
1

Resource Management in an Active Measurement
Service

Ethan Blanton, Sonia Fahmy, Sujata Banerjee

Abstract— Many network services such as voice, video, and
collaborative applications require an informed view of network
characteristics for effective operation. Sharing a network mea-
surement service across multiple applications can significantly
reduce measurement overhead, and remove the burden of per-
forming network measurements from individual applications.
To be effectively shared, a network measurement service must
provide a variety of measurements to applications on-demand,
including end-to-end available bandwidth, delay, and loss. We
propose such a service, with a focus on quantifying and bounding
the impact of active measurements on the network resources
being measured. Resource bounds are necessary for wide-scale
deployment, since not all users of the service can be trusted.
The service informs applications of how service bounds affect
their measurements. We introduce methods to characterize the
behavior of active measurements for use in admission control and
scheduling decisions. We evaluate our methods in experiments
under realistic scenarios on the Emulab testbed.

I. INTRODUCTION

Many modern applications and services need information
about network properties for effective operation. For example,
the Azureus BitTorrent client uses latency information to select
peers from which to transfer data [10]. The Tor anonymous
communications service [4] reports that network measurement
is critical to meeting the challenge of low-latency, high-
bandwidth anonymous routing. End-system Multicast [3] hosts
use network measurements to build a multicast content dis-
tribution tree. A significant number of experimental overlays
running on the PlanetLab infrastructure utilize network mea-
surement in their operation, leading the PlanetLab team to
suggest a “Routing Underlay” service [13] to serve their needs.

In light of this trend, and with an eye toward next-generation
applications, we propose a network measurement service to
be used by applications and users desiring a deeper view of
network characteristics. This service focuses on bounding the
network impact of active measurements, while providing the
applications which use it with explicit information about the
effects of these bounds on the measurements they request.
We believe that this is critical to seeing such a measurement
service deployed on a large scale.

Active measurements consume network resources. For this
reason, it is important that an on-demand measurement service

Ethan Blanton and Sonia Fahmy are with the Department of Computer
Science, Purdue University. E-mail: {eblanton, fahmy}@cs.purdue.edu. Sujata
Banerjee is with Hewlett-Packard Labs. E-mail: sujata.banerjee@hp.com.

This research is sponsored in part by a gift from Hewlett-Packard, an Intel
fellowship, and NSF CAREER grant 0238294. The authors would also like to
thank Puneet Sharma and Praveen Yalagandula (HP Labs) and Ahmed Amin
(Purdue University) for several helpful discussions on this work.

has bounded impact on the network it is measuring. Addition-
ally, a measurement service which is available to untrusted
parties but does not limit the impact of its measurements could
be readily used as a tool to launch denial of service attacks. We
therefore conclude that an open network measurement service
must respect administratively-defined resource bounds on the
measurement overhead. We define a load invariant to ensure
resource consumption of measurement tools does not exceed a
given budget, and we show how this invariant can be preserved
as new active measurement requests arrive.

We have implemented a prototype measurement infrastruc-
ture, and used it to evaluate methods for estimating the impact
of measurement tools, and the effects of these estimates on
the scheduling of active measurements. Our evaluation is
conducted on the Emulab testbed [16] using real measurement
tools in realistic scenarios.

II. RELATED WORK

The Scalable Sensing Service (S3) [17] is a measurement
infrastructure for large-scale distributed and federated systems.
It exports data from a number of measurement tools which
are run on the PlanetLab infrastructure. S3 provides a fixed
set of measurements run on a firm schedule, rather than in-
voking measurements on-demand for any arbitrary application.
iPlane [11] also utilizes a fixed schedule.

ScriptRoute [15] provides a programmatic measurement in-
terface to applications. Users of the ScriptRoute measurement
mesh submit measurement application scripts to the mesh,
which are then executed by ScriptRoute nodes with policies
that ensure that measurement impact is bounded. This bound,
however, is enforced by external filters, and is not predictable
to the application. The application can determine a posteriori
if its measurement traffic was affected by the filters, but it
cannot plan or correct for filter actions.

Calyam et al. [2] present a scheduling algorithm to mini-
mize interference between individually scheduled active mea-
surement requests. Measurements which would invalidate the
results of other simultaneous measurements are rescheduled or
rejected, improving predictability from the application point of
view. The paper additionally presents the concept of a Mea-
surement Level Agreement for the regulation of inter-domain
network measurement traffic. While their analysis concentrates
on reducing conflicts between active measurements, this paper
focuses on methods for ensuring that active measurement
schedules obey their resource bounds. In short, our work can
be integrated into all three systems discussed above.

2

III. SYSTEM ARCHITECTURE

We propose an open infrastructure in which users do
not require strong authentication or a priori enrollment.
Transparency is a key design principle in our infrastructure.
By transparency, we mean that admission control decisions,
known interference among measurements, stale measurement
information, and other artifacts are communicated to users so
that they may be accounted for. We also design to be dynamic,
by allowing any user to schedule measurements on-demand.
Simplicity of our user interface allows applications to query
network status without having to understand the measurement
tools or their operation.

Measurement requests can be made to any node that
is part of the measurement infrastructure. Clients can also
proxy through a special node which communicates with the
infrastructure on behalf of the user, providing a standard
interface, such as a web server with request forms and output
pages. The organization of measurement infrastructure nodes
is decentralized, so that any party having an available node
to donate may join the infrastructure to provide measurement
services. Measurement nodes locate each other by way of a
distributed naming system, such as a distributed hash table
(DHT) structure, allowing nodes to join and leave at arbitrary
times.

When a new measurement request is issued, its resource
requirements are drawn from a measurement tool database,
and its end points are queried to determine whether they can
support the additional load. This load can include, for example,
the inbound and outbound access link bandwidth requirements,
CPU load, and memory requirements. If all end points can
support this load, the measurement is admitted and scheduled;
otherwise, it is rejected and the requesting process is notified.
We utilize TCP connections for sending measurement requests
and their responses. Successful measurement results may be
cached for a period of time and returned in case of similar
future requests.

The two end points of a measurement tool invocation
are infrastructure nodes located in close proximity to end
users, such that the measurements between them adequately
approximate measurements between end users. Alternatively,
the infrastructure nodes can process the measurement results
before returning them to the users, to account for the network
conditions between the infrastructure nodes and user machines.
Such processing can be informed by measurements performed
between the measurement host and the requesting end host.
This allows the infrastructure to scale well to the Internet scale,
in a similar vein as the Domain Name System (DNS).

IV. ADMITTING ACTIVE MEASUREMENTS

To determine measurement schedules, we utilize the algo-
rithm for scheduling periodic measurements described in [1],
which turns out to be similar to that of Calyam et al. [2]. Our
algorithm uses estimations of measurement tool behavior to
build a schedule which serves as many active measurements as
can be admitted without exceeding administratively defined re-

source bounds.1 A key component to the effectiveness of such
an algorithm is the method used to estimate tool behaviors.
In this section, we investigate measurement tool requirements
and methods for admission control.

A. Assumptions

The admission control and scheduling algorithms make
the following assumptions: (1) While end hosts need not be
trusted, measurement infrastructure nodes are trusted. (2) Time
is encoded as an absolute time in UTC, and clock drift among
nodes is small. (3) Scheduled measurement events cannot be
preempted. (4) We only consider load bounds on the sender
and receiver nodes of active measurement traffic, and their
access links to the Internet. An access link is typically one
of the first 4 hops to/from that node. We believe this to be
a reasonable assumption because, in today’s Internet, access
links are typically the bottleneck [6].2

B. Measurement Tool Characterization

There is a plethora of tools to measure several aspects of
network performance, such as latency, jitter, path bottleneck
bandwidth, path available bandwidth, packet loss, and packet
reordering. Each measurement tool in our system is associated
with a cost vector which approximates its resource require-
ments over the duration of a single invocation of the tool
at both the sender and receiver. This includes inbound and
outbound bandwidth requirements, as well as other resource
requirements like CPU, memory, processes, and open TCP
connections. We currently only consider the inbound and
outbound bandwidth requirements at each node.

Table I summarizes information about the four popular
tools we utilize in our prototype. These tools were selected
to be a representative set, both in terms of the quantities
they measure and the resources they consume. For each tool,
we give the primary property it measures as well as broad
descriptions of its resource consumption and how long it
typically takes to produce an estimate. We select only four
tools for two reasons. First, many measurement tools produced
by the research community are not currently suitable for
usage in a measurement infrastructure, due to invocation or
resource contention limitations. Second, we are not attempting
to quantify every possible measurement tool behavior, because
new measurement tools are being produced every day.

1Observe that if we know all the requests a priori, and have perfect
estimates of their bandwidth requirements, then maximizing the number of
admitted requests within load bounds at any given time becomes an instance
of the NP-complete Knapsack problem.

2Techniques such as using BGP “atoms” as in iPlane [11] or using
correlation tests on packet delays as in [8], [18] can be employed to identify
a shared bottleneck that is not an access link, but some other link in the
underlying network.

3

TABLE I

A TAXONOMY OF MEASUREMENT TOOLS.

Tool Property Resources Duration

ping [7] latency < 1 kbit per probe 1 RTT per probe
Pathrate [5] bottleneck bandwidth function of end-to-end bandwidth function of end-to-end delay; typically ∼ 20 min.
pathChirp [14] available bandwidth ∼ 1 Mbps peak ∼ 10 min.
Tulip [12] loss, reordering ∼ 20 kbps peak linear function of end-to-end delay

C. Admission Control Tests

We investigate two approaches for our admission control
test to ensure that the load invariants are preserved.3 Both of
these approaches use empirical observation of the operation
of measurement tools to estimate their resource requirements
and duration of execution. Our first approach simply uses the
peak bandwidth of each measurement tool over a fixed interval
of time. This peak bandwidth is calculated as the maximum
number of bits transferred in any interval of the specified
length, divided by the interval length in seconds. Separate
figures are kept for inbound and outbound bandwidth for every
participating host. Admissible traffic bounds are expressed
as a simple inbound and outbound scalar. A measurement
is admissible if its bandwidth requirements (drawn from its
cost vector in the tool database), when added to the existing
measurements scheduled at the same time, do not exceed these
admissible traffic bounds.

To capture the high variability in instantaneous bandwidth
of many measurement tools, our second approach uses the
average bandwidth over a fixed interval of time. The mea-
surement tool execution duration is discretized into windows
of a specified interval of time, and the amount of bandwidth
utilized during each of these windows is computed separately.
This series of values is summed and divided by the number
of intervals, yielding an average value. The averages for both
inbound and outbound traffic of the two end points are used
to characterize the tool.

We explored using logical analysis of the algorithms used
by measurement tools as a method of estimating their resource
requirements, but found that this was extremely challenging.
For example, by examining the Tulip [12] source code, we
determined that its running time for loss detection on a lossless
network should be roughly the product of two run-time con-
figurable constants: the number of probes sent and the delay
between these probes. However, in empirical measurements
on the Emulab testbed [16], Tulip required a little more
than twice this long to complete its measurements. Further
analysis revealed that the target of the probes was only sending
response packets to about one third of the total number of
probes, causing the sender to pause for an extra period to wait
for responses which may be delayed in the network. Tulip was

3Note that admission control tests from the literature [9] cannot be directly
leveraged here due to several reasons. First, the admission control literature
does not schedule flows to begin at arbitrary times in the future. Therefore, it
can utilize online measurement-based techniques, whereas we cannot. Second,
the resource requirements of typical active measurement tools are highly
bursty. Third, in contrast to the admission control literature which focused on
loss and delay guarantees for individual flows, our requirements are defined
as aggregate resource constraints on nodes and links. Finally, we can exploit
end system scheduling flexibility with respect to the times of invocation of
measurement tools.

able to disambiguate these missing responses (perhaps stifled
due to ICMP rate limiting) from true loss, but their effect on
the running time is not reliably predictable from examination
of the Tulip mechanisms.

D. Eliminating Redundancy

If a measurement service handles measurement requests for
a large number of applications and users, the possibility of
redundant measurements arises. Consider a user that requests
loss measurement between a pair of hosts every 10 minutes,
and another user that requests loss measurement between the
same pair of hosts every 20 minutes starting at the same
time. Clearly, we can easily satisfy the lower frequency re-
quester from the information returned to the higher frequency
requester.

In practice, the start times or periods of requests may not
be exactly identical. The more likely scenario is that they are
close to each other. Therefore, we allow each measurement
request to include a parameter pm (for plus or minus), which
denotes that a measurement event can be scheduled with some
flexibility. Specifically, a measurement request may be served
by any invocation occurring within pm seconds of its requested
time. This allows us to conflate similar measurements even
when their start times are not identical or their periods are not
exact multiples of each other. For example, a loss request with
a 10-minute period and another with a 15-minute period can
be conflated if pm = 5 minutes for the latter request.

V. PROTOTYPE AND EXPERIMENTAL EVALUATION

We have implemented a prototype of the admission con-
trol and scheduling mechanisms summarized in Section IV
(more details can be found in [1]). We give results from a
representative set of experiments with our prototype on the
Emulab testbed [16]. We select Emulab experiments (rather
than Internet experiments, e.g., using PlanetLab) for our initial
prototype for three primary reasons. First, we need the results
with different mechanisms to be comparable so we can under-
stand which ones work best in depth. Second, we need to easily
compare our results with a known “ground truth.” Finally, we
would like to systematically explore the impact of varying
underlying network properties, such as link propagation delays
and cross traffic, which cannot be controlled on the Internet
or PlanetLab.

Our experiments aim to: (1) quantify the benefit of applying
admission control; (2) compare different admission control
tests and timescales; (3) show that simple estimates of resource
requirements of tools such as those described in Section IV-
C adequately capture the behavior of network measurement
tools; and (4) demonstrate that our admission control tests

4

are sufficiently robust to reasonable variations in network
behavior, such as latency and cross-traffic.

A. Experimental Scenario

Fig. 1 gives the topology we use. The link connecting the
core ring to the leaf subnetworks is what we consider to be the
bottleneck access link. We choose values to represent a modem
user, DSL user, cable modem user, T1 link, and T3 link. Each
edge router has a cluster of three hosts connected to it, similar
to those depicted on the DSL and T3 networks in the diagram.
Unless otherwise specified, the links connecting these hosts are
100 Mbps Ethernet with an artificial delay of 2 ms, 2 ms, and
3 ms on the DSL cluster, and 4 ms–15 ms for the remaining
hosts, increasing by 1 ms per host, clockwise around the ring
as shown. The measurement infrastructure node in each cluster
is the “center” of these values. For convenience, we number
the hosts as host 1 through host 15, again clockwise starting
with the first DSL non-measurement host. The queue depth is
50 for all queues, and all queues are drop-tail.

host1
host5

host4

Core

5ms

5ms

5ms5ms

5ms
Cable

DSL

Modem T1

T3

10Mbps

3Mbps

45Mbps

1.5Mbps56kbps

Fig. 1. Experimental topology on Emulab. The links in the core network are
unmodified 100 Mbps Ethernet links.

Unless otherwise specified, we configure the hosts to use
either peak or average bandwidth for admission, and we submit
a fixed set of randomly-selected measurement requests to
the system. The tool to be run, source host, and destination
host of each request are uniformly and randomly selected
from the four tools and five measurement hosts described
above; measurements which would use the same host for
source and destination are discarded. The start time, repetition
period, and repetition count for each request are also randomly
selected, such that each request starts and ends within a 45-
minute window. Each measurement node sets its inbound and
outbound bandwidth bounds to 20% of the bandwidth of its
access link over the entire experimental duration. We use 1
second for the duration of the time interval for the peak and
average admission control methods and set pm to zero, unless
otherwise specified.

To estimate measurement tool resource requirements for
these experiments, we ran each tool used in these experiments
between all pairs of measurement hosts on our experimen-
tal network. We found that the behavior of some measure-
ment tools (notably Pathrate) is sensitive to bottleneck link
bandwidth (see Table I). Therefore, we use the appropriate
estimates from this data set for each measurement host, to
accommodate the large discrepancies in link bandwidth in our

TABLE II

AVERAGE RESULTS OF TEN 25-MEASUREMENT WORKLOADS.

BANDWIDTH VALUES ARE IN KBPS.

Host Requested Failed bwin bwout Vin Vout

No Admission Control
T3 13.2 0 441 359 0 0
DSL 11.7 0 199 451 345 838
Modem 11.8 0 15 20 602 1151
Cable 13.3 0 446 209 0 0

Average Admission Control
T3 13.2 3 278 295 0 0
DSL 11.7 4 129 247 130 415
Modem 11.8 6.6 4 4 223 224
Cable 13.3 3.6 311 154 0 0

Peak Admission Control
T3 13.2 5.1 113 211 0 0
DSL 11.7 5.7 31 57 0 0
Modem 11.8 7.8 3 3 78 56
Cable 13.3 5 217 91 0 0

experimental topology (specifically, the modem link versus the
T3 link). In practice, each infrastructure node would select
from a small set of resource requirement estimates based on
the range in which its access bandwidth falls.

B. The Case for Admission Control

We first compare the peak and average methods with the
case when no admission control is employed. The mea-
surement request workload is created by taking 25 random
periodic measurement requests and scheduling them across the
DSL, modem, cable, and T3 measurement hosts. The same
set of workloads was repeated for each admission control
method. Results are the average of 10 such workloads. Each
experiment runs for approximately 45 minutes (2700 seconds).
We measure the traffic created by measurement tools under this
scenario, and compute violations of the specified bounds and
the measurements admitted.

Table II gives the results. All bandwidth values (bwin and
bwout) are in kbps, and represent the average bandwidth
utilized at a measurement node over the course of the entire
experiment. The “Requested” and “Failed” columns represent
the absolute number of measurement requests involving a
given host, and the number of those which were not admitted,
respectively. The Vin and Vout columns represent the number
of seconds when the inbound or outbound load bounds,
respectively, were violated.

We note that the modem host suffers a significantly larger
number of resource bound violations than the other hosts. This
is due to the extreme constraint imposed by the modem’s
bandwidth capability, causing even minor estimation errors to
lead to oversubscription of bandwidth.

As expected, the average bandwidth usage and number of
load bound violations increases steadily with the workload for
the scenarios using no admission control [1]. With the average
and peak admission control methods, however, the average
bandwidth usage peaks very close to this 25-measurement
workload, and violations likewise level off. The average band-
width estimation scheme, by its very nature, allows some
violations to occur. However, these violations represent only

5

a relatively small portion of the 2700 second duration of
the experiment. Hence, the average method trades off strict
adherence to the load invariant, for satisfying additional mea-
surement requests.

C. Estimation Accuracy for a Typical Workload

The goal of our next series of experiments is to investigate
the accuracy of using the peak and average bandwidth esti-
mations as discussed in Section IV-C in more depth, using
a typical request workload. To formulate a typical measure-
ment request workload, we create three “roles” for the end
points. The hosts are divided among those participating in
an end-system multicast video stream, online gaming, and a
system administrator measuring end-to-end capacity. Within
each group, the selected measurements are requested in a
complete mesh. The end-system multicast hosts require latency
information every 10 seconds and available bandwidth infor-
mation every 15 minutes, provided by ping and pathChirp,
respectively. These hosts are located on the T3, T1, and
cable networks. The online gamers are on the modem and
T1 networks. They require latency information (via ping)
every 10 seconds, and loss information (using Tulip) every
5 minutes. Network capacity is measured using Pathrate, which
is invoked once between the T3 and DSL networks. All
requests are scheduled starting at time 0 and complete all
repetitions within 45 minutes.

Fig. 2 depicts the measured outbound traffic on the mea-
surement host behind the T3 line, named “host5” in Fig. 1.
The plot also shows our estimates of the traffic on this node.
For the peak scheme, we find that the estimated bandwidth
usage is much higher than the actual bandwidth seen. The peak
scheme pessimistically assumes that the moment of maximum
utilization of each overlapping measurement will occur at the
same time, yielding a peak bandwidth utilization which seldom
occurs in actual usage. Based on these results, it appears
that the average bandwidth estimate is better suited for a
measurement service that schedules events at arbitrary times
in the future. This is consistent with the results summarized
in Table II.

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

B
an

dw
id

th
 (k

bp
s)

Time (s)

Measured
Average

Peak

Fig. 2. Outbound traffic seen emanating from host5, as well as the estimates
using the average and peak bandwidth schemes.

D. The Impact of Changing Network Conditions

Our next series of experiments validate that measurement
admission control is viable even under some degree of chang-

ing network conditions.
Cross Traffic. Fig. 3 repeats the same experiment with

results depicted in Fig. 2, but with the difference that we
inject cross traffic. We use the average method for the estimate
shown in the plot. Three types of cross traffic were generated,
sourced and sinked at the various non-measurement hosts.
These types were: HTTP sessions generated by WebStone 2.5,
back-to-back bulk TCP transfers of 2048 writes of length 8192
(sourced and sinked with the “ttcp” tool), and variable bit rate
“Ogg Vorbis” streams of average bandwidth ranging between
120 and 125 kbps. Each WebStone session was configured to
behave as a single browsing client, fetching files ranging in
size from 0.5 kB to 5 MB. The specific configuration of cross
traffic can be found in [1].

We find little difference between the measured traffic in
Fig. 3 and 2. The largest discrepancy between the measured
and estimated values in Fig. 3 is during the final burst period
of Pathrate: the burst is delayed from about time 650 seconds
to around 800-900 seconds, and is shorter in duration. Overall,
we find that the admission control methods are robust to
changes in cross traffic.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 500 1000 1500 2000 2500

B
an

dw
id

th
 (k

bp
s)

Time (s)

Measured
Estimated

Fig. 3. Outbound traffic seen on host5 for the same measurement set as
Fig. 2, but with cross traffic in the network.

End-to-end Delay. To quantify the effects of end-to-end
latency on admission control, we conduct a series of experi-
ments with 100 randomly-selected requests, using the average
estimator. We vary the delay on each of the “arms” of the
star topology (the link between the central ring and the router
heading each cluster of hosts) in 5 ms increments from 5 ms to
100 ms, for total end-to-end one-way delays of up to 200+ ms.
We investigated correlations between these expanding delays
and changes in load bound violations, but found no clear
impact.

E. Estimation Timescales

We now evaluate the impact of the timescale over which
measurement tools are characterized, and admission tests are
conducted. We consider both the average and peak bandwidth
admission methods, where the bandwidth is calculated over
intervals of 100 ms, 1, 2, and 4 seconds. Table III shows
the percentage of accepted measurements. We again utilize
a workload of 25 randomly-generated requests in this set of
experiments, with the results being the average of 10 such
workloads. The experiment setup and workloads correspond to

6

TABLE III

REQUEST SUCCESS RATES WITH VARYING TIMESCALES.

Timescale Average Peak

100 ms 66% 35.2%
1 s 64.4% 47.2%
2 s 66% 49.6%
4 s 66% 56%

TABLE IV

THE EFFECTS OF pm > 0 ON MEASUREMENT SCHEDULING. RESULTS

SHOWN ARE THE AVERAGE OF TEN EXPERIMENTS.

Method pm Requested Invoked % Saved

0 2991 2831 5.4%Average
max 3068 2485 19.1%
0 3118 2961 5.1%Peak
max 3121 2513 19.5%

those used for the experiments in Table II. The table illustrates
that the average admission control method, as expected, is
robust to the timescale over which estimations are made. Load
bound violations are also consistent, with variations between
estimation timescales being smaller on average than variations
between different experiments due to their random workloads.
For example, for the peak admission control method, the
coefficient of variation between timescales is 0.16, while
the coefficient of variation between the random workloads
for the 1 second timescale is 0.44. The peak method varies
in its acceptance rate, with the shorter intervals admitting
fewer requests. Violations under the peak method vary cor-
respondingly, with longer intervals exhibiting more violations.
The difference among the two methods can be attributed to
the highly bursty nature of measurement tool traffic. The
average bandwidth admission method admits a larger number
of expensive requests (Pathrate) early on. In contrast, the peak
bandwidth admission method “fills in” gaps in its schedule
with less expensive requests (Tulip).

F. Eliminating Redundancy

Finally, we evaluate the potential savings of measurement
tool invocations when pm > 0. Using the measurement request
workload from Table II, we conduct experiments with pm = 0
and with the maximum pm for each individual measurement
request.4 Table IV summarizes the results. The “Requested”
column indicates the number of individual measurement tool
invocations successfully admitted by the system, and the
“Invoked” column represents the number of actual invocations
executed. The percentage of invocations saved out of the
number requested is listed in the “% Saved” column. As this
table illustrates, with a sufficiently dense set of measurement
requests, a significant number of measurement invocations can
be saved by allowing flexibility in scheduling. This allows for
a moderate number of additional measurement requests to be
served.

4Note that any pm ≥ 1
2× the period of a measurement request allows two

measurement requests to be served from a single measurement tool invocation.

VI. CONCLUSIONS

We have proposed an open active measurement service,
and explored methods for scheduling measurements based on
resource consumption. We find that the characterization of
measurement tool resource requirements is very important, and
that due to the extremely bursty nature of measurement traffic,
peak bandwidth utilization is an over-conservative metric. We
have demonstrated that average bandwidth utilization is a more
accurate metric, but that even this may require refinement
in some cases, to account for greatly varying utilization
during different phases of execution of tools like Pathrate.
A characterization scheme which captures the essence of
this burstiness in a more explicit manner may allow better
admission decisions to be made, and is the subject of our
future work.

REFERENCES

[1] E. Blanton, S. Fahmy, and S. Banerjee. A framework for an on-
demand measurement service. Technical report, Purdue University, 2008.
http://www.cs.purdue.edu/homes/fahmy/reports/measurement.pdf.

[2] P. Calyam, C.-G. Lee, E. Ekici, M. Haffner, and N. Howes. Orches-
tration of network-wide active measurements for supporting distributed
computing applications. IEEE Transactions on Computers, 56(12), Dec
2007.

[3] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system multicast.
In Proc. of SIGMETRICS, June 2000.

[4] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the second-
generation onion router. In Proc. of USENIX Security Symposium, 2004.

[5] C. Dovrolis and P. Ramanathan. Packet dispersion techniques and
capacity estimation. IEEE/ACM Transactions on Networking, December
2004.

[6] N. Hu and P. Steenkiste. Exploiting Internet route sharing for large scale
available bandwidth estimation. In Proc. of IMC, 2005.

[7] G. Kessler and S. Shepard. A primer on Internet and TCP/IP tools and
utilities. RFC 2151, June 1997.

[8] M. S. Kim, T. Kim, Y. J. Shin, S. S. Lam, and E. J. Powers. A
wavelet-based approach to detect shared congestion. In Proc. of ACM
SIGCOMM, 2004.

[9] E. W. Knightly and N. B. Shroff. Admission control for statistical QoS:
Theory and practice. IEEE Network, 13, March 1999.

[10] J. Ledlie, P. Pietzuch, M. Mitzenmacher, and M. Seltzer. Network
coordinates in the wild. In Proc. of NSDI, April 2007.

[11] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani. iPlane: An information plane for
distributed services. In Proc. of OSDI, pages 367–380, November 2006.

[12] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level
Internet path diagnosis. In Proc. of SOSP, October 2003.

[13] A. Nakao, L. Peterson, and A. Bavier. A routing underlay for overlay
networks. In Proc. of SIGCOMM, pages 11–18, 2003.

[14] V. J. Ribiero, R. H. Reidi, R. G. Baraniuk, J. Navratil, and L. Cottrell.
pathchirp: Efficient available bandwidth estimation for network paths.
In Proc. of PAM, 2003.

[15] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A public internet
measurement facility. In Proc. of USITS, 2002.

[16] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar.
An integrated experimental environment for distributed systems and
networks. In Proc. of the Fifth Symposium on Operating Systems
Design and Implementation, pages 255–270, Boston, MA, December
2002. USENIX Association.

[17] P. Yalagandula, P. Sharma, S. Banerjee, S. Basu, and S.-J. Lee. s3: A
scalable sensing service for monitoring large networked systems. In
Proc. of INM, September 2006.

[18] O. Younis and S. Fahmy. Flowmate: Scalable on-line flow clustering.
IEEE/ACM Transactions on Networking, 13(2), April 2005.

