
THE INSULATION SEQUENCE OF A GRAPH

ELENA GRIGORESCU

Abstract. In a graph G, a k-insulated set S is a subset of the vertices of G such that every vertex
in S is adjacent to at most k vertices in S, and every vertex outside S is adjacent to at least k + 1
vertices in S. The insulation sequence i0, i1, i2, . . . of a graph G is defined by setting ik equal to
the maximum cardinality of a k-insulated set in G. We determine the insulation sequence for paths,
cycles, fans, and wheels. We also study the effect of graph operations, such as the disjoint union,
the join, the cross product, and graph composition, upon k-insulated sets. Finally, we completely
characterize all possible orderings of the insulation sequence, and prove that the insulation sequence
is increasing in trees.
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1. Introduction

A. Jagota, G. Narasimhan and L. Soltes [1] define a k-insulated set of a graph G(V,E) to be a
set of vertices S ⊆ G that satisfies two conditions: each vertex in S is adjacent to at most k other
vertices in S, and each vertex not in S is adjacent to at least k + 1 vertices in S. The insulation

sequence i0, i1, . . . of a graph G is defined by setting ik equal to the cardinality of a maximum
k-insulated set in G. For example, the vertices of a 0-insulated set S0 form an independent set,
and each vertex in G\S0 is adjacent to at least one vertex in S0. This means that a 0-insulated set
is a maximal independent set, and i0 is the independence number of G. Thus, the k-insulated set
is a generalization of the maximal independent set. It is easy to show that for k greater than or
equal to the maximum degree of a graph G, the only k-insulated set of G contains all the vertices
of G. Note also that all vertices of degree at most k must be in all k-insulated sets. Jagota et al.
prove the existence of a k-insulated set for every graph G and every positive integer k. They also
provide algorithms to construct k-insulated sets.

As in [1], for a vertex v and a set S, let dS(v) denote the the number of vertices in S that are
adjacent to vertex v. In this paper we will make extensive use of the Algorithm B(k, S) provided
in [1], which, given a graph G, a positive integer k, and any set of vertices S in G, outputs a
k-insulated set. The procedure is described below. (One should note that steps (2) and (3) below
can be executed in either order.)

The Algorithm B(k, S)

(1) If S is a k-insulated set, the algorithm stops.
(2) If there exists a vertex v ∈ S such that dS(v) > k, then remove v from the current set S.
(3) If there exists a vertex u 6∈ S such that dS(u) ≤ k, then put u into S.

(4) Return to step (1).

The algorithm runs until there are no more vertices that need to be removed from S or put into
S, at which point a k-insulated set is obtained. Jagota et al.[1] use an energy function argument
to show that the algorithm terminates.

We are going to use Algorithm B(k, S) in order to prove that in any graph G, the maximum
size of a 1-insulated set is less than or equal to the maximum size of a k-insulated set, for k ≥ 2.
Based on this result, we also prove that for almost any permutation of the terms of the insulation
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sequence, there is a graph G in which that ordering occurs. Further, we show that the insulation
sequence is increasing in trees, and we provide a lower bound on the size of a k-insulated set.

2. The Insulation Sequence for some families of graphs

Let ik(G) denote the maximum size of a k-insulated set in a graph G. Let Pn be the path on n

vertices. It is easy to see that

i0(Pn) =

⌊

n+ 1

2

⌋

,

i1(Pn) =

⌊

2(n+ 1)

3

⌋

,

ik(Pn) = n, for k ≥ 2.

Similarly, let Cn be the cycle on n vertices. Then,

i0(Cn) =
⌊n

2

⌋

,

i1(Cn) =

⌊

2n

3

⌋

,

ik(Cn) = n for k ≥ 2.

Recall that a fan Fn+1 consists of a vertex v and a path Pn, such that v is adjacent to every
vertex of Pn, and a wheel Wn+1 consists of a vertex u and a cycle Cn such that u is adjacent to
every vertex of Cn. The insulation sequences for Fn+1 and Wn+1 are similar to those of Pn and Cn,
respectively, because the vertex of degree n is only included in a maximum size k-insulated set for
k ≥ n. Thus, for fans we have

ik(Fn+1) =

{

ik(Pn) for 0 ≤ k < n,

n+ 1 for k ≥ n,

and for wheels we have

ik(Wn+1) =

{

ik(Cn) for 0 ≤ k < n,

n+ 1 for k ≥ n.

3. Graph operations and the insulation sequence

In this section we study the effect of the disjoint union, the join, the cross product, and the
graph composition on the insulation sequences of arbitrary graphs. Recall that the disjoint union

of graphs G and H, denoted G∐H, has the vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).

Proposition 3.1. Let G = G1 ∐G2 ∐ · · · ∐Gn. Then ik(G) =
j=n
∑

j=1
ik(Gj).

Proof. It is easy to see that a maximum k-insulated set of G may be found by selecting a maximum
k-insulated set Sj for each graph Gj , for j = 1, 2, . . . , n, and taking the union of all the Sj ’s. �

The next graph operation we consider is the join. We define the join of two graphs G and H,
denoted by G + H, to be the graph obtained from G ∐ H by the addition of all edges uv, where
u ∈ G and v ∈ H. A graph K1+G is called the cone of G. In particular, K1+Pn is the fan Fn+1,
and K1 + Cn is the wheel Wn+1.

Theorem 3.2. Let G = G1 +G2, and let ik(G1) ≥ ik(G2). If ik(G1) ≥ 2k, then ik(G) = ik(G1).
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Proof. Let Sk be a maximum k-insulated set in G1. In G, every vertex in G2 is adjacent to every
vertex in Sk. The vertices outside a k-insulated set must be adjacent to at least k + 1 vertices in
Sk, so we have |Sk| ≥ k + 1 for k less than or equal to the maximum degree of G1. Thus, Sk is
a k-insulated set in G, and so ik(G) ≥ ik(G1). Now, suppose there exist a maximum k-insulated
set S′ in G composed of the join of an induced subgraph G′

1 of G1 with q vertices, and an induced
subgraph G′

2 of G2 with p vertices. Since every vertex in G′
1 is adjacent to p vertices in G′

2, p ≤ k.
For the same reason, q ≤ k. Thus,

ik(G) = |S′| = p+ q ≤ 2k ≤ ik(G1).

�

The cross product of graphs G and H, denoted G×H, has the vertex set V (G)× V (H) and
vertex (u1, v1) is adjacent to vertex (u2, v2) if and only if u1u2 is an edge in G and v1 = v2, or
v1v2 is an edge in H and u1 = u2. In particular, Pn ×Pm is a grid. Let χ(G) denote the chromatic
number of G.

Theorem 3.3. Given a graph G on m vertices, let n ≥ 2χ(G). Then i1(Kn ×G) = 2m.

Proof. We will consider the cross product Kn×G to be the graph G with each vertex replaced by a
copy of Kn, and with edges between copies of Kn given by the definition of the cross product. In a
complete graph Kn, every 1-insulated set has 2 vertices. Thus, the maximum size of a 1-insulated
set in the disjoint union of m distinct copies of Kn is 2m. Since i1 cannot increase as edges are
added to the graph, we obtain that i1(Kn ×G) ≤ 2m.

We will find a 1-insulated set S1 of Kn ×G that contains 2m vertices. Let v1, v2, . . . , vm be the
vertices of G. Choose a proper coloring c : V (G) → {1, 2, . . . , χ(G)} of G. Let Qj be the copy of
Kn corresponding to vertex vj , and let wj,1, wj,2, . . . , wj,n be the vertices of Qj . For each copy Qj

of Kn, consider the pair of vertices Aj = (wj,2c(vj)−1, wj,2c(vj)). Note that these pairs of vertices are

well defined since n ≥ 2χ(G). Also, note that we chose these pairs of vertices such that there does
not exist an edge between a vertex of Ai and a vertex of Aj in Kn ×G. Let S1 be the union of all
the pairs Aj , for 1 ≤ j ≤ m. Note that |S1| = 2m. We claim that S1 is a 1-insulated set. Indeed,
each vertex v 6∈ S1 is in a copy Qj of Kn, therefore v is adjacent to at least the 2 vertices of the
pair Aj in S1. Moreover, every vertex u ∈ S1 is adjacent only to the other vertex of the pair Aj in
which u lies. This completes the proof. �

Generalizing the result suggested by the above proof, we have the following theorem.

Theorem 3.4. Given a graph G on m vertices, let n ≥ (k+1)χ(G). Then ik(Kn×G) = (k+1)m.

The proof of this result is similar to the proof of the previous theorem.
We will now obtain similar results for the composition of two graphs. The composition of

graphs G and H, denoted by G{H}, has vertex set V (G)×V (H), and there exists an edge between
vertices (u1, v1) and (u2, v2) if and only if one of the following conditions is met:

(1) we have u1u2 as an edge in G, or
(2) we have v1v2 as an edge in H and u1 = u2.

In Figure 1 we depict an example of the composition C4{K3}.

Theorem 3.5. Let G and H be graphs, where H is not a cone graph. Then i1(G{H}) = i0(G)i1(H).

Proof. We will use the term adjacent copies to mean that 2 copies of the graph H are joined in
G{H}, i.e., there exists an edge in G between the vertices that correspond to the two respective
copies of H. We prove that there cannot exist 2 adjacent copies of H that contain vertices of a
1-insulated set S1. To this end, assume that there exist two adjacent copies of H, say H1 and H2,
such that both contain vertices of S1. Because every vertex of H1 is adjacent to every vertex of H2,
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Figure 1. This graph represents the composition C4{K3}. Notice that each vertex
of C4 is replaced by a copy of K3. Also, two copies of K3 are joined whenever there
is an edge between the corresponding vertices in C4.

each of these two copies must contain exactly one vertex of an 1-insulated set. Let u be the vertex
in H1∩S1 and let v be the vertex in H2∩S1. Since H is not a cone, there exists a vertex w ∈ H1\S1

which is adjacent to v and not adjacent to u. Therefore, there must exist another copy of H, say
H3, that contains a vertex w1 ∈ S1 which is adjacent to w. But as long as the edge ww1 exists, all
vertices of H3 are adjacent to all vertices of H1, and, in particular, there exists an edge uw1 in the
subgraph induced by S1. This makes vertex u ∈ S1 adjacent to two vertices in S1, which contradicts
the fact that S1 is a 1-insulated set. Thus, there are no adjacent copies of H in G{H} containing
vertices of S1. In this case, the only way to obtain a 1-insulated set in G{H} is by considering a
maximal independent set S0 in G, and taking the vertices of a 1-insulated set in each copy of H
that corresponds to a vertex in the independent set S0. Thus, we have i1(G{H}) = i0(G)i1(H). �

The proof of Theorem 3.5 suggests a way of constructing k-insulated sets in a composition-graph
G{H}, which gives us the following result.

Theorem 3.6. If G and H are graphs, then ik(G{H}) ≥ i0(G)ik(H).

One should note that the only change needed to adapt the proof of Theorem 3.5 for this theorem
is to choose k-insulated sets in copies of H instead of choosing 1-insulated sets.

4. The Insulation Sequences for Arbitrary Graphs

In this section, we investigate the relative sizes of the ik’s. Recall that the insulation sequence
is the sequence i0, i1, i2, . . . . In [1], Jagota et al. prove that the inequalities i0(G) ≤ ik(G) ≤
(k + 1)i0(G) hold in any graph G. In our next result, we prove a further restriction on the relative
sizes of the terms of the insulation sequence.

Theorem 4.1. In any graph G, the inequality i1(G) ≤ ik(G) holds for all k ≥ 2.

Proof. The method used in this proof was suggested by David Moulton [2].
We will use Algorithm B(k, S1) as described in Section 1, where the initial set S1 is a maximum

1-insulated set, and the final set Sk is a k-insulated set. We will prove that the size of the k-
insulated set obtained by carrying out the Algorithm B(k, S1) is greater than or equal to the size of
the initial 1-insulated set. Color the edges of the initial set S1 blue, and color the remaining edges
black. Let S be the set of vertices that the algorithm is currently operating on. For every set of
vertices S, define E(S) = |S| − BS

k
, where BS is the number of black edges that lie in S. During

each iteration of the algorithm, one of two cases may occur:
Case 1.
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A vertex is taken out of S. Then

E(S − v) = |S| − 1−
BS − x1

k
,

where x1 represents the number of black edges taken out. Note that x1 ≥ k, since a vertex v is
taken out when dS(v) = k + 1, and no two blue edges share a vertex. Therefore,

E(S − v) ≥ E(S).

Case 2.
A vertex is added to S. Then

E(S ∪ v) = |S|+ 1−
BS + x2

k
,

where x2 represents the number of black edges added to the set S. Note that x2 ≤ k, since a vertex
v is added to S when dS(v) ≤ k. Therefore,

E(S ∪ v) ≥ E(S).

We conclude that the function E(S) is non-decreasing; thus, when the algorithm produces a

k-insulated set, we obtain i1 ≤ |Sk| −
BSk

k
which implies i1 ≤ ik. �

Corollary 4.2. For graphs of maximum degree 3, the insulation sequence is monotonically increas-
ing.

Proof. It is obvious that for any graph with maximum degree D, we have iD > iD−1. We also know
that i2 ≥ i1 and i1 ≥ i0 for every graph. Hence i0 ≤ i1 ≤ i2 < i3 for D = 3. �

By a similar argument as that in the proof of Theorem 4.1, we establish the following proposition.

Proposition 4.3. Let H be an induced subgraph of a graph G. Then i1(H) ≤ i1(G).

Proof. We will use Algorithm B(k, S1) to build a 1-insulated set in G from a maximum 1-insulated
set S1 in H. We call a vertex v bad if either v ∈ S and dS(v) ≥ 2, or v 6∈ S and dS(v) ≤ 1, where S is
the vertex set at the current iteration of the algorithm (initially, S = S1). Recall that steps (2) and
(3) of the algorithm can be performed in either order. Thus, at each iteration of the algorithm, one
can choose to remove a bad vertex of S (if such a vertex exists), instead of adding a vertex to S (if
one needs to be added). We sequentially place in the set S the vertices v ∈ G with dS(v) ≤ 1, and
take out of the current S the vertices v with dS(v) = 2 as soon as they occur in S. Once a vertex v

is added to S, it can increase by 1 the degree of at most one vertex u in the subgraph induced by
S. If u needs to be taken out from S, the number of vertices in the new S is at least the number of
vertices in S before adding v. This proves that the size of the 1-insulated set in G output by the
algorithm is at least the size of a maximum 1-insulated set in H. Therefore, i1(H) ≤ i1(G). �

Although the tendency is for the insulation sequence of a graph to increase, this is not true in
general. In Figure 2, we see an example of a n-vertex graph Mk in which ik(Mk) > ik+1(Mk). Take
the complete bipartite graph Kk+1,k and let V = {v1, . . . , vk+1} be the larger partite set. To each
vertex vi in V, join two other vertices vi1 and vi2. Then we have

ij(Mk) =







n− k for 2 ≤ j ≤ k,

n− k − 1 for j = k + 1,
n for j ≥ k + 2.

Thus, ik(Mk) > ik+1(Mk).
The graphs Mk will be useful later in the paper when studying possible orderings of the insu-

lation sequence. Our results thus far motivate the following question: Apart from the inequalities
discussed above, are there any other constraints on the behavior of the insulation sequence? Before
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Mk

· · ·

· · ·

Figure 2. In the graphMk, the insulation sequence is not monotonically increasing;
for example, ik(Mk) > ik+1(Mk).
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v1

u3

v12 v13

a b c

u1 u2

v11

Lk

· · · · · ·

· · ·

· · ·

· · ·

· · · · · · · · · · · ·

d

vk−1v2

· · ·

· · ·

· · ·

Figure 3. In the graph Lk, we have ik(Lk) > ik+1(Lk) > ik+2(Lk).

answering this question, we construct families of graphs for which the insulation sequence is strictly
increasing, and we also construct graphs for which the sequence is not monotone.

First, we construct a n-vertex graph with a strictly increasing insulation sequence. Begin with
the path Pm with the consecutive vertices v1, v2, . . . , vm and join i− 2 other vertices to each vertex
vi, for i ≥ 3. In this way we obtain

ik = n−m+ 1 + k, for 1 ≤ k ≤ m− 1.

Now consider the n-vertex graph Lk (k ≥ 7) depicted in Figure 3. Start with K3,k−1 and let
U = {u1, u2, u3} and V = {v1, v2, . . . , vk−1} be the two parts of the complete bipartite graph. Join
every vertex vi in V to the k−3 distinct other vertices vi1, vi2, . . . , vi(k−3). Join (k−7) other distinct
vertices to each of v11, v12, and v13, and connect four other vertices a, b, c, d to each of v11, v12 and
v13 (the set {v11, v12, v13, a, b, c, d} is a K3,4 graph). Let W be the set of the 3(k − 7) vertices of
degree 1 that have just been added. Then join each of a, b, c, and d to (k−3) other distinct vertices.
Call this last set of vertices of degree one W1.

Proposition 4.4. In the graph Lk, the following inequality holds:

ik−1 < ik−2 < ik−3.

Proof. The vertices in U are of degree (k − 1), so they must be counted in ik−1. Also, the vertices
vi1, vi2, . . . , vi(k−3), for i = 1, 2, . . . , k − 1, are of degree at most k − 2, so they must be counted in
both ik−1 and ik−2. Moreover, the vertices in W and W1 are of degree 1, so they have to be counted
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in ik−1, ik−2, and ik−3. The other vertices of Lk cannot be in the maximum (k − 1)-insulated set.
Thus,

ik−1 = n− (k − 1)− 4 = n− k − 3.

Now all of the following are counted in ik−2: the vertices of V , the vertices in the set {vi1, vi2, . . . , vi(k−3)}
for i = 1, 2, . . . , k− 1, and the vertices in W . So, ik−2 = n− 7. Also, for ik−3, we count all vertices
of Lk except those in U and v11, v12, and v13. Thus, ik−3 = n− 6, and we have

ik−1 < ik−2 < ik−3.

�

As we have noticed in the above example, it is nontrivial to find connected graphs for which the
insulation sequence is decreasing in some specific places. However, the disjoint union is a very useful
tool in constructing graphs in which the insulation sequence has a given ordering of its terms. We
will show how to obtain a graph G in which i2 > i3 > i4 by use of the disjoint union. We start with
the graph M2 introduced before, in which we have i2(M2)− i3(M2) = 1 and i4(M2)− i3(M2) = 3.
In the graph M3, it is true that i2(M3) = i3(M3) = i4(M3) + 1, so by taking the disjoint union of
4 copies of M3 with the graph M2, we obtain the following:

i2(M2 ∐ 4M3) = i2(M2) + 4i2(M3)
> i3(M2 ∐ 4M3) = i3(M2) + 4i3(M3)
> i4(M2 ∐ 4M3) = i4(M2) + 4i4(M3).

We will use a similar method to show that, apart from i0 ≤ i1 ≤ ik and iD−1 < iD, there are no
other constraints on the insulation sequence for arbitrary graphs. Namely, we prove the following.

Theorem 4.5. Given D ≥ 4, for any permutation π of {2, 3, . . . , (D − 1)}, there exists a graph G

of maximum degree D such that its insulation sequence satisfies:

iπ(2) > iπ(3) > · · · > iπ(D−1).

Furthermore, G can be constructed such that the inequalities become equalities in any positions.

We must first prove a technical lemma.

Lemma 4.6. Given a graph G of maximim degree D and two integers p and n such that p ≥ 1
and 2 ≤ n ≤ D − 2, there exists a graph H of maximum degree D and a constant c ≥ 0 such that
ij(H) = ij(G) + c for 2 ≤ j ≤ n, and in+1(H) = p+ c.

Proof. We will construct H by using G, the families of graphs Mn presented earlier in the paper,
and the families of star-graphs Rn = K1,n, where n is the number of vertices of degree 1 adjacent
to the common vertex. Recall that

(1) ij(Mk) =







ik(Mk) for 2 ≤ j ≤ k,

ik(Mk)− 1 for j = k + 1,
ik(Mk) + k for j ≥ k + 2,

and also note that the maximum degree of Mk is k + 2. Furthermore,

(2) ij(Rk) =

{

ik(Rk) for 2 ≤ j ≤ k − 1,
ik(Rk) + 1 for j ≥ k,

and the maximum degree of Rk is k.
We distinguish three cases:
Case 1. in+1(G) = p, and we are done.
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Case 2. in+1(G) > p. Then letting m = in+1(G)− p, and taking the disjoint union of G with m

copies of Mn and using Proposition 3.1 and Equation 1 we obtain the desired H. Indeed,

ij(H) = ij(G) +mij(Mn), for 2 ≤ j ≤ n.

So, c = mi2(Mn) = · · · = min(Mn), and

in+1(H) = in+1(G) +min+1(Mn) = in+1(G) +m(in(Mn)− 1) = p+ c.

Case 3. in+1 < p. Then, let m = p− in+1(G), and let H = G∐mRn. We obtain

ij(H) = ij(G) +mij(Rn), for 2 ≤ j ≤ n.

So, c = mi2(Rn) = · · · = min(Rn) and

in+1(H) = in+1(G) +min+1(Rn) = in+1(G) +m(in(Rn) + 1) = p+ c.

Observe that in all the cases the maximum degree of the graph H is D. �

Proof of Theorem 4.5. We will prove the theorem for the strict inequalities and show how the
inequalities can become equalities. Inducting on n, we will construct a graph G whose insulation
sequence satisfies the required ordering. Our induction hypothesis will be that for any permutation
σ of i2, . . . , in, with n ≤ D − 2, there exists a graph H with the maximum degree D, and iσ(2) >

iσ(3) > · · · > iσ(n). For the base case, n = 2, we have i2(R2∐RD) < i3(R2∐RD) and i2(M3∐RD) >
i3(M3 ∐ RD). Let q be such that π(q) = n + 1. By the induction hypothesis, there exists a graph
N with maximum degree D such that

iπ(2) > · · · > iπ(q−1) > iπ(q+1) > · · · > iπ(n).

Then we only need to apply the lemma with p such that iπ(q−1) < p < iπ(q+1). Note that if
|iπ(q−1) − iπ(q+1)| = 1, we can take the disjoint union of 2 copies of N and the insulation sequence
of the graph obtained satisfies the same ordering as the insulation sequence of N . The graph that
satisfies the conditions of the theorem is obtained by taking the disjoint union of N (or 2N if this
is the case) with a certain number of copies of either Mn or Rn as described in the lemma.

To obtain equality instead of strict inequality between, say, iπ(a) and iπ(a+1), we take the graph
H1 such that

iπ(2)(H1) > · · · > iπ(a)(H1) > iπ(a+1)(H1) > · · · > iπ(D−1)(H1),

and the graph H2 such that

iπ(2)(H2) > · · · > iπ(a+1)(H2) > iπ(a)(H2) > · · · > iπ(D−1)(H2).

Finally, to show that we can replace the inequality with equality at any position, scale H1 by a
factor α = iπ(a+1)(H2)− iπ(a)(H2), and H2 by a factor β = iπ(a)(H1)− iπ(a+1)(H1). Then, in the
disjoint union G = αH1 ∐ βH2, we will have

iπ(2)(G) > · · · > iπ(a)(G) = iπ(a+1)(G) > · · · > iπ(D−1)(H1),

as desired. �

In particular, Theorem 4.5 proves the existence of insulation sequences with arbitrarily many
consecutive decreasing terms.
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5. The Insulation sequence for trees

In this section, we provide results about the insulation sequence of trees.

Theorem 5.1. Let T be a tree, let k be any nonnegative integer, and let Sk and Sk+1 be k- and
(k + 1)-insulated sets of T , respectively. Then |Sk| ≤ |Sk+1| for any k ≥ 0.

Proof. For k ≥ 1, every k-insulated set contains all the leaves of the tree, and therefore Sk∩Sk+1 6= ∅.
Suppose there exists a vertex v ∈ Sk\Sk+1. Then it must be adjacent to at least k + 2 vertices in
Sk+1. However, v is also adjacent to at most k vertices in Sk, and so it is adjacent to at least 2
vertices in Sk+1\Sk. Let |Sk\Sk+1| = p and |Sk+1\Sk| = q. Let ǫ(S) denote the number of edges
induced by any vertex set S. Then

(3) p+ q > ǫ((Sk\Sk+1) ∪ (Sk+1\Sk)) ≥ 2p

because the number of vertices in a forest is greater than the number of edges of the forest. The
above inequality implies q > p, and so |Sk+1| > |Sk|. If there does not exist a vertex v ∈ Sk\Sk+1,
i.e. p = 0, then Sk ⊆ Sk+1, and therefore |Sk| ≤ |Sk+1|. For k = 0 we might have either S0∩S1 = ∅,
or S0 ∩ S1 6= ∅, but the argument above works for this case as well, and so |S0| ≤ |S1|. �

As an immediate corollary we have the following.

Corollary 5.2. In any tree, the insulation sequence is nondecreasing.

A connected unicyclic graph is a graph obtained by adding only one edge to a tree. A similar
result as above can be obtained for unicyclic graphs.

Corollary 5.3. In any connected unicyclic graph, the insulation sequence is nondecreasing.

Proof. The proof follows easily from the proof of Theorem 5.1. Notice that in an unicyclic graph
the number of the vertices is equal to the number of the edges. Thus, we can have equality in the
inequality (3), and still obtain q ≥ p. This again implies |Sk| ≤ |Sk+1|. �

Next we provide a lower bound on the size of a k-insulated set in a tree.

Proposition 5.4. Let Sk be a k-insulated set in a tree T on n vertices. Then |Sk| ≥
kn+1
k+1 . In

particular, ik ≥ kn+1
k+1 .

Proof. A neighbor-component of vertex a ∈ T\Sk is a connected component of Sk containing a
vertex adjacent to a. Let c1, c2, . . . , ct be the connected components of Sk, let V = T\Sk, and
label the vertices in V by v1, v2, . . . , vn−|Sk|. We construct a graph T ′ as follows: T ′ has vertices
U = {u1, u2, . . . , un−|Sk|} and W = {w1, w2, . . . , wt}; there exists an edge between ui and uj if and
only if there exists an edge between vi and vj in T ; and there exists an edge between ui and wj if
and only if cj is a neighbor-component of vi in T (see Figure 4).

We claim that T ′ is a tree. By construction T ′ is connected. Now, suppose there exists a cycle
C in T ′. The vertices of U form a tree, and the vertices of W are not adjacent to each other. Then
C must contain a vertex in W , say, wj . Let um, un ∈ U, be adjacent to wj and contained in C .

Then there exists a path between um and un in U, and therefore, there exists a path between vm
and vn in T . Also, vm and vn have a common neighbor component cj in Sk. If we denote by xm
and xn the vertices from cj that are adjacent to vm and vn in T , respectively, then there exists a
path P between xm and xn in cj . Thus, there exist 2 paths between vm and vn in T , namely one
in V and one containing vm, xm, P, xn, and vn in order. This contradicts the fact that T is a tree,
and therefore T ′ is a tree.

Note that a vertex in V cannot be adjacent to two distinct vertices in the same component of Sk

(otherwise there would exist cycles in T ). Thus, the number of edges in T ′ is equal to ǫ(T )− ǫ(Sk),
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T

W

(a) (b)

. . .

. . . . . .

. . .

Sk

v1

vn−|Sk|

u1

un−|Sk|

c1 ct w1
wt

T ′

Figure 4. In (a) is shown the tree T , a k-insulated set Sk, and the connected
components of Sk, namely c1, c2 . . . ct. In (b), each component of Sk is replaced by
a single vertex.

where ǫ(S) denotes the number of edges in the subgraph induced by any vertex set S. As Sk is a
k-insulated set in T , we have ǫ(T ) − ǫ(Sk) ≥ (k + 1)(n − |Sk|). Since T ′ is a tree, the number of
vertices in T ′ is one more than the number of edges in T ′. Therefore,

ǫ(T )− ǫ(Sk) = t+ n− |Sk| − 1 ≥ (k + 1)(n− |Sk|).

We finally obtain k(n− |Sk|) + 1 ≤ t ≤ |Sk|, and so |Sk| ≥
kn+1
k+1 .

�

6. Open Questions

In this section we present some open questions regarding k-insulated sets and insulation se-
quences.

Question 6.1

We proved in Theorem 4.5 that the insulation sequence may have almost any ordering among
its terms. It would be interesting to find necessary and sufficient conditions for a graph G to have
ik(G) > ik+1(G) in the ordering of the insulation sequence.

Question 6.2

Let mk(G) denote the minimum size of a k-insulated set in a graph G. It is interesting to observe
that, although the inequality i0 ≤ i1 holds in any graph, it is not always true that m0 ≤ m1. Figure
5 depicts an example of a graph in which the size of the minimum 0-insulated set is greater than
the size of the minimum 1-insulated set. Notice that in this case the minimum size of a 1-insulated
set is 4, while the minimum size of a 0-insulated set is 5. For a given permutation of the sizes of
mk(G), for k ≥ 0, is there a graph in which this ordering occurs?

Question 6.3

What orderings of the insulation sequence are possible in d-regular graphs, for d ≥ 4?

Question 6.4
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u2
u3

u4
u1

v1

v2

v3

Figure 5. In this graph the minimum size of a 0-insulated set, formed by the
vertices u1, u3, v1, v2, v3, is greater than the minimum size of a 1-insulated set, formed
by the vertices u1, u2, u3, u4.

Corollary 5.2 states that the insulation sequence is nondecreasing in trees. For a given positive
integer k, what is the minimum number of edges that need to be added to a tree on n vertices, in
order to obtain ik > ik+1?

Acknowledgements

This research was done in the REU of Prof. Joseph Gallian at the University of Minnesota,
Duluth with financial support from Bard College. The author thanks Stephen Wang, Mike Develin,
Philip Matchett, Geir Helleloid, Denis Chebikin, David Moulton and Joseph Gallian for useful
suggestions.

References

[1] Arun Jagota, Giri Narasimhan, Lubomir Soltes, A generalization of maximal independent sets, Discrete Appl.

Math. 109 (2001), 223-235.
[2] David Moulton, private communication.

Current address: Bard College, P.O. Box 5000, Annandale-on-Hudson, NY 12504
E-mail address: elena990@yahoo.com


