
1

On TCP Reaction to Explicit Congestion Notification

Minseok Kwon and Sonia Fahmy
Department of Computer Sciences, Purdue University

250 N. University St.
West Lafayette, IN 47907–2066, USA

Tel: +1 (765) 494-6183, Fax: +1 (765) 494-0739
e-mail:fkwonm,fahmyg@cs.purdue.edu

Abstract

We investigate the behavior of a new response strategy to TCP Explicit Congestion Notification (ECN). The new
strategy is more aggressive in the short term, but preserves TCP long term behavior– without modifying the router
ECN marking rate. A more aggressive short term behavior gives incentives for hosts to become ECN-compliant. ECN
serves as an early warning sign in this case. Our analysis demonstrates the effectiveness of the new TCP ECN behavior.
Simulation results with short/long lived FTP, UDP and HTTP connections, multiple bottleneck configurations, and
various TCP flavors and parameters, demonstrate higher throughput and reduced oscillations with the new response
strategy.

Keywords: TCP congestion control, explicit congestion notification (ECN), random early detection (RED), active
queue management, additive increase multiplicative decrease (AIMD)

2

I. INTRODUCTION

Congestion avoidance mechanisms have been a topic of active research since the early 1980s [19], [8], [5], [17],
[30]. In the TCP congestion avoidance algorithm, the congestion window is linearly increased by one segment (additive
increase) every round-trip time (RTT), and is halved (multiplicative decrease) in response to a single packet drop.
Hence, the increase increment is 1 and the decrease fraction is1

2 , or what we refer to as AIMD (�,�)=AIMD (1, 0.5).
Recently, the relationship between the two parameters� and� has been studied in [13], [37].

Active Queue Management (AQM) at network routers has also been extensively studied in the last few years. Floyd
and Jacobson proposed the Random Early Detection (RED) scheme for Internet routers in 1993 [15]. RED drops
packets probabilistically when the average buffer occupancy lies between two thresholds. RED drops all packets when
the maximum threshold is exceeded. Significant research has focused on refining such intelligent packet dropping or
marking mechanisms [28], [32], [3], [25]. The Explicit Congestion Notification (ECN) option entails that RED routers
mark (instead of drop) packets when buffer occupancy lies between the two thresholds [10]. Although the source
response to ECN should match its response to packet drop, Internet standards indicate that this matching requirement
is a long term one. This allows the possibility of less aggressive reduction in the short term. We have explored this
idea in [26], and we further analyze it in this paper.

We react to the receipt of ECN with a relatively small window decrease, but increase less aggressively for a sub-
sequent period of time. We reset the increase and decrease parameters back to (1, 0.5) in the event of retransmission
timeouts or duplicate acknowledgments (ACKs) following the ECN decrease. The smooth response to ECN is con-
sistent with the motivation behind ECN: to serve as an early warning for congestion. The improved performance we
will demonstrate in this paper gives incentives for hosts to become ECN-compliant. The AIMD parameters for ECN
are selected to preserve the long term TCP behavior, without requiring modifications to the router marking rate. The
window size and sending rate do not oscillate as much as they do with ECN with (1, 0.5), thus increasing overall
throughput and reducing delay variance. Note that we investigate different increase and decrease parameters only as a
response to ECN, since (1, 0.5) are standardized for TCP [2]. The precise response to ECN, however, is not dictated
by [34].

The remainder of this paper is organized as follows. Section II gives basic background on TCP congestion control,
active queue management, and explicit congestion indication in the Internet. Section III discusses related work. Sec-
tion IV explains and models our approach. Section V simulates our approach in a number of network configurations
with various parameters. Finally, Section VI summarizes our conclusions and discusses future work.

II. BACKGROUND

We first summarize the TCP congestion control mechanisms, and then discuss active queue management and explicit
congestion notification.

A. TCP Congestion Control

A TCP connection begins in the “slow start” phase [19]. The sender initially sets its congestion window,cwnd,
to 1 or 2 segments [2]. For each ACK received,cwnd is increased by one segment. This results in an exponential
increase ofcwndover round trips. TCP uses the slow start threshold,ssthresh, to indicate the window size appropriate
for the current network load. The slow start phase continues as long ascwnd is less thanssthresh. As soon as it
exceedsssthresh, TCP goes into “congestion avoidance.” In congestion avoidance, for each ACK received,cwnd is
increased by 1/cwndsegments, which is approximately equivalent to increasingcwndby one segment every round
trip (an additive increase). The TCP sender assumes network congestion when it times out waiting for an ACK, or
when it receives 3 duplicate ACKs.ssthreshis halved (a multiplicative decrease). The Additive Increase Multiplicative
Decrease (AIMD) system has been shown to be stable under certain assumptions [6], [20], [21].

B. Random Early Detection

RED maintains a long term average of the queue length (buffer occupancy) of a router using a low-pass filter. If
this average queue length falls below a certain minimum threshold, all packets are admitted into the queue. If the
average queue length exceeds a certain maximum threshold, all incoming packets are dropped. When the queue length
lies between the minimum and maximum thresholds, incoming packets are dropped/marked with a linearly increasing

ON TCP REACTION TO EXPLICIT CONGESTION NOTIFICATION 3

probability up to a maximum probability value,pmax. RED includes an option known as the “gentle” variant. With
gentle RED, the packet drop/mark probability varies linearly frompmax to 1 as the average queue size varies from
thmax to twicethmax.

C. The ECN Mechanism

The Explicit Congestion Notification (ECN) option [10], [34] allows active queue management mechanisms such
as RED to probabilistically mark (rather than drop) packets, when the average queue length lies between the two
thresholds. This is only possible if both the sender and receiver are ECN-capable (determined at connection setup
time). In this case, the receiver echoes back to the sender the fact that some of its packets were marked. The sender
thus determines that the network is approaching a congested state. The sender should reduce its congestion window
as if the packet was dropped, but need not reduce it drastically (e.g., set it to one or two segments) [34]. The sender
should only react once per RTT to congestion indications. With ECN, both gentle RED and vanilla RED mark (not
drop) packets when the average queue size lies between the two thresholds. Gentle RED still drops less aggressively
than vanilla RED between the maximum threshold and twice the maximum threshold. The primary advantage of ECN
is that TCP does not have to wait for a timeout and some packet drops can be avoided.

III. R ELATED WORK

A number of studies have investigated RED and ECN performance. Variations of RED include flow RED [28],
stabilizing RED [32], and BLUE [1]. The effect of RED parameter values on web traffic is studied in [7], and the
effect of marking from the front of the queue is investigated in [29]. A performance study of ECN with real traffic
is presented in [35]. Ott [31] investigates ECN with various response algorithms. The study considers environments
where non-ECN compatibility is not required, and the marking rate can be increased. Such integrated solutions that
modify router marking also include REM [3], AVQ [25] and the PI controller [18].

Design of AIMD algorithms has also been an active research area. The additive increase parameter� and multi-
plicative decrease parameter� have been studied since the 1980s [6], [20]. Recently, Yang and Lam [37] derived the
relationship between the two parameters necessary for “TCP-friendliness” (compatibility with TCP). They recommend
0.875 (cwnd = 0:875� cwnd) for multiplicative decrease, and 0.3125 for additive increase, as a response to loss (not
as a response to ECN). In [14], [13], the authors propose equation-based congestion control (based on TCP models
in [33]), and compare it to TCP using a number of AIMD parameters. The authors use a slightly different relationship
between the additive increase and multiplicative decrease parameters from that in [37]: they use� = 3(1��)

1+� which
gives smaller� values than those in [37], for the range of� values we are interested in. As in [37], the authors of [13]
consider AIMD parameters in general, and not in the context of ECN as we do in this paper. Another class of AIMD
algorithms, binomial algorithms, is studied in [4] for streaming applications. XCP generalizes ECN to achieve efficient
and stable congestion control for high bandwidth-delay product networks [22].

One study that investigates the response to ECN without changing the marking rate is [16]. The authors propose
an algorithm to react to ECN, and, at the same time, remove TCP’s bias to short RTT connections. They modify
the window increase slope to be proportional toRTT 2 (hence therate increase slope is proportional toRTT). The
main problem with their approach is that RTT bias elimination should be independent of ECN marking. Further, their
algorithm is not TCP-friendly, and is highly sensitive to the RED maximum drop probability. We have addressed these
issues in [26], and we analyze our proposed ECN response strategy in this paper.

IV. PARAM ETERIZED ECN RESPONSE

In this section, we discuss our ECN response strategy, and model it in conjunction with AQM routers such as RED.

A. New ECN Response

The primary objective of our strategy is to modify ECN response, in order to increase throughput, reduce rate
fluctuations, and reduce delay variance. The pseudo-code is outlined in Figure 1. We use two parameters�ECN
and�ECN to denote the required increase and decrease parameters, respectively. Our performance study (Section V)
indicates that (0.2,0.875) are good choices for (�ECN ,�ECN). We reduce the congestion window and slow start

4

1) When an ACK with ECN is received:
Reducessthreshand cwndby �ECN
SetIncreaseSlopeto �ECN

2) On a timeout or 3 duplicate ACKs:
Reducessthreshand cwndnormally
ResetIncreaseSlopeto 1

3) Congestion avoidance:
cwnd= cwnd+ IncreaseSlope

cwnd

Fig. 1. Pseudo-code for parameterized response to ECN marks

threshold by�ECN in response to an ECN-marked packet. We then use a modified increase slopeIncreaseSlopein the
ensuing congestion avoidance phase. The increase slope is set to�ECN on the receipt of ECN-marked packets, and
reset to 1 on a timeout or receipt of 3 duplicate ACKs. Note that congestion window increases and decreases follow
TCP for all congestion indications other than ECN. Thus,�ECN need not be reset with timeouts or 3 duplicate ACKs.
The essential idea is to match the use of the increase parameter with the corresponding decrease parameter that was
previously applied. This less aggressive window decrease on ECN is more consistent with the use of ECN as an early
warning sign. It also gives incentives for hosts to become ECN-capable. We call this approach ECN(�; �).

B. ECN(�; �) Sending Rate

We extend the TCP sending rate models developed in [27], [33] to include the new ECN response ECN(�ECN ,�ECN).
We employ the same assumptions as Padhyeet al. [33]. We have selected Padhye’s model because of its simplicity,
and the fact that it is one of the best available approximations for TCP-Reno performance. Observe, however, that the
model has several weaknesses. First, the model does not include the TCP fast recovery algorithm. Second, the model
assumes a simple loss model, where congestion indications in one round are independent of congestion indications in
other rounds. A round starts with packet transmissions corresponding to the current TCP congestion window size, and
ends with the first ACK for one of the packets sent. Third, RTT is independent of congestion window size. Thus, the
duration of a round is equal to one RTT in this model.

YECN

Y(1,0.5)

ECNY
(1,0.5)Y

tTD TO

Z(TO)

W

TDP

ECN ECN

ECNP ECNP

W1

βW1

W2
W3

W3/2

Fig. 2. Evolution of the window size with (�ECN ,�ECN) as ECN response parameters

With the new ECN behavior, there are three congestion indication types: ECN, TD (Triple-Duplicate ACKs) and
TO (Time-Outs). Figure 2 depicts a sample evolution of the congestion window size using (1, 0.5) for triple duplicate
acknowledgments, and (�ECN ,�ECN) for ECN. We define a TDP as a period starting from receipt of a Triple-Duplicate
ACK (TD) and lasting until the next congestion indication. Similarly, we define an ECNP as a period starting from
ECN and lasting until the next congestion indication. A timeout sequence is defined as a period starting from a timeout
and lasting until the sender receives an acknowledgment. LetE[Y(1;0:5)] andE[YECN] be the expected number of
packets sent during a TDP and an ECNP, respectively. Similarly,E[A(1;0:5)] andE[AECN] are the mean durations of
the TDP and ECNP, respectively. We also defineE[W(1;0:5)] andE[WECN] as the expected window size at the end of
TDP and ECNP, respectively.

We introduce the term� to denote the fraction of ECN indications among the sum of ECNs and TDs. More precisely,
� = num(ECN)

num(TD)+num(ECN) , wherenum(x) denotes the number of congestion indications using methodx. Note that
ECNs are only counted once per round-trip time. Letp be the total congestion indication probability, defined as
p = num(ECN)+num(TD)+num(TO)

M
, whereM is the total number of packets sent. We also definept =

num(TD)
Mt

and

ON TCP REACTION TO EXPLICIT CONGESTION NOTIFICATION 5

pe = num(ECN)
Me

to denote the congestion indication probabilities using TD and ECN, respectively. Here,Mt is the
total number of packets sent during all TDPs, andMe is the total number of packets sent during all ECNPs.

As in [33], let b be the number of packets acknowledged by a single ACK. LetQ be the probability that a loss
indication ending a TDP is a timeout. LetE[R] denote the packets sent during a timeout sequence, andE[ZTO]
denote the duration of the timeout sequence. BothE[R] andE[ZTO] can be computed according to the probability
distribution of the number of timeouts in a timeout sequence. According to [33],E[R] = 1

1�p andE[ZTO] = T0
f(p)
1�p

whereT0 is the TCP timeout period, andf(p) = 1 + p+ 2p2 + 4p3 + 8p4 + 16p5 + 32p6. Also,Q � min(1; 3
E[W]),

whereE[W] in our case becomes(1 � �)E[W(1;0:5)] + �E[WECN]. The sending rateB for the ECN(�,�) strategy
can thus be modeled as:

B =
(1� �)E[Y(1;0:5)] + �E[YECN] +Q�E[R]

(1� �)E[A(1;0:5)] + �E[AECN] +Q�E[ZTO]
(1)

1
2
3 6

5
4

.
Wi−1β

α

ECNPib

Packets

Number of
rounds

µi

(ECN)

Xi

Wi

δi

Fig. 3. Packets sent during an ECNP

We first computeE[YECN] andE[AECN]. As illustrated in Figure 3,Yi = Æi +Wi � 1 packets are sent during the
ith ECNP. Here,Yi is the number of packets sent in theith ECNP,Æi is the first ECN-marked packet, andWi is the
window size at the end of theith ECNP. It follows that:

E[YECN] = E[Æ] +E[WECN]� 1 (2)

E[Æ] can be computed as:

E[Æ] =
1X
k=1

(1� pe)
k�1pek =

1

pe
(3)

since the probability thatÆi = k denotes the probability that the firstk� 1 packets are successfully acknowledged and
thekth packet is ECN marked. This is equivalent to(1� pe)

k�1pe. Therefore,E[YECN] can be rewritten as:

E[YECN] =
1� pe
pe

+E[WECN] (4)

The window size increases linearly between�Wi�1 andWi, with slope�
b

(we remove theECN subscript of� and�
for readability), for theith ECNP and the(i � 1)st TDP or ECNP (Figures 2 and 3). LetXi denote the round when
congestion indication is received. Thus, we have:

Wi = �Wi�1 +
�Xi

b
; i = 1; 2; � � � (5)

SinceYi packets are transmitted during ECNPi,

Yi =

�Xi

b
�1X

k=0

(�Wi�1 + k) b+ �i (6)

where�i is the number of packets sent in the last round (see Figure 3). From equations (5) and (6), we have:

E[WECN] =
�

b(1� �)
E[XECN] (7)

6

E[YECN] =
�E[XECN]

2
((1 + �)E[WECN]� 1) +

E[WECN]

2
(8)

whereE[�] = E[WECN]
2 , assuming that�i is uniformly distributed between 1 andWi. From equations (4), (7) and (8),

E[WECN], E[YECN] andE[XECN] can be computed as:

E[WECN] =
b(1� �) + 1 +

q
(b(1� �) + 1)2 + 8b(1��2)(1�pe)

pe

2b(1� �2)
(9)

E[YECN] =
1� pe
pe

+E[WECN] (10)

E[XECN] =
b(1� �)

�
E[WECN] (11)

The duration of theith ECNP isAi =
PXi+1

j=1 rij, whererij is the RTT of thejth round of theith ECNP. It follows
that:

E[AECN] = E[r](E[XECN] + 1) = RTT (E[XECN] + 1)

= RTT

�
b(1� �)

�
E[WECN] + 1

�
(12)

E[W(1;0:5)],E[Y(1;0:5)] andE[A(1;0:5)] can be derived using(�; �) = (1; 0:5) forE[WECN],E[YECN] andE[AECN],
respectively, andpt for pe. Hence, we have:

E[W(1;0:5)] =
2 + b

3b
+

s
8(1� pt)

3bpt
+

�
2 + b

3b

�2
(13)

E[Y(1;0:5)] =
1� pt
pt

+E[W(1;0:5)] (14)

E[A(1;0:5)] = RTT (E[W(1;0:5)] + 1) (15)

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

T
C

P
 s

en
di

ng
 r

at
e

(p
ac

ke
ts

/s
ec

)

Fraction of ECN

(5%,6%,4%)
(1%,2%,0.5%)

(1%,1.5%,0.5%)
(1%,2%,0.1%)

(0.5%,1%,0.1%)

(a) (�ECN ,�ECN)=(0.2,0.875)

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

T
C

P
 s

en
di

ng
 r

at
e

(p
ac

ke
ts

/s
ec

)

Fraction of ECN

(5%,6%,4%)
(1%,2%,0.5%)

(1%,1.5%,0.5%)
(1%,2%,0.1%)

(0.5%,1%,0.1%)

(b) (�ECN ,�ECN)=(0.8,0.5789)

Fig. 4. TCP sending rate using our new ECN response (�ECN , �ECN), according to the model in equation (1)

In Figures 4 and 5, we use equation (1) to plot the TCP sending rate with the new ECN response (�ECN , �ECN) for
different� values (� is the fraction of ECN among the sum of ECNs and TDs). We useRTT = 0:2 seconds,b = 2,
andT0 = 3:0 seconds. Figure 4 shows the TCP sending rates for differentp, pt, pe, and� values, with two fixed
(�ECN , �ECN) values. In the figure, (5%,6%,4%) meansp = 5%, pt = 6%, andpe = 4%. The figure demonstrates
that the TCP sending rate increases as� increases forpe � p � pt. As the probabilitiesp andpe become smaller,
the increase is more pronounced (e.g., (1%,2%,0:1%) and (0:5%,1%,0:1%)). Our simulations in Section V-B show
that pt � p � pe rarely occurs. Figure 5 depicts the TCP sending rates for different (�ECN , �ECN) and� values,
for (p = 1%, pt = 1%, pe = 0:1%) and (p = 0:5%, pt = 1%, pe = 0:1%). In both cases, the TCP sending rate

ON TCP REACTION TO EXPLICIT CONGESTION NOTIFICATION 7

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

T
C

P
 s

en
di

ng
 r

at
e

(p
ac

ke
ts

/s
ec

)

Fraction of ECN

(1,0.5)
(0.8,0.5789)
(0.2,0.875)

(0.1,0.9355)

(a) Congestion indication probabilityp = 1%,
pt = 1%, pe = 0:1%

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

T
C

P
 s

en
di

ng
 r

at
e

(p
ac

ke
ts

/s
ec

)

Fraction of ECN

(1,0.5)
(0.8,0.5789)
(0.2,0.875)

(0.1,0.9355)

(b) Congestion indication probabilityp =

0:5%, pt = 1%, pe = 0:1%

Fig. 5. TCP sending rate using our new ECN response (�ECN , �ECN), according to the model in equation (1)

increases as� increases. We observe that the TCP sending rates with(1; 0:5) and(0:8; 0:5789) are larger than the TCP
sending rates with(0:2; 0:875) and(0:1; 0:9355). This indicates that TCP-ECN with(1; 0:5) and with(0:8; 0:5789)
are more aggressive than TCP-ECN with(0:2; 0:875) and (0:1; 0:9355). These results show that early congestion
indication with our new ECN response (�ECN , �ECN) increases performance. In addition, this model may be used
for equation-based ECN(�,�) congestion control since the values ofRTT , �, p, pe, andpt can be easily computed.

C. RED-ECN as a Feedback Control System

We modeln ECN(�ECN , �ECN) flows sharing a single RED-ECN router, following a similar methodology to that
in [9]. Our goal is to determine the equilibrium point(ps; qs), whereps is the packet drop/mark probability, andqs is
the average queue length in steady state. Note that the model in [9] makes several simplifying assumptions. The model
considersn TCP-Reno flows sharing onlyonebottleneck link where packets may be discarded. The TCP flows are
established from senders to receivers, while the opposite direction only carries ACKs. The number of flowsn remains
constant for a long period of time, and all flows have long durations. All flows are also assumed to have the same
average round-trip time.

Pmax
P

Qavg

DropMark

MINth

MAXth

1

2MAXth

q(p)

(Ps, Qs)

H(q)

Fig. 6. Equilibrium point of TCP(�ECN ,�ECN) and RED-ECN

We extend the model in [9] to model ECN(�; �) at the sender and RED-ECN at the router. RED serves as a feedback
control system in this context. Unlike previous work, we consider a RED-ECN router that can both mark and drop in
different ranges of average queue length (as the ECN proposal specifies).

Assume the ECN(�ECN , �ECN) flows have the same average round-trip timeRTT , such thatRTT = RTT0+q=c,
whereRTT0 is the propagation time that excludes queuing delay, andq=c represents the queuing delay.c is the
bottleneck link capacity andq is the average queue size.

The ECN(�ECN , �ECN) TCP sending rate from Section IV-B is used as the bandwidth,B̂, in two different modes,
marking and dropping, as a function ofp:

B̂(RTT; p; �) =

(
B(RTT; p; 1) 0 < p � pmax

B(RTT; p; 0) p > pmax
(16)

8

Assume that the link bandwidth is fully utilized:

B̂(RTT0 + q=c; p; �) = c=n (17)

At the router, we use RED-ECN,H(q), as a feedback control function in the “gentle” RED mode, defined in Section II-
C. Qsize denotes the maximum queue size. Note that RED-ECN marks packets whenqmin � q < qmax, but drops
packets whenq � qmax:

H(q) =

8>>><
>>>:

0 0 � q < qmin
q�qmin

qmax�qmin
pmax qmin � q < qmax

1�pmax
qmax

(q � qmax) + pmax qmax � q < 2qmax

1 2qmax � q � Qsize

(18)

Finally, we obtain two relations betweenp andq. One is from the inverse function of̂B in equation (17), and the other
one is from equation (18): (

q = c(B̂�1(p; c=n)�RTT0)
p = H(q)

(19)

The equilibrium point(ps; qs) obtained from the above equations is illustrated in Figure 6. Note that thex-axis of the
graph is divided into two parts, corresponding to marking and dropping.

V. PERFORMANCEANALYSIS

In this section, we validate our analysis, and we evaluate the performance of the new ECN response strategy. We
first discuss the simulation setup and the performance metrics, and then analyze the results.

A. Simulation Setup

We use the network simulator ns-2.1b6 [36] in this study. The configuration for the first set of simulations is the
WAN configuration depicted in Figure 7(a). We run three different simulations with different bottleneck capacities:
1, 5 and 10 Mbps. We simulate 20 unlimited FTP TCP connections with 5 sessions at each sending node. The total
simulation time is 100 seconds.

R1 R2

40 ms

10ms 10ms

10ms

1Mbps

100Mbps100Mbps

10ms

10ms 10ms

10ms
10ms (5Mbps, 10Mbps)

(a) Simple wide area network configuration
(WAN)

DD4D 2D
B(3)

G(7)C(3)A(3)H(2)F(1)E(2)D(1)

G(7)C(3)H(2)B(1)F(1)A(1)

A(1)
D

Mbps
5

Mbps
15

Mbps
15

Mbps
5

Mbps
10

Mbps
5

R7R6R5R4R2R1 R3
2D

B(1)

A(1)

E(2)D(1)B(1)

(b) The Generic Fairness Configuration-2 (GFC-2)

Fig. 7. Topologies used in the simulations

We also use the Generic Fairness Configuration-2 (GFC-2), illustrated in Figure 7(b). GFC-2 contains multiple
bottlenecks, and connections with different round-trip times. We use D = 5 ms. There are 22 unlimited bulk-data FTP
TCP connections in each direction, 6 UDP connections (modeled as 0.5 Mbps CBR (Constant Bit Rate) flows), and
22 HTTP traffic flows. The HTTP traffic is generated using a Poisson Process where the inter-object, inter-page and
inter-session times follow an exponential distribution. The simulation time is 60 seconds.

We use a timer granularity of 100 ms and a segment size of 1000 bytes. All routers in our simulations use gentle
RED with packet marking for ECN [12]. As previously explained, with gentle RED, the packet drop probability varies
linearly frompmax to 1 as the average queue size varies fromthmax to twice thmax. The buffer size is 168 KB. The
thmin value is 1

12� the buffer size, and thethmax value is1
4� the buffer size (3 � thmin), as recommended by RED

ON TCP REACTION TO EXPLICIT CONGESTION NOTIFICATION 9

designers [12]. We run 5 simulations and average them. (To ensure comparability, we fix the random number generator
seed for each run when we compare different approaches.)

We use the following performance metrics: (1)Goodput (Mbps): Total data receivedat the application levelby
all receivers during the simulation time, divided by the simulation time; (2)Packet Drop Percentage:The ratio of
dropped packets to the total number of packets sent during the simulation time (multiplied by 100); and (3)Response
Time (seconds):The (mean and maximum) time between the instant when the request of an HTTP client is triggered,
and the instant when the last requested page from a server arrives at that client.

B. Results and Discussion

We first validate the throughput and feedback models discussed in previous sections. In Figure 8, we validate
the throughput model for various numbers of flows on the WAN configuration. Thex-axis denotes values from the
simulations, while they-axis denotes predicted values from our throughput model. The closer the points are to the
y = x line, the more accurate the model is. The figure shows that our model predicts throughput values close to the
simulated ones, especially when the bottleneck bandwidth is 1 Mbps and 5 Mbps.

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800

P
re

di
ct

ed
 T

hr
ou

gh
pu

t (
kb

ps
)

Measured Throughput (kbps)

Fig. 8. Predicted versus simulated throughput values

Figure 9 depicts the fraction of packets sent during ECNPs among the packets sent during the entire simulation, for
all 20 flows. In the figure, all the flows in the configurations with 5 and 10 Mbps bottleneck links send more than
90% of their packets during ECNPs. All the flows in the configuration with 1 Mbps bottleneck link send more than
80% packets during ECNPs. This result indicates that the majority of packets are sent during ECNPs. The congestion
indication probabilitiesp, pt, andpe for each flow in the simulation with a 10 Mbps bottleneck are plotted in Figure 10.
The figure validates that our choices ofp, pt andpe (used in Figures 4 and 5) are indeed reasonable (pe < p� pt).

0

20

40

60

80

100

0 5 10 15 20

F
ra

ct
io

n
of

 p
ac

ke
ts

 s
en

t d
ur

in
g

E
C

N
P

 (
%

)

Flow

bottleneck - 1 Mbps
bottleneck - 5 Mbps

bottleneck - 10 Mbps

Fig. 9. Fraction of packets sent during ECNPs among all packets sent during the simulation period for all 20 flows

We also compare the steady-state equilibrium points(ps; qs) acquired from our model with simulation measure-
ments. Figure 11(a) depicts the steady-state equilibrium point(ps; qs) predicted by the model. The predictedq and
p = H(q) from equation (19) intersect at approximately (0.08, 40). The modelp = H(q) uses 14 packets asthmin

on the y-axis, 42 forthmax, and 84 for2 � thmax (2 � thmax is used in “gentle” RED). RED-ECN marks packets if
p < pmax = 0:1, and drops them ifp � pmax = 0:1. Figure 11(b) illustrates that the actual average RED queue size
(from the simulations) lies between 40 and 42 KB. The measured packet mark/drop probability over the entire sim-
ulation is approximately 8% (not shown). This verifies that our model is accurate with an active queue management
scheme such as RED-ECN.

10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12 14 16 18 20

C
on

ge
st

io
n

in
di

ca
tio

n
pr

ob
ab

ili
ty

Flow

P
Pe
Pt

Fig. 10. Congestion indication probabilitiesp, pt, andpe in the simulation for all 20 flows

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(P
ac

ke
ts

)

Marking/Drop Probability P

Model q(p)
Model p=H(q)

(a) Predicted steady-state average queue

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 S

iz
e

(P
ac

ke
ts

)

Time (sec)

Average Queue
Actual Queue

(b) Actual average queue size from simulation

Fig. 11. RED Equilibrium point for (�ECN ,�ECN)

Table I compares the performance of TCP-Reno without ECN, TCP-Reno with ECN, and ECN(�; �) for three
different bottleneck link bandwidths (1, 5 and 10 Mbps) on the WAN configuration. We use�ECN of 0.2 and�ECN
of 0.875 in this set of simulations. From the table, it is clear that ECN(�; �) has higher performance than TCP-Reno
without ECN, and similar performance to TCP-Reno with ECN in terms of goodput and packet drop percentage.

Table II compares the performance of TCP-Reno without ECN, with ECN, and ECN(�; �) for the GFC-2 configu-
ration. Again, we use�ECN of 0.2 and�ECN of 0.875 [13] in this set of simulations. From the table, it is clear that
ECN(�; �) exhibits higher performance than TCP-Reno without ECN or with ECN. ECN(�; �) total goodput (HTTP,
FTP and UDP) is approximately 4 Mbps higher than TCP-Reno without ECN, and approximately 3 Mbps higher than
TCP-Reno with ECN. In addition, ECN(�; �) exhibits the shortest mean response time for HTTP traffic. With respect
to packet drop percentage, ECN(�; �) achieves significant improvement over TCP-Reno without ECN and with ECN
for various traffic types.

1) Responsiveness of ECN(�; �): Although ECN(�; �) achieves higher performance than TCP Reno without ECN
or with ECN as shown above, our less dramatic reduction of congestion window as a response to ECN may cause slow
responsiveness to a sudden surge of traffic. Recently, equation-based congestion control, e.g., TFRC [14], was shown
to adequately respond to congestion due to its self-clocking mechanism [4]. In order to investigate the responsiveness

TABLE I
PERFORMANCE OFECN(�; �)– WAN

Algorithm Total Goodput Packet Drop Percentage
1 Mbps 5 Mbps 10 Mbps 1 Mbps 5 Mbps 10 Mbps

Reno without ECN 0.980 4.988 9.527 8.93 3.63 2.06
Reno with ECN 0.981 4.999 9.920 5.53 0.59 0.39
ECN(�; �) 0.979 4.984 9.942 3.02 0.95 0.53

ON TCP REACTION TO EXPLICIT CONGESTION NOTIFICATION 11

TABLE II
PERFORMANCE OFECN(�;�)– GFC-2

Algorithm HTTP Response Time Goodput Packet Drop Percentage
Mean Max HTTP UDP FTP HTTP UDP FTP Total

Reno without ECN 14.260 50.449 1.509 2.855 38.772 7.187 4.966 0.883 1.637
Reno with ECN 12.194 50.517 0.845 2.830 40.805 7.837 5.797 0.147 1.110
ECN(�; �) 11.481 52.237 2.339 2.881 41.890 4.278 4.146 0.119 0.854

0

0.2

0.4

0.6

0.8

1

15 20 25 30 35 40 45

R
ED

 p
ac

ke
t d

ro
p

pr
ob

ab
ilit

y

Time (sec)

Reno without ECN

(a) TCP-Reno without ECN

0

0.2

0.4

0.6

0.8

1

15 20 25 30 35 40 45

R
ED

 p
ac

ke
t m

ar
k/

dr
op

 p
ro

ba
bi

lit
y

Time (sec)

Reno with ECN

(b) TCP-Reno with ECN

0

0.2

0.4

0.6

0.8

1

15 20 25 30 35 40 45

R
ED

 p
ac

ke
t d

ro
p/

m
ar

k
pr

ob
ab

ilit
y

Time (sec)

ECN(a,b)

(c) ECN(�; �)

Fig. 12. Drop or mark probability in GFC-2 simulation)

of ECN(�; �), we add 10 unlimited bulk-data sessions to the GFC-2 configuration. These additional sessions all start
transmission after 20 seconds of the simulation time, and stop at time 40 seconds (20 seconds before the 60-second
simulation ends). The RED drop probability without ECN, and the mark or drop probability with ECN, at the queues
at the links from R2 and from R3 are shown in Figure 12 for the 3 algorithms (in separate simulation runs). We do not
observe significantly higher values with ECN(�; �) than with ECN during the period of sudden congestion. Table III
indicates that ECN(�; �) outperforms TCP Reno without ECN and with ECN in this scenario as well for (�; �) =
(0.2,0.875).

TABLE III
RESPONSIVENESS OFECN(�; �)– GFC-2

Algorithm HTTP Response Time Goodput Packet Drop Percentage
Mean Max HTTP UDP FTP HTTP UDP FTP Total

Reno without ECN 13.607 49.732 0.615 5.783 35.789 9.635 5.480 1.003 1.804
Reno with ECN 12.082 54.730 0.657 5.958 37.648 8.456 5.918 0.190 1.157
ECN(�; �) 12.841 48.550 1.010 5.805 38.494 6.661 4.627 0.128 0.903

2) Effect of�ECN and�ECN Values: This section explores various pairs of (�ECN , �ECN) values to investigate
their effects on performance. All parameter values other than�ECN and�ECN are set as in the previous experiment.
The (�ECN , �ECN) pairs we use here follow the rule proposed in [13] except for (1, 0.9). We selected (1, 0.9) to
compare values that follow the rule in [13] with a more aggressive (�ECN , �ECN) pair. From table IV, we see that
(0.2, 0.875), (0.4, 0.7647) and (0.8, 0.5789) demonstrate marked goodput improvement over (1, 0.5) (with (0.2, 0.875)
performing best). (�ECN , �ECN) values that follow the TCP-friendliness rule achieve good performance in terms of
goodput as well as HTTP response time. Although (1, 0.9) exhibits competitive performance, its aggressiveness may
be harmful to other TCP connections.

3) TCP-friendliness in Heterogeneous Configurations:To analyze the TCP-friendliness of our approach in het-
erogeneous configurations, we use the simple configuration in Figure 13. In this simulation, we use a 120 KB RED
buffer size. The topology, link delays, and bandwidths are depicted in the figure. The RTTs of the 3 flows TEST1,
TEST2, and TEST3 are the same as flows TCP1, TCP2, and TCP3, respectively. The first set of simulations evaluates
the compatibility with TCP-Reno with ECN support, and the second compares with TCP-Reno without ECN.

12

TABLE IV
EFFECT OF�ECN AND �ECN VALUES– GFC-2

(�ECN , �ECN) HTTP Response Time Goodput Packet Drop Percentage
Mean Max HTTP UDP FTP HTTP UDP FTP Total

(1, 0.5) 12.194 50.517 0.845 2.830 40.805 7.837 5.797 0.147 1.110
(0.8, 0.5789) 11.328 48.538 1.516 2.844 42.195 6.302 5.389 0.137 1.011
(0.4, 0.7647) 10.282 49.643 1.294 2.862 41.604 5.481 4.787 0.113 0.909
(0.2, 0.875) 11.481 52.237 2.339 2.881 41.890 4.278 4.146 0.119 0.854
(1, 0.9) 12.060 52.623 1.665 2.733 42.400 6.664 9.013 0.386 1.773

1ms

10Mbps

14ms

1ms

34ms

14ms

34ms

10Mbps

R1

TEST1

TEST2

TEST3

TCP1

TCP2

TCP3

TCP sources

1ms

TCP sink

Fig. 13. Simple single bottleneck configuration

Each set of simulations consists of two simulations. The first is a mixed simulation where the first three flows
TEST1, TEST2, and TEST3 use ECN(�; �), and the remaining flows TCP1, TCP2, and TCP3 use TCP-Reno. The
second simulation is a homogeneous simulation in which all six flows TEST1-TEST3 and TCP1-TCP3 are TCP-Reno.
We plot the sequence numbers over time for the mixed flows scenario (upper graph (a)) and the all TCP-Reno flows
scenario (lower graph (b)). We compare the two graphs to see how much the ECN(�; �) flows affect co-existing
TCP-Reno flows TCP1-TCP3. This verifies whether TCP-friendliness is preserved.

Figure 14 shows that TEST1, TEST2, and TEST3, which use our new ECN response strategy, do not significantly
affect the other three flows TCP1, TCP2, and TCP3, which use TCP-Reno with ECN support. Comparing the upper
graph with the lower graph, we observe that TCP1, TCP2, and TCP3 achieve similar rates in both the heterogeneous
and homogeneous versions. The figure shows that ECN(�; �) sends packets less aggressively than TCP-Reno with
ECN, since it considers ECN as an early warning sign. ECN(�; �) with �ECN = 0:3125 is more aggressive than with
�ECN = 0:2. However, even with�ECN = 0:3125, ECN(�; �) is still less aggressive than TCP-Reno with ECN. Due
to the disparity of RTTs, the sequence number curves with similar RTTs are similar in the homogeneous simulations.
The corresponding result for Reno without ECN support is shown in Figure 15. In this case, the rate of Reno without
ECN (TCP1-3 in the upper graph) is affected more than the version in Figure 14(a). The TCP-Reno flow without
ECN with the shortest RTT (TCP3) suffers some throughput degradation compared to the ECN(�; �) flow TEST3.
TCP-Reno flows, however, still achieve almost the same throughput values as the homogeneous case (Figure 14(b)),
except for that very short RTT connection, which anyway has an excessive bandwidth share.

VI. CONCLUSIONS ANDFUTURE WORK

We have explored a smooth TCP response to ECN marks, which considers ECN as an early warning sign. We use a
more aggressive short term behavior, while preserving the long term behavior equivalent to packet drop. We model TCP
throughput to consider the new ECN response strategy, and verify that our model is accurate. Our simulation results
in a multiple bottleneck scenario with bulk FTP, bursty HTTP connections, and UDP flows demonstrate that our ECN
response strategy does indeed reduce fluctuations, increase goodput, and reduce delay. This provides incentives for
host ECN-compliance. The increase and decrease parameters (0.2, 0.875) appear to be the best choice for preserving
the long-term behavior of TCP and achieving high performance.

We are currently evaluating an adaptive version of ECN(�,�) that dynamically adjusts (�,�) based on the number
of ECN-marked packets received during an interval of time. We are also studying fairness among flows that use or
do not use ECN (especially with heterogeneous RTTs). We plan to exploit ECN(�,�) to shorten the recovery time

ON TCP REACTION TO EXPLICIT CONGESTION NOTIFICATION 13

0

50

100

150

200

250

300

0 10 20 30 40 50 60

S
eq

ue
nc

e
N

um
be

r
(x

 1
00

)

Time in seconds

TEST1

TEST2

TEST3

TCP1

TCP2

TCP3

(a) Heterogeneous configuration

0

50

100

150

200

250

300

0 10 20 30 40 50 60

S
eq

ue
nc

e
N

um
be

r
(x

 1
00

)

Time in seconds

TEST1

TEST2

TEST3

TCP1

TCP2

TCP3

(b) Homogeneous configuration

Fig. 14. Sequence numbers from simulations of Reno with ECN support

0

50

100

150

200

250

300

0 10 20 30 40 50 60

S
eq

ue
nc

e
N

um
be

r
(x

 1
00

)

Time in seconds

TEST1

TEST2

TEST3

TCP1

TCP2

TCP3

(a) Heterogeneous configuration

0

50

100

150

200

250

300

0 10 20 30 40 50 60

S
eq

ue
nc

e
N

um
be

r
(x

 1
00

)

Time in seconds

TEST1

TEST2

TEST3

TCP1

TCP2

TCP3

(b) Homogeneous configuration

Fig. 15. Sequence numbers from simulations of Reno with no ECN support

after transient congestion detection. This is especially important in the context of high-speed networks [22], [23]. We
will also examine the interaction between our new algorithm and a variety of active queue management schemes. In
particular, variants of ECN(�,�) with implicit or explicit feedback mechanisms for high-speed networks such as [11],
[24] will be an interesting topic for further study.

ACKNOWLEDGMENTS

This research has been sponsored in part by the Schlumberger Foundation technical merit award, and NSF grant
ANI-0238294 (CAREER).

REFERENCES

[1] BLUE: An alternative approach to active queue management. InProc. of the ACM NOSSDAV, pages 41–50, June 2001.
http://www.thefengs.com/wuchang/work/blue/nossdav01.ps.

[2] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. RFC 2581, April 1999. Also see
http://tcpsat.lerc.nasa.gov/tcpsat/papers.html.

[3] S. Athuraliya, D. E. Lapsley, and S. H. Low. An Enhanced Random Early Marking Algorithm for Internet Flow Control. InProc. of the
IEEE INFOCOM, volume 3, pages 1425–1434, March 2000. http://www.ieee-infocom.org/2000/papers/494.ps.

[4] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker. Dynamic behavior of slowly-responsive congestion control algorithms. InProc. of
the ACM SIGCOMM, pages 263–274, August 2001. http://www.acm.org/sigcomm/sigcomm2001/p21.html.

[5] L. Brakmo, S. O’Malley, and L. Peterson. TCP vegas: New techniques for congestion detection and avoidance. InProc. of the ACM
SIGCOMM, pages 24–35, August 1994. http://netweb.usc.edu/yaxu/Vegas/Reference/vegas93.ps.

[6] D. Chiu and R. Jain. Analysis of the increase/decrease algorithms for congestion avoidance in computer networks.Journal of Computer
Networks and ISDN Systems, 17(1):1–14, June 1989. http://www.cis.ohio-state.edu/�jain/papers/congav.htm.

[7] M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith. Tuning RED for web traffic. InProc. of the ACM SIGCOMM, pages 139–150, August
2000. http://www.acm.org/sigs/sigcomm/sigcomm2000/.

[8] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno, and SACK TCP. InACM Computer Communication Review,
volume 26, pages 5–21, July 1996. ftp://ftp.ee.lbl.gov/papers/sacks.ps.Z.

14

[9] V. Firoiu and M. Borden. A study of active queue management for congestion control. InProc. of the IEEE INFOCOM, volume 3, pages
1435–1444, March 2000. http://www.ieee-infocom.org/2000/papers/405.pdf.

[10] S. Floyd. TCP and explicit congestion notification. ACM Computer Communication Review, 24(5):8–23, October 1994.
http://www.aciri.org/floyd/.

[11] S. Floyd. HighSpeed TCP for Large Congestion Windows. Internet draft draft-floyd-tcp-highspeed-02.txt, work in progess, February 2003.
http://www.icir.org/floyd/hstcp.html.

[12] S. Floyd. RED web page. http://www.aciri.org/floyd/red.html, 2003.
[13] S. Floyd, M. Handley, and J. Padhye. A comparison of equation-based and AIMD congestion control. http://www.aciri.org/tfrc/, May

2000.
[14] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based congestion control for unicast applications. InProc. of the ACM

SIGCOMM, pages 43–56, August 2000. http://www.acm.org/sigs/sigcomm/sigcomm2000/.
[15] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.IEEE/ACM Transactions on Networking, 1(4):397–

413, August 1993. ftp://ftp.ee.lbl.gov/papers/early.ps.gz.
[16] T. Hamann and J. Walrand. A new fair window algorithm for ECN-capable TCP (New-ECN). InProc. of the IEEE INFOCOM, volume 3,

pages 1528–1536, March 2000. http://www.ieee-infocom.org/2000/papers/153.pdf.
[17] J. Hoe. Improving the start-up behavior of a congestion control scheme for TCP. InProc. of the ACM SIGCOMM, pages 270–280, August

1996. http://www.acm.org/sigcomm/ccr/archive/1996/conf/hoe.ps.
[18] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong. On Designing Improved Controllers for AQM Routers Supporting TCP Flows. In

Proc. of the IEEE INFOCOM, volume 3, pages 1726–1734, April 2001. http://www.ieee-infocom.org/2001/792.pdf.
[19] V. Jacobson. Congestion avoidance and control. InProc. of the ACM SIGCOMM, volume 18, pages 314–329, August 1988.

ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.
[20] R. Jain, K. K. Ramakrishnan, and D. M. Chiu. Congestion avoidance in computer networks with a connectionless network layer. Digital

Equipment Corporation, Technical Report, DEC-TR-506, August 1987, 17 pp. Also in C. Partridge, Ed., Innovations in Internetworking,
Artech House, Norwood, MA, 1988, pp. 140-156.

[21] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B. Vandalore. The ERICA Switch Algorithm for ABR Traffic Management in ATM
Networks.IEEE/ACM Transactions on Networking, 8(1):87–98, February 2000. http://www.cis.ohio-state.edu/�jain/papers/erica.htm.

[22] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High Bandwidth-delay Product Networks. InProc. of the ACM SIGCOMM,
pages 89–102, August 2002. http://www.acm.org/sigs/sigcomm/sigcomm2002/papers/xcp.html.

[23] T. Kelly. Scalable TCP: Improving Performance in Highspeed Wide Area Networks. Submitted, December 2002. http://www-
lce.eng.cam.ac.uk/ ctk21/scalable/.

[24] S. Kunniyur. AntiECN Marking: A Marking Scheme for High Bandwidth Delay Connections. InProc. of the IEEE ICC, May 2003.
http://www.seas.upenn.edu/ kunniyur/.

[25] S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management. InProc.
of the ACM SIGCOMM, pages 123–134, August 2001. http://www.acm.org/sigcomm/sigcomm2001/p10.html.

[26] M. Kwon and S. Fahmy. TCP increase/decrease behavior for explicit congestion notification (ECN). InProceedings of IEEE ICC,
volume 4, pages 2335–2340, April 2002. http://www.cs.purdue.edu/homes/fahmy/.

[27] T. V. Lakshman and U. Madhow. The performance of TCP/IP for networks with high bandwidth-delay products and random loss.
IEEE/ACM Transactions on Networking, 5:336–350, June 1997.

[28] D. Lin and R. Morris. Dynamics of random early dectection. InProc. of the ACM SIGCOMM, volume 27, pages 127–136, September
1997.

[29] C. Liu and R. Jain. Improving explicit congestion notification with the mark-front strategy.Computer Networks, 35(2-3):185–201,
February 2001. http://www.cis.ohio-state.edu/�jain/papers/ecnfront.htm.

[30] M. Mathis and J. Mahdavi. Forward acknowledgment: Refining TCP congestion control. InProc. of the ACM SIGCOMM, pages 281–291,
August 1996. Also see http://www.psc.edu/networking/papers/papers.html.

[31] T. J. Ott. ECN protocols and the TCP paradigm. InProc. of the Workshop on Modeling of Flow and Congestion Control Mechanisms,
September 2000. ftp://ftp.research.telcordia.com/pub/tjo/ECN.ps.

[32] T. J. Ott, T. V. Lakshman, and L. H. Wong. SRED: Stabilized RED. InProc. of the IEEE INFOCOM, volume 3, pages 1346–1355, March
1999. http://www.ieee-infocom.org/1999/papers/09e04.pdf.

[33] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: A simple model and its empirical validation. InProc. of the
ACM SIGCOMM, volume 28, pages 303–314, September 1998. http://gaia.cs.umass.edu/.

[34] K. Ramakrishnan and S. Floyd. A proposal to add explicit congestion notification (ECN) to IP. RFC 2481, January 1999.
[35] J. Salim and U. Ahmed. Performance evaluation of explicit congestion notification (ECN) in IP networks. RFC 2488, July 2000.

http://www7.nortel.com:8080/CTL/ecnperf.pdf.
[36] UCB/LBNL/VINT groups. UCB/LBNL/VINT Network Simulator. http://www.isi.edu/nsnam/ns/, 2003.
[37] Y. Yang and S. Lam. General AIMD congestion control. InProc. of the IEEE ICNP, November 2000.

http://www.cs.utexas.edu/users/lam/Vita/IEEE/YangLam00.pdf.

