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Abstract

Locally decodable codes (LDCs) have played a central role in many recent
results in theoretical computer science. The role of finite fields, and in par-
ticular, low-degree polynomials over finite fields, in the construction of these
objects is well studied. However the role of group homomorphisms in the con-
struction of such codes is not as widely studied. Here we initiate a systematic
study of local decoding of codes based on group homomorphisms. We give an
efficient list decoder for the class of homomorphisms from any abelian group G
to a fixed abelian group H. The running time of this algorithm is bounded by
a polynomial in log |G| and an agreement parameter, where the degree of the
polynomial depends on H. Central to this algorithmic result is a combinator-
ial result bounding the number of homomorphisms that have large agreement
with any function from G to H. Our results give a new generalization of the
classical work of Goldreich and Levin, and give new abstractions of the list
decoder of Sudan, Trevisan and Vadhan. As a by-product we also derive a sim-
ple(r) proof of the local testability (beyond the Blum-Luby-Rubinfeld bounds)
of homomorphisms mapping Z

n
p to Zp, first shown by M. Kiwi.

1 Introduction

Given a pair of finite groups G = (G,+) and H = (H, ·), the class of homomorphisms
between G and H forms an “error-correcting code”. Namely, for any two distinct
homomorphisms φ, ψ : G → H, the fraction of elements α ∈ G such that φ(α) =
ψ(α) is at most 1/2. This observation has implicitly driven the quest for many
“homomorphism testers” [3, 2, 8, 1, 13], which test to see if a function f : G → H
given as an oracle is close to being a homomorphism. In this paper, we investigate the
complementary “decoding” question: Given oracle access to a function f : G → H
find all homomorphisms φ : G→ H that are close to f .

To define the questions we study more precisely, let agree(f, g) denote the agree-
ment between f, g : G→ H, i.e., the quantity Prx←UG[f(x) = g(x)]. Let Hom(G,H) =
{φ : G→ H | φ(x+ y) = φ(x)φ(y)} denote the set of homomorphisms from G to H.
We consider the combinatorial question: Given G, H and ǫ > 0, what is the largest
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“list” of functions that can have ǫ-agreement with some fixed function, i.e, what is
maxf :G→H |{φ : G→ H|φ ∈ Hom(G,H), agree(f, g) ≥ ǫ}|?

We also consider the algorithmic question: Given G, H, ǫ > 0 and oracle access to
a function f : G → H, (implicitly) compute a list of all homomorphisms φ : G → H
that have agreement ǫ with f . (A formal definition of implicit decoding will be
given later. For now, we may think of this as trying to compute the value of φ
on a set of generators of G.) We refer to this as the “local decoding” problem for
homomorphisms.

Local decoding of homomorphisms for the special case of G = Z
n
2 and H = Z2

was the central technical problem considered in the seminal work of Goldreich and
Levin [4]. They gave combinatorial bounds showing that for ǫ = 1

2
+ δ, the list size

is bounded by poly(1/δ), and gave a local decoding algorithm with running time
poly(n/δ).

The work of Goldreich and Levin was previously abstracted as decoding the class
of degree one n-variate polynomials over the field of two elements. This led Goldreich,
Rubinfeld, and Sudan [5] to generalize the decoding algorithm to the case of degree
one polynomials over any finite field. (In particular, this implies a decoding algorithm
for homomorphisms from G = Z

n
p to H = Zp, that decodes from 1

p
+ ǫ agreement

and runs in time poly(n/ǫ), where Zp denotes the additive group of integers modulo
a prime p.) Later Sudan, Trevisan, and Vadhan [11], generalized the earlier results
to the case of higher degree polynomials over finite fields . This generalization, in
turn led to some general reductions between worst-case complexity and average-case
complexity.

Our work is motivated by the group-theoretic view of Goldreich and Levin, as
an algorithm to decode group homomorphisms. While the group-theoretic view has
been applied commonly to the complementary problem of “homomorphism testing”,
the decoding itself does not seem to have been examined formally before.

To motivate we start with a simple example.
Consider the case where G = Z

n
p and H = Z

m
p . How many homomorphisms can

have agreement 1
p

+ δ with a fixed function f : G → H? Most prior work in this

setting used (versions) of the Johnson bound in coding theory. Unfortunately such a
bound only works for agreement greater than 1√

p
in this setting.1 An ad-hoc counting

argument gives a better bound on the list size of δ−O(m). While better bounds ought
to be possible, none are known, illustrating the need for further techniques. Our
work exposes several such questions. It also sheds new light on some of the earlier
algorithms.

1For those familiar with the application of the Johnson bound in the setting of m = 1, we point
out that it relied crucially on the fact that the agreement of any pair of homomorphisms was 1

|H|

which is no longer true when m 6= 1.
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Our results. Our results are restricted to the case of abelian groups G and H.
Let Λ = ΛG,H denote the maximum possible agreement between two homomorphisms
from G to H. Our main algorithmic result is an efficient algorithm, with running time
poly(log |G|, 1

ǫ
) to decode all homomorphisms with agreement Λ + ǫ with a function

f : G → H given as an oracle, for any fixed group H. Note that in such a case the
polynomial depends on H. See Theorem 5 for full details.

Crucial to our algorithmic result is a corresponding combinatorial one showing
that there are at most poly(1

ǫ
) homomorphisms with agreement ΛG,H + ǫ with any

function f : G→ H, for any fixed group H. Once again, the polynomial in the bound
depends on H. See Theorem 4 for details.

Finally, we also include a new proof of a result of Kiwi [8] on testing homomor-
phisms from Z

n
p to Zp. This is not related to our main quests, but we include it since

some of the techniques we use to decode homomorphisms yield a simple proof of this
result. See Theorem ??.

Techniques Our results are derived by reducing the case of general abelian groups
to the case of p-groups, i.e., groups of the form Zn1

pa1 × · · ·×Znk

pak . We reduce both the
combinatorial problem and the algorithmic problem to the case where G is a p-group
and H is of the form Zpr . Our main technical result is a combinatorial bound on
the list-size for homomorphisms from a p-group G to the group Zpr . For p-groups,
the maximal agreement between homomorphisms is 1

p
. We show that the number of

homomorphisms with agreement 1
p

+ ǫ with any function is at most (2p)3r 1
ǫ2

. (See

Lemma 10.) This result is proved by Fourier analysis.
The algorithmic results are abstractions of algorithms of Goldreich and Levin [4]

and Sudan, Trevisan, and Vadhan [11]. In particular, we note that the [4] algorithm
can be viewed as an extension of any decoding algorithm for the classes Hom(G1, H)
and Hom(G2, H) to the class hom(G1 ×G2, H). While this result is useful for general
groups, if both G1 and G2 are p-groups (and hence also G), then the technique from
[11] can be extended directly to get more efficient decoding algorithms.

Organization of this paper. In Section 2 we present basic terminology and our
main results. In Section 3 we exploit the decomposition theorem for abelian groups to
reduce the proofs of the main theorems to the special case of p-groups. In Section 4 we
tackle the combinatorial problem of the list-size for p-groups. In Section 6 we consider
the corresponding algorithmic problem. Section ?? analyzes a homomorphism tester
for functions from Z

n
p to Zp using some techniques of the previous sections.

2 Definitions and Main Results

LetG,H be abelian groups, and let Hom(G,H) = {h : G→ H | h is a homomorphism}.
Note that Hom(G,H) forms a code. Indeed, if f, g ∈ Hom(G,H), then G′ = {x |

3



f(x) = g(x)} is a subgroup of G. Since the largest subgroup of G has size at most
|G|
2

, it follows that f and g differ in at least 1
2

of the domain.
For two functions f, g : G→ H, define

agree(f, g) = Pr
x∈G

[f(x) = g(x)],

and
ΛG,H = max

f,g∈Hom(G,H),f 6=g
{agree(f, g)}.

In the case when Hom(G,H) contains only the zero homomorphism we define ΛG,H =
0.

Definition 1 [11] (List decodability) The code Hom(G,H) is (δ, l)-list decodable if
for every function f : G→ H, there exist at most l homomorphisms h ∈ Hom(G,H)
such that agree(f, h) ≥ δ.

Definition 2 A probabilistic algorithm M γ-computes a function f if for all x in
the domain of f ,

Pr[M(x) = f(x)] ≥ γ.

where the probability is taken over the randomness of M(x).

Definition 3 [14](Local list decoding) A probabilistic oracle algorithm A is a (δ, T )
local list decoder for Hom(G,H) if, for any function f : G → H, when A is given
oracle access to f , (written Af), the following hold:

1. , Af outputs a list of probabilistic oracle machines M1, . . . ,ML s.t., for any
homomorphism h ∈ Hom(G,H) with agree(f, h) ≥ δ, with probability at least 3

4

over the random choices of Af , ∃j ∈ [L] such that M f
j

3
4
-computes h.

2. A and each M f
j run in time T .

An abelian group G can be represented (see Sect. 3) by its cyclic decomposition
Zp

e1
1
× . . .×Zp

ek
k

, where pi’s are prime. This allows us a convenient and simple method

of representing elements of groups as α = (α1, α2, . . . , αk), with αi ∈ Zp
ei
i
.

Our main results are the list decodability and local list decodability of group
homomorphism codes.

Theorem 4 Let H be a fixed finite abelian group. For all finite abelian groups G,
Hom(G,H) is

(
ΛG,H + ǫ, poly|H|(

1
ǫ
)
)

list decodable.

Remark: The exact polynomial bound on the list size that our proof gives, in general,
depends on the structure of the groups in an intricate way, but can nevertheless be
uniformly bounded by O

(
1

ǫ4 log |H| |H|5
)
. Still, the precise bounds obtained by the proof

are not optimal. For example, our proof gives that Hom(Zn
2 ,Z

2
2) is (1

2
+ ǫ, O( 1

ǫ4
)) list

decodable, while it can be shown (via alternate means) that it is (1
2

+ ǫ, O( 1
ǫ2

)) list
decodable.

4



Theorem 5 Let H be a fixed finite abelian group. For all finite abelian groups G
there is a (ΛG,H + ǫ, poly|H|(log |G|, 1

ǫ
)) local list decoder for Hom(G,H).

3 Decomposition and Reduction

We will embark on our quest by first decomposing the groups involved into slightly
smaller but better-behaved groups. In this section we will see how these decompo-
sitions can be done and thereby reduce our main theorems to statements about list
decoding on “p-groups”. These statements will be proved in the following two sections
by some Fourier analytic machinery and by generalizing the STV-style list decoders.

The structure theorem for finite abelian groups states that every abelian group G
is of the form

∏k

i=1 Zp
ei
i
, where the pi’s are primes (not necessarily distinct) and the

ei’s are positive integers. A p-group is a group of order pr, for some positive integer r.
The structure theorem implies that for any prime p, any finite abelian group G can be
written as Gp×G

′, where Gp is a p-group and gcd(p, |G′|) = 1 (take Gp =
∏

pi=p Zp
ei
i
).

This decomposition will play a crucial role in what follows.
Remark ΛG,H behaves well under direct product decomposition of G and H:

1. If gcd(|G|, |H|) = 1 then Hom(G,H) contains only the zero homomorphism and
therefore, ΛG,H = 0.

2. Otherwise, let p be the smallest prime s.t. p | gcd(|G|, |H|). Then ΛG,H = 1
p
.

To see this, let g, h : G→ H be distinct homomorphisms. Let d = |image (g−h)|
and note that d | |H|. Since G/ ker(g−h) ∼= image(g−h), we have that d | |G|.
It follows that agree(g, h) = | ker(g − h)|/|G| = 1/d ≤ 1/p, and thus ΛG,H ≤ 1

p
.

In the other direction, if G = Zpt × G′, and H = Zpr × H ′, then the homo-
morphism h : G → H definde by h(a, b) = (apr−1, 0) satisfies agree(h,0) = 1

p
.

Hence, ΛG,H = 1
p
.

3. The above observations imply ΛG1×G2,H = max{ΛG1,H ,ΛG2,H} and ΛG,H1×H2 =
max{ΛG,H1 ,ΛG,H2}.

3.1 The decompositions G→ H1 ×H2 and G1 ×G2 → H

The following two propositions say that list decoding questions for Hom(G,H) can
be reduced to list decoding questions on summands of G or H.

Proposition 6 Let G, H1, H2 be abelian groups. Let ai = ΛG,Hi
. Suppose for all

ǫ > 0, Hom(G,Hi) is (ai +ǫ, ℓi(ǫ))-list decodable, with (ai +ǫ, Ti(ǫ)) local list decoders,
for i = 1, 2. Then Hom(G,H1 ×H2) is (max{a1, a2}+ ǫ, ℓ1(ǫ)ℓ2(ǫ)) list decodable and
has a (max{a1, a2} + ǫ, O ((T1(ǫ)T2(ǫ))) local list decoder, for all ǫ > 0.
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Proof Take an f = (f1, f2) : G → H1 × H2. Consider the list of high-agreement
homomorphisms

L = {h = (h1, h2) ∈ Hom(G,H1 ×H2) : agree(f, h) ≥ max{a1, a2} + ǫ}.

Also consider the corresponding lists for the two components:

Li = {hi ∈ Hom(G,Hi) : agree(fi, hi) ≥ max{a1, a2} + ǫ}.

By assumption, |Li| ≤ ℓi(ǫ). Now, since agree(f, h) ≤ min{agree(f1, h1), agree(f2, h2)},
we have

L ⊂ L1 × L2, (1)

and so |L| ≤ ℓ1(ǫ)ℓ2(ǫ), which proves the list decodability. The local list decoding
algorithm, which follows immediately from Equation (1), simply runs the appropriate
local list decoders for f1 and f2 and takes the product of the lists2.

Proposition 7 Let G1, G2, H be abelian groups. Let ai = ΛGi,H . Suppose for all
ǫ > 0, Hom(Gi, H) is (ai+ǫ, ℓi(ǫ))-list decodable, with a (ai+ǫ, Ti(ǫ)) local list decoder,
for i = 1, 2. Then Hom(G1 × G2, H) is (max{a1, a2} + ǫ, O( 1

ǫ2
ℓ1(ǫ)ℓ2(ǫ) |H|2)) list

decodable, and has a (max{a1, a2} + ǫ, O( |H|
ǫ2

(T1(ǫ) + T2(ǫ)) + ℓ1(ǫ)ℓ2(ǫ) |H|2) local
list decoder, for all ǫ > 0.

Proof We shall first give the local list decoder. Its analysis will give the claimed
bound on the list decodability of Hom(G,H). Let Ai be the (ai + ǫ, Ti(ǫ))-local list
decoders for Hom(Gi, H).

The decoder will be based on the observation that any h ∈ Hom(G1 ×G2, H) can
be written as h(x, y) = h((x, 0)) + h((0, y)) = h1(x) + h2(y), ∀x ∈ G1,∀y ∈ G2 where
h1(x) = h(x, 0) ∈ Hom(G1, H), h2(y) = h(0, y) ∈ Hom(G2, H).
Our local list decoder B(x, y) for Hom(G1 × G2, H) finds good candidates for h1

and h2. Accordingly, the oracle machines’ output will be of the form Mg1,g2(x, y) =
g1(x) + g2(y), where g1 ∈ Hom(G1, H), and g2 ∈ Hom(G2, H).

The local list decoder B(x, y) :
Repeat Θ( 1

ǫ2
) times:

Step 1: Pick (x0, y0) ∈ G1 ×G2 uniformly at random.
Step 2: For each α ∈ H, run A1 (for agreement a1 + ǫ

2
) on the function f(·, y0) − α,

and get list Lα
1 .

Step 3: For each β ∈ H, run A2 (for agreement a2 + ǫ
2
) on the function f(x0, ·) − β,

and get list Lβ
2 .

Step 4: If for some pair (α0, β0) ∈ H2 there exist homomorphisms

g1 ∈ Lα0
1 and g2 ∈ Lβ0

2 s.t. α0 = g2(y0) and β0 = g1(x0), then output Mg1,g2 .

2By repeating and taking majority, one can convert an algorithm that (say) 9/16-computes a
function to one that 3/4-computes it, with just an O(1) factor increase in running time.
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Analysis: Fix a homomorphism h ∈ Hom(G1 × G2) with µ := agree(f, h) ≥
max(a1, a2) + ǫ. Call x0 ∈ G1 good for h if Pry∈G2 [f(x0, y) = h(x0, y)] ≥ µ − ǫ

2
.

Similarly, call y0 ∈ G2 good for h if Prx∈G1 [f(x, y0) = h(x, y0)] ≥ µ− ǫ
2
.

Claim 8 Prx0∈G1 [x0 is good ] ≥ ǫ
2

and Pry0∈G2 [y0 is good ] ≥ ǫ
2
.

Proof We just discuss the case of x0, the y0 case being identical. Let D(x0) =
Pry[f(x0, y) 6= h(x0, y)]. We have Ex0 [D(x0)] = 1 − µ. By Markov’s inequality,

Pr
x0

[x0 is not good] = Pr
x0

[D(x0) > 1 − µ+
ǫ

2
]

≤
1 − µ

1 − µ+ ǫ
2

= 1 −
ǫ
2

1 − µ+ ǫ
2

≤ 1 −
ǫ

2
.

Claim 9 (Correctness) If h ∈ Hom(G1 × G2, H) is s.t. agree(f, h) ≥ µ then with
probability > 9ǫ2

64
in any one iteration, one of the oracle machines M that is output

9/16-computes h.

Proof x0 ∈ G1 and y0 ∈ G2 are both good for h with probability > ǫ2

4
. In this

case, setting α = h(0, y0) and β = h(x0, 0), with probability at least (3
4
)2, algorithm

A1 will output a machine in Lα
1 that 3

4
-computes h(·, 0) and algorithm A2 will output

a machine in Lβ
2 that 3

4
-computes h(0, ·). Thus, with probability at least 9

16
ǫ2

4
, the

algorithm will, in Step 5, (with α0 = α, β0 = β, g1 = h(·, 0), g2 = h(0, ·)), Mh(·,0),h(0,·)
will be output, which 9

16
-computes h.

The above claim implies that (for suitable choice of implicit constants, and suit-
ably amplifying, with O(1) slowdown, the correctness of the oracle machines) with
probability > 3/4, a machine 3/4-computing h will appear in the output list.

3.2 Proof of the main theorems

Using the propositions proved in the previous section, our theorems will reduce to
the main lemma given below, which will itself be proved in Section 4 .

Lemma 10 Let p be a fixed prime and r > 0 be a fixed integer. Then for any abelian

p-group G, Hom(G,Zpr) is
(

1
p

+ ǫ, (2p)3r 1
ǫ2

)
list decodable.

In Section 6, we shall use it to prove the corresponding algorithmic version.

7



Lemma 11 Let p be a fixed prime and r > 0 be a fixed integer. Then for any abelian

p-group G, Hom(G,Zpr) is
(

1
p

+ ǫ, poly(log |G|, 1
ǫ
)
)

locally list decodable.

Proof [ of Theorem 4] If |G|, |H| are relatively prime then the result is obvious.
Otherwise, let p(= 1

ΛG,H
) be the smallest prime dividing both |G| and |H|. Let

H =
∏k

i=1 Z
p

βi
i

. Let i ∈ {1, . . . , k}. If gcd(pi, |G|) = 1, then Hom(G,Z
p

βi
i

) is (ǫ, 1) list

decodable. Otherwise, write G as Gpi
×G′, where Gpi

is a pi-group and gcd(pi, |G
′|) =

1. Then by Lemma 10 and Proposition 7, Hom(G,Z
p

βi
i

) is
(

1
pi

+ ǫ, O( 1
ǫ4

(2pi)
3βip2βi)

)

list decodable, and hence is also
(

1
p

+ ǫ, 1
ǫ4
p5βi

i

)
list decodable (since if pi||G|, then

p ≤ pi). Combining these for all i ∈ {1, . . . , k} by Proposition 6, Hom(G,H) is(
1
p

+ ǫ,
∏

pi||G|(
1
ǫ4

(2pi)
5βi)
)

list decodable, as required.

Proof [of Theorem 5] The proof of this theorem is directly analogous to the previous
proof, using Lemma 11 instead of Lemma 10.

4 Combinatorial bounds for p-groups

In this section we will prove our main lemma (Lemma 10). Recall that we wish to
obtain a upper bound on the number of homomorphisms having agreement 1

p
+ǫ with

a function f : G→ Zpr , where G is a p-group. The starting point for our proof is the
observation that Zpr is isomorphic to µpr , the multiplicative group of complex prth
roots of unity. This makes the tools of Fourier analysis available to us. We begin
by introducing the necessary background on Fourier analysis on finite abelian groups
that we will use.

4.1 Preliminaries on Fourier Analysis

Let G be a finite abelian group. A character of G is a homomorphism χ : G → C
×,

where C
× is the multiplicative group of non-zero complex numbers.

Suppose G =
∏k

i=1 Zp
ri
i
. Let ωi ∈ C be a primitive pri

i th root of unity. For any α ∈ G,
we get an explicitly defined character χα of G given by

χα(x) =
k∏

i=1

ωαixi

i ,

where x = (x1, . . . , xk) and α = (α1, . . . , αk) (written as elements of
∏k

i=1 Zp
ri
i
). In

fact, any character of G is of this form.
Some useful properties of characters are given below:
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• χ0(x) = 1, for all x ∈ G

• χα(x)χβ(x) = χα+β(x), hence χi
α(x) = χiα(x).

• χα(x) = χ−α(x).

• Exχα(x)χβ(x) =

{
0, if α 6= β
1, otherwise.

Given a function f : G→ C, the Fourier coefficients of f are given by f̂ : G→ C,

f̂(α) = Ex∈G f(x)χα(x).

Parseval’s identity states ∑

α∈G

|f̂(α)|
2

= 1.

We will need a notion of division in abelian groups. For χα a character of G and
i ∈ Z, define the “set of quotients”

[χα

i

]
:= {χβ : (χβ)i = χα}

For S a set of characters of G and i ∈ Z, define

[
S

i

]
:=

⋃

χα∈S

[χα

i

]
= {χβ : (χβ)i ∈ S}

For i, d ∈ Z and p a prime, we say pi‖ d, if pi | d and pi+1 6 |d.

4.2 Sketch of the argument

Let us first give a sketch of the proof at a very high level. We are given a function
f : G→ Zpr . We begin by giving a formula that expresses the agreement between our
function and any given homomorphism in terms of Fourier coefficients of some func-
tions related to f . This will imply that every homomorphism having high agreement
with f “corresponds” to some large Fourier coefficient. Now Parseval’s identity tells
us that there can only be few large Fourier coefficients, and the end of the proof looks
near. Unfortunately, it is possible that many distinct homomorphisms “correspond”
to the same Fourier coefficients. We will nevertheless be able to quantify the failure of
the above approach in terms of the number of homomorphisms in Hom(G,Zpl) hav-
ing high agreement with a related function f ′ : G → Zpl , for some l < r. Inducting
on r, with the base case r = 1 being handled by the Johnson bound, we will arrive
at the result.

We proceed with the details. Let µpr be the multiplicative group of the complex
prth roots of unity. Note that the groups Zpr and µpr are isomorphic, and henceforth
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we restrict our attention to Hom(G,µpr). By definition, any element of Hom(G,µpr)
is a character of G and hence

Hom(G,µpr) ⊂ {χα : α ∈ G}.

The following lemma expresses the agreement between a function and a homo-
morphism in terms of Fourier coefficients.

Lemma 12 Let G be a p-group. For f : G→ µpr and χα ∈ Hom(G,µpr)

agree(f, χα) = E0≤j<pr f̂ j(jα)

Proof We have

agree(f, χα) = Ex∈GE0≤j<pr (f(x)χα(x))j

= E0≤j<prEx∈Gf
j(x)χjα(x)

= E0≤j<pr f̂ j(jα).

Before we start the proof of the main lemma, we sketch a proof of a corollary to
the Johnson bound that we use for the base case of the induction, as well as in Sect.
??.

Lemma 13 Let G be a p-group. Then

1. Hom(G,µp) is (1
p

+ ǫ, 1
ǫ2

) list decodable, for any ǫ > 0.

2. Let f : G→ µp and ρt = agree(f, χt) for χt ∈ Hom(G,µp), then

∑

χt∈Hom(G,µp)

(
ρt −

1

p− 1
(1 − ρt)

)2

≤ 1.

Proof For any function h : G→ µp, associate a vector vh ∈ R
(p−1)|G| such that the

following properties hold:

• vf is unit length

• If f, g : G→ µp then

〈vf , vg〉 = agree(f, g) −
1

p− 1
(1 − agree(f, g))

where 〈·, ·〉 denotes the usual vector inner product.
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Such an embedding is explicitly given in [6]. For any distinct χα, χβ ∈ Hom(G,µp),
agree(χα, χβ) = 1

p
, and this implies that {vχα

| χα ∈ Hom(G,µp)} is a set of ortho-

normal vectors in R
(p−1)|G|.

Thus, by Bessel’s inequality,

∑

t∈G

〈vf , vχt
〉2 =

∑

t∈G

(
ρt −

1

p− 1
(1 − ρt)

)2

≤ 〈vf , vf〉 = 1.

To prove the other part, notice that if agree(f, χt) ≥
1
p

+ ǫ then 〈vf , vχt
〉 ≥ p

p−1
ǫ > ǫ,

and therefore there are at most 1
ǫ2

values of χt ∈ Hom(G,µp) satisfying the above
inequality.

4.3 The proof

Lemma 10. Let G be a p-group.3 Then Hom(G,Zpr) is
(

1
p

+ ǫ, (2p)3r 1
ǫ2

)
list decod-

able.
Proof As suggested earlier, we identify Zpr with µpr . We proceed by induction on
r. The case r = 1 was proved in Lemma 13.

Let r > 1. By induction, assume the result is true for Hom(G,µpk), for k =
1, . . . , r − 1. Take any f : G → µpr and ǫ > 0. We wish to bound the size of
L = {χα ∈ Hom(G,µpr) : agree(f, χα) ≥ 1

p
+ ǫ}.

By Lemma 12 (after removing j = 0 from the expectation) we get that for any χα ∈ L,

E0<j<pr f̂ j(jα) ≥
pr

pr − 1

(
1

p
−

1

pr
+ ǫ

)
>

1

p
−

1

pr
+ ǫ.

This implies that for all χα ∈ L, ∃j, 0 < j < pr such that |f̂ j(jα)| > 1
p
− 1

pr + ǫ.

This naturally leads us to consider the set Si = {χβ ∈ Hom(G,µpr) : |f̂ i(β)| >
1
p
− 1

pr + ǫ}.
The above discussion implies that

L ⊂

pr−1⋃

i=1

[
Si

i

]
.

At this point one would be tempted to bound |L| by
∑

i

∣∣[Si

i

]∣∣. However, this approach

is doomed to failure because the size of
[

Si

i

]
can be very large when p | i.

Instead, we perform a subtler manipulation:

L ⊂

pr−1⋃

i=1

([
Si

i

]
∩ L

)
=

pr−1⋃

i=1

⋃

χα∈Si

([χα

i

]
∩ L
)

(2)

3In fact, the lemma holds for any abelian group G, by the same proof. Here we state it only for
p-groups as this is the case that is needed for the main algorithmic lemma.
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It turns out that although
∣∣[χα

i

]∣∣ can be large, the induction hypothesis implies that∣∣[χα

i

]
∩ L
∣∣ cannot be large.

The following two statements formalize this and will be used to bound |L|:

1. For each i, |Si| ≤ 4p2 :
By Parseval’s identity we know that

∑

β∈G

|f̂ i(β)|2 = 1,

and so

1 ≥
∑

χβ∈Si

|f̂ i(β)|2 ≥ |Si|

(
1

p
−

1

pr
+ ǫ

)2

,

which proves the statement (recall that r > 1).

2. If pl‖i, then for any α ∈ G, |[ χα

i
]∩L| ≤ (2p)3l 1

ǫ2
:

To prove this part, we shall find a function g : G → µpl and a one-to-one map
T :
[

χα

i

]
∩ L → Hom(G,µpl) such that for all χβ ∈

[
χα

i

]
∩ L, agree(T (χβ), g) ≥

1
p
+ ǫ. Notice that this together with the induction hypothesis for Hom(G,µpl),

proves the statement.

Let χβ0 ∈
[

χα

i

]
. Define g : G→ µpl by

g(x) =

{
f(x)χβ0(x), if f(x)χβ0(x) ∈ µpl

1, otherwise

Define T :
[

χα

i

]
∩ L → Hom(G,µpl) by

T (χβ) = χβχβ0 .

By construction, for all x ∈ G,

(T (χβ)(x))i = (χβ−β0(x))
i = χi(β−β0)(x) = 1. (3)

Now since T (χβ) ∈ Hom(G,µpr) and pl||i, (3) implies that T (χβ) ∈ Hom(G,µpl).
T is injective since it is just multiplication by a non-zero function. Furthermore,
if f(x) = χβ(x), then g(x) = T (χβ)(x), and so agree(g, T (χβ)) ≥ agree(f, χβ).
Thus g and T have the required properties, and the statement follows.
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The two facts above enable us to bound |L| as follows:

|L| ≤
∑

i

∑

χα∈Si

∣∣∣
[χα

i

]⋂
L
∣∣∣ (by (2) )

≤

r−1∑

l=0

∑

0<i<pr

pl||i

|Si|(2p)
3l 1

ǫ2
(by statement 2 above )

≤
r−1∑

l=0

(pr−l − pr−l−1)(4p2)(2p)3l 1

ǫ2
(by statement 1 above)

≤
1

ǫ2
(2p)3r.

This completes the induction and the proof of our lemma.

5 Subgroups, Cosets and a Sampling Lemma

In this section we will introduce some terminology and prove some lemmas in prepa-
ration for the local list decoder for p-groups given in the next section.

Let G be an abelian p-group and let T = pd be the largest order of any element in
G. For z1, . . . , zk ∈ G, denote by Sz1,...,zk

the subgroup of G generated by z1, . . . , zk.
Let Rx,z1,...,zk

be the set x + Sz1−x,...,zk−x (the “affine subspace” passing through
x, z1, . . . , zk). For a function g : G→ H, define the restriction g|Rx,z1,...,zk

: Sz1−x,...,zk−x →
H by g|Rx,z1,...,zk

(y) = g(y + x). By this definition, if g is a homomorphism, then
g|Rx,z1,...,zk

(y) = g(y + x) = g(y) + g(x), and thus g|Rx,z1,...,zk
is an affine homomor-

phism, i.e., a function of the form h+ b where h is a homomorphism and b ∈ H.
In general, for a fixed k, the cardinality of Sz1,...,zk

could vary drastically, and
consequently there is no simple and natural way of indexing its elements. All our
dealings with Sz1,...,zk

will be via the homomorphism

πz1,...,zk
: Z

k
T → Sz1,...,zk

given by4

πz1,...,zk
(ᾱ) =

k∑

i=1

αizi.

By choice of T , this map is a surjection, and hence Sz1,...,zk
∼= Z

k
T/(ker πz1,...,zk

).
Further, for ᾱ, β̄ ∈ Z

k
T , we have that πz1,...,zk

(ᾱ) = πz1,...,zk
(β̄) iff ᾱ − β̄ ∈ ker πz1,...,zk

.
This easily implies the following proposition.

4Abusing notation, for a ∈ ZT (which we interpret as a nonnegative integer < T ) and z ∈ G, the
“product” az represents z added to itself a times. By choice of T , the map ZT × G → G given by
(a, z) 7→ az is a group homomorphism in each variable.
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Proposition 14 For any z ∈ Sz1,...,zk
,

|π−1
z1,...,zk

(z)|

T k
=

1

|Sz1,...,zk
|

.

The above proposition shows how one can use the map π for sampling elements
from Rx,z1,...,zk

. The next lemma does a similar thing for list decoding.

Lemma 15 Let g : Sz1−x,...,zk−x → H be any function. For all δ > 0, there is a
one-to-one correspondence between the following sets:

L1 = {(h, b) ∈ Hom(Sz1−x,...,zk−x, H) ×H : agree(h+ b, g) ≥
1

p
+ δ}

L2 = {(h′, b′) :∈ Hom(Zk
T , H) ×H : agree(h′ + b′, g ◦ πz1−x,...,zk−x) ≥

1

p
+ δ}

where (h, b) ∈ L1 corresponds to (h ◦ πz1−x,...,zk−x, b) ∈ L2. Furthermore, the corre-
sponding agreements agree(h + b, g) and agree((h + b) ◦ πz1−x,...,zk−x, g ◦ πz1−x,...,zk−x)
are equal.

Proof Define α : L1 → L2 by

α(h, b) := (h ◦ πz1−x,...,zk−x, b).

Proposition 14 implies that agree(h+b, g) = agree(h◦πz1−x,...,zk−x +b, g ◦πz1−x,...,zk−x)
(and hence the range of α(h, b) is indeed L2).

The following diagram is helpful in visualizing the setup.

Z
k
T

πz1−x,...,zk−x

−→ Sz1−x,...,zk−x
g

−→ H

Since πz1−x,...,zk−x is onto, α is one-to-one. To show that α is onto, take (h′, b′) ∈ L2.
Consider two cases:

• Case 1: h′(kerπz1−x,...,zk−x) = 0
Define h : Sz1−x,...,zk−x → H by h(z) = h′(z′) for any z′ ∈ π−1

z1−x,...,zk−x(z). Since
h′(kerπz1−x,...,zk−x) = 0, the above definition does not depend on choice of z′

and so h is well defined. It is easy to see that h is a homomorphism and that
α(h, b′) = (h′, b′).

• Case 2: h′(kerπz1−x,...,zk−x) 6= 0
In this case, since h′(kerπz1−x,...,zk−x) is the homomorphic image of a p-group,
|h′(kerπz1−x,...,zk−x)| ≥ p. Furthermore, as z varies over kerπz1−x,...,zk−x, the
map h′(z) assumes each value in h′(ker πz1−x,...,zk−x) an equal number of times.

14



This implies that for any coset of kerπz1−x,...,zk−x, the map h′ + b′ equals any
particular element in H on at most 1

p
of the coset.

However g ◦ πz1−x,...,zk−x is constant on cosets of kerπz1−x,...,zk−x. Therefore
agree(h′ + b′, g) ≤ 1

p
, and so this case cannot occur. 5

Thus α is a bijection.

Remark The above lemma is, in general, false for δ = 0.

5.1 The Sampling Lemma

We now prove our main sampling lemma.

Lemma 16 (Sampling Lemma) Let G be an abelian p-group, let A ⊆ G, with

µ = |A|
|G| and let x, z1, . . . zk ∈ G be picked uniformly at random. Then

Pr
x,z1,...,zk

[ ∣∣∣∣
|A ∩ (x+ Sz1,...,zk

)|

|Sz1,...,zk
|

− µ

∣∣∣∣ > ǫ

]
≤

1

ǫ2pk
.

Proof
We shall use the second moment method. The key is to find the right underlying

random variables to study. Note that this could potentially be tricky since the size
of Sz1,...zk

can vary drastically. Proposition 14 will play a crucial role in dealing with
this.

For ᾱ ∈ Z
k
T , consider the random variable Yᾱ = x+πz1,...,zk

(ᾱ). By Proposition 14,
for any ᾱ ∈ Z

k
T , Yᾱ is uniformly distributed on G. The next claim identifies many

pairwise-independent pairs of Yᾱ’s.

Claim 17 Let ᾱ, β̄ ∈ Z
k
T for which ∃i ∈ [k] such that p 6 |αi − βi. Then Yᾱ and Yβ̄

are pairwise independent.

5The situation can be summarized succinctly as follows. We have the exact sequence:

0 −→ ker π −→ Z
k
T −→ Sz1−x,...,zk−x −→ 0.

Applying the left exact contravariant functor Hom(−,H), we get the exact sequence,

0 −→ Hom(Sz1−x,...,zk−x,H) −→ Hom(Zk
T ,H) −→ Hom(ker π,H),

and hence h′ ∈ Hom(Zk
T ,H) is of the form h ◦ π iff h′|ker π = 0. The argument above implies that if

g : Sz1−x,...,zk−x → H is such that agree(g ◦ π, h′) > 1

p
, then h′|ker π = 0, and hence h′ is of the form

h ◦ π.
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Proof Without loss of generality, suppose p 6 |α1 −β1. Recall that this implies that
for any z′ ∈ G, there is exactly one z′′ ∈ G such that (α1 − β1)z

′′ = z′. Now, for any
a, b ∈ G

Prx,z1,...,zk
[Yᾱ = a ∧ Yβ̄ = b] = Pr

x,z1,...,zk

[(
k∑

i=1

(αi − βi)zi = b− a

)
∧ (Yβ̄ = b)

]

= Pr
x,z1,(z2,...,zk)

[(
(α1 − β1)z1 = (b− a) −

k∑

i=2

(αi − βi)zi

)
∧

(
x = b−

k∑

i=1

βizi

)]

=
1

|G|2

where the last step follows from the independence of x and z1 and the above mentioned
fact.

Define random variable Iᾱ = 1 if Yᾱ ∈ A and Iᾱ = 0 otherwise. Thus E[Iᾱ] = µ.
Let X = 1

T k

∑
ᾱ∈Z

k
T
Iᾱ. By Proposition 14, we have that

X =
|A ∩ (x+ Sz1,...,zk

)|

|Sz1,...,zk
|

(4)

We wish to bound Pr[|X − µ| > ǫ]. Now E[X] = µ. Below we shall estimate the
variance of X and complete the proof using Chebyshev’s inequality.

E[X2] =
1

T 2k
E[(
∑

ᾱ

Iᾱ)2] =
1

T 2k
E[
∑

ᾱ,β̄

IᾱIβ̄]

=
1

T 2k
E

∑

ᾱ,β̄

∃i,p 6|αi−βi

IᾱIβ̄ +
1

T 2k
E

∑

ᾱ,β̄

∀i,p|αi−βi

IᾱIβ̄

=
1

T 2k

∑

ᾱ,β̄

∃i,p 6|αi−βi

E[Iᾱ]E[Iβ̄] +
1

T 2k

∑

ᾱ,β̄

∀i,p|αi−βi

E[IᾱIβ̄]

≤ (1 −
1

pk
)µ2 +

1

pk
.

The last step follows from Claim 17 and the fact that for each fixed ᾱ ∈ G there are
exactly 1

pkT
k β̄’s s.t. p | (αi−βi) for all i ∈ [k]. Therefore, V ar[X] = E[X2]−E[X]2 ≤

(1 − 1
pk )µ2 + 1

pk − µ2 ≤ 1
pk .

By Chebyshev’s inequality, Pr{x,(zi)}[|X − µ| > ǫ] ≤ 1
pkǫ2

, and thus by (4), the
lemma follows.
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Proposition 18 Let l, k be positive integers and let p be a prime. Let M be a k × k
integer matrix. Then there exists a k×k integer matrix A such that AM ≡ I mod pl

(where I is the k × k identity matrix) iff detM 6≡ 0 mod p.

Proof The “only if” direction is clear. To prove the “if” part, we will use the
Hensel lifting lemma. Suppose we are given a system of polynomials with integer
coefficients P1(x1, . . . , xm), . . . , Pm(x1, . . . , xm) and a point a ∈ Z

m such that:

• Pi(a) ≡ 0 mod p for i ∈ [m].

• The Jacobian matrix at a, J(a) (given by J(a)ij = ∂pi

∂xj
(a)) is invertible mod p

Then the Hensel lifting lemma says that for any l > 0 there exists a point b ∈ Z
m

such that

• b ≡ a mod p.

• Pi(b) ≡ 0 mod pl for i ∈ [m].

Suppose detM 6≡ 0 mod p. For an indeterminate k × k matrix X, consider the
expression P (X) = XM − I. This is a system of k2 polynomials in k2 unknowns.
Setting X = M−1 (the inverse of M over the field Zp), we get P (X) ≡ 0 mod p.
Further, from the form of these polynomials it can be checked that det J(X) =
(detM)k 6= 0. Thus by Hensel’s lifting lemma, there exists an integer matrix A such
that AM ≡ I mod pl.

Lemma 19 Let z1, . . . , zk ∈ G. Let y1, . . . , yk be picked uniformly at random from
Sz1,...,zk

. Then

Pr
y1,...,yk

[Sy1,...,yk
= Sz1,...,zk

] >
1

10
.

Proof Pick ᾱ1, . . . , ᾱk uniformly at random from Z
k
T . By Proposition 14, the distri-

bution of (y1, . . . , yk) is identical to the distribution of (πz1,...,zk
(ᾱ1), . . . , πz1,...,zk

(ᾱk)).
Thus we can (and do) assume that the yi are generated in this manner, i.e., yi =
πz1,...,zk

(ᾱi).
It is clear that if ᾱ1, . . . , ᾱk generate Z

k
T , then y1, . . . , yk generate Sz1,...,zk

and
hence Sy1,...,yk

= Sz1,...,zk
. Thus it suffices to prove that

Pr
ᾱ1,...,ᾱk

[
ᾱ1, . . . , ᾱk generate Z

k
T

]
>

1

10
.

Now, ᾱ1, . . . , ᾱk generate Z
k
T iff ∃aij ∈ Z such that for all i ∈ [k],

∑k

j=1 aijᾱj = ēi

(here ēi is the element of Z
k
T with 1 in the ith coordinate and 0 in all the other

coordinates). This is equivalent to saying that there is a k× k matrix A with entries
in Z such that AM ≡ I mod T , where M is the k × k matrix with Mjl = (ᾱj)l, and
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I is the k × k identity matrix. Thus, by Proposition 18 (recalling that T is a power
of p), it suffices to show that

Pr
α1,...,αk

[detM 6≡ 0 mod p] >
1

10
.

Since detM mod p depends only on the values mod p of the entries of M , this
is clearly equivalent to showing that at least 1

10
of all k × k matrices with entries in

Zp are non-singular.
But the fraction of k×k Zp-matrices that are nonsingular can be written explicitly

as
k∏

i=1

(
1 −

1

pi

)
.

This quantity is bounded from below by

(
1 −

1

p

)(
1 −

∞∑

i=2

1

pi

)
>

1

10

for all primes p, as required.

6 Algorithmic results for p-groups

Here we will show Lemma 11 stated in Section 3.

Lemma 11. Let p be a fixed prime and r > 0 be a fixed integer. Then for any

abelian p-group G, Hom(G,Zpr) is
(

1
p

+ ǫ, poly(log |G|, 1
ǫ
)
)

locally list decodable.

We will provide an algorithm which, given access to a function f : G → Zpr , with G
a p-group, outputs an implicit representation of the homomorphisms that agree in a
1
p

+ ǫ with f .

6.1 The generalized STV algorithm

Proposition 20 (Self-Correctors [3]) For any g : G → H, there is a randomized
procedure Corrg : G → H running in time poly(log |G|) satisfying the following
property: if there is some homomorphism h : G → H with agree(g, h) > 7/8, then
Corrg 3

4
-computes h.

To illustrate the strategy underlying the list decoder, consider the following sce-
nario. Suppose f : G → H agrees with homomorphism h : G → H on 1

p
+ ǫ points.

Now if we pick z1, . . . , zk ∈ G randomly and independently, by the Sampling Lemma
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with high probability for most x, f |Rx,z1,...,zk
and h|Rx,z1,...,zk

(which is an affine homo-

morphism) will have agreement at least 1
p
+ǫ/2. Thus in order to find the value of h(x),

it seems like the following would be a reasonable strategy: List decode f |Rx,z1,...,zk
for

all affine homomorphisms that have agreement 1
p

+ ǫ
2

with it. Rx,z1,...,zk
being a coset

of group generated by few elements, should be easier to list decode on. Finally, by
the combinatorial bound, the list size is small, and at a crucial juncture of the analy-
sis we will utilize this bound to disambuguate the list and systematically select and
! collate the affine homomorphisms on Rx,z1,...,zk

that arise as restrictions of global
homomorphisms. Assembling these ideas into the framework of local list decoding,
we arrive at our local list decoder.

The oracle M f
z1,...,zk,a1,...,ak

(x):
For b ∈ H, define mb : Z

k
T → H by mb(ᾱ) = b+

∑
αi(ai − b).

1: For each b in H, estimate 6 (by random sampling)
lb := agree(mb, f |Rx,z1,...,zk

◦ πz1−x,...,zk−x).

2: If there is exactly one b with lb >
1
p

+ ǫ
4

then output b, else fail.

The local list decoder:
Repeat O(1) times:
1: Pick z1, . . . , zk ∈ G uniformly and independently at random, where k = c logp

1
ǫ
.

2: For each (a1, . . . , ak) ∈ Hk, output CorrM
f
z1,...,zk,a1,...,ak .

6.2 Analysis

Lemma 21 If h : G→ H is a homomorphism such that agree(h, f) ≥ 1
p

+ ǫ then

Pr
z1,...,zk

[
Pr
x

[M f

z1,...,zk,h(z1),...,h(zk)(x) = h(x)] ≥ 7/8
]
≥ 3/4.

Proof The following two claims prove that certain events occur with low probabil-
ity. As we shall see, these are the events that prevent M f

z1,...,zk,h(z1),...,h(zk)(x) = h(x).

Claim 22 There is a constant c1, such that for k > c1 logp
1
ǫ

we have

Pr
x,z1,...,zk

[M f

z1,...,zk,h(z1),...,h(zk)(x) finds lh(x) <
1

p
+
ǫ

2
] ≤

1

100
.

Proof By definition, lh(x) = agree(mh(x), f |Rx,z1,...,zk
◦ πz1−x,...,zk−x). We have

mh(x)(ᾱ) = h(x) +
∑

i

αi(h(zi) − h(x))

= h(x) +
∑

i

(αih(zi − x))

= h|Rx,z1,...,zk
◦ πz1−x,...,zk−x(ᾱ).
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As noted earlier, h|Rx,z1,...,zk
is an affine homomorphism. Therefore, by Lemma 15,

lh(x) ≥
1
p
+ ǫ

2
iff agree(h|Rx,z1,...,zk

, f |Rx,z1,...,zk
) ≥ 1

p
+ ǫ

2
. Setting A = {x : f(x) = h(x)},

agree(h|Rx,z1,...,zk
, f |Rx,z1,...,zk

) =
|A ∩Rx,z1,...,zk

|

|Rx,z1,...,zk
|

=
|A ∩ (x+ Sz1−x,...,zk−x)|

|Sz1−x,...,zk−x|
.

Thus, by the Sampling Lemma, for suitable c1,

Pr

[
lh(x) <

1

p
+
ǫ

2

]
= Pr

[
|A ∩ (x+ Sz1−x,...,zk−x)|

|Sz1−x,...,zk−x|
<

1

p
+
ǫ

2

]
=

4

ǫ2pk
<

1

100

Let L(x, z1, . . . , zk) be the list of all affine homomorphisms g : Sz1−x,...,zk−x → H
such that

agree(g, f |Rx,z1,...,zk
) >

1

p
+
ǫ

8
.

Let B(x, z1, . . . , zk) denote the event:
There exist g1, g2 ∈ L(x, z1, . . . , zk) with g1 6= g2, such that for all j ∈ [k], g1(zj) =
g2(zj).

Claim 23 There is a constant c2 such that for any k ≥ c2 logp
1
ǫ
, we have

Pr
x,z1,...,zk

[B(x, z1, . . . , zk)] <
1

100
.

Proof
We shall show that for some c2 > 0, with k as above, the following stronger

estimate holds: For all x ∈ G, for all ζ1, . . . , ζk ∈ G, setting R = Rx,ζ1,...,ζk
:

Pr
z1,...,zk

[B(x, z1, . . . , zk)|Rx,z1,...,zk
= R] <

1

100
.

Averaging this over all possible choices of R gives us the claim.
Fix ζ1, . . . , ζk ∈ G. Pick y1, . . . , yk independently and uniformly at random from

Rx,ζ1,...,ζk
. Let E be the event that y1−x, . . . , yk−x generate Sζ1−x,...,ζk−x (as a group).

The key observation is that the distribution of (z1, . . . , zk) given Rx,z1,...,zk
= R is

identical to the distribution of (y1, . . . , yk) given E.
Notice that Rx,z1,...,zk

= R implies that L(x, z1, . . . , zk) = L(x, ζ1, . . . , ζk). Fix
g1 6= g2 ∈ L(x, ζ1, . . . , ζk). Since they are both affine homomorphisms, Pry∈R[g1(y) =
g2(y)] ≤

1
p
. Let Cg1,g2 = {y ∈ R : g1(y) = g2(y)}.

The key observation above gives us

Pr
z1,...,zk

[∀j, g1(zj) = g2(zj)|Rx,z1,...,zk
= R] = Pr

y1,...,yk

[(y1, . . . , yk) ∈ Ck
g1,g2

|E]. (5)
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Our strategy will be to bound Pr[(y1, . . . , yk) ∈ Ck
g1,g2

|E] by relating it to Pr[(y1, . . . , yk) ∈
Ck

g1,g2
]. To this end, write

Pr[(y1, . . . , yk) ∈ Ck
g1,g2

|E] Pr[E] + Pr[(y1, . . . , yk) ∈ Ck
g1,g2

|Ē] Pr[Ē]

= Pr[(y1, . . . , yk) ∈ Ck
g1,g2

] =
1

pk
.

Lemma 19 tells us that Pr[E] ≥ 1
10

. So,

Pr[(y1, . . . , yk) ∈ Ck
g1,g2

|E] ≤
1

pk Pr[E]
<

10

pk
.

Thus (5) gives us that for any particular g1, g2 ∈ L(x, ζ1, . . . , ζk),

Pr
z1,...,zk

[∀j, g1(zj) = g2(zj)|Rx,z1,...,zk
= R] ≤

10

pk

Applying the above estimate to each pair g1, g2 ∈ L(x, ζ1, . . . , ζk) (setting L =
|L(x, ζ1, . . . , ζk)|), and combining with the union bound,

Pr
z1,...,zk

[B(x, z1, . . . , zk)|Rx,z1,...,zk
= R] ≤

10
(

L

2

)

pk
.

By the combinatorial list decoding bound, Lemma 10, we have that L ≤ O(pr(2p)3r 1
ǫ2

)
(remember these are affine homomorphisms, not just homomorphisms).

Therefore, there exists a constant c2 s.t. for k ≥ c2 logp(
1
ǫ
) we have the desired

probability < 5L2

pk < 1
100
.

By the above claims, with probability < 1
100

, M f

z1,...,zk,h(z1),...,h(zk)(x) estimates

lh(x) ≤
1
p

+ ǫ
2
, and with probability ≤ 1

100
, it finds at least two values of b for which

lb > 1
p

+ ǫ
8
. In the absence of these two events, M f

z1,...,zk,h(z1),...,h(zk)(x) estimates

lh(x) >
1
p
+ ǫ

2
and h(x) is the unique such b, i.e., in this case oracleM f

z1,...,zk,h(z1),...,h(zk)(x)

outputs h(x). Thus,

Pr
x,z1,...,zk

[M f

z1,...,zk,h(z1),...,h(zk)(x) = h(x)] ≥ 49/50.

By Markov’s inequality, we conclude that

Pr
z1,...,zk

[ Pr
x

[M f

z1,...,zk,h(z1),...,h(zk)(x) = h(x)] ≥ 7/8] ≥
3

4
.

Proof of Lemma 11
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Let h be a homomorphism that agrees with f on a 1
p

+ ǫ fraction of points. Con-

sider the oracle M f

z1,...,zk,h(z1),...,h(zk) (i.e., the ai are “consistent” with h). By Lemma

21, with probability at least 3/4 over the choice of z1, . . . , zk, the oracle machine
M f

z1,...,zk,h(z1),...,h(zk) correctly computes h on at least 7
8

of the x ∈ G. Therefore, the

self-corrected version Corr
M

f

z1,...,zk,h(z1),...,h(zk) 3
4
-computes h on all of G with probabil-

ity at least 3
4
, as required. It is easily seen that the local list decoder and the oracles

both run in time at most poly(log |G|, 1
ǫ
).

7 Linearity testing over finite fields

In this section we will prove a result of Kiwi using techniques related to Section 4.
We shall work on the finite field Fq, where q = pr is a power of the prime p. Given

f : F
n
q → Fq. We consider the following linearity test:

• Pick x, y ∈ F
n
q , α, β ∈ F

∗
q uniformly at random

• Accept if f(αx+ βy) = αf(x) + βf(y), else reject.

Kiwi [8] analyzed this test to get the following theorem.

Theorem 24 Suppose f is acceptd by the above test with probability δ, then f has
agreement at least δ with some linear function7 in Hom(Fn

q ,Fq).

His proof uses the MacWilliams identities and properties of the Krawtchouk poly-
nomials. Here we give a simple proof of the above theorem using elementary Fourier
analysis.

First some generalities on finite fields (see [?]).
For t ∈ F

n
q , let the linear function ht : F

n
q → Fq be defined by

ht(x) = t · x.

These are clearly all the Fq-linear functions.
Recall the definition of the trace function, the Fp-linear function Tr : Fq → Fp,

Tr(x) =
r−1∑

i=0

xpi

.

The trace will play a crucial role in our proofs because we can explicitly describe all
the characters of F

n
q in terms of this function. For t ∈ F

n
q , let character χt : F

n
q → C

be defined by
χt(x) = ωTr(ht(x))

7In this section, the linear functions we consider are vector space homomorphisms, i.e., functions
that are Fq-linear.
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where ω is a primitive pth root of unity. The χt are all the characters of F
n
q and hence

we can use them to do Fourier analysis.
It will also be useful to introduce twisted complex-embedded versions of f . For

c ∈ Fq, define fc : F
n
q → C by fc(x) = ωTr(cf(x)).

Proof The proof is modeled along the general lines of the argument in [2] (i.e.,
expressing everything in terms of Fourier coefficients and comparing).

For η ∈ Fq, define S(η) = Ec∈F∗
q
[ωTr(cη)]. From the equidistribution properties of

the trace function, it can be seen that:

S(η) =

{
1, if η = 0
−1
q−1

, otherwise

For t ∈ F
n
q let ρt be the agreement of f with ht. We shall prove that δ ≤ maxt∈Fn

q
ρt.

This will prove the result.
We begin by finding an explicit formula for ρt in terms of the Fourier coefficients

of the fc (this is essentially Lemma 12).

ρt −
1

q − 1
(1 − ρt) = Ex∈Fn

q
[S(f(x) − ht(x))] = Ex∈Fn

q ,c∈F∗
q
[ωTr(cf(x))ω−Tr(cht(x))] (6)

= Ec∈F∗
q
Ex∈Fn

q
[fc(x)χct(x)] = Ec∈F∗

q
[f̂c(ct)] (7)

We now find a similar formula for δ and perform some manipulations that allow
us to relate it to our formula for ρt.

δ −
1

q − 1
(1 − δ) = Ex,y∈Fn

q
Eα,β∈F∗

q
[S (αf(x) + βf(y) − f(αx+ βy))] (8)

= Ex,y∈Fn
q
Eα,β∈F∗

q

[
Ec∈F∗

q
[ωTr(cαf(x))ωTr(cβf(y))ωTr(−cf(αx+βy))]

]
(9)

= Ex,yEα,βEc [fcα(x)fcβ(y)f−c(αx+ βy)] (10)

= qn
Ex,y,zEα′,β′,γ′ [fα′(x)fβ′(y)fγ′(z)1(α′x+ β′y + γ′z = 0)] (11)

(12)

where we substituted α′ = cα, β′ = cβ, γ′ = −c, z = αx + βy (and one verifies that
z = αx + βy is equivalent to α′x + β′y + γ′z = 0). Note that since γ′ ∈ F

∗
q, the

probability that a random z ∈ F
n
q is such that α′x+ β′y + γ′z = 0 is 1

qn .

(12) = qn
Ex,y,zEα′,β′,γ′

[
fα′(x)fβ′(y)fγ′(z)Et∈Fn

q
[χt(α

′x+ β′y + γ′z)]
]

= qn
Et [Eα′,β′,γ′Ex [fα′(x)χα′t(x)] Ey [fβ′(y)χβ′t(y)] Ez [fγ′(z)χγ′t(z)]]

=
∑

t

[
Eα′,β′,γ′

[
f̂α′(α′t)f̂β′(β′t)f̂γ′(γ′t)

]]

=
∑

t

(
Eα′∈F∗

q
[f̂α′(α′t)]

)3
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By (7), this is equal to

∑

t

(
ρt −

1

q − 1
(1 − ρt)

)3

which

≤ max
t

(
ρt −

1

q − 1
(1 − ρt)

)∑

t

(
ρt −

1

q − 1
(1 − ρt)

)2

≤ max
t

(
ρt −

1

q − 1
(1 − ρt)

)

The last step follows from Lemma 13.
So

δ −
1

q − 1
(1 − δ) ≤ max

t

(
ρt −

1

q − 1
(1 − δ)

)

and therefore
δ ≤ max

t
ρt.

Acknowledgments

Thanks to Amir Shpilka for many valuable discussions.

References

[1] Michael Ben-Or, Don Coppersmith, Michael Luby, Ronitt Rubinfeld, Non-
Abelian Homomorphism Testing, and Distributions Close to their Self-
Convolutions. RANDOM 2004.

[2] Mihir Bellare and Don Coppersmith and Johan H̊astad and Marcos Kiwi and
Madhu Sudan. Linearity testing over characteristic two. IEEE Transactions on
Information Theory, 42(6), 1781-1795, 1996.

[3] Manuel Blum and Michael Luby and Ronitt Rubinfeld. Self-Testing/Correcting
with Applications to Numerical Problems. Journal of Computer and System Sci-
ences, 47(3), 549-595, 1993.

[4] Oded Goldreich and Leonid Levin. A hard-core predicate for all one-way func-
tions. Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
25–32, 1989

24



[5] Oded Goldreich and Ronitt Rubinfeld and Madhu Sudan. Learning polynomials
with queries: The highly noisy case. SIAM Journal on Discrete Mathematics,
13(4):535-570, 2000.

[6] Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for certain
concatenated codes. Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing, 181-190, 2000.

[7] Marcos Kiwi , Frédéric Magniez , Miklos Santha. Exact and approximate test-
ing/correcting of algebraic functions: A survey. Theoretical Aspects of Computer
Science, Teheran, Iran, Springer-Verlag, LNCS 2292, 30-83, 2002.

[8] Marcos Kiwi. Testing and weight distributions of dual codes. Theoretical Com-
puter Science, 299(1–3):81-106, 2003.

[9] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier
spectrum. SIAM Journal on Computing 22(6):1331-1348, 1993.

[10] Dana Moshkovitz, Ran Raz. Sub-Constant Error Low Degree Test of Almost
Linear Size, STOC 2006.

[11] Madhu Sudan and Luca Trevisan and Salil Vadhan. Pseudorandom generators
without the XOR lemma, Proceedings of the 31st Annual ACM Symposium on
Theory of Computing 537-546, 1999.

[12] Madhu Sudan. Algorithmic Introduction to Coding Theory. Lecture Notes, 2001.

[13] Amir Shpilka and Avi Wigderson. Derandomizing Homomorphism Testing in
General Groups. Proceedings of the 36th Annual ACM Symposium on Theory of
Computing (STOC), pp. 427-435, 2004.

[14] L. Trevisan. Some Applications of Coding Theory in Computational Complexity.
Survey Paper. Quaderni di Matematica 13:347-424, 2004

25


