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Abstract
In this paper, we present RoCC, a robust congestion control ap-

proach for datacenter networks based on RDMA. RoCC leverages

switch queue size as an input to a PI controller, which computes

the fair data rate of flows in the queue, signaling it to the flow

sources. The PI parameters are self-tuning to guarantee stability,

rapid convergence, and fair and near-optimal throughput in a wide

range of congestion scenarios. Our simulation and DPDK imple-

mentation results show that RoCC can achieve up to 7× reduction

in PFC frames generated under high average load levels, compared

to DCQCN. At the same time, RoCC can achieve up to 8× lower

tail latency, compared to DCQCN and HPCC. We also find that

RoCC does not require PFC. The functional components of RoCC

are implementable in P4-based and fixed-function switch ASICs.
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1 Introduction
Congestion control in packet-switched networks has a clear goal:

to reduce flow completion time (FCT) for users by providing low

latency for small flows (mice) and high throughput for large flows

(elephants). Typical datacenter networks have simple topologies

with fixed distances (in contrast to the Internet) and fixed bisection

bandwidth (in contrast to wireless networks), which may make

congestion control in datacenter networks seem simple. It turns out

to be quite the opposite, though, as evidenced by the spectrum of

solutions that exploit different congestion signals [26, 44], leverage
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Figure 1: Relationship of the components (§3) of RoCC to its

requirements (§2) and high-level goals (§1).

latest developments in network hardware [24], and revisit previous

work with a new perspective [27].

Goals and challenges. Datacenter applications have diverse traffic

characteristics and require ultra-low latency and high through-

put. Most datacenter network traffic has heavy-tailed flow size

distribution [2, 5, 21, 28, 35]. At the same time, datacenter network

hardware keeps improving in terms of processing power, speed,

and capacity, requiring congestion control solutions to be more

efficient to fully utilize these hardware enhancements.

TCP becoming a bottleneck in datacenter networks [44] has

made operators switch to transports based on remote direct memory

access (RDMA); kernel bypass transports such as RDMA over con-

verged Ethernet v2 (RoCEv2) reduce FCT by orders of magnitude

compared to traditional TCP/IP stacks. RDMA requires lossless-

ness, triggering the need for priority-based flow control (PFC) [37],

which prevents packet drop by using back-pressure (at the traffic

class level). Alas, PFC has been observed to cause problems such

as head-of-line (HoL) blocking, congestion spreading, and routing

deadlocks [15, 24, 26, 27, 44]. Less aggressive flow control mecha-

nisms [32] have been proposed to replace PFC. However, we believe

that PFC should only be triggered to prevent buffer overrun, and

we show that if congestion control is able to maintain stable queues

on switches, then PFC activation is rare. Datacenter networks have

failed to harness the full potential of RDMA due to inefficient con-

gestion control [24], and the many RDMA congestion control so-

lutions developed over the recent past, e.g., [24, 26, 27, 44], are

indicators that congestion control for RDMA is a critical problem.

Fig. 1 summarizes high-level goals of congestion control we aim

for and the technical requirements we pose to achieve these goals

(detailed in §2), and foreshadows the components of our solution

and how these fulfill the requirements.
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State of the art. Congestion control solutions can be broadly cate-

gorized as (a) source-driven or (b) switch-driven, according to the

entity (source or switch) playing the key role. With solutions of

type (a), the source paces packets (rate or window adjustment) of

individual flows, based on a congestion signal it gets from the net-

work (switches and/or receiver). With (b), the switch computes the

pacing information (usually rate) and sends it to the source.

Table 1 summarizes the most widely-known datacenter con-

gestion control solutions. A very popular choice in production

datacenter networks is datacenter QCN (DCQCN) [44]. DCQCN is

a source-driven congestion control approach for RoCEv2, which

adapts the congestion point (CP) algorithm of quantized congestion

notification (QCN), using the explicit congestion notification (ECN)

field in IPv4 headers to notify destinations of congestion. The desti-

nation maintains per-flow state in order to relay congestion infor-

mation back to the relevant source. While DCQCN is effective in

reducing the number of PFC frames, its convergence is slow and

it can be unstable [13, 45]. TIMELY [26] is another source-driven

solution that uses delay as the congestion signal, but it falls behind

DCQCN in terms of stability and fairness [45]. Several enhance-

ments, e.g., DCQCN+proportional integral (PI) [45], DCQCN+ [13],

and patched TIMELY [45], have been proposed, but they (too) fail

to meet important properties such as stability and fairness, which

affect FCT.

The recently proposed high precision congestion control (HPCC)

[24] is a source-driven, window-based solution leveraging in-band

network telemetry (INT) to gather link load information and ad-

just source-side transmission window sizes. HPCC outperforms

DCQCN, but fails to meet fairness guarantees in scenarios — as

we show (Fig. 6.1) — commonly observed in modern datacenter

networks [44]. HPCC also trades link bandwidth for shallow queues

and further loses link bandwidth by carrying INT information.

Path forward. We posit that source-driven solutions cannot receive

congestion signals (e.g., ECN in DCQCN [44], network delay in

[26], and INT in HPCC [24]) quickly enough and, as a result, differ-

ent sources make conflicting decisions about the congestion level

they experience in the network. We believe that we need a par-

adigm shift from host (source-driven) congestion control to core

(switch-driven) congestion control in datacenter networks. Con-

cerns with switch-driven solutions that the turnaround time of

new features in switch application specific integrated circuit (ASIC)

is high are being overturned by the increasing adoption of pro-

grammable switch ASICs with P4 support [6] by leading switch

manufacturers. Similarly, reservations that switch-driven conges-

tion control can hinder line-rate packet processing are countered

by recent work [17, 20, 36] showing that event processing (beyond

packet arrival and departure events) using P4 does not sacrifice

line-rate packet processing.

Contributions. We propose a new switch-driven congestion con-

trol solution for RDMA-based datacenter networks, RoCC (Robust

Congestion Control), that: (i) computes a fair rate using a classic PI

controller [12], (ii) signals that fair rate to the sources via Internet

control message protocol (ICMP), and (iii) auto-tunes the control

parameters to ensure stability and responsiveness.

Our contributions can be summarized as follows:

(1) After establishing important design requirements (§ 2) we

present the design of RoCC (§3).

(2) We analyze RoCC, and show how quantized auto-tuning allows

trading off stability and rapid convergence under a variety of

network conditions (§5).

(3) We evaluate RoCC via simulations and a DPDK implementation

(§6) and compare it to DCQCN, TIMELY, and HPCC. Not only

does RoCC achieve fairness and queue stability, but, compared

to DCQCN and HPCC, it also reduces FCT for real datacenter

workloads.

§7 summarizes related work, and §8 concludes the paper. App. A

includes additional evaluation results.

We will make our implementations used for experiments avail-

able to the community.

2 Solution Requirements

We design RoCC to satisfy four key requirements for effective

congestion control in RDMA datacenter networks (Fig. 1).

Fairness (fair): A set of flows on a congested link must equally

share the link bandwidth if they offer equal loads on the link, or

otherwise split the link bandwidth based on max-min fairness. A

flow transmitting at a lower rate than the fair share of the link

bandwidth should not be rate-limited. One could argue that short

flows can be prioritized (over long flows) to minimize their FCTs,

but congestion control is primarily responsible for fair bandwidth

allocation across competing flows irrespective of flow size. We be-

lieve that prioritizing short flows over long flows should be done

at a different level (e.g., packet scheduling, load balancing). Fair-

ness has already been identified as an essential congestion control

property by others [24].

Fairness requires handling two special cases. (1) Multiple bottle-

necks: Intuitively, a flow must effectively use the minimum fair rate

it can attain through the bottleneck links along its path. I.e., the

effective rate a flow uses should be based on the maximum conges-

tion it experiences along the bottleneck links it passes through and

not their number. (2) Asymmetric network topologies: Datacenter

network topologies can be asymmetric in terms of link bandwidth

(core and edge), switch heterogeneity (vendor, configuration), or

the number of nodes connected to edge switches (load). Fair rates

that flows attain should be agnostic to these asymmetries. The

multi-feedback handler at the source and the PI controller at the

switch in RoCC handle these cases (see §3).

High link utilization (eff): Congestion control should not be

performed at the expense of link under-utilization resulting in low

throughput. A flow must always utilize the maximum possible

(fair) rate it can attain — to achieve low FCT — and rapidly reduce

the rate when its traffic contributes to potential queue overshoot

to prevent PFC. RoCC has two key components ensuring optimal

link utilization: the self-riser at the source rapidly increases the

rate in absence of congestion feedback from the switch, and the PI

controller at the switch guarantees max-min bandwidth allocation

for competing flows on a congested link.

Rapid convergence (conv): For low latency and high throughput,

it is important to react quickly to increasing and decreasing con-

gestion levels. Rapid convergence helps maintain system stability

and, as a result, reduces PFC activation. Switch-driven congestion

control has the advantage of being able to disseminate rate updates

18



RoCC: Robust Congestion Control for RDMA CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Table 1: Comparison of selected congestion control solutions.
(∗solution-specific, CNP: congestion notification packet)

Solution Switch action Source action Destination action

DCTCP [2] Mark ECN Adjust congestion window based on ECN Echo ECN

QCN [1] Compute and send Fb
∗ to source Compute rate based on Fb None

DCQCN [44] Mark ECN Compute rate based on CNP Send CNP to source

TIMELY [26] None Send RTT probes and compute rate based on RTT Echo RTT probes

HPCC [24] Inject INT Adjust sending window based on INT Echo INT

RoCC Compute and send rate to source Use minimum rate received from switch(es) None

at the onset of congestion increase (or decrease) at the switch. The

multiplicative decrease (MD) and auto-tuner at the switch are the

two key mechanisms of RoCC that achieve rapid convergence by

aggressively, yet systematically, adjusting the rate.

Stability/robustness (stbl): Congestion control has to be stable

regardless of the number of flows creating congestion. At the same

time, the solution needs to be agile when responding to sudden

changes in congestion level. Thus, it must self-tune to achieve its

performance goals across a wide range of congestion scenarios. The

PI controller and auto-tuner at the switch in RoCC work together

to achieve this.

These four properties together make a flow attain its fair share

along its path and reduce FCT. System stability and fast conver-

gence minimize buffer overshoot, reducing PFC activation (PFC

increases FCT and creates routing deadlocks).

In addition, it is important that the solution scales well in a

datacenter network with an unpredictably large number of flows

traversing switches. The amount of state information required to

maintain on switches must be limited and the bandwidth demand

for feedback messages negligible.

3 RoCC Design
We now discuss the different components of RoCC and how they

achieve our requirements and goals (Fig. 1). At a high level, RoCC

consists of two major components: (1) fair rate calculator at the

switch, and (2) rate limiter at the source. RoCC carefully adapts

ideas from AFD [30] (PI controller), QCN [1] (multi-bit feedback),

PIE [31] (control parameter auto-tuning), and TCP (multiplicative

decrease). Fig. 1 shows how each component of RoCC contributes

to meeting each requirement. Sending a rate from the switch to

the host (backward notification) is motivated by the fact that state-

of-the-art solutions suffer from the inherent delay of end-to-end

congestion signaling (forward notification).

3.1 Definitions
An egress port with its associated queue is defined as the conges-

tion point (CP). The entity that handles traffic rate limiting at the

source is defined as the reaction point (RP). Each flow has its own

rate limiter (RL) at the RP.

Table 2 defines the symbols used in this section. ΔQ is the chunk

size (resolution) for queue size and related parameters. Similarly,

ΔF is the resolution for rate and related parameters. The purpose of

scaling down these parameters is explained in §3.2. F is the current

fair rate at the CP. F is bounded by Fmin and Fmax, the minimum

and maximum possible rates at the CP, respectively. Qcur is the

size of the queue at the time of calculation of F , and Qold is the

corresponding Qcur for the previous value of F . Qref is a reference

queue size, which is a system parameter. α and β are two system

parameters whose purpose is explained below.

3.2 CP Algorithm
The CP periodically calculates the fair rate (fair) and sends it

to certain sources using a special control message. Fig. 2 shows

that RoCC has three main components at the CP: (1) the fair rate

calculator that periodically reads the current queue size to calculate

the fair rate and passes it on to (2) the feedback message generator

that creates the control message encapsulating the fair rate and

sends it to certain sources based on (3) the flow table that keeps

track of the flows needing to receive the feedback.

The rate calculation algorithm is shown in Alg. 1. The queue

size and related parameters are scaled down by ΔQ to reduce the

number of bits required for storing Qold. Similarly, fair rate and

related parameters are scaled down by ΔF , to reduce the number of

bits required to represent the fair rate in the control message (see

Table 2: Symbols and definitions
(∗in multiples of ΔF , †in multiples of ΔQ , ‡in Mb/s)

Symbol Definition

ΔQ Queue size resolution in Bytes

ΔF Rate resolution in Mb/s

Congestion point (CP)

F Current fair rate∗

Fmin Minimum fair rate∗

Fmax Maximum fair rate∗

Qcur Current queue length†

Qold Qcur at previous fair rate calculation
†

Qref Reference queue length†

Qmax Queue length threshold for MD†

Qmid Queue growth threshold for MD†

α , β Current system control (PI) parameters

α̃ , β̃ Static values for α and β respectively

Reaction point (RP)

cnp Congestion notification packet (see §3.3)

Rrcvd Received fair rate‡

Rcur Current send rate‡

Rmax Maximum send rate‡

CPrcvd CP that generated Rrcvd
CPcur CP that generated the last accepted Rrcvd
getCP(cnp) Get the origin (IP) of cnp
getRate(cnp) Get the fair rate in cnp
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Figure 2: Overview of RoCC design at the CP.

§3.3). Scaling down these parameters is an implementation detail

and does not affect the behavior of the algorithm.

The fair rate calculation consists of two main operations:

I. Multiplicative decrease (MD). If the queue length exceeds

Qmax or the queue length change exceeds Qmid and fair rate is

high (i.e., > Fmax
8 ), the fair rate is set to Fmin or F

2 , respectively

(Line 3 and Line 5). Sudden spikes in queue size can be caused

by a new bandwidth-hungry stream or a burst of short flows in

which case a sharp rate cut is needed to reduce a potential buffer

overrun causing PFC activation (conv). This mode of immediate

rate reduction is analogous to the exponential window decrease

(i.e., multiplicative decrease) in TCP congestion control. Unlike

traditional MD, RoCC imposes rapid rate reduction at two different

levels (based on queue size and queue growth), further minimizing

PFC activation. Qmax, Qmid, and Qref must be chosen such that

Qmax >Qmid >Qref , to prevent system instability, as discussed be-

low. Our experiments show that Fmax
8 is sufficiently high to trigger

MD. However, this value can be reduced, as the algorithm assures

that the rate rapidly converges to the correct value. Therefore, the

parameters used in the MD component are not reliability-critical.

II. Proportional integral (PI). The controller that calculates the

fair rate in RoCC is based on a classic PI controller as used in

AFD [30], PIE [31], and QCN [1]. The fair rate is calculated based

on three quantities derived from queue size: (i) current queue size

(Qcur), which signals presence of congestion, (ii) direction of queue

change (Qcur −Qold), which signals congestion increase/decrease,

and (iii) deviation of queue size from Qref , which signals system

instability (Line 8). Parameters α and β determine the weight of

the last two factors. The fair rate changes until the queue is stable

at Qref . A stable queue indicates that its input rate matches its

output rate, and the fair rate through its port has been determined.

An important advantage of this controller is that it can find the

fair rate without needing to know the output rate of the queue or

the number of flows sharing the queue. The algorithm performs

a boundary check on the calculated fair rate to make sure it stays

within a preconfigured upper bound (Line 10) and lower bound

(Line 12). After calculating the fair rate,Qold is set toQcur (Line 13).

To maintain system stability (stbl) for all values of F while

keeping the controller sufficiently agile with sudden queue changes,

we design an auto-tuning mechanism for control parameters α and

β (Line 15), based on the simple intuition that small adjustments are

needed to reach a small target fair rate value (i.e., large number of

competing flows) and conversely, larger adjustments are needed to

reach a large target fair rate value (i.e., small number of competing

flows) (conv). Thus, the algorithm quantizes the possible fair rate

range [Fmin, Fmax] into six distinct regions, and maps each region

to a different pair of values for α and β (as discussed in §5).

Algorithm 1 Fair rate computation at the CP

1: function Calculate_Fair_Rate(Qcur)

2: if Qcur ≥ Qmax AND F > Fmax
8 then

3: F ← Fmin

4: else if (Qcur −Qold) ≥ Qmid AND F > Fmax
8 then

5: F ← F ÷ 2
6: else

7: α , β ← Auto_Tune()

8: F ← F − α × (Qcur −Qref ) − β × (Qcur −Qold)

9: if F > Fmax then

10: F ← Fmax

11: if F < Fmin then

12: F ← Fmin

13: Qold ← Qcur

14: return F

15: function Auto_Tune()

16: level ← 2
17: while F < Fmax

level
AND level < 64 do

18: level ← level × 2
19: ratio ← level ÷ 2
20: α ← α̃ ÷ ratio; β ← β̃ ÷ ratio
21: return α , β

RoCC uses base-2 numbers in multiplication and division opera-

tions, which are efficiently implemented using bit shift operations.

3.3 Feedback Message
The feedback message includes: (1) the fair rate value (in multi-

ples of ΔF ) and (2) information (i.e., the packet headers) required

to derive the identifier of the flow to which the rate applies. Using

this information, the RP can correctly match the feedback message

to the relevant RL. We use ICMP for the congestion notification

packet (CNP) and prioritize CNPs to minimize queuing delay. This

prioritization of feedback messages further reduces reaction delay

of RoCC (conv) compared to state-of-the-art solutions that employ

end-to-end congestion notification (e.g., ECN in DCQCN [44], delay

in TIMELY [26], and INT in HPCC [24]).

3.4 Flow Table
A flow table keeps track of the recipients of the feedback mes-

sages. RoCC has the flexibility of using different flow table imple-

mentations, such as:

(1) Maintaining a table of the flows currently in the queue: This

is our default flow table implementation and the table size is

bounded by the queue size.

(2) RoCC has a lower bound for fair rate, hence the number of

concurrent flows on a link has an upper bound (i.e., Fmax /

Fmin). This bounds the size of the table, and can be used in

conjunction with a simple age-based flow eviction mechanism.

(3) AFD-FT: This is the flow table implementation used inAFD [30],

the first AQM mechanism that leveraged flow size and flow

rate distributions to scale per-flow state.

(4) ElephantTrap [25]: This identifies large (elephant) flows that

cause persistent congestion by sampling packets. The prob-

ability of a flow being identified as an elephant depends on
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the sampling rate. A flow in the table is evicted based on a

frequency counter (i.e., LFU).

(5) BubbleCache [34]: This employs packet sampling to efficiently

capture elephant flows at high speeds.

These different flow table implementations facilitate sending feed-

back messages to selected flows (e.g., elephants only) at the cost of

lower stability margins. .

Since the PI controller changes the fair rate until the arrival rate

matches the drain rate of the congested queue, the fair rate will

stabilize at:

F =
Cl − BWmice

N
, (1)

whereCl is the bandwidth of the congested link, BWmice is the total

bandwidth used by the flows that do not contribute to congestion

(innocent/mice flows), and N is the number of flows contributing to

congestion. Thus it suffices to track the flows that most contribute

to congestion and queue buildup.

3.5 RP Algorithm
The RP employs an event-driven algorithm, triggered by each

incoming CNP, to update the sending rate of the corresponding

RL. The RP also uses a fast recovery mechanism to rapidly increase

the sending rate of the RL, in the absence of CNPs, which implies

absence of congestion (eff).

Alg. 2 shows the RP algorithm which has two routines:

(1) Process CNP. RoCC uses a simple yet effective approach for

handling CNPs from CPs along a flow’s path. The RP accepts a

CNP if (i) it (CPrcvd) was generated by the same CP that generated

the last accepted CNP (CPcur) for the RL or (ii) its fair rate (Rrcvd)
is smaller than the current sending rate Rcur used by the RL (Line 4).
This ensures that the RL always uses the fair bandwidth share that

the flow can attain at themost congested CP on its path (fair). Upon

accepting a new fair rate, the RL immediately updates its current

sending rate to the new rate (Line 5). The algorithm also remembers

CPrcvd as most congested CP on the flow’s path (Line 6).

(2) Fast recovery, An RL can stop receiving CNPs when the flow

no longer contributes to any CP on its path. Since the RP may

not receive all CNPs destined to it, the RL should automatically

increase its rate Rcur after a certain period of not receiving CNPs

(eff). RoCC exponentially increases its rate based on a timer in this

situation (Line 8). RoCC stops fast recovery upon accepting a CNP

(Line 7). The sending rate is bounded by the maximum allowed rate

Rmax, usually the link bandwidth. If the rate reaches Rmax, the RL

is uninstalled, allowing the flow to transmit as without congestion.

This fast recovery mechanism is simpler than that of DCQCN.

3.6 Rate Computation at the Host
RoCC does not require that the CP carry out the rate computation.

Instead, the CP can send the values of Qcur, Qref , Qmid, Qmax, F ,
Fmin, Fmax, α̃ , and β̃ , to the host and have it compute the rate. There

are two simple approaches for sending these to the host, requiring

modest modifications to the CNP: (1) CP provides all the values, (2)

CP only provides Qcur and F , and the host looks up the remainder

of the values, which are specific to a given F , in a simple registry.

This flexibility simplifies the RoCC implementation, especially on

legacy switch ASICs that have limited arithmetic support (e.g., no

floating-point operation support).

Algorithm 2 Rate limiting at the RP

1: procedure Process_CNP(cnp)
2: Rrcvd ← getRate(cnp) × ΔF

3: CPrcvd ← getCP(cnp)
4: if Rrcvd ≤ Rcur OR CPrcvd = CPcur then
5: Rcur ← Rrcvd
6: CPcur ← CPrcvd
7: Reset_Timer()

8: procedure Timer_Expired()

9: if Rcur > Rmax then

10: remove this rate limiter if its queue is empty

11: else

12: Rcur ← Rcur × 2
13: Reset_Timer()

4 Implementation
In this section, we investigate the feasibility of implementing

the CP algorithm at the switch and the RP algorithm at the host.

4.1 Basics
CP. The key components of the CP implementation include: (1) flow

table (hash generation and table update), (2) periodic calculation of

fair rate for egress queues (timer event handling), (3) associating

computed fair rates with corresponding flows (flow table lookup),

and (4) generating and transmitting CNPs to the flow sources.

RoCC can be implemented on custom ASICs. Based on our dis-

cussions with switch ASIC designers, a proprietary fixed-function

ASIC implementation of RoCC requires approximately 1.1 M gates,

1.9 Mb dual port SRAM, 1.2 Mb of SRAM, and 0.138 Mb of TCAM

(totalling 3.2 Mbits of memory). This constitutes a negligible 0.7%
of chip die area.

As data plane programmability becomes more widespread, P4 [6]

is becoming the de facto framework for programming switch ASICs,

and major datacenter switch hardware vendors already support P4

programmability in their ASICs [7].

RP. Host networking stacks support intercepting ICMP (CNP) mes-

sages as well as implementing the RP algorithm (e.g., DPDK, Smart-

NIC, and Linux raw sockets for ICMP).

4.2 P4 Implementation
Fig. 3 illustrates a potential switch implementation of RoCC (rate

computation is at the host). We use “v1model”1 as the data plane

runtime architecture. Runtime models (e.g., Portable Switch Archi-

tecture (PSA), Tofino Native Architecture (TNA)) closely follow the

v1model (with additional features), hence our implementation is

adaptable to other P4 runtime models. Below, we walk through our

implementation according to its execution path.

(1) CNP generator: is implemented in the control plane. Its task is

to send CNP packets onto the data plane every T seconds. We

use the standard approach for implementing timer events in

P4 that uses the “packet out” channel (using P4Runtime API)

to input the control packet to the data plane through its "CPU

port." List. 1 defines the P4 header for CNP. We send a CNP

packet for each egress port and specify port id as meta data

1struct standard_metadata_t defines runtime meta data in “v1model.”
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Figure 3: RoCC switch implementation in P4.

when we call the P4Runtime API. Other runtime architectures

may have more efficient ways of implementing timer events.

For instance, Tofino can periodically generate control packets

within the data plane (i.e., ingress packet generator), hence our

solution can be implemented entirely in the Tofino data plane.

(2) Parser: extracts packetout_t header from an incoming CNP.

We assume the data plane only receives CNPs from the control

plane (i.e., through the “CPU port”). Therefore, a CNP can be

identified from its ingress port (ingress_port of

standard_metadata_t).

(3) Ingress processing: directs CNPs to their respective egress

queues. Only CNPs have a valid packetout_t header (i.e., isValid

() on packetout returns true). A CNP is directed to its intended

egress queue by setting egress_spec of standard_metadata_t

to packetout.egress_port.

(4) Traffic manager: attaches certain intrinsic meta information in-

cluding egress queue length (deq_qdepth of standard_metadata_t

) to every passing packet. As a result, a CNP has its egress queue

length when it reaches the egress pipeline.

(5) Egress processing: handles two tasks: (i) maintain a flow table.

Our flow table is implemented using a simple Register array in

P4 and it is very similar to the flow table used in Turboflow [36],

which is proven not to hinder line-rate traffic processing in

the data plane. The flow table is updated for each data packet

going through the egress pipeline; and (ii) set queue length

and other parameters required for rate computation (see §3.6)

on CNP and “mirror” it to selected sources based on the flow

table.

@controller_header("packet_out")
header packetout_t {

bit <8> egress_port;
}
struct headers {

packetout_t packetout;
/* standard headers */
ethernet_t ethernet;
ipv4_t ipv4;
icmp_t icmp;

}

Listing 1: P4 header definition for CNP.

5 Stability Analysis
We analyze the stability of RoCC based on the control system it

employs in its CP algorithm (i.e., PI). We first derive a mathematical

model for the CP algorithm, and based on this, we use phase margin

analysis to show that the automatic parameter tuning mechanism

in RoCC ascertains system stability.

5.1 System Model
Assume that N flows are congesting a network link l with ca-

pacity Cl . Each flow is shaped using the same feedback rate sent

by the CP. Therefore, the queue dynamic is

dQ(t)

dt
=
ΔF × N × F (t −T ) −Cl

ΔQ
, (2)

whereT is the update interval and F (t) is the fair rate received from
the CP at time t . For this analysis, we can safely ignore the MD rate

reduction as long as we carefully choose thresholds not to interfere

with the PI controller.

The PI controller calculates the fair rate based on the current

queue length and the trend of change in queue length. Using bilinear

transformation as in [31], we can convert the operation at Line 8

from Alg. 1 into the continuous form

dF (t)

dt
= −

α

T
[Q(t) −Qref ] − (β +

α

2
)
dQ(t)

dt
. (3)

After a Laplace transformation on Eq. 2 and Eq. 3 we get

Q(s) = κN
e−sT

s
F (s), (4) F (s) =

(β + α/2)s + α
T

s
E(s), (5)

withκ = ΔF

ΔQ
, and E(s) = Qref−Q(s) the error signal. The open-loop

transfer function of the whole system (see Fig. 4) is

G(s) = K
(1 + s

z1
)

s2
e−sT , (6)

where z1 = α/((β + α/2)T ) and K = κNα/T .
Note that the gain of the open loop function, K , is in proportion

to N , the number of flows sharing the link. This affects the stability

of the closed-loop system.

5.2 Determining Control Parameters
The update interval T and reference queue depth Qref must be

set carefully, as they impact system stability (stbl).

A typical guideline is to set T to 1–2 times the round trip time

(RTT). The rationale behind making T larger than the RTT is to

allow any change in the fair rate calculation to go into effect before

the next update of fair rate.
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Figure 4: The feedback loop ofRoCC controller that includes

PI, queue dynamic, and loop delay.

Figure 5: Phase margin as a function of parameters α and β .
Phase margin above 0 ensures a stable system.

We choseQref based on bandwidth-delay product,T ×Cl where
Cl is the egress link bandwidth. Our experiments show that Qref

should be half of the bandwidth-delay product for lower latency.

For specific values of T and Qref , we use Bode diagram analysis

to find values for α and β for the system to have sufficient phase

margin. Fig. 5 shows phase margin for different values of α and β ,
withT = 40 μs , N = 2. We need to set values of α and β producing

a phase margin above 0, which guarantees system stability.

We now show how the number of flows N impacts the stability

of the system. Since open-loop gain is in proportion to N , the larger

the number of flows, the less stable our system would be for fixed

α and β . Fig. 6 illustrates how setting N = 10 reduces the phase

margin from 50 to −50, making the system completely unstable.

We can solve this problem by selecting conservative values for

α and β to guarantee stability for N ∈ [2, 128]. E.g., setting α =
0.0093 and β = 0.0937 ensures a phase margin above 20 degrees

and stability for all values ofN . However, when the number of flows

Figure 6: Stability margin for two values of N . For N > 2,
the system gain increases. Thus 0 dB gain occurs at higher

frequency resulting in lower phase margin.

sharing the link is small, it takes a long time for the PI controller to

reach the stable fair rate.

Fig. 7a shows the phase margin as a function of N for various

α : β value pairs. We start with 0.3 : 3 and keep dividing each value
by 2 to get the next pair. Fig. 7b plots loop bandwidth for each pair

of values. A higher loop bandwidth yields a faster response time.

As shown in Fig. 7a, reducing α and β makes the system stable for

a larger range of values of N , at the expense of slower convergence

as Fig. 7b shows. Choosing higher values of α and β provides faster

response time, but the system becomes unstable as N increases.

5.3 Auto-tuning α and β
Rationale: With auto-tuning, RoCC can maintain stability and re-

duce response time for all values of N by adapting α and β . N can

be inferred from the current fair rate, since we do not know the

number of flows sharing the link at any given time. The fair rate

and N are inversely proportional, since the bandwidth attained by

flows contributing to congestion on a link follows Eq. 1. For large

values of fair rate (small N ), α and β should be large to ensure fast

convergence without losing stability. In contrast, for small values

of fair rate (large N ), α and β should be small.

Discrete α and β values: Adjustments to α and β can be made in a

continuous fashion. As Fig. 7a and Fig. 7b show, quantizing the fair

rate range into 6 levels and choosing a different pair of values for α
and β for each level is sufficient to maintain the same phase margin

and response time for all values of N . PIE [31] follows the same

approach and uses discrete control parameter value pairs for sim-

plicity. The discrete adjustments can be easily implemented using

a binary search-based lookup mechanism. Our experiments (§6)

show that auto-tuning increases stability and reduces convergence

time for a variety of workloads.

6 Evaluation
We conduct three types of experiments to evaluate RoCC:

(1) Micro-benchmarks and comparisons to the state of the art with

respect to the four properties in §2 using simulations.

(2) Evaluation with DPDK to confirm the properties of RoCC on a

real network and validate our simulations.

(3) Larger scale evaluation using a simulation setup resembling a

real datacenter network in terms of topology, number of nodes,

and traffic patterns, to examine whether RoCC meets system

and user goals (§2).

For simulations, we use the INETmodel suite [18] onOMNeT++ [29]

event simulator to implement a prototype of RoCC. In our simula-

tion model, the fair rate has fixed point precision to mimic hard-

ware implementation. Our datacenter model has been previously

used in the literature [40], with simulation results corresponding

to results obtained by running similar tests on real testbeds. We

implement several state-of-the-art solutions, which do not have

publicly available OMNeT++ implementations. We use their public

code repositories for reference, and configure the solutions based on

details given in respective papers. We use traffic workloads derived

from publicly available datacenter traffic traces [2, 28, 35].

System parameters. All interconnections in our simulations are

either 40 Gb/s or 100 Gb/s links with 1.5 μs delay. We chose PFC

threshold values 500 KB and 800 KB for 40Gb/s and 100Gb/s links,
respectively, based on [42]. NIC (i.e., RP) reaction delay for feedback
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(a) Phase margin as a function of N for 6 pairs of

α : β values. Lower values of α and β provide a

positive phase margin for all values of N .

(b) Loop frequency as a function of N for 6 pairs

of α : β values. Lower values of α and β cause

slower response for smaller values of N .

Figure 7: Impact of the number of flows N with different

values of α and β .

messages is 15 μs. ΔF is 10Mb/s and ΔQ is 600 B.T is set to 40 μs.
Fmin is 10, irrespective of link bandwidth. Fmax is 4000 and 10000
for 40 Gb/s and 100 Gb/s links, respectively. We setQref ,Qmid, and

Qmax to 150KB, 300KB, and 360KB, respectively, for 40Gb/s links,
and 300 KB, 600 KB, and 660 KB, respectively, for 100 Gb/s links.

α̃ and β̃ are 0.3 and 1.5, respectively, for 40 Gb/s links, whereas

the values are 0.45 and 2.25, respectively, for 100 Gb/s links. We

use the default flow table implementation (cf. §3.4 (1)).

6.1 Micro-Benchmarks
We use a topology with N source nodes connected to a single

destination node through a switch. This setup has a single bottle-

neck link (from the switch to the destination node) of bandwidth

B. Each source node has an RDMA application generating traffic

based on the workloads mentioned earlier. The destination node

has an application receiving traffic from all source nodes. RoCC

is enabled on the egress switch interface towards the destination.

Unless otherwise mentioned, we use this setup for all scenarios in

this section.

Fairness (fair) and stability (stbl). The offered load at each source

node is 90% of the link bandwidth, causing persistent congestion on

the bottleneck link. We observe system stability and fair bandwidth

allocation for N = 2, 10, and 100, and for two different values of

B (40 Gb/s, 100 Gb/s). As Fig. 8 shows, the computed fair rate

converges in ∼ 2 ms for all values of N . Note that the fair rate

converges faster with larger N , and the egress queue at the switch

is stable at its reference value regardless of N . The stability of RoCC

is governed by the PI controller, which uses queue size as input,

hence queue stability indicates system stability. This observation
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Figure 8: Fairness and stability of RoCC as load increases.

is consistent with the auto-tuning discussion in §5.2. Results for

B = 100 Gb/s are consistent with those for B = 40 Gb/s.

Convergence (conv) and high link utilization (eff). We exponen-

tially increase (and reduce) the link load level by dynamically start-

ing (and stopping) flows to investigate the system behavior when

load fluctuates. We start with 3 flows (i.e., N = 3) and start new

flows every 10 ms such that N doubles every time, until N = 100.
After 10ms, we begin to stop flows every 10ms such that N halves

every time until N = 3. We record the fair rate and egress queue

size on the switch. As Fig. 9 shows, the fair rate decreases from

13.3 Gb/s to 400Mb/s as N increases from 3 to 100 (conv). Simi-

larly, the fair rate increases from 400 Mb/s back to 13.3 Gb/s as N
decreases from 100 to 3 (eff). As the load fluctuates, the queue size

and fair rate always stabilize in less than 2 ms. When new flows

start and create a traffic burst in Fig. 9a, the queue size suddenly

increases causing the MD of RoCC to kick in and bring the rate

down, draining the queue. Similarly, when flows stop, the traffic

reduces, causing the queue to drain. The PI of RoCC ensures that

the queue grows and rapidly stabilizes.

Comparison to existing solutions. We compare RoCC to the state of

the art and state of the practice in datacenter networks, in terms of

the expected congestion control properties. We include QCN [1],

DCQCN [44], DCQCN+PI [45], TIMELY [26], and HPCC [24] in our

comparison. We configure the simulation setup with N = 10 and

B = 40 Gb/s. We record the fair rate, egress queue size, and egress

link utilization on the switch.

As Fig. 11a shows, the flows experience a significant deviation

from the expected average fair rate of 4 Gb/s with TIMELY. In

contrast, each flow attains the expected average fair rate with RoCC

(fair). In this scenario, DCQCN and HPCC are comparable to RoCC

in terms of fairness, but the average per-flow rate attained is lower

than the expected value with HPCC. This is a result of the link

bandwidth headroom that HPCC reserves. In the next section, we

further examine the fairness of DCQCN, HPCC, and RoCC.

Fig. 11b and Fig. 11c show the queue size and the bottleneck

link utilization (eff). RoCC maintains the queue size at the ref-

erence queue size (stbl). DCQCN and TIMELY fail to maintain

a stable queue, fluctuating around ∼ 100 KB and ∼ 200 KB for

DCQCN and TIMELY, respectively. A key observation here is that

DCQCN’s stability improves significantly when its ECN marking

mechanism is modified to use a feedback loop based on a PI con-

troller (DCQCN+PI [45]). This observation further justifies the use

of a PI controller in RoCC. DCQCN+PI and TIMELY achieve high

link utilization –DCQCN+PI with a fairly stable queue, and TIMELY

with an unstable yet non-empty queue. HPCC by design underuti-

lizes links to reserve bandwidth headroom, hence our results in this
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Figure 9: Convergence of RoCC. The numbers in red are the

flow counts during the intervals.

case are consistent with its expected behavior. The stability of the

rate attained by each flow closely follows that of link utilization.

Multiple bottlenecks. A flow in a datacenter network may encounter

multiple CPs on its path from the source to destination [44]. In-

tuitively, a flow that traverses multiple CPs must attain the fair

bandwidth corresponding to the most congested CP on the path

of the flow (fair). We examine the effectiveness of RoCC and the

state of the art in handling multiple CPs. We use the topology in

Fig. 10, which has 6 source nodes (A0...A4, B5) and 5 destination

nodes (B0...B4) connected to switches S0 and S1. Each access link

is 10 Gb/s and the link between the switches is 40 Gb/s. Ai trans-
mits data flow Di to Bi (i = 1, 2, 3, 4). A0 and B5 transmit data

flows D0 and D5, respectively, to B0. D0 traverses two CPs, S0 and

S1. We compare RoCC to DCQCN [44] and HPCC [24] in terms of

flow-level bandwidth allocation. As Fig. 12a shows, flows {D0, D5}
and {D1,. . . ,D4} attain their fair bandwidth shares of 5 Gb/s and

8.75 Gb/s, respectively, with RoCC. In contrast, D0 attains 30% less

throughput than expected with DCQCN and, as a result, the remain-

ing flows utilize more bandwidth than they should. HPCC exhibits

a similar behavior where flow D0 has around 50% less throughput

than expected. We conclude that RoCC is best at handling feedback

messages received from multiple CPs (fair).

Asymmetric topology. As equipment of datacenters is gradually up-

graded over time, their topologies become less symmetrical.We thus

use a simple network topology with asymmetric links to compare

RoCC to DCQCN [44] and HPCC [24] in terms of average flow-level

bandwidth allocation. 2 switches (S0 and S1) are connected to a

third switch (S2) using 100 Gb/s links. A destination node (B0) is
connected to S2 using a 100 Gb/s link. 5 source nodes (A0. . .A4) are
connected to S0 using a 40 Gb/s links, and 2 source nodes (A5 and

A6) are connected to S1 using 100 Gb/s links. Nodes A0. . .A6 each

transmit a data flow (i.e., D0. . .D6, respectively), destined to B0.
A0. . .A4 and A5. . .A6 should get the same total bandwidth (40 Gb/s
× 5 and 100 Gb/s × 2, respectively) through S0 and S1, respectively
(2:1 oversubscription). We run the experiment at 90% load to record

average throughput attained by D0. . .D4 and D5. . .D6.

Figure 10: Multi-bottleneck topology.

We make an interesting observation. As the bottleneck link in

this topology (S2 → B0) is shared among the 7 flows, each flow

should obtain a fair bandwidth share of 14.29 Gb/s. Fig. 12b shows

that, with RoCC, each flow attains the intended bandwidth. In con-

trast, HPCC allocates more bandwidth to the flows originating from

nodes connected using higher bandwidth links and, as a result, D5
and D6 equally share most of the bandwidth on the bottleneck link

and attain ∼ 24.5 Gb/s bandwidth each. The remaining 5 flows

equally share the remaining bandwidth on the bottleneck link caus-

ing each to only obtain ∼ 9.40 Gb/s bandwidth. DCQCN is better

than HPCC in terms of fairness in this scenario where each flow

attains bandwidth close to the fair share value.

Key takeaways. From these experiments, we make the following

key observations: (i) RoCC is fair, efficient, stable, and converges

rapidly. It is effective in handling feedback from multiple CPs and

works well with asymmetric network topologies; (ii) RoCC can

outperform the state of the art in terms of fairness, stability, and

convergence.

6.2 DPDK Evaluation

We implement RoCC using the popular DPDK [10] kernel bypass

stack to validate our simulation results. The switch implementation

uses three logical cores for handling data reception, packet switch-

ing, and data transmission and congestion control respectively. The

source implementation uses two logical cores, one for data recep-

tion and the other for data transmission and rate limiting. We use

the reserved ICMP type 253 for feedback messages.

We deploy our DPDK implementation on a network setup on

CloudLab [11] that has 3 source nodes connected to a destination

node through a switch using 10 Gb/s links. Each node in this topol-

ogy is a Dell Poweredge R430 machine with two 2.4 GHz 64-bit
8-Core Xeon E5-2630v3 processors, 8 GT/s, 20MB cache, 64 GB

2133MT/s DDR4 RAM, and 2 Intel X710 10 GbE NICs. With this

configuration, our switch is capable of working as a 10 GbE 4-port
switch. We use an iPerf [19] UDP client at each source node and

three iPerf UDP servers at the destination, each receiving traffic

from one client.We setQref ,Qmid, andQmax to 75KB, 150KB, and
210 KB, respectively. We set T to 100 μs to match the propagation

delays in this environment. We run two different test scenarios and

record fair rate and switch egress queue size. We record the same

observations for the corresponding simulations for comparing with

our testbed results.

In the first scenario, we configure each client to generate traffic

load equal to the link bandwidth (10 Gb/s). Fig. 13a shows that the

queue size stabilizes at 75 KB for both the testbed (testbed-uni) and

simulation (sim-uni). In Fig. 13b, the fair rate for the testbed and

simulation both stabilize at 3 Gb/s.

In the second scenario, we configure the sending rate of the 3
clients to 10 Gb/s, 3 Gb/s, and 1 Gb/s, respectively. Fig. 13a shows

that Qcur stabilizes at 75 KB for both the testbed (testbed-mix) and

simulation (sim-mix) results. Fig. 13b shows that the flows attain

the max-min fair value of 6 Gb/s in both testbed and simulation

experiments. It is important that RoCC be validated under real-

life constraints in datacenter networks, i.e., with a real protocol

stack, latency introduced by different layers, and NIC transmission

delays, which can all adversely affect its behavior. From the DPDK
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Figure 11: Comparing RoCC with TIMELY, QCN, DCQCN, and HPCC in terms of fairness, stability, and convergence.

evaluation, we conclude that RoCCwould behave as expected under

these constraints, and the results of the simulations are valid.

6.3 Large-Scale Simulations
We use large-scale simulations to evaluate RoCC and compare

it with DCQCN [44] and HPCC [24], in terms of (1) FCT and (2)

PFC activation. We use a two-level fat-tree [23] topology with 3
core switches and 3 edge switches. Each edge switch is connected

to each core switch using 2 100 GbE links (i.e., 200 Gb/s effective

bandwidth). Each edge switch has 30 nodes connected to it using

40 Gb/s links (i.e., 2:1 oversubscription). We implement ECMP on

the edge switches to equally distribute the load across the links.

Each node behind the first two edge switches transmits traffic to

every node behind the third edge switch. As a result, the maxi-

mum incast levels are 150, 300, and 60 on ingress edge switches,

core switches, and egress edge switches, respectively. This setup is

sufficiently large to represent a production datacenter network in

terms of bisection bandwidth, incast congestion level, and number

of CPs. We use traffic loads derived from two publicly available

datacenter traffic distributions consisting of throughput-sensitive

large flows [2, 28] (WebSearch traffic) and latency-sensitive small

flows [28, 35] (FB_Hadoop traffic). We run our simulations using

50% and 70% average link load levels. Besides FCT and number of

PFC activations at CPs, we record flow-level rate at sources and

buffer usage on CPs to rationalize our observations on FCT and PFC

activation. We repeat each experiment 5 times, each on a machine

with a fresh simulation environment setup. The FCTs, PFC counts,

and queue sizes we present are the average values of the 5 sets of

results, with 95% confidence intervals.

FCT. Fig. 14, Fig. 15, and Fig. 16 respectively show the average,

90th percentile, and 99th percentile FCT of DCQCN, HPCC, and

RoCC forWebSearch traffic and FB_Hadoop traffic at 70% average

load. We chose the flow sizes (i.e., bins) based on the heavy-tailed

flow size distributions of WebSearch traffic and FB_Hadoop traf-

fic. Based on the 99th percentile FCT, RoCC clearly outperforms
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Figure 12: Fairness of DCQCN, HPCC, and RoCC.
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Figure 13: Testbed results vs. simulation results.

DCQCN and HPCC for all the flow sizes. Therefore, the results

confirm that RoCC has lower tail latency than DCQCN and HPCC.

Especially, RoCC experiences very low tail latency even for large

flows (i.e., elephants) where HPCC clearly fails. This is the behavior

expected of HPCC [24] as a result of headroom bandwidth it loses

and the INT information it piggybacks on data frames. These two

overheads of HPCC reduce effective throughput for large flows,

hence increasing tail latency. HPCC shows a different behavior for

large flows with FB_Hadoop traffic. In this case, the FCT of HPCC

increases significantly and, in particular, the 99th percentile FCT

is an order of magnitude higher than that of DCQCN. RoCC has

very low FCTs compared to DCQCN and HPCC resulting in much

lower tail latency than that of DCQCN and HPCC. At 50% load, the

results are consistent with those at 70% load.

To understand the FCTs of the three solutions, we study flow-

level rate allocation in the three solutions. Any given data flow

in our setup traverses four links from its source to destination.

The bandwidth of these links are 40 Gb/s, 100 Gb/s, 100 Gb/s,

and 40 Gb/s with maximum concurrent flows of 30, 150, 300, and
60, respectively. Based on these values, the maximum per-flow

bandwidth a flow can attain is ∼ 333 Mb/s (i.e., 100 Gb/s ÷ 300).
We use the flow-level rate values we recorded for FB_Hadoop traffic

under 70% load, which mostly consists of short flows and as a result,

the average number of concurrent flows on each bottleneck link is

close to the corresponding numbers we mentioned above, and the

bottleneck link utilization is close to link bandwidth. Table 3 shows

the average per-flow rate and their variances for the three solutions.

The average rate for RoCC closely matches the ideal value with

low variance. In contrast, the average rate values for DCQCN and

HPCC deviate from the ideal value with very high variance. Based

on this analysis, it is clear that the fairness (fair), stability (stbl),

and convergence (conv) of RoCC allow a flow to constantly attain

the optimal bandwidth along its path from source to destination,

resulting in lower tail latency than that of DCQCN and HPCC,

regardless of flow size. In essence, our simulation setup does not

prioritize flows, and the fairness of RoCC ensures that flows of the
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Figure 14: Average FCT of DCQCN, HPCC, and RoCC (70% average load).
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Figure 15: 90th percentile FCT of DCQCN, HPCC, and RoCC (70% average load).
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Figure 16: 99th percentile FCT of DCQCN, HPCC, and RoCC (70% average load).

same size exhibit low variance in their FCT (in other words, almost

equal average, 90th percentile, and 99th percentile FCT).

Shallow vs. stable queues. HPCC is based on the idea that shallow

queues reduce congestion signal delay, and hence convergence

delay. To examine this, we analyze the average queue size at differ-

ent CPs for the three solutions. Fig. 17a shows the average queue

size of DCQCN, HPCC, and RoCC at potential CPs: core switches,

ingress edge switches, and egress edge switch, forWebSearch traffic.

DCQCN clearly experiences congestion at two different CPs (core

and ingress edge), yielding poor performance. In contrast, HPCC

experiences congestion only at a single CP (core) with a very shal-

low queue (mild congestion). Similarly to HPCC, RoCC experiences

congestion at a single CP (core) with an average queue size close to

its reference (Qref ) of 300 KB. Though HPCC maintains a shallow

Table 3: Flow-level average rate allocation of DCQCN,

HPCC, and RoCC with FB_Hadoop traffic (70% average load).

The ideal average rate in this case is ∼ 333 Mb/s.

Solution Average rate (Mb/s)
Standard deviation

(Mb/s)

DCQCN 378.86 2635.63

HPCC 211.02 1459.04

RoCC 335.86 232.52

queue at the CP, it has higher overall FCTs than RoCC. Therefore,

we argue that maintaining a stable queue is more effective than

maintaining a shallow queue at the expense of link underutilization.

The queue sizes for FB_Hadoop traffic is consistent with those for

WebSearch traffic.

PFC activation. Fig. 17b shows the normalized average numbers of

PFC activations at different CPs for DCQCN, HPCC, and RoCC at

70% average load, for WebSearch traffic (the number of PFC acti-

vations is for a segment of experiment duration, and we divide it

into 50 segments ). DCQCN suffers from high levels of PFC acti-

vation, whereas HPCC and RoCC do not. This observation agrees

with the queue size observation (Fig. 17a), where DCQCN has deep

queues at the CPs, whereas HPCC has shallow queues. In contrast,

RoCC maintains a stable queue at the CP. The PFC activation for

FB_Hadoop traffic is consistent with that for WebSearch traffic.

300

600

Core Ingress Egress

A
vg

. Q
ue

ue
 S

iz
e

(K
B

)

DCQCN
HPCC
RoCC

(a) Average queue size.

1

7

Core Ingress Egress

A
vg

. N
um

. P
FC

 (
N

or
m

al
iz

ed
) DCQCN

HPCC
RoCC

(b) PFC activation.

Figure 17: Queue size and PFC activation of DCQCN, HPCC,

and RoCC withWebSearch traffic (70% average load).
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Figure 18: Average FCT of DCQCN, HPCC, and RoCC with

PFC disabled and unlimited buffer (FB_Hadoop traffic at 70%
average load). The numbers in respective colors show the

fold increase in FCT,w.r.t. the casewhenPFC is enabledwith

limited buffer (Fig. 16).

Unlimited buffer. We now examine the behavior of DCQCN, HPCC,

and RoCC with unlimited buffers on switches. We use the same

network setup as before, with PFC disabled and relatively large

amount of buffer space on the switches (i.e., no packet drop) with

FB_Hadoop traffic. We record FCT and average buffer usage at the

CPs for the three solutions. Datacenter networks do not operate

under these conditions in practice, but we investigate the extent of

each solution’s buffer demand in order to estimate the amount of

buffer space a switch needs for the solution to function (1) without

activating PFC, and (2) without dropping packets and retransmis-

sions. We also examine the impact on FCT in this situation. Fig. 18

shows the FCTs of the solutions at 70% load. The FCT of DCQCN

increases up to a factor of ∼ 13 and that of HPCC increases up to a

factor of ∼ 7. In contrast, the FCTs of RoCC remains close to the

FCTs when PFC is enabled with limited buffer (see Fig. 14). RoCC

maintains its average buffer usage around the reference value (Qref )

of 300 KB, whereas DCQCN and HPCC on average use ∼ 80× and

∼ 20×more buffer space, respectively, than RoCC does. This demon-

strates RoCC’s ability to operate without PFC.

Key takeaways. From these experiments, we canmake the following

key observations: (i) RoCC is more fair (fair) than DCQCN and

HPCC. For WebSearch traffic, the tail FCTs of RoCC are up to ∼ 4×
and ∼ 3× lower than those of DCQCN and HPCC, respectively. For

FB_Hadoop traffic, they are up to ∼ 7× and ∼ 8× lower than those

of DCQCN and HPCC, respectively., and (ii) RoCC is more stable

(stbl) than DCQCN and HPCC, and as a result RoCC causes up to

∼ 7× reduction in PFC activation, compared to DCQCN.

7 Related Work
Although congestion control research started as far back as the

1980s, several new proposals for the Internet (e.g., [4, 8, 9, 14, 41])

and datacenters (e.g., [2, 3, 13, 16, 24, 26, 27, 38, 44]) have emerged

over the past few years. Table 1 and §1 summarized the most widely-

known datacenter solutions.

With sender-driven congestion control solutions individual senders

determine their sending rates or windows based on congestion

signals they receive. DCQCN [44] is one such widely deployed so-

lution. TIMELY [26] is another production-grade solution that uses

RTT as congestion signal. We have shown that they do not meet

convergence and fairness goals. HPCC [24] uses INT supported

by modern network switches to gather link load information and

uses it to adjust sending window sizes at sources. HPCC is more

stable than other datacenter solutions, but we saw that it becomes

notably unstable at high load levels and is unfair when multiple bot-

tlenecks exist or the network topology is asymmetric. In addition,

HPCC causes link underutilization due to the bandwidth headroom

it retains and the INT transmission overhead it incurs.

Switch-driven solutions have the advantage of precisely mea-

suring congestion, and directly sending critical congestion control

information to sources, using special control messages that can be

prioritized so that sources can quickly react. QCN [1] measures

the extent of congestion at the switch, and conveys this to the

source using multiple bits (as opposed to a single bit in the case

of ECN). QCN is limited to layer 2. XCP [22] achieves efficiency

(link utilization) and fair bandwidth allocation on the switch, by

making adjustments to window size information in packet head-

ers. The window adjustments are relayed by the receiver, causing

feedback delay. XCP requires substantial modifications to end sys-

tems, switches, and packet headers. RCP [39] requires the switch

to calculate a fair-share rate per link and have each data packet

carry the minimum fair-share rate along its path from the source

to destination and back to the source. As a result, RCP suffers from

rate message propagation delay, just like XCP. TFC [43] uses a

token-based bandwidth allocation mechanism at the switch, based

on the number of active flows at each time interval. It is difficult to

measure the quantities TFC uses in its computation, especially with

bursty datacenter traffic. Overall, existing switch-based solutions

do not satisfy the requirements of datacenter networks, and fail to

realize the full potential of operating at the CP where it is possible

to compute and provide the source with the fair rate instead of

congestion information. In contrast, RoCC employs a closed-loop

control system at the switch, enabling rapid convergence to the fair

rate. The rate value is conveyed to the source using a special ICMP

message that can be prioritized. RoCC only sends feedback to those

flows that cause congestion.

8 Conclusions

Programmable switch architectures with P4 support becoming

more widespread has motivated us to explore switch-driven conges-

tion control in datacenter networks. We have proposed RoCC, a new

switch-driven congestion control solution for RDMA. RoCC em-

ploys a closed-loop control system that uses the egress queue size

as input to compute a fair rate through the egress port, maintaining

a stable queue. RoCC is fair and efficient, yields low tail latency,

and reduces PFC activation, even when flows traverse multiple

bottlenecks or the topology becomes asymmetric over time due to

topology changes that are inevitable as datacenter networks evolve.

RoCC also allows datacenter networks to be run at higher load

levels than the state of the art. Our plans for future work include

additional experiments to compare RoCC with a wider variety of

congestion control approaches, with emphasis on QoS, where class-

level fairness is essential. The RoCC code repository is available

at [33].
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A Additional Evaluation Results
In this appendix, we include additional experimental results that

are omitted from the paper for brevity.

A.1 Verification of reference solution

implementations
We verify our implementations of DCQCN and HPCC in terms

of their stability, convergence, and fairness, which are the key

congestion control properties that impact FCT and PFC activation.

We use the topology of §6.1. We increase (and decrease) the link

load level by dynamically starting (and stopping) flows. We start

with 1 flow (i.e., N = 1) and start a new flow every 1 s until

N = 4. Then, after 1 s, we begin to stop a flow every 1 s until

N = 1. We record the instantaneous rate attained by each flow.

As Fig. 19a shows, the per-flow rate of DCQCN decreases from

40 Gb/s to 10 Gb/s as N increases from 1 to 4, and it increases from
10 Gb/s to 40 Gb/s as N decreases from 4 to 1. As Fig. 19b shows,
the per-flow rate of HPCC follows that of DCQCN. HPCC is more

stable, fair, and converges faster than DCQCN. Fig. 9h and Fig. 9g

of [24] show results consistent with ours (Fig. 19a and Fig. 19b

respectively) for the same experiment. Therefore, we can ascertain

that our implementations of DCQCN and HPCC have the expected

behavior.

A.2 Lossy network
We extend the scenario of §6.3 to examine the behavior of RoCC

with limited buffer space on the switch. We implement go-back-N
as the loss recovery scheme in DCQCN, HPCC, and RoCC. We set

the buffer limit on the switches to 3× the PFC threshold. We record

the total number of retransmissions, along with the total number

of packets transmitted. We observe that both DCQCN and HPCC

incur ∼ 30% retransmissions, resulting in significantly increased

FCTs (see Fig. 20 for details). In contrast, RoCC experiences minimal

retransmissions and as a result, FCTs very close to the ones with

PFC enabled and limited buffer.
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Figure 19: Verification of the implementations of DCQCN

and HPCC.
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Figure 20: Average FCT of DCQCN, HPCC, and RoCC on

a lossy network with Go-back-N loss recovery (FB_Hadoop

traffic at 70% average load). The numbers in respective col-

ors show the fold increase in FCT, w.r.t. the case when PFC

is enabled with limited buffer (Fig. 16).
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