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Abstract. Affine-invariant properties are an abstract class of proper-
ties that generalize some central algebraic ones, such as linearity and
low-degree-ness, that have been studied extensively in the context of
property testing. Affine invariant properties consider functions mapping
a big field Fqn to the subfield Fq and include all properties that form
an Fq-vector space and are invariant under affine transformations of the
domain. Almost all the known locally testable affine-invariant proper-
ties have so-called “single-orbit characterizations” — namely they are
specified by a single local constraint on the property, and the “orbit”
of this constraint, i.e., translations of this constraint induced by affine-
invariance. Single-orbit characterizations by a local constraint are also
known to imply local testability. In this work we show that properties
with single-orbit characterizations are closed under “summation”. To
complement this result, we also show that the property of being an n-
variate low-degree polynomial over Fq has a single-orbit characterization
(even when the domain is viewed as Fqn and so has very few affine
transformations). As a consequence we find that the sum of any sparse
affine-invariant property (properties satisfied by qO(n)-functions) with
the set of degree d multivariate polynomials over Fq has a single-orbit
characterization (and is hence locally testable) when q is prime. We con-
clude with some intriguing questions/conjectures attempting to classify
all locally testable affine-invariant properties.
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1 Introduction

Given finite sets D and R, let {D → R} denote the set of functions mapping
D to R. A property F of functions mapping D to R is simply given by a set
F ⊆ {D → R}. The goal of property testing [20,12] is to design “query efficient”
tests for various properties. Specifically, a (k, ε, δ)-tester for F is a probabilistic
oracle algorithm that, given oracle access to a function f : D → R, makes k-
queries to f and accepts f ∈ F with probability one, while rejecting f that is
δ-far from F with probability at least ε. Here, distance is measured by normalized
Hamming distance: δ(f, g) = |{x ∈ D | f(x) 6= g(x)}|/|D| denotes the distance
between f and g, and δ(f,F) = ming∈F{δ(f, g)}. f is said to be δ-far from F
if δ(f,F) > δ and δ-close otherwise. To minimize notation we say F is k-locally
testable if for every δ > 0 there exists ε = ε(k, δ) > 0 such that F is (k, ε, δ)-
locally testable. Our interest is in families of properties that are k-locally testable
for some constant k.

In this work we consider testing of “affine-invariant (linear) properties”. The
domain and range of such properties are fields. Let Fq denote the field of size
q and let F∗q denote the non-zero elements of Fq. We consider properties F ⊆
{Fqn → Fq} (so q is a prime power and n is a positive integer). F is linear
if for every f, g ∈ F and α ∈ Fq, the function α · f + g belongs to F , where
(α · f + g)(x) = α · f(x) + g(x). A function A : Fqn → Fqn is affine if there exist
α, β ∈ Fqn such that A(x) = αx + β. We say A is an affine permutation if A is
affine and bijective. Note this is equivalent to saying A(x) = αx + β for some
α ∈ F∗qn and β ∈ Fqn . A property F is said to be affine-invariant if for f ∈ F
and every affine permutation A : Fqn → Fqn , the function f ◦ A is also in F ,
where (f ◦A)(x) = f(A(x)).1

The main contribution of this work is to describe a new class of affine-
invariant properties that are locally testable. We show that a broad class of
locally testable affine-invariant properties (one that includes most known ones)
is closed under “sums”. But before presenting our results, we motivate the study
of affine-invariant properties briefly.

Motivation: The study of affine-invariance was originally motivated in [19] by
its connections to locally testable codes and to property testing (cf. the recent
survey [21]). Indeed, many “base-constructions” of locally testable codes — cru-
cially used in constructing probabilistically checkable proofs [4,3] — are algebraic
in nature and come from families of low-degree polynomials. This motivates the
search for the minimal algebraic requirements sufficient to obtain families of lo-
cally testable codes, and affine-invariance offers a rich and interesting framework
in which to study abstract properties shared by low-degree functions and other
algebraic locally testable properties. In this respect, the study of affine-invariant

1 In all previous works starting with [19], affine-invariance was defined as invariance
with respect to all afine functions, and not only with respect to affine permutations.
In this paper, we define affine-invariance as invariance with respect to the group of
affine-permutations. Fortunately, the class of properties does not change despite the
mild change in the definition. We prove this equivalence in the full version [7].



property testing is similar to the study of graph property testing initiated by [12].
Graph-property testing abstracts and unifies properties such as k-colorability
and triangle-free-ness, by focussing only on the invariance induced by being a
“graph property” (i.e., the property should remain invariant under renaming of
the vertices). Affine-invariant testing similarly attempts to abstract and unify
algebraic properties such as being linear or of low-degree or a BCH codeword
by focussing only on the invariance of the property (and the linearity of the
code/property). The study of graph property testing however is much further
advanced and has culminated in a complete combinatorial characterization of
locally-testable properties in the “dense-graph model”[1,10]. Testing of affine-
invariant properties lacks such a characterization and indeed it is not yet clear
what shape such a characterization might take.

An additional reason to study affine-invariant properties is because they cor-
respond to locally correctable codes. An error correcting code of blocklength n
is said to be locally correctable if it has an associated “local corrector”. Given
an adversarially corrupted codeword w ∈ Fn

q and index i ∈ {1, . . . , n} the (ran-
domized) local corrector makes a constant number (hence it is called “local”) of
queries to entries of w and outputs, with high probability, the ith entry of the
“correct” codeword w′ — closest in Hamming distance to w. Linear codes that
are locally correctable are easily seen to be locally decodable codes as defined
by [16] and can be used to construct databases that support private information
retrieval [11] (in general though, local correctability is a stronger property than
local decodability, see e.g. [6,5]) . It can be verified that affine-invariant locally
testable codes are in fact locally correctable [19] hence our results imply new
families of locally correctable (and decodable) codes.

Known Testable Properties: Previous works have shown local testability
results for two broad categories of affine-invariant properties: (1) Reed-Muller
properties, and (2) Sparse properties.

In our language, Reed-Muller properties are obtained by equating the sets
Fqn and Fn

q with an Fq-linear bijection. This allows us to view Fq-linear subspaces
of {Fqn → Fq} as linear subspaces of {Fn

q → Fq} where the latter is the set of
n-variate functions over Fq. The q-ary Reed-Muller property of weight degree w
is given by the set of functions that are n-variate polynomials of degree at most
w in this view. The testing result here shows that the Reed-Muller property
with parameter w over Fq is testable with qO(w/q) queries [17] (see also [2,15]),
independent of n.

Sparse properties are less structured ones. Roughly, a property is t-sparse if
it is of size at most qO(tn). The main theorem here, due to [18] shows that for
every prime q and integer t there exists k, such that for every n every t-sparse
F ⊆ {Fqn → Fq} is k-locally testable.

Aside from the classes above, the known testable properties are less “explicit”
and are derived from the concept of single-orbit characterizations, described
next.

Single-orbit characterizations: Local tests of linear properties work by pick-
ing k query locations α1, . . . , αk ∈ Fqn (non-adaptively) and then verifying that



f(α1), . . . , f(αk) satisfy some given constraint (which will restrict this k-tuple to
satisfy some linear constraints over Fq). If a property is affine-invariant, it should
be equally effective to query A(α1), . . . , A(αk) for some affine permutation A,
and then test to see if the function values at these points also satisfy the given
constraint. The collection of tests so obtained (by trying out all As) is referred
to as the orbit of the constraint at α1, . . . , αk. If the only functions that satisfy
all these constraints are the functions in F , then we say that F has a single orbit
characterization.

Single-orbit characterizations seem to be playing a central role in testing of
affine-invariant properties. On the one hand, it is known that every k-single-
orbit characterized property is k-locally testable [19] and some non-single-orbit
characterized properties are known to be not locally-testable even though they
can be characterized by a collection of k-local constraints [8]. On the other
hand, most known locally testable properties also seem to have some “single-
orbit” property. Sparse codes over prime fields were shown to be single-orbit
characterized in [18] (see also [14]). The Reed-Muller property has the single
orbit property over the (large) group of affine transformations over the vector
space Fn

q by natural considerations. (This will be insufficient for our purposes
and so we will strengthen it to get a single-orbit characterization over the field
Fqn in this work.)

Remaining cases of known locally testable codes are obtained in one of two
ways: (1) By lifting: This is an operation introduced in [8]. Here we start with
a single-orbit property over some field Fqn and then “lift” this property to one
over an extension field Fqnm (in a manner we will describe later). (2) By taking
intersections: The intersection of testable properties is always testable. The lifts
turn out to be single-orbit characterized by definition, and the intersection of
a constant number of single-orbit characterized properties also turns out to be
single-orbit characterized essentially by definition.

1.1 Main Result

In this work we extend the class of properties over Fqn that have single orbit
characterizations.

Our first result considers the sum of affine invariant properties. For properties
F1,F2 ⊆ {Fqn → Fq} their sum is F1 + F2 = {f1 + f2 | f1 ∈ F1, f2 ∈ F2}. For
general linear properties F1 +F2 is also linear, but the testability of F1,F2 does
not imply their sum is locally testable. Indeed it may be the case that F1 + F2

satisfies no local constraints. Sums of affine-invariant properties behave more
nicely. It is straightforward to see the the sum of affine-invariant properties is
affine-invariant. More interestingly, it is also possible to show (relatively easily)
that if for every i ∈ {1, 2}, Fi satisfies a ki-local constraint, then F1+F2 satisfies
a k1 · k2-local constraint. However this does not seem to imply local-testability.
Here we focus on single-orbit characterized properties and prove their sum is
single-orbit characterized.



Theorem 1. For every q, k1, k2, there exists κ = κ(k1, k2, q) such that for every
n, if F1,F2 ⊆ {Fqn → Fq} are affine-invariant properties with Fi having a ki-
single orbit characterization, then F1 +F2 has a κ-single orbit characterization.
Specifically, if n ≥ n0 = 10k2 log k+ 10, where k = max{k1, k2}, then we can set
κ = k1 · k2, else κ = qn0 works.

To apply the theorem above to get new families of single-orbit characterized
properties, we need good base properties. However, the two families mentioned
earlier, sparse properties and Reed-Muller properties were not known to have the
single-orbit property over the same group. Reed-Muller properties were known
to have the single-orbit property over the group of affine permutations over Fn

q ,
while sparse properties are invariant only over Fqn . (And there is no point using
the theorem above to prove that the sum of two sparse families is single-orbit —
this is already known since the sum of sparse families is also sparse!) To remedy
this situation we show that the Reed-Muller property is actually single orbit over
the group of affine permutations over Fqn .

Theorem 2 (Reed-Muller codes have local single-orbit property). Let

q = ps be a prime power. Let w, n be integers such that w + 1 <
√

n
logq(3ns)

.

Denote w + 1 = r(p− 1) + `, where 0 ≤ ` < p− 1. Then, the q-ary Reed-Muller
family of weight degree w, RMq(w, n), has a k-single orbit characterization for
k = pr ·(`+1). In particular, for every w, q there exists a k = k(w, q) such that the
q-ary Reed-Muller family of weight degree w has a k-single orbit characterization.

Indeed an immediate consequence of the two theorems above is that the sum
of Reed-Muller and sparse properties over prime fields are locally testable.

Corollary 1. For integers t, d and prime p, there exists a k = k(t, d, p) such
that for every n and every pair of properties F1,F2 ∈ {Fpn → Fp}, where F1

is the p-ary Reed-Muller property of weight degree d, and F2 is t-sparse, the
property F1 + F2 has a k-single orbit characterization, and is hence k-locally
testable.

The corollary above describes the broadest known class of testable properties
when n and q are prime. When n is not prime, the earlier-mentioned notion of
lifting leads to other locally testable binary properties, and then intersection also
leads to further richness.

Due to space restrictions, we give just a brief hint of the proof of our main
theorem. We also describe some of the open questions and conjectures arising
from our work. A full version of this work is available as [7].

2 The structure of affine-invariant properties

In what follows Fq will denote the field of q elements of characteristic p, where
q = ps for some integer s. Let d =

∑
i dip

i be the base p representation of an
integer d. The weight (or p-weight) of d is defined as wt(d) =

∑
i di. I.e. it is



the sum of coefficients in the p-ary representation of d. A non-negative integer
e =

∑
i eip

i is said to be in the p-shadow of d (or simply in the shadow of d),
denoted e ≤p d, if ei ≤ di for all i. We denote a ≡k b whenever a is equal to
b modulo k. As we will be studying polynomials modulo identities of the form
xq − x ≡p 0 it will be convenient to define the following variant of the modular
operation. Let a and k be integers. We define amod∗ k as

amod∗ k =

{
0 a = 0

b where 1 ≤ b ≤ k is such that b ≡k a

We also say that a ≡ b (mod∗ k) if amod∗ k = bmod∗ k. Note that the only
difference between mod and mod∗ is that mod∗ does not send nonzero multiples
of k to zero but rather to k. It is now clear that xa ≡q x

amod∗ q−1.
The class of properties that we consider are characterized by their algebraic

properties. To describe such properties we need to introduce several notions from
the works of [19,13,14,9,8].

We view functions f : Fqn → Fq as functions from Fqn → Fqn whose image
just happens to be contained in Fq ⊆ Fqn . This allows us to view f as (the
evaluation of) a univariate polynomial of degree qn − 1.

Let f(x) =
∑qn−1

d=0 cdx
d. The support of f , denoted supp(f), is the set

supp(f) = {d | cd 6= 0}.
The following definition captures an important feature of the structure of

affine invariant families.

Definition 1 (Deg(F)). Let F ⊆ {Fqn → Fq} be a family of functions. The
degree set of F , denoted Deg(F), is the set of degrees of monomials that appear
in some polynomial in F . Formally,

Deg(F) = {d | ∃f ∈ F such that d ∈ supp(f)}.

To better understand affine-invariance we need to describe some basic prop-
erties of the degree sets (the ones that are known to lead to local testability).
We do so in the next two definitions.

Definition 2 (Shift(d),Shift(D), shift-closed, shift-representatives, Fam(D)).
Let d be an integer in {0, . . . , qn − 1}. The shift of d is defined as the set
of degrees obtained when taking all q powers of xd. Formally, Shiftq,n(d) =
{qi · dmod∗ qn − 1 | ∀0 ≤ i ≤ n}. Recall that qi · dmod∗ qn − 1 is the integer
d′ such that if d 6= 0 then d′ ≡ qid mod (qn − 1) and 1 ≤ d′ ≤ qn − 1, and if
d = 0 then d′ = 0. (In what follows, we will always be considering degrees in the
support of functions from Fqn to Fq, so that we drop the subscripts.)

We extend the notion to a set of degrees naturally. For a set D ⊆ {0, . . . , qn−
1}, the shift of D is defined as Shift(D) =

⋃
d∈D Shift(d). A set D is said to be

shift-closed if Shift(D) = D. For a shift-closed D, a set S ⊆ D is said to be
a set of shift-representatives of D if Shift(S) = D and Shift(d) ∩ Shift(d′) =
∅ for d, d′ ∈ S. (In other words S contains one element from each “shift” class



in D; by convention we assume each element of S is the smallest amongst its
shifts.)2

Finally, for a shift-closed D, we define Fam(D) = {Trace(f) | f : Fqn →
Fqn , supp(f) ⊆ D}.

Another important ingredient that we will use is the shadow of a degree.

Definition 3 (Shadow, Shadow-closed set). For a non-negative integer d,
the shadow of d is the set Shadow(d) = {e | e ≤p d}. The shadow of a set S
of non-negative integers is simply the union of the shadows of its elements, i.e.,
Shadow(S) =

⋃
d∈S Shadow(d). A set S of non-negative integers is shadow-

closed if Shadow(S) = S.

For a general (linear) family F , the degree set of F does not give much useful
information about F . However, for affine invariant families, this set completely
describes the family. Furthermore, sets of degrees that are closed under shifts
and under shadows completely characterize affine-invariant properties.

Our next lemma repeats in different forms in the literature [19,13,14,9].
Specifically, it is Lemma 3.5 in [8].

Lemma 1 (Closed degree sets specify affine-invariant properties). Let
F be a linear and affine-invariant family. Then Deg(F) is shadow-closed and
shift-closed, and F = Fam(Deg(F)). Conversely, if D is shadow-closed and shift-
closed then D is the degree set of some affine invariant family. More specifically,
Fam(D) is affine-invariant and D = Deg(Fam(D)).

3 Sums of Affine-Invariant Properties

In this section we prove Theorem 1. The main idea behind the proof is that
instead of looking at the sets of degrees of a locally characterizable family F , we
look at the border set of degrees. These are the integers that do not themselves
belong to Deg(F) but every integer in their shadow is in Deg(F).

Definition 4 (Border of a family). Let F ⊆ {Fqn → Fq} be a family of
functions. The border of F is the set of degrees given by

Border(F) = {d 6∈ Deg(F) | ∀e <p d, e ∈ Deg(F)}.

We start by noticing that a k-single orbit characterization can be specified by
a pair (ᾱ; {λ̄i}ti=1), where ᾱ = (α1, . . . , αk) ∈ Fk

qn and λ̄i = (λi,1, . . . , λi,k) ∈ Fk
q ,

and f ∈ F if and only if it satisfies
∑k

j=1 λi,jf(π(αj)) = 0 for every i ∈ {1, . . . , t}
and every affine map π : Fqn → Fqn . Note further that we can assume t ≤ k in
the specification above. The following lemma gives several equivalent definitions
to being a k-single orbit characterizable family. The lemma can be seen as an
extension of Lemma 3.6 in [8].

2 As d′ ∈ Shift(d) if and only if d ∈ Shift(d′), such S always exists.



Lemma 2. [Equivalent definitions of k-single orbit characterizable family]
Let F ⊆ {Fqn → Fq} be a linear affine-invariant family. The following are
equivalent:

1. (ᾱ; {λ̄i}ti=1) is a k-single orbit characterization of F , where ᾱ = (α1, . . . , αk) ∈
Fk
qn and λ̄i = (λi,1, . . . , λi,k) ∈ Fk

q .

2. For all d, d ∈ Deg(F) ⇔ ∀i
∑k

j=1 λi,j(αjx+ y)d ≡ 0 (as a formal polyno-
mial in x and y).

3. For all d,d ∈ Deg(F) ⇔ ∀e ≤p d, ∀i
∑k

j=1 λi,jα
e
j = 0.

4. For all d ∈ Deg(F) ∪ Border(F), d ∈ Deg(F) ⇔ ∀i
∑k

j=1 λi,jα
d
j = 0.

3.1 Proof of Main Theorem

Due to space limitations we give only an idea of the proof of Theorem 1.
Let F1 and F2 be k-single orbit characterized properties (we assume for

simplicity that k1 = k2 = k, and make several other simplifying assumptions
here). Suppose the k-single orbit characterization of F1 is simply (ᾱ, 1̄) (so F1

satisfies
∑k

i=1 f(αi) = 0). Similarly, let the k-single orbit characterization of F2

be (β̄, 1̄).
A candidate k2-single orbit characterization of F1 + F2 would be the the

“outer product” of the two given constraints, namely the k2 local constraint
given by ((αiβj)i,j ; 1̄).

To analyze this potential constraint, we look at the degree set based de-
scriptions of single-orbit characterizations. First we use the (easily verifiable
fact) that Deg(F1 + F2) = Deg(F1) ∪ Deg(F2). Next we see that for every

d ∈ Deg(F1) ∪ Deg(F2),
∑k

i=1

∑k
j=1 α

d
i β

d
j = (

∑k
i=1 α

d
i ) · (

∑k
j=1 β

d
j ) = 0, so

((αiβj)i,j ; 1̄) is a valid constraint on F1 + F2.
Unfortunately, it is not clear that for every d ∈ Border(F1 + F2) the sum∑k

i=1

∑k
j=1 α

d
i β

d
j does not equal 0, which is necessary (by Part 4 of Lemma 2).

To remedy this, we take a random constraint in the orbit of (ᾱ; 1) and a
random constraint in the orbit of (β̄; 1̄) and take their “outer product”. Specif-
ically we pick random non-zero a1, a2 ∈ Fqn and random b1, b2 ∈ Fqn and
consider the potential constraint (γ̄; 1̄) where γ̄ = (γi,j)i,j is given by γi,j =
(a1αi + b1)(a2βj + b2). It is again easy to verify that

∑
i,j γ

d
i,j = 0 for every

d ∈ Deg(F1) ∪Deg(F2).
We then note that for any fixed d 6∈ Deg(F1) ∪ Deg(F2) the formal sum∑

i,j((x1αi + y1)(x2βj + y2))d 6≡ 0 (as a polynomial in x1, x2, y1, y2 — this uses
Part 2 of Lemma 2). Thus when we pick random assignments x1 = a1, x2 = a2
etc,, we find that

∑
i,j γ

d
i,j 6= 0 with probability at least 1−O(d/qn), and so this

random choice does eliminate any particular “bad” d.
To conclude the argument we need to make sure that every d ∈ Border(F1 +

F2) is eliminated (i.e.,
∑

i,j γ
d
i,j 6= 0). To do so, we use the union bound, with

two crucial ingredients: First we use the main theorem from [9] to conclude that
all d ∈ Border(F1 +F2) have p-weight at most k and there are only (q + n)O(k)

such d’s. Next we use the fact that we need to consider only one d from every



“shift” class, to take the smallest one. This allows us to work with d ≤ qn(1−1/k).
Combining these ingredients, we can take the union bound over all possible
bad events and conclude that a random choice a1, a2, b1, b2 eliminates every
d ∈ Border(F1 + F2) with positive probability.

4 Consequences, Questions and Conjectures

Our work further highlights the role played by single-orbit characterizations in
the testing of affine-invariant properties. This feature is common (e.g. Reed-
Muller property is single-orbit over the smaller group) and also useful (sums of
single-orbit characterized properties also have this feature). In this section we
describe some of the questions surrounding this concept that emerge from this
(and related) research.

At the moment almost all known locally-testable affine-invariant properties
are known to be single-orbit characterized. The only exception is the case of
sparse properties where the range is not a prime field. This leads to the following
question, which we hope can be resolved affirmatively (soon).

Question 1. For every q and t, does there exists a constant k = k(q, t) such that
every t-sparse property F ⊆ {Fqn → Fq} is k-single orbit characterized?

Assuming an affirmative answer to the questions above, we get a “concise”
description of all known testable properties.

4.1 Known locally testable properties

As mentioned earlier, the known “basic” single-orbit characterized affine-invariant
families are the Reed-Muller families and sparse families. Three “operations” are
also now known that preserve “single-orbit characterizations” and hence local
testability of these basic families: (1) Sums of two families, (2) Intersections of
two families, and (3) Lift of a single family. Below we define this lifting operator.

Definition 5 (Lifted code [8]). Let K ) L ) Fq be finite fields with q = ps.
For D ⊆ {0, . . . , |L| − 1} we define the lift of D from L to K to be the set of in-
tegers liftL↗K(D) = {d′ ∈ {0, . . . , |K| − 1} | (shadowp(d′) (mod∗ |L| − 1)) ⊆ D}.

For an affine-invariant family F ⊆ {L→ Fq} with degree set D = Deg(F),
let liftL↗K(F) be the affine-invariant family with degree set liftL↗K(D), i.e.,
liftL↗K(F) = {f : K→ Fq | supp(f) ⊆ liftL↗K(D)} = Fam(liftL↗K(D)).

The following proposition follows easily from the definitions

Proposition 1 ([8]). Lifts of single orbit characterized families are also single-
orbit characterized. Specifically, if Fq ⊆ L ⊆ K and (ᾱ, {λ̄i}ti=1) is a k-single
orbit characterization of F ⊆ {L → Fq} then (ᾱ, {λ̄i}ti=1) is also k-single orbit
characterization of liftL↗K(F).



Given the operations above, it is easy to see that one can compose a fi-
nite number of basic single-orbit characterized families using a “formula” whose
operations are sum, intersection and lifts. We define this concept below.

Definition 6 (Formula, size). A formula Φ of size s, degree d, sparsity t
producing a family F ⊆ {K → Fq}, denoted (s, d, t,K,F)-formula, is given by
the following inductive definition:

1. A formula Φ of size 1, is given by F ⊆ {K → Fq} where F is either a
Reed-Muller family of order d, or a t-sparse family.

2. A formula of size s is obtained by one of the following operations:
(a) Picking L such that Fq ⊆ L ⊆ K and letting Φ = liftL↗K(Φ1) where Φ1

is a (s− 1, t, d,L,F) formula.
(b) Picking s1, s2 such that s1 + s2 + 1 = s and letting Φ = Φ1 ∩ Φ2 where

Φi is an (si, t, d,K,F) formula.
(c) Picking s1, s2 such that s1 + s2 + 1 = s and letting Φ = Φ1 + Φ2 where

Φi is an (si, t, d,K,F) formula.

The following theorem summarizes the state of knowledge of single-orbit
characterized families.

Theorem 3. For every s, t, d, q there exists a k = k(s, t, d, q) such that for every
n, every (s, t, d,Fqn ,Fq)-formula produces a k-single orbit characterized family,
for prime q.

Note that the caveat that q is prime can be dropped if we have an affirmative
answer to Question 1.

4.2 Conjectures and questions

We start with the most obvious question.

Question 2. Is the following statement true? For every k, q there exist s, t, d such
that for every n, if F ⊆ {Fqn → Fq} is a k-locally testable affine-invariant family
then F is given by an (s, t, d,Fqn ,Fq)-formula.

At the moment our understanding of affine-invariance with respect to its
local testability is so far that it is too optimistic to conjecture an affirmative
answer to this question. All we can say is that an affirmative answer is not yet
ruled out.

The nature of the question seems to become much simpler if we disallow
lifts, by insisting that n is prime (then we get no fields L strictly between Fq

and Fqn). In this setting, intersections become uninteresting and lead to a much
tamer question.

Question 3. Is the following statement true? For every k, q there exist t, d such
that for every prime n, if F ⊆ {Fqn → Fq} is a k-locally testable affine-invariant
family then F = F1 + F2 where F1 = RMq(d′, n) and F2 is t′-sparse, for some
d′ ≤ d and t′ ≤ t.



This question remains quite challenging even when we restrict to the case
where q = 2 (where our state of understanding does seem somewhat better),
and even when we restrict our families to be contained in RM2(2, n).

Conjecture 1. For every k there exists a t such that the following holds for every
prime n: If F ( RM2(2, n) is k-locally testable then F is t-sparse.

Attempting to prove the conjecture above leads to some interesting questions
about the rank of certain Vandermonde like matrices that seem interesting in
their own right. We state the conjecture below. We don’t prove the connection
to the conjecture above, but claim that an affirmative answer to the following
implies an affirmative answer to the above.

Conjecture 2. For every k, there exists a t such that for every prime n and every
sequence α1, . . . , αk ∈ F2n of elements that are F2-linearly independent, and
every sequence of t distinct elements e1, . . . , et ∈ {0, . . . , n− 1}, the k× t matrix
M = [Mij ]ij with Mij = α2ej

i has rank exactly k.

Finally a couple of questions which relate to the structure of locally-testable
codes (an affirmative answer to both is implied by an affirmative answer to
Question 2).

Question 4. For every k, q does there exist a k̃ such that for every n, if F ⊆
{Fqn → Fq} is k-locally testable, then F has a k̃-single orbit characterization?

Question 5. For every k, q does there exist a k̃ such that for every n, if F1,F2 ⊆
{Fqn → Fq} are k-locally testable, then F1 + F2 is k̃-locally testable?
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