
EasyScale: Easy Mapping for Large-Scale Network

Security Experiments

Wei-Min Yao, Sonia Fahmy, Jiahong Zhu

Department of Computer Science

Purdue University

Email: {wmyao, fahmy, zhu206}@cs.purdue.edu

Abstract—Network emulation enables network security eval-
uation using unmodified implementations. Experimental fidelity
with emulation is higher than simulation through the integration
of real hardware and systems, but the scalability of emulation
testbeds is limited. Scaling techniques such as virtualization
and real-time simulation enable larger scale experiments. Using
scaling techniques for network security experiments can, however,
require considerable expertise in order to avoid overloading
resources. In this paper, we propose a new framework, EasyScale,
that aims to bridge the current gap between emulation testbed
users and large-scale security experiments possibly using multiple
scaling techniques. Our results from distributed denial of service
and worm attack experiments demonstrate that EasyScale can
easily allocate testbed resources to the critical components in an
experiment, lowering the barrier for testbed users to conduct
high fidelity yet scalable network security experiments.

I. INTRODUCTION

As the Internet adopts new paradigms such as cloud
computing, the difficulty of conducting realistic experiments
increases. Internet-scale security experimentation is especially
challenging since it is typically infeasible to perform the
security experiments directly on a production network. Ad-
ditionally, many security attacks involve both the data and
control planes. For instance, BGP session resets have been
observed with Denial of Service (DoS) attacks [1]. During
the slammer worm propagation, BGP withdrawals increased,
possibly due to ARP messages caused by traffic to nonexistent
addresses, or due to excessive data transmissions by infected
hosts in each enterprise [2]. Researchers thus resort to hybrids
of simulation, emulation, and testbed experiments, employing
a variety of scaling techniques [3]–[5].

Selecting an experimental platform entails a delicate bal-
ance between scalability and fidelity. On one side of the
spectrum, network simulators, such as ns-2 [6], employ ab-
stract models to simulate large networks on one or a few
machines. The simplification of hardware, operating systems,
or lower layers of the network protocol stack can adversely
impact the fidelity of experimental results [7]. Further, re-
searchers often need to experiment with real devices. For
instance, the Stuxnet/Duqu/Flame worm attacks [8] target
specific equipment in a nuclear facility. On the other side of
the spectrum, network emulation testbeds include commodity
hardware devices such as routers, switches, and PCs. This
allows experimenters to run their unmodified applications on
real systems and interact with specialized network devices.
While emulation can provide higher fidelity, its scalability is

limited. Popular emulation testbeds such as Emulab [9] and
DETER [10] include a set of physical machines, usually a few
hundred, shared among a large number of users. The testbeds
often allocate resources conservatively to ensure fidelity. A
one-to-one mapping between hosts in an experimental topol-
ogy and machines in the testbed severely constrains the size
of experiments that can be conducted.

Consider the example of studying the impact of a large-
scale Distributed Denial of Service (DDoS) attack utilizing
a massive botnet. It is important to explore defenses against
this attack using realistic scenarios, but it is undesirable to
have attack packets sent across Internet links. As a result,
researchers are forced to use a smaller quarantined testbed.
The results of a non-representative experiment can be mis-
leading and unexpected bugs may not be discovered until the
Internet protocol or application is deployed onto an operational
network, causing severe damage.

Resource multiplexing [3], [11] and real-time simula-
tion [4] have been employed to increase experimental scale.
For example, the DETER containers system [11] can support
experiments that are two orders of magnitude larger than the
testbed. There are fidelity tradeoffs involved, however. No
scaling technique is suitable for mapping all types of Internet-
scale experiments onto small or medium size testbeds. We
argue that using more than one scaling technique, based on
the experimental scenario and the experimenter’s requirements,
may be necessary. However, applying scaling techniques to
large-scale network security experiments is especially chal-
lenging. Many of the attacks involved in the experiments are
designed to deplete specific physical resources. A sophisticated
mapping, which cannot be automated using systems available
today, is required to avoid experimental artifacts. Manual
mapping is intractable for large experiments.

In this paper, we propose EasyScale, a framework to
automatically map experimental topology nodes onto testbed
resources according to user-specified fidelity requirements.
EasyScale has three primary goals:

(1) Extensibility to New Architectures: The experimental
topology and systems to be mapped onto a testbed can
be arbitrarily large and complex. New network architectures
such as data centers, wireless sensor networks, and smart
power grids, are being proposed and deployed. EasyScale is
extensible to custom architectures via a divide-and-conquer
approach. An input network topology is partitioned into sev-
eral sub-topologies by the testbed user. Sub-topologies are

downscaled separately using algorithms designed to utilize
particular scaling techniques. The results are integrated to
yield the final mapping for the entire input network. Since a
sub-topology is smaller and potentially less complex than the
entire input network, its mapping can be easier. New network
architectures can be supported by adding new sub-topology
mapping algorithms into the system as plug-ins.

(2) User-specified Resource Allocation: Different compo-
nents of a large-scale experimental topology are not equally
important to the experimenter. Components that require high
fidelity experimentation can vary depending on the goal of an
experiment. To provide user-friendly resource allocation with
maximum flexibility, EasyScale is designed to support both
coarse-grained and fine-grained allocation schemes.

Using a fine-grained allocation scheme, testbed users can
have full control over how virtual nodes are mapped to physical
machines. Such mapping cannot be automated in systems
available today which support only basic graph partitioning
algorithms. In EasyScale, a single value, a fidelity index, is
assigned to each component in the topology. More resources
will be allocated to components with a high fidelity index
whenever possible. Testbed users can easily apply existing
or customized mapping algorithms to generate the desired
mapping.

A coarse-grained allocation scheme partitions a large-scale
network to multiple sub-topologies. Components within a sub-
topology can have the same fidelity index which represents
the importance of this sub-topology. Testbed users may utilize
scaling techniques at different scaling levels (Table I) in
different sub-topologies. Unlike systems available today that
ask users to allocate testbed machines to sub-topologies man-
ually, EasyScale provides an efficient algorithm to automate
the allocation process. With EasyScale, both fine-grained and
coarse-grained schemes can be combined to satisfy a wide
diversity of resource allocation requirements.

(3) Automated Configuration: Once a mapping from the
experimental topology to physical testbed resources is deter-
mined, establishing the experiment on the physical machines is
time-consuming for the experimenter. The configuration pro-
cess not only requires strong expertise in the underlying scaling
techniques, but also involves a large number of configuration
scripts. For example, more than 10,000 lines of configuration
files are generated to configure the 439 node network topol-
ogy in Section III on 45 DETER machines. Automating the
configuration process is a key goal of EasyScale.

The remainder of this paper is structured as follows.
Section II explains our proposed methodology. Section III
discusses our experiments and results. Section IV summarizes
related work. We conclude in Section V.

II. METHODOLOGY

A. Input and Output

From the experimenter’s perspective, the input to
EasyScale consists of three items: testbed resources, virtual
topology, and user specifications.

The testbed resources input describes the resources avail-
able in the physical testbed. Similar to the setup in Em-
ulab [12], homogeneous physical machines can be grouped
together to form a hardware type. Resource limitations such
as the capacity of physical links can be specified as attributes
of the particular type. The testbed resource information can
be obtained from the testbed administrator and users typically
need only specify the number of machines they plan to use.

The virtual topology is the set of virtual nodes and links
that forms the experimental topology. The topology informa-
tion is represented using the format used by the underlying
testbed, making EasyScale transparent to the experimenter.

By default, EasyScale maps the entire virtual topology to
testbed machines using METIS [13] and scales the testbed with
OS-level virtualization. For sophisticated mapping strategies,
users are able to guide the EasyScale process with additional
information that we label user specifications. This includes:

(1) Sub-topology information: Virtual nodes with similar
properties can be grouped together by the experimenter to form
sub-topologies. For each sub-topology, an associated scaling
level is selected (e.g., from Table I). Fig. 1 depicts an example
experimental topology partitioned into three sub-topologies,
including two small LANs and one backbone network. The
experimenter may elect to downscale the backbone networks
using a lightweight OS-level virtualization technique, and to
downscale the end-hosts via KVM virtual machines to support
various guest OSes.

(2) Virtual node information: For each element in an
experimental topology, the experimenter can specify a fidelity
index, as well as the hardware type that the element should
preferably be mapped to. The fidelity index is an integer,
selected from an arbitrary range of integers, to indicate the
relative importance of the element. Other detailed resource
requirements such as memory or disk usage can also be
specified (but are optional) and will be considered as additional
constraints during the EasyScale mapping process.

TABLE I: Sub-topology scaling levels and associated scaling
techniques.

Scaling Level Scaling Technique Examples

I One-to-one mapping DETER, Emulab

II Full-hardware virtualization KVM, VMware

III OS-level virtualization LXC, OpenVZ

IV Real-time simulators ns-3, PRIME

V OS processes View OS

The output of EasyScale includes a downscaled network
topology and a set of configuration scripts. The downscaled
topology can be loaded onto the physical testbed using a
one-to-one mapping. The testbed is initialized by running
the configuration scripts on each physical machine; launching
virtual machines onto physical machines, for example.

B. The EasyScale Procedure

EasyScale is composed of three modules: mapping gener-
ation, mapping selection, and testbed script generation.

The mapping generation module is designed to generate
a set of possible mappings from the input virtual topology to
physical machines. The virtual topology is not assumed to be
suitable for analyzing or downscaling using techniques such
as [5], [14]–[16] which only focus on data plane operation
(and some of which, e.g., [14], make assumptions about traffic
models). Since the virtual topology can be arbitrarily large and
complex, our first step is to partition the virtual topology into
manageable pieces.

The virtual topology is partitioned according to the hard-
ware type and sub-topology information associated with the
virtual nodes. Virtual nodes that map to the same hardware
type are processed together (in the mapping selection module
described below) to generate a mapping to the physical ma-
chines of that hardware type in the testbed. Since most testbeds
contain only a few sets of homogeneous physical machines,
each sub-topology is mapped to a single hardware type in most
cases.

After the partitioning, mapping algorithms (downscale
plug-ins) are applied to each sub-topology to generate a set
of mappings. Once all feasible mappings are generated by the
mapping generation module, the mapping selection module
selects the best combination of sub-topology mappings. Using
the mapping results, the testbed script generation module
produces the EasyScale outputs for a particular testbed. For
example, all experiments in Section III utilize the module de-
signed for the DETER testbed that leverages the Cloonix [17]
software.

Net 1 Net 2 Net 3

Virtual
Topology

Partition by
Hardware Type

PC1 Topology PC2 Topology

Possible
Mappings

1 4 0 0

PowerEdge

C O MP AC T

Ω

1 4 0 0

PowerEdge

C O MP AC T

Ω

1 4 0 0

PowerEdge

C O MP AC T

Ω

1 4 0 0

PowerEdge

C O MP AC T

Ω

Experimental
Topology

Sub-topology 2 Sub-topology 1 Sub-topology 3

(Virtual Nodes)

(Physical Machines)

PowerVault6 5 1 FPowerVault6 5 1 F

#

1 03 25 4

#

7 69 811 10

0
1

2
9

7
8

6
5

4
3

#

1 03 25 4

#

7 69 811 10

0
1

2
7

8
6

5
4

3

PowerVault 6 5 1 FPowerVault6 5 1 F

#

103254

#

76981110
0

1
2

9
7

8
6

5
4

3

#

1 03 25 4

#

7 69 811 10

0
1

2
7

8
6

5
4

3

PowerVault 6 5 1 FPowerVault6 5 1 F

#

103254

#

76981110
0

1
2

9
7

8
6

5
4

3

#

1 03 25 4

#

7 69 811 10

0
1

2
7

8
6

5
4

3

PowerVault6 5 1 FPowerVault6 5 1 F

#

1 03 25 4

#

7 69 811 10

0
1

2
9

7
8

6
5

4
3

#

1 03 25 4

#

7 69 811 10

0
1

2
7

8
6

5
4

3

PowerVault 6 5 1 FPowerVault6 5 1 F

#

103254

#

76981110
0

1
2

9
7

8
6

5
4

3

#

1 03 25 4

#

7 69 811 10

0
1

2
7

8
6

5
4

3

PowerVault6 5 1 FPowerVault6 5 1 F

#

1 03 25 4

#

7 69 811 10

0
1

2
9

7
8

6
5

4
3

#

1 03 25 4

#

7 69 811 10

0
1

2
7

8
6

5
4

3

1 40 0

Powe rEdg e

COMPACTΩ

1 4 0 0

PowerEd ge

COMPACTΩ

1 4 0 0

Po we rEd ge

COMPACTΩ

1 4 0 0

PowerEd ge

COMPACTΩ

1 4 0 0

PowerEdge

COMPACTΩ

1 4 0 0

PowerEdg e

COMPACTΩ

1 40 0

PowerEdg e

COMPACTΩ

1 4 0 0

PowerEdg e

COMPACTΩ

1 40 0

Powe rEdg e

COMPACTΩ

1 4 0 0

Po werEdge

COMPACTΩ

1 4 0 0

PowerEdge

COMPACTΩ

1 4 0 0

Po werEdge

COMPACTΩ

Pow erVault6 5 1 FPow erVault6 5 1 F

#

1 03 25 4

#

7 6

9 811 10
0

1
2

9
7

8
6

5
4

3

#

1 03 25 4

#

7 6

9 811 10
0

1
2

7
8

6
5

4
3

Pow erVault6 5 1 FPow erVault6 5 1 F

#

1 03 25 4

#

7 6

9 811 10
0

1
2

9
7

8
6

5
4

3

#

1 03 25 4

#

7 6

9 811 10
0

1
2

7
8

6
5

4
3

1 4 0 0

PowerEdge

C O MP AC T

Ω

1 4 0 0

PowerEdge

C O MP AC T

Ω

1 4 0 0

PowerEdge

C O MP AC T

Ω

1 4 0 0

PowerEdge

C O MP AC T

Ω

P owerV ault6 5 1 FP owerV ault6 5 1 F

#

103254

#

76
981110

0
1

2
9

7
8

6
5

4
3

#

103254

#

76
981110

0
1

2
7

8
6

5
4

3

P owerV ault6 5 1 FP owerV ault6 5 1 F

#

103254

#

76
981110

0
1

2
9

7
8

6
5

4
3

#

103254

#

76
981110

0
1

2
7

8
6

5
4

3

Physical
(Testbed)
Topology

Fig. 1: Example mapping procedure.

The complete procedure is shown in Fig. 1. In this example,
the virtual topology can be split into three sub-topologies
(Net 1, Net 2, and Net 3). There are two types of physical
machines in the testbed: two high-end servers (PC1) and
four general servers (PC2). Virtual nodes in Net 2 should be
mapped to PC1 machines and the remaining nodes to PC2
machines.

The virtual topology is first partitioned by hardware type.
For instance, the PC2 topology in Fig. 1 denotes the part
of the virtual topology to be mapped onto PC2 machines
in the testbed. For each sub-topology and hardware type,
multiple mappings are generated using the downscale plug-
in. For example, the second mapping of sub-topology 3 can
be generated by hosting the two laptops on one PC2 machine
with virtual machines, and the server on another PC2 machine.

After possible mappings are generated, the optimal com-
bination of mappings is selected by the mapping selection
module using a dynamic programming algorithm. Selected
mappings together represent the experimental topology that
should be loaded onto the testbed. In this example, the ten
virtual nodes are first mapped to the experimental topology
formed by six testbed machines. Physical devices are config-
ured by the testbed to provision the experimental network.
Several virtual machines can then be launched on the machines
in the experimental network to establish the desired network
testing environment.

C. Mapping Generation Module

The most important question that must be addressed in
the mapping generation module is how to select the most
appropriate mapping algorithm for each sub-topology.

Based on the sub-topology scaling level specified by the
experimenter, the associated downscale plug-in is applied to
generate a set of possible mappings from the virtual nodes to
testbed machines. A downscale plug-in is an implementation of
a mapping algorithm that typically maps several virtual nodes
to fewer physical nodes using a specific scaling technique.
For example, a simple plug-in can be implemented using the
METIS graph partitioning library [13]. The virtual topology
can be directly partitioned by METIS and then virtual nodes
in the same partition can be hosted using LXC virtual machines
onto the same physical machine.

To give the user more control, EasyScale also supports
a mapping template mechanism. Consider a user who wants
to explicitly assign two virtual nodes onto a single physical
machine, or a user who wants to allocate more resources to
routers with higher degrees. The EasyScale mapping template
(illustrated in Fig. 2) allows users to customize downscale
plug-ins from a set of mapping rules. For instance, if a specific
set of virtual nodes should be assigned to the same testbed
machine, the template will pre-process the input topology and
merge these nodes into a single node before invoking a graph
partitioning library.

The mapping template also provides the ability to ensure
that the generated mappings do not overload physical links.
Fig. 3 gives an example on how the mapping template can
be configured to take advantage of existing graph partitioning
algorithms. In this example, there are 100 networks generated
using RocketFuel [18] where each network contains 200
routers and all links are 100 Mbps. We partition each network
to various numbers of partitions using four different downscale
plug-ins. A partitioning result is considered a valid mapping
if the aggregated virtual link bandwidth between any two
partitions does not exceed the physical link bandwidth between
two physical machines (1 Gbps).

Mapping Rules

Yes

No

Output Mapping

No

Report Error
Yes

Graph Partitioning

Library

Valid

Mapping?

Max

Retry?

Pre-process

Input Network

Fig. 2: The mapping template.

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

N
u

m
b

e
r

o
f

V
a

lid
 M

a
p

p
in

g
s

Number of Partitions

Original METIS
EasyScale-METIS
EasyScale-Greedy

EasyScale-METIS-Greedy

Fig. 3: The number of valid mappings generated by different
mapping algorithms for 100 test networks.

As seen in Fig. 3, most mappings generated using the
original METIS graph partitioning library failed to satisfy
the physical link bandwidth restriction. With the mapping
template, one can easily integrate existing graph partitioning
software to customize the downscale plug-in. For example, the
EasyScale-METIS plug-in is configured to automatically retry
up to 10 different METIS mappings to increase the likelihood
of finding a valid mapping. The EasyScale-Greedy plug-in
takes advantage of a greedy graph partitioning algorithm that
tries to minimize the the number of virtual links between
partitions. The results demonstrate that this plug-in is more
effective in generating mappings with a small number of
partitions. To benefit from both algorithms, we can configure
the mapping template to apply the greedy algorithm after 10
invalid METIS mappings. As expected, this hybrid plug-in is
able to produce the most valid mappings.

D. Mapping Selection Module

The goal of the mapping selection module is to select the
best combination of sub-topology mappings that requires no
more than the available testbed machines. For example, in
Fig. 1, the two highlighted mappings are selected from the
sub-topology mappings of sub-topology 1 and 3. The two
selected mappings together form the mapping for the general
server (PC2) machines in the testbed. Two questions must
be addressed by the mapping selection module: (1) How to
compare sub-topology mappings, and (2) How to efficiently
select the best combination among all sub-topology mappings.

Assume the hardware type is nodeType, and the virtual
topology is partitioned into numParts sub-topologies. Let vTop

be the set of nodes in the virtual topology assigned to the
nodeType machines by the experimenter. Let vTopi be a
subset of vTop which contains only the nodes in the ith
sub-topology, and numMachines be the number of available
nodeType machines in the testbed.

1) Evaluating Sub-topology Mappings: A value function is
used to compare sub-topology mappings, i.e., a sub-topology
mapping with a higher value is more likely to be selected
as output. In our implementation, two sample value functions
are defined to balance the resource allocation among sub-
topologies. The two functions are designed based on the
following intuition: (1) the number of physical machines
that a sub-topology is mapped to can be proportional to the
number of virtual nodes in the sub-topology, or (2) it can be
proportional to the aggregated fidelity indices of all virtual
nodes in the sub-topology.

More formally, let sumFI be a function that returns the
sum of the fidelity indices of a set of virtual nodes. Given a
sub-topology, vTopi, the target number of physical machines,
targetSizei, to map vTopi onto can be calculated by equa-
tion (1), or by equation (2).

targetSizei

numMachines
=

|vTopi|

|vTop|
(1)

targetSizei

numMachines
=

sumFI(vTopi)

sumFI(vTop)
(2)

Given a sub-topology (vTopi) and its mapping (map) onto
physical machines, the value function, valFn, is defined based
on equation (1) or equation (2) as:

valFn(map) = 1−|
targetSizei−|map(vTopi)|

numMachines
| (3)

When this fails to generate a mapping of a specified size,
possibly due to resource constraints, a constant negative value
will be assigned.

2) Selecting Sub-topology Mappings: For each sub-
topology, numMachines sub-topology mappings are generated
to represent all possible mappings from the sub-topology to
the numMachines machines in the testbed. Consider a virtual
topology with numParts sub-topologies. A brute force solution
that examines all combinations of sub-topology mappings
has O(numPartsnumMachines) time complexity. Fortunately, the
mapping selection problem can be solved with an efficient
algorithm that utilizes the dynamic programming technique.

Among the numParts · numMachines sub-topology map-
pings, let mapi j denote the mapping that maps the ith sub-
topology to j testbed machines. The value of mapi j is defined
by equation (4):

value(i, j)=

{

valFn(mapi j) if 1 ≤ i≤ numParts
and 1 ≤ j ≤ numMachines

−∞ otherwise
(4)

We define the mapping selection problem as selecting a
combination of numParts sub-topology mappings that has the
highest sum of mapping values and requires no more than
numMachines testbed machines.

Let OPT [i, j] denote the sum of mapping values in the
optimal mapping combination that considers only the first i
sub-topologies and uses no more than j physical machines.
The optimal substructure of the mapping selection problem
gives the recursive formula in equation (5):

OPT [i, j] =

{

max
1<x< j

(OPT [i−1, j− x]+ value(i,x)) if i> 1

value(1, j) if i= 1
(5)

Based on equation (5), we can easily compute the OPT
array in O(numParts · numMachines2) time and retrieve the
optimal mapping combination in linear time.

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 50 100 150 200 250 300 350 400 450 500

R
u

n
ti
m

e
 (

S
e

c
.)

Network Size

BruteForce
EasyScale

Fig. 4: Runtime of the mapping selection process using differ-
ent algorithms. The brute force runtime is estimated using the
first 10 M combinations.

Fig. 4 gives an example of the runtime comparison between
the brute force and EasyScale solutions. In this example, there
are 50 machines in the testbed, and the input network is
composed of multiple 50 node sub-topologies. Since the sizes
of the sub-topologies are small, the time to downscale all sub-
topologies can be ignored. For example, both downscale plug-
ins implemented in Section III-B take less than 30 seconds to
generate all mappings for a 50 node sub-topology. As seen in
Fig. 4, EasyScale scales well, whereas the brute force solution
becomes intractable even with a medium-sized topology.

III. EVALUATION

EasyScale is implemented in Python and contains a
customized testbed plug-in to support the popular DETER
testbed.1 We evaluate EasyScale on two sets of experiments:
(1) the impact of worm propagation on routing, and (2)
distributed denial of service attacks.

A. Worm Attacks

The performance of Border Gateway Protocol (BGP) rout-
ing under stress was unknown until the Code-Red/Nimda

1EasyScale is available at http://goo.gl/QD2aR. With a few modifications,
the implementation can support most Emulab-based testbeds.

worm attacks in 2001. A measurement study indicated that
the attack was closely correlated in time with a large spike in
the number of BGP routing updates [19]. Unfortunately, the
measurement study was based on indirect observation from a
set of monitoring points in the Internet and the causes of the
spikes can only be inferred. In this section, we reproduce a
worm attack scenario on the DETER testbed to study the BGP
behavior directly and investigate two important questions: (1)
What are the minimum testbed resources required to conduct
an experiment? and (2) Will different resource allocation
strategies impact the fidelity of the experiment?

1) Experimental Setup: We extract 500 connected ASes
from the UCLA Internet Topology Collection project [20]
to construct the network topology. The dataset was collected
in January 2004, which is the earliest date available in the
database; therefore closest to the actual date of the worm
attack in 2001. Each selected AS is represented by a BGP
border router emulated using the Quagga routing suite [21]
on Linux. For simplicity, each BGP router is connected to
its neighbors via a peering relationship. A randomly selected
unique IP subnet is assigned to each router. By simulating
the worm behavior, we are able to directly observe the BGP
behavior under attack from a global point of view and confirm
the correlation between the worm attack and the increase in
BGP update messages.

The 500-node AS-level Internet topology is mapped onto
the DETER testbed using two different mapping mechanisms.
Since the network topology contains only BGP routers, all
virtual nodes are grouped into a single sub-topology with
scaling level III in Table I, where a virtual node is virtualized
using Linux containers (LXC).

A baseline mapping mechanism simply utilizes the METIS
graph partitioning library to distribute the LXC virtual ma-
chines evenly onto the physical machines, i.e., all nodes have
the same fidelity index. We compare this baseline with an
EasyScale resource allocation where the fidelity index of a
node is assigned in proportion to the degree of the AS, i.e.,
more resources should be allocated to high degree routers,
since they need to process more traffic and are more likely
to become overloaded.

2) Resource Utilization: An experimenter typically wishes
to use as few testbed machines as possible while ensuring the
fidelity of the results. In this experiment, we monitor the CPU
and memory usage to identify the minimum number of DETER
testbed machines required.

Fig. 5 and Fig. 6 illustrate the maximum resource usage
on all testbed machines during the experiment. From Fig. 5,
the load of the network is light when no worm exists. Both
mapping mechanisms can achieve satisfactory results with
as few as 10 physical machines. However, during the worm
propagation period, the load on the system increases signifi-
cantly and more testbed machines are required to support the
experiment. Fig. 6 shows that 50 testbed machines may still
be insufficient to prevent overloading any physical machine
in the baseline experiment. Fortunately, the number of testbed
machines can be reduced if we allocate resources carefully.
For example, only 20 machines are required with EasyScale
degree-based fidelity indices.

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50

P
h

y
s
ic

a
l
R

e
s
o

u
rc

e
 U

s
a

g
e

 (
%

)

Number of Physical Machines

Baseline(CPU)
Baseline(MEM)

Degree-based(CPU)
Degree-based(MEM)

Fig. 5: Maximum resource usage with-
out the worm using different number of
physical machines.

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50

P
h

y
s
ic

a
l
R

e
s
o

u
rc

e
 U

s
a

g
e

 (
%

)

Number of Physical Machines

Baseline(CPU)
Baseline(MEM)

Degree-based(CPU)
Degree-based(MEM)

Fig. 6: Maximum resource usage under
worm attack using different numbers of
physical machines.

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

N
u

m
b

e
r

o
f

R
o

u
te

rs

Number of Received BGP Update Messages

Baseline w/o worm
Baseline with worm

Deg-based w/o worm
Deg-based with worm

Fig. 7: The number of BGP update
messages received by each router.

3) Resource Allocation vs. Experimental Fidelity: We now
use 50 testbed machines to investigate the impact of resource
allocation on the experimental results. The volume of BGP
update messages received by each router is shown in Fig. 7.
The results from both mapping approaches are consistent with
the literature [19] in the way that the volume of BGP update
messages increases under a worm attack. With degree-based
EasyScale, we observe additional BGP messages received by
the routers, giving stronger evidence of the worm attack.

A closer look at the two experiments reveals a more
balanced resource utilization in the EasyScale experiment.
The CPU utilization of the 50 testbed machines ranges from
2% to 97% in the baseline experiment and from 32% to
84% in the degree-based experiment. Several routers hosted
on the machines with high CPU usage stopped processing
routing messages during the attack. This results in fewer BGP
messages in the baseline experiment. Thus, incorrect resource
allocation can introduce artifacts to the experimental results.

B. DDoS Attacks

Distributed Denial of Service (DDoS) attacks still pose
a significant threat to today’s networks. In this section, we
showcase how a large-scale DDoS scenario can be evaluated
in an emulation testbed with the help of EasyScale. The attack
scenario is designed based on a one-year web trace collected
from a busy Purdue web server. The goal of the experiment
is to understand the availability of our web server to visitors
during the attack. The top 200 domains of our visitors, which
cover more than 70% of the service providers of all visitors,
are selected to represent the legitimate users. An additional
50 domains – that represent the DoS attackers – are selected
from the black list generated by DShield.org. The legitimate
web requests and the DoS attack traffic are sent from the 200
visitor domains and the 50 attacker domains to the web server.

Each domain is represented by a single virtual node. The
network topology is then created by traceroute logs to the
250 domains. We perform basic processing to reduce the
size of the topology. For example, we aggregate the last few
hops in a traceroute record if they do not appear in any
other traceroute record. After such reductions, the size of the
network topology drops from 1232 to 439 nodes. The link
bandwidth and the legitimate traffic are carefully chosen so

that the system achieves high utilization but is not overloaded
without the attack. All links in the topology are set to 10 Mbps
and all routers are linked using the BGP routing protocol with
peering relationships. During the experiment, 50 web requests
are generated from each user domain and a full speed UDP
flood is sent from each attack domain. The interval between
requests is exponentially distributed with the mean set to 20
seconds.

1) Experimental Setup: We use 45 machines on the DE-
TER testbed with dual 3 GHz Intel Xeon processors and 2 GB
of RAM. Given the fixed physical resources, the experimenter
needs to obtain the results that have the highest experimental
fidelity. A sophisticated resource mapping from the virtual
nodes to the physical machines is hard to predict before
conducting the experiment. Therefore, we compare two sets
of experiments with different resource allocation strategies.

In a baseline experiment, we simply assume all nodes
in the experimental topology are identical and allocate the
physical resources evenly using the METIS graph partitioning
library. The METIS mapping is generated by partitioning the
virtual topology into 45 pieces using METIS, with the goal of
minimizing the edge cut between partitions.

We compare the baseline with EasyScale. We assign dif-
ferent fidelity indices to virtual nodes according to their node
degree and their roles in the experiment as listed in Table II.
Routers with higher degrees need to process more attack traffic,
and the web server is the most important component in the
network. Since the DoS attack focuses on network resources,
we would like to map the end hosts (web users and DoS
attackers) and the routers onto different DETER machines to
avoid overloading the routers and the emulated network links.
In EasyScale, this can be achieved by grouping virtual nodes
into three different sub-topologies, namely, the 200 web users,
the 50 DoS attackers, and the web server and routers.

In the baseline experiment, only a single scaling technique,
LXC virtualization (scaling level III in Table I), is used. All
439 virtual nodes are hosted as virtual machines using LXC
with the OpenWrt image. In the EasyScale experiment, LXC
virtualization is applied only to the web server and routers.
For DETER machines that only have end hosts, OS processes
(scaling level V in Table I) are utilized to avoid the overhead

of virtualization.

Two downscale plug-ins that implement specialized map-
ping algorithms (taking the testbed resource limitations into
consideration) are selected to perform the mapping for the
LXC and OS process techniques. The LXC plug-in reduces the
size of an input topology by continuously selecting a pair of
nodes and mapping them onto the same physical machine. The
pair of nodes is selected greedily: two neighboring nodes with
the smallest fidelity indices are selected if the total resource
requirements of both nodes can be fulfilled by a single testbed
machine. For example, the number of outgoing links should
not exceed the number of network interface cards installed on
a physical machine. The plug-in designed for OS processes
operates similarly, but merges nodes that can be aggregated
(i.e., end hosts that connect to same router).

The value function based on equation (2) is used by
EasyScale to create a balanced resource allocation between
multiple sub-topologies. The 45 DETER machines are auto-
matically allocated by EasyScale as follows: 20 machines are
assigned to the 200 web users, 5 assigned to the 50 DoS
attackers, and 20 to the remaining 187 nodes.

TABLE II: Fidelity Index Assignment

Virtual Routers (degree) End Web

Nodes (≤ 3) (4 or 5) (≥ 6) Hosts Server

Fidelity Index 2 3 4 2 8

Number of virtual nodes 100 50 27 250 1

2) Resource Utilization: Fig. 8 shows the cumulative distri-
bution function (CDF) of the CPU utilization sampled during
a DoS attack using 100-byte UDP attack packets. While most
physical machines in the baseline experiment remain heavily
loaded, we observed a significant drop in CPU utilization
on 20 DETER machines in the EasyScale experiment. Since
all routers are hosted on the 20 DETER machines, we can
conclude that the EasyScale experiment provided sufficient
resources, increasing fidelity.

3) Resource Allocation vs. Experimental Fidelity: To study
the impact of DoS attacks on both the data and control planes
of the network, we compute the success ratio of HTTP sessions
and log the IP routing table on the web server. An HTTP
session is considered successful if its response is successfully
received by the client within 30 seconds [22]. The HTTP
success ratio of the two experiments is depicted in Fig. 11
and Fig. 12.

The routing table on the web server is maintained by the
BGP routing daemon. Although multiple IP addresses may be
assigned to a virtual node, a single IP address from a unique
subnet is selected to represent this node. Without aggregating
the routing prefixes, each routing entry on the web server
represents a known path from the web server to a virtual node.
The routing dynamics are shown in Fig. 9 and Fig. 10.

In Fig. 9, we observed that a UDP flood attack using
1500-byte packets has no impact on the BGP routing in the
EasyScale experiment. However, when the number of attack
packets increases in Fig. 10, there is a direct impact on the
BGP routing protocol. Since Fig. 8 indicates that we have

allocated sufficient computational resources to all routers in
the EasyScale experiment, routes are withdrawn because BGP
keep-alive messages are dropped (due to the DoS attack).

In Fig. 9, several nodes are not always reachable in the
baseline experiment. This indicates that the routers are over-
loaded due to insufficient resources and the resource allocation
of the baseline experiment is introducing artifacts to the results.

Intuitively, the UDP flood attack using 100-byte packets
should be more effective. However, in the EasyScale exper-
iment, we observed flows with high HTTP success ratio in
Fig. 12 which contradicts this intuition. Recall that in Fig. 10,
since the DoS attack with 100-byte attack packets induces
drops of legitimate packets, including the BGP keep-alive
messages (Fig. 10), the parts of the network that include most
DoS attackers are disconnected. As a result, legitimate users
from the remainder of the network have a high HTTP success
ratio and continue to have access to the web server during the
attack.

To confirm this, we analyzed the network topology care-
fully and discovered that 156 of the virtual nodes (including
routers, DoS attackers, and 69 legitimate users) are located in
the regions where there are few DoS attackers. This finding
is consistent with Fig. 12 where the horizontal portion of the
EasyScale curve indicates that 33% of the web users have
access to the web server during most of the attack period.

4) Experimental Fidelity Loss for a Smaller Experiment:
We now explore experimental fidelity loss. Because of the
current capacity of the DETER testbed, the 439 node network
topology cannot be swapped onto the testbed directly. As a
result, we further reduce the size of the topology to be able
to conduct an experiment that can serve as the ground truth.
All routers of degree two and end hosts are removed from
the topology. A degree-two router is simply replaced by a
10 Mbps link and an end host is represented as a process
running on the router to which it connects. Only the web
traffic is transmitted in the network. After the reduction, the
downscaled topology behaves similarly to the original network
without dynamic routing and the DoS attack. We consider this
downscaled topology as the ground truth.

We vary the load on the system by sending web requests
at different inter-request intervals. A comparison of the HTTP
success ratio between the experiments is shown in Table III.
The only bottleneck to all web users is the 10 Mbps link in
front of the web server. Ideally, this link should be able to
support 200 web clients requesting a 50 KB file when the
average inter-request interval is larger than 8 seconds.

When the average web inter-request interval is 20 seconds,
the system is lightly loaded and the results from both experi-
ments are identical to the ground truth. However, as the system
load increases, the fidelity of the virtualized network drops.
The fidelity loss results from insufficient physical resources
on the machine that hosts the web server. More specifically,
the virtual switch, a user-level program that manages all
connections between the LXC virtual machines, fails to process
all packets in real time. The fidelity of the virtualized network
can be improved when the physical resources are allocated
more carefully. For example, when the average inter-request

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

D
E

T
E

R
 M

a
c
h

in
e

s

CPU Utilization (%)

Baseline
EasyScale

Fig. 8: CPU utilizations of DETER ma-
chines during a UDP flood using 100 B
packets.

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30

P
e

rc
e

n
ta

g
e

 o
f

A
c
ti
v
e

 R
o

u
te

s
 (

%
)

Time (Min.)

Baseline
EasyScale

Fig. 9: Routing entries on the web server
during a UDP flood using large packets.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

P
e

rc
e

n
ta

g
e

 o
f

A
c
ti
v
e

 R
o

u
te

s
 (

%
)

Time (Min.)

Baseline
EasyScale

Fig. 10: Routing entries on the web
server during a UDP flood using small
packets.

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 o
f

W
e

b
 U

s
e

rs
 (

%
)

HTTP Success Ratio

Baseline
EasyScale

Fig. 11: HTTP success ratio during a
UDP flood using 1500 B packets.

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 o
f

W
e

b
 U

s
e

rs
 (

%
)

HTTP Success Ratio

Baseline
EasyScale

Fig. 12: HTTP success ratio during a
UDP flood using 100 B packets.

Req. Interval 20 15 10

Ground Truth 100 100 100

Baseline 99.73 81.22 28.86

EasyScale 100 97.79 57.67

TABLE III: The HTTP success ratio
collected from flows with different web
inter-request intervals (seconds).

interval is 15 seconds, the fidelity of the EasyScale experiment
is significantly higher than the baseline experiment.

Both experiments have low fidelity when the inter-request
interval is shorter than 15 seconds. Physical machines must
be added to avoid experimental artifacts in that case. Unfor-
tunately, without conducting a ground truth experiment, it is
often challenging to predict the best resource allocation strat-
egy and identify the minimum physical resources required for
a specific experiment. Monitoring the CPU utilization or router
queues can aid in this prediction. One may need to examine
multiple resource allocation strategies. With EasyScale, testbed
users are able to quickly convert their resource mapping to a
testbed experiment, which reduces the lengthy process of trial
and error.

IV. RELATED WORK

Testbeds scale by mapping multiple experimental resources
onto available physical resources. Since the load of an exper-
iment, such as link or CPU utilization, is typically unknown
before conducting the experiment, finding a good mapping is
non-trivial. An inappropriate mapping can overload physical
resources and yield inaccurate experimental results [7]. As a
result, although virtualization techniques are widely deployed
in GENI [23] (including all its components such as Emulab and
PlanetLab) and commercial cyber-ranges, most testbeds tend
to allocate resources conservatively. Virtualization provides
limited scaling capabilities for the routers and links in an
experiment, and needs to be specified manually.

Real-time network simulators such as PRIME [4], ns-
3 [24] and NCTUns [25] can interact with real network traffic.
Integrating them with emulation testbeds, one can run unmod-
ified applications on real machines and transmit packets to
and from a simulated (and scalable) network. While real-time
simulators combine the strengths of emulation and simulation,
a major challenge is ensuring the computational power to
allow the simulator to execute in real-time. Approaches such
as DieCast [26] and SliceTime [27] have been proposed to
execute experiments in slower virtual time to match the simula-
tor speed. However, without running experiments in real-time,
difficulties are encountered when trying to incorporate human
actions or commercial hardware boxes into the experiment.

Container-based network emulators [28]–[30] enable high
fidelity testbeds for small-scale experiments. With OS-level
virtualization techniques, such as LXC, dozens of lightweight
virtual machines with unmodified network applications can
be interconnected and hosted on a single physical machine
to construct the target network. However, the capacity of the
emulator is constrained by the computation power, disk, and
memory of the physical machine, and large-scale experiments
cannot be supported.

The DETER containers system [11] is an infrastructure to
support conducting large-scale experiments through virtualiza-
tion. Unfortunately, only simple resource mapping mechanisms
based on the METIS graph partitioning library [13] are imple-
mented and users often need to generate the mapping from
virtual nodes to physical machines manually for experiments

that require specific resource allocation strategies. With a sim-
ple script that converts EasyScale mapping results to network
topologies, EasyScale can be seamlessly integrated with the
containers system for more flexible mapping.

In addition to scaling the capacity of testbeds, several
approaches have been proposed to pre-process the input ex-
perimental scenario to meet resource limitations. For example,
DSCALEd [5] removes uncongested links in the network
topology. The path emulator proposed by Sanaga et al. [31]
simplifies a network path into a single hop using collected
end-to-end observations from the Internet. Such reductions do
not always provide precise guarantees on either the size or
the fidelity of the reduced topology. Our FSP approach [16]
partitions a large testbed experiment into a set of small
experiments that do not exceed the testbed capacity. The set
of experiments is sequentially executed in a few iterations
to approximate the results of the original experiment. All
these pre-processing approaches are orthogonal to EasyScale
and scaling techniques. Combining methods from the two
types of approaches can further increase the scale of testbed
experiments.

V. CONCLUSIONS

In this paper, we have proposed a new framework,
EasyScale, for easily configuring a large-scale network se-
curity experiment on an emulation testbed. Multiple scaling
techniques, such as virtualization and real-time simulators, can
be used for different parts of the input experimental topology in
order to balance scalability and fidelity. Our resource allocation
scheme considers user-specified fidelity requirements. While
the default EasyScale configuration is sufficient for experi-
ments with lightly loaded systems, sophisticated mapping for
large-scale security experiments can be automated using sub-
topology and virtual node information specified by the exper-
imenter. Additional resources are allocated to the experiment
components that are considered to be highly important, in order
to increase the experimental fidelity.

With EasyScale, an inexperienced experimenter can easily
run sophisticated large-scale experiments with little expertise
in underlying scaling techniques. Results from our experiments
with worm and DDoS attacks demonstrate the flexibility of
EasyScale and its superiority over direct application of basic
partitioning techniques such as METIS. EasyScale is extensible
to a wide diversity of network experiments and emulation
testbeds.

Acknowledgments. This work was funded in part by
Northrop Grumman Information Systems, and by NSF grant
CNS–0831353.

REFERENCES

[1] Y. Zhang, Z. M. Mao, and J. Wang, “Low-rate TCP-targeted DoS attacks
disrupts internet routing,” in Proc. of NDSS, 2007.

[2] M. Lad, X. Zhao, B. Zhang, D. Massey, and L. Zhang, “Analysis of
BGP update surge during Slammer worm attack,” in Proc. of IWDC,
2003.

[3] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau, “Large-scale virtualization in the Emulab
network testbed,” in Proc. of USENIX, 2008.

[4] J. Liu, Y. Li, and Y. He, “A large-scale real-time network simulation
study using PRIME,” in Proceedings of Winter Simulation Conference

(WSC), 2009.

[5] F. Papadopoulos, K. Psounis, and R. Govindan, “Performance preserv-
ing topological downscaling of Internet-like networks,” IEEE Journal

on Selected Areas in Communications, vol. 24, no. 12, pp. 2313–2326,
2006.

[6] “ns-2,” http://www.isi.edu/nsnam/ns/.

[7] R. Chertov and S. Fahmy, “Forwarding devices: From measurements to
simulations,” ACM Transactions on Modeling and Computer Simulation

(TOMACS), vol. 21, no. 2, pp. 1–23, 2011.

[8] “Israeli test on worm called crucial in Iran nuclear delay,” http://www.
nytimes.com/2011/01/16/world/middleeast/16stuxnet.html.

[9] “Emulab,” http://www.emulab.net/.

[10] “DETER,” http://www.isi.edu/deter/.

[11] DETER Team, “Building apparatus for multi-resolution networking
experiment using containers,” DeterLab, Tech. Rep. ISI-TR-683, 2011.

[12] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed
mapping problem,” ACM SIGCOMM CCR, 2003.

[13] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998.

[14] R. Pan, B. Prabhakar, K. Psounis, and D. Wischik, “SHRiNK: A method
for enabling scaleable performance prediction and efficient network
simulation,” IEEE/ACM Transactions on Networking, vol. 13, no. 5,
pp. 975–988, 2005.

[15] H. Kim, J. C. Hou, and H. Lim, “TranSim: Accelerating simulation
of large-scale IP networks through preserving network invariants,”
Computer Networks, vol. 52, no. 15, pp. 2924–2946, 2008.

[16] W.-M. Yao and S. Fahmy, “Partitioning network testbed experiments,”
in Proc. of ICDCS, 2011.

[17] “Cloonix: Dynamical topology virtual networks,” http://clownix.net.

[18] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” ACM SIGCOMM CCR, 2002.

[19] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F. Wu,
and L. Zhang, “Observation and analysis of bgp behavior under stress,”
in Proc. of IMC, 2002.

[20] “Internet Topology Collection,” http://irl.cs.ucla.edu/topology/.

[21] “Quagga,” http://www.nongnu.org/quagga/.

[22] J. Mirkovic, A. Hussain, S. Fahmy, P. Reiher, and R. K. Thomas,
“Accurately measuring denial of service in simulation and testbed ex-
periments,” IEEE Transactions on Dependable and Secure Computing,
vol. 6, no. 2, pp. 81–95, 2009.

[23] “Global Environment for Network Innovations,” http://www.geni.net.

[24] “ns-3,” http://www.nsnam.org/.

[25] S.-Y. Wang and Y.-M. Huang, “NCTUns distributed network emulator,”
Internet Journal ISSN, vol. 4, no. 2, pp. 61–94, 2012.

[26] D. Gupta, K. V. Vishwanath, M. McNett, A. Vahdat, K. Yocum,
A. Snoeren, and G. M. Voelker, “DieCast: Testing distributed systems
with an accurate scale model,” ACM Transactions on Computer Systems

(TOCS), vol. 29, no. 2, pp. 1–48, 2011.

[27] E. Weingärtner, F. Schmidt, H. Vom Lehn, T. Heer, and K. Wehrle,
“SliceTime: A platform for scalable and accurate network emulation,”
in Proc. of NSDI, 2011.

[28] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proc. of ACM

SIGCOMM Workshop on Hot Topics in Networks, 2010.

[29] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proc. of CoNEXT, 2012.

[30] J. Ahrenholz, C. Danilov, T. Henderson, and J. Kim, “Core: A real-
time network emulator,” in Military Communications Conference, 2008.

MILCOM 2008. IEEE, November 2008.

[31] P. Sanaga, J. Duerig, R. Ricci, and J. Lepreau, “Modeling and emulation
of Internet paths,” in Proc. of NSDI, 2009.

