤ U

i
smax (the bounds may vary for different PMs).

P2core@1.20GHz(u) = 0.0168u2 + 192.944u− 286.828

P2core@2.39GHz(u) = 0.425u2 + 285.166u− 2709.699

P4core@1.20GHz(u) = 0.359u2 + 112.275u+ 4061.292

P4core@2.39GHz(u) = 0.279u2 + 316.796u+ 948.393

(1)
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Fig. 3. Traffic processing capacity functions of the four types of PMs in our
testbed

3) Property Scaling: To make the CPU shares of different
types of PMs comparable, our framework scales PM properties
by multiplying every CPU share-related property by θi. For
example, the scaled U i is θi × U i, and the scaled U ismax is
θi ×U ismax. The capacity function is also scaled accordingly.
For simplicity, in the sections that follow, we assume that the
values have already been scaled (unless otherwise noted).

B. Topology Abstraction

We use a preprocessing module to export the network ex-
periment information from a network emulator to external files
and then to import experiment partition information back into
the network emulator. This design minimizes modifications
when applying our resource management layer to different
network emulators.

The experiment topology (input virtual topology) is ab-
stracted to a weighted undirected graph as follows:

1) Each end host is considered together with its adjacent
switch (for simplicity, we assume single-homed hosts for
now). Switches/routers and links in network topology cor-
respond to vertices and edges in the graph, respectively.

2) The weight of an edge in the graph is a positive num-
ber assigned according the bandwidth (in Mbps) of the
corresponding link in the network topology.

3) The weight of a vertex is the sum of the bandwidths (in
Mbps) of the links incident onto that switch or router in
the network topology. Host to switch (or host to router)
links are thus considered in the weight of a vertex, not
the weight of an edge.

The intuition behind step 1) above is that we need to
avoid cutting links between end hosts and switches/routers
when partitioning, because if we map a host and its adjacent
switch onto different PMs, then we would still need to create
a virtual switch for the host on its PM to connect it to that
adjacent switch. MaxiNet and the default placement algorithm
in Mininet cluster mode (SwitchBinPlacer) adopt the
same approach.

Since our topology abstraction does not take traffic flow
information as input, resource consumption of a switch or
router must be estimated in a conservative manner. The weights
assigned to edges and vertices in steps 2) and 3) above
model the required processing capacity of that edge or vertex.
Our current model uses link bandwidth, which impacts CPU
requirements, but other models are also possible. For example,
link delay affects memory requirements.

To summarize, the weighted graph G = (V,E) – derived
from the experimental (virtual) topology – includes |V | ver-
tices which equals the number of switches and routers, and
|E| links which equals the number of edges among switches
and/or routers. Weights w(v) and w((a, b)) denote the weight
of vertex v, and the weight of the edge between vertex a and
vertex b, respectively.

The total weight of graph G = (V,E) is defined as the sum
of the weights of its vertices: w(G) =

∑
v∈V w(v). The weight

of a given subgraph is defined similarly for the vertices of the
given subgraph. The total number of end hosts in the input
virtual topology is m, where each host is associated/linked
with a vertex (switch or router) v ∈ V .

The physical cluster contains k PMs, each with a capac-
ity function P i(u), derived from the resource quantification
module. As mentioned earlier, users give hints on packet
size distributions for their experiments in order to convert
the capacity function P i(u) in pps to a function Ci(u) in
Mbps. In the rest of this paper, we use Mbps for PM packet
processing capacity by default. Of the U i CPU shares PM
i offers, some shares, uis, are allocated to packet processing,
giving packet processing capacity Ci(uis), and at most U i−uis
shares for end hosts. This division of CPU shares is an estimate
of the resource competition among custom programs running
on virtual end hosts and software switches.

C. Partitioning and Mapping

The partitioning and mapping module is the core of our
framework. The module takes three inputs: (1) Weighted
graph G = (V,E); (2) Host resource requirements



(e.g., CPU usage) hj ,∀j ∈ {1, · · · ,m}. (3) PM models
[θi, U i, U ismin, U ismax, Ci(u)],∀i ∈ {1, · · · , k}. The
module generates k′ subgraphs S1, S2, · · · , Sk′ , each of which
corresponds to an experimental partition, where k′ ≤ k and Si
will be executed on PM i. A partition Si includes a subset
of the vertices of the original graph, where the union of these
subsets is V and the intersection is φ. Each link in the given
topology is either part of a subgraph Si (if both its end points
belong to the same output subgraph), or connects two different
subgraphs (if its endpoints belong to two different output
subgraphs).

1) Objective and Constraints: As discussed in Section I,
the mapping algorithm must satisfy the guiding principles:
integrity, fidelity, best effort, and judicious use of resources.
We use resources judiciously while maintaining high perfor-
mance fidelity by: (1) localizing traffic as much as possible
by mapping virtual nodes that are densely connected via
high-bandwidth links onto the same PM, and (2) attempting
not to overload any allocated PMs, while maximizing their
utilizations.

Traffic localization is motivated by the observation that
most software switches yield higher throughput than physical
switches. Therefore, we aim to increase the likelihood of
mapping highly connected subgraphs onto a single or few PMs,
which can increase fidelity. In other words, ideally we want
to:

Minimize
∑

w((a, b)), (2)

∀(a, b) ∈ E; a ∈ Si, b ∈ Sj ;Si 6= Sj ; 1 ≤ i, j ≤ k′ ≤ k

By maximizing utilization of PMs used, we are able to
leave any unneeded machines for running other tasks, taking
full advantage of available physical resources in the cluster.
Therefore, we aim to minimize k′ where 1 ≤ k′ ≤ k. In other
words, we aim to maximize the utilization of allocated PMs,
while making sure not to over-utilize them (and reduce fidelity)
if possible. If not, we produce a best effort mapping.

We design the Waterfall algorithm that iteratively invokes
the multi-constraint, single-objective, METIS algorithm [30],
[10]. We use the requirements of both emulated hosts and
switches as constraints, and ask METIS to minimize the edge
cut (i.e., localizing traffic). In each iteration, we recompute
the METIS input parameters to guide METIS towards good
results. We terminate when we can no longer obtain better
results.

2) Partitioning Loop: Partitioning/mapping in our context
is the process of dividing a weighted input graph G – given
the information of k PMs, and m end host usage shares – into
k′ subgraphs S1, S2, · · · , Sk′ , and determining which physical
machine i in the cluster will be used to execute each of the k′
subgraphs.

The Waterfall algorithm uses an input queue to store the
inputs for each iteration, and a multi-level hash set to store
information from previous iterations (input, result, and evalua-
tion metrics). We iteratively invoke a function, single iteration,
on the head of the queue (which is dequeued) until the
queue becomes empty. When the input queue becomes empty,
the best assignment at that time is chosen. Evaluation of
assignments is discussed in Section III-C4.

The function single iteration takes a queue entry which
includes the following components: (1) Lists of chosen PMs
(PMs that will be used in this iteration) and free PMs; (2)
CPU shares for processing packets and for supporting end
hosts for each PM i; (3) METIS-specific parameters; and (4)
a termination counter (Section III-C6). The initial input is
computed by function init input.

The function single iteration proceeds as follows. For
every PM i under consideration, we compute the capacity
available for packet processing from the capacity function.
Then, we normalize end host CPU shares, uih, and packet
processing capacities of all PMs, Ci(uis), to compute two sets
of fractions between 0 and 1 that each add up to 1. For instance,
if three PMs provide packet processing capacity values of
1000, 1000, and 2000, respectively, then the normalized values
for packet processing capacity are 0.25, 0.25 and 0.5. This
achieves our “best effort” goal as we will invoke partitioning
even when link bandwidths and end host CPU requirements
cannot be supported on the available machines. We use the
two sets of normalized values as METIS input parameters
(partitioning constraints).

After graph partitioning, we compute ranking metrics and
derive new inputs by potentially adding PMs (as explained
in Section III-C4) and tuning the CPU shares (as explained
in Section III-C5). The result of each iteration is stored in
the hash set. A pseudo-code of the algorithm is given in
Algorithm 1.

begin
Initialize input queue;
enqueue(init input());
while input queue non-empty do

single iteration (input queue.dequeue());
end
Output the best partition;

end
single iteration (queue entry)
begin

Compute packet processing capacities of PMs;
host in ← normalize (uih);
cap in ← normalize (Ci(uis));
partition (G, host in, cap in);
for PM i ∈ {1, · · · , k} do

ûih ←
∑
hostj∈Si.V

hj ;
ĉi ←

∑
v∈Si.V

w(v), i.e., w(Si);
ûis ← smallest u such that Ci(u) ≥ ĉi;

end
evaluate partition (ûih, û

i
s);

uis, u
i
h ← update cpu shares (ûih, û

i
s);

end
Algorithm 1: Waterfall Algorithm

3) Initial Input: The function init input computes an initial
input based on the given graph and the information of all
available PMs. It consists of three phases: (1) composing a
minimal set of chosen PMs, (2) allocating CPU shares for
packet processing and end hosts for the chosen PMs, and (3)
calculating parameters for METIS.

In the first phase, we compute the maximum resources each



available PM can offer, then compute and sort the resources in
order of decreasing tightness. PMs are ranked by “usefulness”,
i.e., at most how much a PM can contribute to each resource
requirement (in tightness order). Tightness of a resource is
defined as the ratio of the sum of the maximum amount of
that resource each PM can offer to the needed amount of that
resource. Next, we greedily grow the set of chosen PMs, which
is initially empty, until all resource requirements are met or all
PMs are included.

For example, consider an experiment that requires 1200
packet processing capacity shares and 100 CPU shares for
emulated hosts. Consider a cluster with three PMs: PM1 can
offer 1000 packet processing capacity or 200 CPU shares, PM2
offers 500 capacity or 200 CPU shares, and PM3 offers 200
capacity or 100 CPU shares. Then the first two PMs will be
chosen since they provide a maximum of 1500 capacity or
400 CPU shares that satisfy both resource requirements. Note
that this set of chosen PMs is a lower bound because (1) each
resource requirement is considered independently whereas they
affect each other, and (2) we are using the maximum possible
offering from each PM to estimate resource availability.

In the second phase, the algorithm distributes CPU shares
to packet processing and end hosts for each PM. Depending
on the tightness of resources, it may assign most of CPU
shares to packet processing and leave the rest to end hosts,
or assign most CPU shares to support end hosts, or evenly
allocate CPU shares to the two requirements. Users can modify
this parameter in a configuration file.

In the third phase, the algorithm tweaks input parameters
for METIS based on the result of previous phases. For instance,
it searches, in parallel, for the best imbalance vector (a param-
eter that defines load imbalance tolerance for each constraint),
first within a small range of [1.0, 1.1]× [1.0, 1.1], then a larger
range of [1.0, 1.5] × [1.0, 1.5] if METIS shows non-trivial
changes in edge cut. Finally, we initialize a termination counter
for this input to a user-defined constant.

4) Evaluating Results: Based on the min cut value and
assignment returned by METIS, we can compute the actual
CPU shares and packet processing capacities of emulated hosts
and switches assigned to PM i as follows: (1) ûih: The actual
CPU shares for emulated hosts assigned to this PM. (2) ĉi:
The actual packet processing capacity for emulated switches
assigned to this PM. (3) ûis: The actual CPU shares needed to
provide ĉi packet processing capacity on this PM. (4) σh and
σs: The fractions of host and packet processing capacities that
this PM is assigned (over the total amount required). The total
CPU usage of PM i for this assignment is then computed as
û = ûih + ûis.

An assignment is ranked according to the following factors:
(1) Number of PMs used in the assignment, (2) Number of
over-utilized PMs (i.e., ûi > U i), (3) Number of under-utilized
PMs (i.e., ûi < U i), (4) Degree of over-utilization of PMs, as
defined below in equation (3) when ûi > U i, and (5) The
edge cut given by the graph partitioning, reflecting the total
inter-PM traffic. The first four factors are derived from usage
information of the assignment, and the fifth is directly returned
by METIS. Typically, we use mutiplier thresholds for over-
and under-utilization. These are user-defined constants, and are
set to 100% and 90%, respectively, in our simulations and

experiments.

over–utili =
ûi − U i

U i
(3)

We rank each assignment according to three keys. The first
key is a tier. If the assignment has no over-utilized PMs, it is
considered tier 0; otherwise it is considered tier 1. For tier
0 assignments, we focus on reducing overall resource usage.
Thus, the second key is the number of PMs used, and the third
key is the edge cut of the assignment. For tier 1 assignments,
we want to reduce the degree of over-utilization in order
to reduce fidelity loss, so the second key is the maximum
over–utili, and the third key is the number of over-utilized
PMs. The second key is used when there is a tie on the first
key, and the third key is used when both the first and second
keys are tied.

A multi-level hash set is implemented so that it takes
constant time to query if an assignment has already appeared,
whether an assignment is the best one, and if not, in which
key is the assignment dominated by others.

When the majority of PMs are overloaded yet there is at
least one unused PM, the algorithm will consider adding the
next “most useful” PM, sorted as in Section III-C3, to the set
of PMs chosen. The algorithm will construct a new input with
initial shares and METIS parameters set in the same way as in
phases 2 and 3 of Section III-C3. The termination counter for
this new input is set to the initial value. We refer to this process
as branching because it starts a new path for exploration. A
threshold to determine “majority” (a user-defined constant) is
used such that if the number of overloaded PMs is at least this
fraction of the number of PMs chosen, branching will occur.

5) Updating CPU Shares: We update the termination
counter based on the rank of the result, and if the updated
counter is positive, we tweak the CPU share allocation and
construct a new input. The rationale for decreasing the termi-
nation counter is discussed in Section III-C6.

To adjust CPU shares, we first sort the PMs by descending
values of (σh + σs). We then compute the CPU shares for
the next iteration based on the output of the current iteration.
The intuition is that, if a PM is overloaded, we assign it the
maximum load it can handle and send the excessive shares
to the next most powerful PM; if a PM is under-utilized, we
increase its shares but no more than the shares added to any
“stronger” under-utilized PM. The CPU share adjustment thus
moves excessive CPU shares like a waterfall: overloaded shares
flow towards the next most powerful PMs, and the room left
for expansion in an under-utilized PM is limited. This is the
reason we name this algorithm “Waterfall.” The pseudo-code
of the update algorithm is shown in Algorithm 2.

6) Algorithm Termination: The algorithm terminates when
the input queue becomes empty, that is, when no new branches
are created and all existing branches have exhausted their
termination counter. The number of branches is upper-bounded
by the number of PMs, and a branch stops after several
iterations (a user-specified constant) without making progress.
We use several heuristics when updating termination counter.
For instance, if a new branch is created (i.e., one more free PM
is included) and all chosen PMs in the current input are over-
utilized, then it is less likely to find the best assignment in this



begin
total over ← sum of excessive shares on all
over-utilized PMs;

∆min ← INT MAX;
for PM i from highest to lowest (σh + σs) do

û← ûih + ûis;
if PM is over-utilized then

next ppi ← min(max(U
i×ûi

s

ûi
, U ismin),

U ismax);
next hosti ← U i − next ppi;

else
if total over > 0 then

shares over ← ûi+ total over −U i;
if shares over > 0 then

∆ ← total over − shares over;
total over ← shares over;

else
∆ ← total over;
total over ← 0;

end
else

∆ ← 0;
end
if PM under-utilized after adding ∆ shares
then

∆← min(∆min,
max(∆, UnderThd× Ui − ûi));

∆min ← ∆;
end
∆i
h,∆

i
s ← ∆× ûi

h

ûi
h+û

i
s
,∆× ûi

s

ûi
h+û

i
s

;
next ppi ← min(max(ûis + ∆i

s, U
i
smin),

U ismax);
next hosti ← min(ûih + ∆i

h, U
i− next ppi);

end
end
Return next pp, next host;

end
Algorithm 2: Waterfall Algorithm: CPU Share Update.

branch than in the new branch, so the termination counter is cut
by half. If a new best assignment is found, the counter is reset;
otherwise the counter is decreased by 4, 2, or 1, depending on
how the rank compares to that of the best assignment.

Several factors affect the running time of the algorithm,
but two factors play a major role: (1) tightness of available
resources, and (2) characteristics of the experimental topology.

The tighter the resources, the smaller the search space.
Tighter resources make our initial set of PMs closer to the
set of PMs needed, resulting in fewer branches. Overloaded
PMs are capped to their maximum CPU shares, and there is
little tweaking the algorithm can do for them. In the case when
all PMs have to be over-utilized, the algorithm will only run
a few iterations.

The characteristics of the experimental topology are impor-
tant when resources are abundant. For example, if a topology
is highly clustered like a typical ISP topology, then, after
increasing fractions of under-utilized PMs beyond certain
levels, METIS will always group the clusters and assign an

entire cluster to a single PM, making few changes to the as-
signment. Our algorithm will detect this situation and terminate
early. In contrast, the algorithm will run substantially more
iterations if the topology is more random and its vertices are
“indistinguishable” in terms of resource requirements, because
METIS is likely to swap vertices and return different – yet not
better – assignments.

IV. SIMULATION RESULTS

We have evaluated the Waterfall algorithm on a set of
topologies, physical machine characteristics, and end host CPU
requirements. In this section, we give simulation results on
three different types of topologies ranging from 41 nodes to
690 nodes: RocketFuel, Jellyfish, and Fat-tree. To understand
the impact of different PM characteristics, we evaluate all
topologies in three scenarios: large clusters (resources are
abundant), medium clusters (total maximum capacity of sim-
ulated PM cluster is close to the requirements (weight) of
experimental topologies), and small clusters (total maximum
capacity of simulated cluster is less than the requirements
of experimental topologies). We scale up the four capacity
functions in equation (1) in each cluster for large topologies.

We compare the Waterfall algorithm to four baseline al-
gorithms: (1) Default METIS partitioning which assigns PMs
approximately equal-weight partitions of the input graph; (2)
Capacity-based partitioning, denoted by Ci(0.9), assigns PM i
a partition whose weight is proportional to Ci(0.9×U i) (i.e.,
the capacity value when 90% of CPU shares are allocated
to packet processing). The remaining 10% is reserved for
end hosts and system overhead. This baseline is near optimal
when packet processing needs most CPU shares; (3) Max CPU
share-based partitioning, denoted by U i, assigns PMs partitions
proportional to the unscaled maximum CPU shares, U i. For
example, if two PMs have maximum CPU shares of 100 and
200, then the weights of the partitions are set to 0.33 and
0.67, respectively, regardless of their multiplier values; and (4)
Scaled max CPU share-based partitioning, denoted by θi×U i,
is the same as U i except that it uses scaled U i values. If the
two PMs in the previous example have multipliers of 2 and
1, respectively, then their scaled U i values are equal, and thus
they will get equally weighted partitions. We use METIS to
compute partitions for all the baselines.

To compare the results of baselines with Waterfall, we use
three metrics: (1) edge cut of the partition, (2) degree of over-
utilization, defined by equation 3, and (3) degree of under-
utilization, defined if ui < U i, as under–utili = Ui−ui

Ui .

The degree of over-utilization is the most important metric
since overloaded PMs may result in fidelity loss. If there is
under-utilization, it is possible that not all selected PMs are
necessary for this experiment. The unnecessary PMs can be
used by other experimenters in parallel. The edge-cut is an
indicator of traffic localization as we discussed in section III-C.
Ideally, we want to keep all three metrics as small as possible.

A. Large Clusters

In this scenario, we simulate a cluster with 21 PMs by
duplicating capacity functions in equation (1) and scaling them
up by a factor of 10.



Fig. 4(a) shows the average over-utilization and under-
utilization for different topologies. Since the simulated PM
cluster is sufficiently large for every topology, both Ci(0.9)
and Waterfall achieve less than 2% over-utilization while
other baseline algorithms yield 4% to 14% over-utilization on
different types of topologies. However, Waterfall selects fewer
PMs and exhibits smaller under-utilization, achieving higher
resource efficiency. In contrast, baseline algorithms use all PMs
in the simulated cluster. Additionally, baseline algorithms show
1.3X to 6.6X edge-cuts compared to Waterfall, since they tend
to use all PMs and hence create more partitions.

B. Medium Clusters

In this scenario, we create a PM cluster for each topology
such that the cluster capacity is approximately equivalent to
the resource requirements of the topology.

Fig. 4(b) shows higher over-utilization for all baseline algo-
rithms. Waterfall again achieves less than 1% over-utilization
on both Jellyfish and Fat-tree topologies, but slightly higher
over-utilization (5%) on RocketFuel topologies. This is be-
cause RocketFuel topologies are less symmetric than Jellyfish
and Fat-tree and include some nodes with much higher require-
ments leading to worse partitioning results when resources
are limited. Baseline algorithms show smaller under-utilization
compared to the large cluster scenario as we limit PM re-
sources, but they still waste more than 20% of the resources
on some PMs while overloading the rest. Baseline algorithms
exhibit similar edge-cuts (0.8X to 1.2X) as Waterfall, since all
algorithms create similar numbers of partitions and use METIS
to minimize edge-cut.

C. Small Clusters

When the physical resources of a PM cluster are insuffi-
cient, Waterfall yields a best effort assignment in proportion to
PM capabilities (e.g., maximum capacity) leading to balanced
resource utilizations for all PMs. In this scenario, instead of
average over-utilization and under-utilization, we use standard
error of PM utilization ( u

i

Ui ), for each topology to evaluate
partitioning algorithms.

All algorithms overload all PMs as expected. Fig. 4(c)
shows that Waterfall yields significantly smaller standard error
compared to baseline algorithms, indicating more balanced
PM utilizations for all topologies. Baseline algorithms exhibit
slightly smaller edge-cuts (0.78X to 0.97X) than Waterfall,
since they consider edge-cut minimization as the highest
priority. In contrast, Waterfall considers over-utilization and
the number of allocated PMs to be of higher priority than
edge-cut minimization.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our complete framework on
experiments with a distributed denial of service (DDoS) at-
tack scenario inspired by the recently presented Crossfire
attack [31]. This type of experiment is popular on the DETER
testbed [7] and represents a worst-case for mapping, since it
pushes the emulated network to the limit. We use a cluster
in our lab that includes six PMs of four types of hardware
configurations. The traffic processing capacity functions of the
four types of PMs were given in equation (1).

A. Mapping Algorithms

In addition to the algorithms used in our simulations in
Section IV, we also compare the Waterfall algorithm to the
Mininet SwitchBinPlacer (SwitchBin). This is the default
“Placer” of the Mininet cluster mode. This mapping algorithm
maps switches and controllers of an experiment into equally-
sized bins based on the number of PMs. It also attempts to
place hosts and switches to which they are connected on the
same PM.

MaxiNet allows users to set share in the configuration file
for each PM in a cluster. In our experiments, Ci(0.9), U i, and
θi × U i are used when assigning shares to the PMs. Thus,
SwitchBinPlacer and “Equal” are balanced partitioning
algorithms which try to map either an equal number or equal
weight of nodes to all PMs. Ci(0.9), U i, θi×U i and Waterfall
are unbalanced partitioning algorithms that map nodes based
on different functions of PM capacity. Ci(0.9), U i, and θi×U i
utilize all PMs in a cluster, since they cannot determine if fewer
PMs are sufficient for an experiment, while Waterfall picks the
smallest number of PMs that are sufficient. Waterfall takes both
the weights of switches (assigned based on link bandwidths)
and the CPU shares of end hosts into consideration, and tries
to balance the CPU usage among end hosts and software
switches.

B. DDoS Attack Experiments

We design DDoS attack experiments inspired by the Cross-
fire attack [31] to stress-test the mapping algorithms using
high rate traffic. Instead of attacking a web server directly,
the attack targets critical links on the paths to the web server,
and saturates these links to degrade the user experience to the
victim web server. We compare three metrics: CPU utilizations
of PMs, utilizations of all experimental topology links, and
HTTP throughput (before and after the attack is launched). All
experiments are repeated 10 times and error bars are shown.

1) Topology Generation: To make the DDoS attack exper-
iment realistic but feasible to execute on our small testbed, we
reduce ISP topologies from RocketFuel [32] to a set of small-
scale topologies and medium-scale topologies, containing 10-
15 routers and 30-50 routers, respectively. We use the random
match (RM) algorithm for graph coarsening (used in [11]) to
reduce the ISP topologies, while attempting to preserve the
connectivity features of the original graph.

Each node in the reduced ISP topology is emulated as a
switch. Link delays are set to 1 ms in the results below, but we
also investigated 100 and 500 ms links. We attach end hosts to
the “edges of the topology.” The edge of a topology is defined
as the nodes with degree ≤ 3, where degree is the number
of edges incident onto a node. These end hosts are used as
victim clients and attack senders. The same methodology was
followed in [1].

2) Attack and Victim Host Assignment: There are four
roles for nodes in a DDoS attack experiment: victim web
server, victim clients, attack senders, attack receivers. We only
assign one victim web server in each DDoS experiment. Victim
clients are the hosts sending HTTP requests to the victim web
server, and they are affected by DDoS attacks. Attack senders
are the hosts launching DDoS traffic. As in the Crossfire
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Fig. 4. Simulation results

attack [31], we set the receivers of the attack traffic to be
other servers close to the victim. These receivers are referred
to as attack receivers in our experiment.

Prior to assigning hosts as attackers and victims, we use
Dijkstra’s algorithm to compute the shortest paths between
any two hosts and use these paths as static routes (by default,
Mininet does not include dynamic routing). We first rank all
the nodes in a topology by node degree, and choose the node
with median degree value to be where victim server is located,
to avoid placing the victim server too close to the edge or to
the center (i.e., nodes with large degree) of a topology. The
neighbors of the victim web server become attack receivers.
We then compare routes from all edge hosts to the victim web
server (victim clients to victim web server) with routes from
all edge hosts to attack receiver candidates (attack senders
to attack receivers) and assign hosts that share links in the
two sets of routes as attack senders and victim clients. Then,
∼30% of the edge hosts are used as victim clients, and ∼70%
are used as attack senders. Our goal here is to guarantee
the effectiveness of attack traffic, i.e., the web traffic will be
affected when attack traffic is launched.

3) Traffic Generation: A DDoS experiment includes three
types of traffic: HTTP traffic, UDP attack traffic, and back-
ground traffic. We use the Web Polygraph tool to generate
HTTP traffic. Victim clients run polygraph-client, while the
victim web server runs polygraph-server. polygraph-client
generates HTTP requests to polygraph-server at a fixed rate
(200 requests/sec per client). This rate may not be reached in
an experiment if there is not enough bandwidth or CPU for
polygraph-client processes. The HTTP response size generated
by polygraph-server is exponentially distributed with a mean
value of 10 KB. For attack traffic, we use iperf to generate
UDP traffic at the same rate as the link bandwidth from attack
senders to attack receivers. iperf is used to emulate background
traffic. Both attack traffic and background traffic use a packet
size of 1250 Bytes.

Both HTTP and background traffic start at the beginning
of an experiment and we wait for 60 seconds for conditions
to stabilize. Then, UDP attack traffic is launched and lasts for
60 seconds until the experiment is completed.

4) Small-scale Experiments: The motivation behind creat-
ing small-scale topologies is to compare Waterfall with other
mapping algorithms when resources are over-provisioned.
Since it is difficult to obtain the ground truth in network em-

ulation, we use resource over-provisioning to approximate the
ground truth results. For small topologies, baseline algorithms
will use all 6 PMs in our cluster. Results are not affected by
resource constraints. In contrast, Waterfall attempts to allocate
the fewest PMs necessary. Therefore, if the results yielded by
the 6 mapping algorithms are close, we consider Waterfall to
have been able to produce close-to-ground-truth results while
using resources more judiciously.

We carefully calculate the topology size, link bandwidths,
and CPU shares of end hosts to guarantee that baseline
algorithms do not overload any PM in this case. Based on this,
link bandwidth is set to 60 Mbps. In this experiment, Waterfall
takes only five iterations and chooses PM1 and PM2.

CPU and Link Utilization: Fig. 5(a) and Fig. 5(b) show
the CPU and link utilizations. The baseline algorithms use
all 6 PMs, and none of the PMs are overloaded. Waterfall
picks the three most powerful PMs, and CPU utilizations
of all PMs are over 80%. Therefore, we confirm that the
results from baseline algorithms approximate the ground truth,
since they are not constrained by PM resources. Note that the
total CPU utilization over all six PMs for baseline algorithms
seems significantly higher than Waterfall. This is caused by
the heterogeneity of the six PMs. Running the same task on
a less powerful PM usually consumes more CPU shares than
on a more powerful PM. A key motivation of our capacity
function is to capture this PM heterogeneity. All algorithms
achieve at least 80% link utilization, indicating that sufficient
resources are assigned to the switches. This is expected for
baseline algorithms since resources are over-provisioned. For
Waterfall, this confirms that our capacity functions accurately
characterized the traffic processing capacity, and the mapping
process allocated PMs appropriately, leading to the expected
high experimental link utilization in this scenario, while main-
taining a high CPU utilization level.

HTTP Throughput: HTTP throughput is the number of HTTP
requests completed per second. We use this metric as an
indicator of application-level performance fidelity. Fig. 5(c)
shows the impact of the DDoS attack. At the 60th second
mark, the attack traffic is launched, causing significant drop in
HTTP throughput. The results of all mapping algorithms are
similar, which indicates that our framework with the Waterfall
algorithm is able to maintain high application-level fidelity.

5) Medium-scale Experiments: We design these experi-
ments such that an ineffective mapping algorithm would suffer
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Fig. 5. Normalized results from small DDoS attack experiments

from performance fidelity loss. We calculate the topology size,
link bandwidths, and end host CPU shares such that the total
requirements of the topology are slightly lower than the total
capacity of the testbed. Link bandwidth is thus 16 Mbps in this
case. If the mapping algorithm makes poor choices, PMs can
be overloaded, and HTTP throughput may decrease. Ideally,
CPU usage should be less than 100%, link utilizations should
be high since we saturate the links, and HTTP throughput
should exhibit a significant drop when DDoS attack traffic is
launched.

CPU and Link Utilization: Fig. 6(a) and Fig. 6(b) show
the CPU and link utilizations of the 6 mapping algorithms.
SwitchBin over-utilizes PM5 and PM6 and under-utilizes PM1
and PM2. Only PM4 is assigned appropriate workload. PM3
exhibits low CPU and link utilization due to the fact that
several flows from PM5 and PM6, which are overloaded, to
PM3 experience significant packet loss (link fidelity loss).
Therefore, PM4 does not process expected amounts of traf-
fic leading to low CPU and link utilization. Both U i and
θi × U i over-utilize PM3 which has high CPU utilization
but low link utilization with high variance. In addition, U i
over-utilizes PM6. Equal over-utilizes PM6 and under-utilizes
PM1 and PM2 significantly, while Ci(0.9) over-utilizes PM6
and under-utilizes PM4. Waterfall selects only five PMs, but
offers the best CPU and link utilizations compared to baseline
algorithms, with > 80% CPU utilization and > 90% link
utilization on all five PMs. We also tried manually limiting
baseline algorithms to use the same 5 PMs as Waterfall for
a head-to-head comparison. However, none of them exhibited
better performance than when they used all 6 PMs.

HTTP Throughput: Fig. 6(c) shows that the effect of the
attack can be observed in all cases. Waterfall achieves higher
and more stable HTTP throughput before the DDoS attack
is launched. After careful examination, we found that this is
due to the limited CPU resources given to the polygraph-
server process in the case of the baseline algorithms. The
required CPU share for each host is 10%. Since none of the
baseline algorithms consider the end host CPU shares, most
of the end hosts cannot receive enough CPU. For instance,
the host running polygraph-server only receives 3% CPU on
average when using Ci(0.9). Even though Ci(0.9) uses all 6
PMs, the actual HTTP throughput is still lower than Waterfall.
Waterfall also does not achieve 100% target HTTP throughput:
we found that this is due to the imperfect CPU isolation of
Linux containers when the same CPU is shared by a number

of different containers.

VI. CONCLUSIONS

In this paper, we have proposed a complete framework
for efficiently mapping a networked application onto a cluster
of (possibly heterogeneous) physical machines. Although we
have focused on network experiments on the popular Mininet
network emulator, in the future, we plan to extend our work to
map other distributed applications onto distributed simulators,
network testbeds, and data centers in general.

We have devised a resource quantification process to pro-
file the physical machines, and designed and implemented
a mapping algorithm, Waterfall, that takes both link band-
widths (via the edge/vertex weights in the input graph) and
end host CPU requirements into consideration. The Waterfall
algorithm attempts to use as few of the physical machines as
possible, while achieving high performance fidelity. Based on
results from simulations and DDoS attack testbed experiments,
we find that our approach performs well in terms of both
performance fidelity and testbed resource utilization. We are
currently generalizing our framework to handle networks with
multi-homed hosts and to support multiple resource limits.
Finally, we are conducting extensive experiments, and making
refinements to speed up the convergence of our algorithm, even
in case of abundant resources and random topologies.
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