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Abstract

Given an pair of finite groups G and H, the set of homomorphisms from G to H
form an error-correcting code where codewords differ in at least 1/2 the coordinates.
We show that for every pair of abelian groups G and H, the resulting code is (locally)
list-decodable from a fraction of errors arbitrarily close to its distance. At the heart of
this result is the following combinatorial result: There is a fixed polynomial p(·) such
that for every pair of abelian groups G and H, if the maximum fraction of agreement
between two distinct homomorphisms from G to H is Λ, then for every ε > 0 and every
function f : G→ H, the number of homomorphisms that have agreement Λ + ε with f
is at most p(1/ε).

We thus give a broad class of codes whose list-decoding radius exceeds the “Johnson
bound”. Examples of such codes are rare in the literature, and for the ones that do exist,
“combinatorial” techniques to analyze their list-decodability are limited. Our work is
an attempt to add to the body of such techniques. We use the fact that abelian groups
decompose into simpler ones and thus codes derived from homomorphisms over abelian
groups may be viewed as certain “compositions” of simpler codes. We give techniques
to lift list-decoding bounds for the component codes to bounds for the composed code.
We believe these techniques may be of general interest.
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1 Introduction

It is a well-known fact that distinct homomorphisms between a fixed pair of groups G and H
are far from each other in the Hamming norm. Thus homomorphisms between groups form
“error-correcting codes”, giving rise to questions: How well can these codes be list-decoded?
In this paper we give new, strong, combinatorial and algorithmic results for list-decoding
of codes derived from group homomorphisms, for abelian groups.

The classical example of a code based on group homomorphisms are the Hadamard codes,
which can be viewed as homomorphisms from Zn2 to Z2. The list-decoding problem for
this class of groups was considered in the seminal paper of Goldreich and Levin [3], where
they used this result to get a generic construction of a hardcore predicates for any one-
way function. Subsequently this result has formed the basis of many results in learning,
average-case complexity and cryptography.

In terms of technical generalizations, the work of Goldreich-Levin has led to the study of
list-decoding for polynomial functions over finite fields (see, for instance, [4, 12]), as also
the task of learning Fourier coefficients ([8, 2, 1]). Again both these directions have led to
important applications in pseudorandomness, cryptography, and average-case complexity.

Our work is motivated by yet a third interpretation of the Goldreich-Levin result, as a list-
decoder for homomorphisms. This interpretation was already studied in a previous work
by some of the authors [5], where it was shown that the algorithmic techniques of, say
[3, 4, 12], can typically be extended to the case of group homomorphisms also, provided one
can get convincingly strong combinatorial bounds on the “list-decodability” of these codes.
Unfortunately, bounds on the list-decodability of these codes were too weak, and indeed
it seems there are few techniques to bound the list-decodability of error-correcting codes.
Our paper is motivated mainly by this need to augment the analytic tools in this setting.
In what follows we attempt to clarify the problem, the prior state of knowledge, and our
contributions.

Combinatorics of List-decoding Homomorphisms: Let G,H be finite groups and let
Λ = ΛG,H denote the maximum relative agreement between any pair of homomorphisms
between G and H. Thus the class of homomorphisms between G and H may be viewed as
error-correcting codes over the alphabet Σ = H of length N = |G| and relative (Hamming)
distance 1− Λ. The combinatorial question at the heart of this paper is the following:

Given a function f : G → H and a real number ε > 0, what is the number
of homomorphisms φ such that f and φ agree in at least ΛG,H + ε fraction of
inputs?

As we argue below this simple question was vastly ununderstood, at least till this work.

For the sake of concreteness, let p be a prime and n,m be positive integers. Now consider
the class of homomorphisms between G = Znp and H = Zmp . Then Λ = ΛG,H = 1/p. Our
combinatorial question asks: How many homomorphisms can have agreement 1/p+ ε with
any given function f : Znp → Zmp . In the case of m = 1, the works of [3, 4], assert that
the number of homomorphisms is at most O(1/ε2). Such a result can also be shown to be
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essentially tight, for any choice of p, n, m, and ε. These results essentially follow from the
Johnson bound for codes over a p-ary alphabet (see, for instance, [6]).

What about the case of general m? Here, our state of knowledge tapers off quickly. Since
the codes no longer have relative distance 1− 1/|Σ|, the Johnson bound is no longer strong
and only gives bound for the number of homomorphisms that have agreement more than√

1/p with the given function. In other words this bound requires ε >
√

1/p−1/p and does
not work for every ε > 0. A more ad-hoc analysis, obtained by viewing a homomorphism
from Znp to Zmp as a tuple of m independent homomorphisms from Znp to Zp, gives a bound
of 1/ε2m on the number of homomorphisms. Till our work it was unclear if this exponential
dependence on m was necessary.

A similar state of affairs is also seen when we consider, say, homomorphisms from Zpn

(integers modulo pn) to Zpm . In this case, Fourier analysis can be used to get some bounds
on the number of homomorphisms that have agreement 1/p + ε with a fixed function [5],
but again this bound has exponential dependence on m.

In this paper we fix these gaps in our knowledge. We show that there is a fixed polynomial
g such that for all abelian groups G,H and for every function f : G→ H and every ε > 0,
the number of homomorphisms with agreement ΛG,H+ε with the fixed function f is at most
g(ε). (The bound is thus a fixed polynomial, independent of G and H. See Theorem 2.2.)

Algorithmic Consequences: Our combinatorial result turns immediately into efficient,
local, algorithms for list-decoding homomorphisms. Specifically, we show that the tech-
niques from [3, 4, 12, 5] immediately yield an algorithm that behaves as follows: It takes as
input an explicit description of groups G and H (in terms of the their prime decomposition)
and a real number ε > 0, and has oracle access to a function f : G→ H. In time polynomial
in 1/ε, log |G| and log |H| it outputs an explicit description of all homomorphisms that have
agreement Λ + ε with f .

We remark that a polynomial dependence on each is necessary to represent the output. In
previous work [5] considered a fixed group H and for every such group, gave a polynomial
time algorithm (i.e., its running time was polynomial in log |G| and 1

ε ) to recover the nearby
homomorphisms. Their running time grew exponentially in log |H|.

Techniques: We stress that despite the widespread use of list-decoding, general techniques
to establish bounds are lacking. There a relatively few codes known whose list-decodability
going beyond the Johnson bound: some examples include the Ta-Shma-Zuckerman codes
[13], and the Parvaresh-Vardy-Guruswami-Rudra codes [11, 7]. The latter codes are similar
in the sense that they also consider codes over an alphabet that is a vector space (rather
than a field), but in their case the only proof of the list-decoding properties is algorithmic.
We feel this is partly due to the lack of combinatorial techniques to analyze the decoding
properties of such codes.

We start by noticing that any abelian group, in particular, H can be decomposed as H1 ×
· · ·×Hk where Hi = Zpei

i
for some prime pi and positive integer ei. Thus a homomorphism φ

from G to H can be decomposed into simpler ones using this decomposition. For instance if
H = H1×H2 then a homomorphism φ from G to H is just a pair of homomorphisms (φ1, φ2)
where φi : G → Hi for i ∈ {1, 2}. This decomposition allows for some weak list-decoding
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bounds. To see this, fix some agreement parameter ρ and lets consider the number of
homomorphisms that have agreement ρ with some function f : G→ H. Suppose we have a
bound Bi on the number the number of homomorphisms from G to Hi that have agreement
ρ with any single function. Then, viewing f as a pair of functions (f1, f2), fi : G→ Hi, and
noticing that for any homomorphism φ = (φ1, φ2) : G→ H that has agreement ρ with f it
must be the case that φi and fi also have agreement at least ρ, we conclude that the number
of homomorphisms that have agreement ρ with f is at most B1 · B2. Unfortunately, this
bound grows exponentially with log |H| and this is too weak to get our claimed theorem.

Our improvements come by noticing that agreements between homomorphisms are quite
restricted. For instance, in the case whereH1 = H2 = Zp andH = H1×H2, homomorphisms
φ, ψ : G→ H1 either agree on a set of density 1

p or a set of density at most 1
p2

. To leverage
this insight in our setting, say we have a function f = (f1, f2) and we wish to bound
homomorphisms with agreement ρ with f . Suppose φ1 : G → H1 has agreement at least
ρ with f1 and suppose the set of agreements is the set S ⊆ G. We now consider all
homomorphisms ψ1, . . . , ψ` that agree with f2 on subsets of S of size at least ρ · |G|. We
consider agreements of “triples” of homomorphisms ψi, ψj and ψk and note that if every
such triple has a large mutual agreement in the set S, then they satisfy a sunflower like
property, forcing S to be very large. If on the other hand every triple has a small agreement
then we manage to show that S is still large, by using an inclusion-exclusion count. We
then use a standard argument to show that either the given collection of homomorphisms
always contain a large subcollection in which every triple has a large intersection, or a large
subcollection in which every triple has a small intersection. This gives us a nontrivial lower
bound on S in all cases and then we perform some very careful accounting to show that
this leads to an (absolute) polynomial upper bound on the list size.

While all these arguments may seem very specific to this special case of homomorphism from
G to Zp×Zp, we show that this is not the case. Indeed we abstract a nice property of families
of sets (in our case the points of agreement between f2 and ψ1, . . . , ψk within a specified
set S) that allows us to give non-trivial bounds on the size of their union. We then apply
this same bound in three different cases to lift list-decoding bounds for somewhat simple
groups to list decoding bounds for more complex groups. We start with homomorphisms to
Zp and lift this to homomorphisms to Zrp, then to Zpr and then to arbitrary groups

∏
i Zpei

i
.

This leads us to the final theorem claimed above.

The combinatorial results turn into algorithmic results in a straightforward manner based
on previous works [3, 4, 12, 5]. If anything, our algorithms become even simpler because
our combinatorial bounds are stronger. See Appendix C.

Related prior works: The task of list-decoding homomorphisms is very closely related
to the task of determining significant Fourier coefficients in abelian groups. Previous works
[8, 10, 2, 1] have consider the latter task in different contexts and in particular Akavia et
al. [1] give comprehensive results on “list-decoding” for the significant Fourier coefficients.
Here we point out why their results do not subsume ours. Even though significant Fourier
coefficients correspond exactly to list decoding when H = Z2 or H = Z3, the situation
changes significantly over other groups. The complex inner product, the norm underlying
Fourier coefficients, is very different from the Hamming distance and indeed it is possible to
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find functions with few large Fourier coefficients that are not close to any homomorphism
in the Hamming norm. Conversely, it is also possible to find functions that are very close to
homomorphisms in the Hamming norm that have no significant Fourier coefficients. Thus in
these cases, list-decoding is a very different problem than that of finding Fourier coefficients,
and combinatorial bounds such as the ones we provide were not known.

Organization of this paper: In Section 2 we introduce some necessary definitions and
state our main results. In Section 3, we prove our main combinatorial bounds, modulo a
theorem about certain set systems with restricted intersections. Finally in Section 4, we
prove this theorem. Some proofs are deferred to the Appendix.

2 Definitions and Main Results

We start with some basic terminology about homomorphisms and introduce the combina-
torial and algorithmic list decoding problems and state our results.

For abelian groups G,H let Hom(G,H) = {h : G→ H | h(x) + h(y) = h(x+ y),∀x, y ∈ G}
be the set of homomorphisms from G to H. Also let aHom(G,H) = {h + a : G → H |
h ∈ Hom(G,H), a ∈ H} be the set of affine homomorphisms from G to H. Notice that
Hom(G,H) ⊂ aHom(G,H).

For two functions f, g : G → H, define agree(f, g) = Prx∈G[f(x) = g(x)], and ΛG,H =
maxf,g∈Hom(G,H),f 6=g{agree(f, g)}. In the case when Hom(G,H) contains only the zero
homomorphism we define ΛG,H = 0.

Definition 2.1 (Combinatorial List Decodability) The code aHom(G,H) is (δ, l)-list
decodable if for every function f : G → H, there exist at most l homomorphisms h ∈
aHom(G,H) such that agree(f, h) ≥ δ.

The principal question that we address is: For which function l(δ) can we conclude that
aHom(G,H) is (δ, l(δ))-list-decodable. Our theorem below shows that this is true for l(δ) =
poly((δ − ΛG,H)−1) for some polynomial independent of G and H.

Theorem 2.2 There is a universal constant C such that the following holds: Let G,H be
abelian groups. Then for every ε > 0, aHom(G,H) is (ΛG,H + ε, 1/εC)-list-decodable.

We augment this combinatorial result with an algorithmic one that finds the nearby homo-
morphisms efficiently. We first define this algorithmic problem below and then state our
algorithmic theorem.

Our algorithmic goal is to produce a list of all homomorphisms with agreement ΛG,H + ε
with some function f : G → H efficiently, i.e., in time poly(log |G|, log |H|, 1

ε ). In order to
do so, the algorithm requires oracle access to the function f (or else reading the function
will take time poly(|G|). Our solution requires a further assumption that the groups G and
H are given explicitly, in a sense described next.
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Recall that the structure theorem for finite abelian groups [9] states that every finite abelian
group can be decomposed into cyclic groups of the form Zpr1

1
× . . . × Zprk

k
, where all pi’s

are prime. We will assume that our input groups G and H are presented in this cyclic
decomposition. Our algorithm returns all such homomorphisms explicitly by specifying its
values on a set of generators of G.

Definition 2.3 (Algorithmic Local List Decoding) A probabilistic oracle algorithm A
for list decoding homorphisms takes as input two groups G and H represented explicitly, and
a parameter δ > 0 (where the explicit represention of G = Zpr1

1
× . . .× Zprk

k
is the sequence

of pairs 〈(p1, r1), . . . , (pk, rk)〉, and similarly for H) and has oracle access to a function f :
G→ H. We say that A is a (δ, T )-local list decoder for groups G,H, if for every function
f : G→ H, Af runs in time T and outputs a list {φ1, φ2, . . . , φL} ⊂ aHom(G,H) s.t. with
probability at least 3/4, it is the case that for every affine homomorphism h ∈ aHom(G,H)
such that agree(f, h) ≥ δ, h = φj for some j ∈ [L].

Theorem 2.4 There exists an algorithm A, such that for every pair of abelian groups G, H,
and every ε > 0, A is a (ΛG,H+ε, poly(log |G|, log |H|, 1

ε ))-local list decoder for aHom(G,H)
.

3 Analysis of Combinatorial List Decodability

In this section we prove Theorem 2.2 above, which upper bounds the number of homomor-
phisms that have agreement ΛG,H + ε, for some ε > 0, with a given function f : G→ H.

We begin by considering two special cases. In both special cases G is a somewhat special
group, which we will elaborate on later. In the first case H = Zrp, while in the second case
H = Zpr . Finally we analyze the case of general G and H, by reducing it to the special
cases.

All three settings (the two special cases and the general case) are analyzed by a common
technique by considering set systems with very special intersection properties and bounding
their cardinality (in a very specific way). In our analysis these sets will represent sets of
agreement between a function at hand and some nearby homomorphisms. We define this
special intersection property and state our crucial theorem about these families next.

3.1 Special Intersecting Families

Below we consider a collection S1, . . . , S` of subsets of a universe X. For a set T ⊂ X, its
density is denoted µ(T )def= |T |/|X|. For a set of indices I ⊆ [`] let SI = ∩i∈ISi (if I = ∅ then
SI = X).

Definition 3.1 For 0 < τ ≤ ρ ≤ 1 and c <∞ we say that a family of sets S1, . . . , S` ⊆ X
is a (ρ, τ, c)-special intersecting family if the following four properties hold:
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1. For every index i ∈ [`], µ(Si) ≥ ρ.

2. For every pair of distinct indices i, j ∈ [`], µ(Si ∩ Sj) ≤ ρ.

3.
∑`

i=1 α
c
i ≤ 1, where αi = µ(Si)− ρ.

4. For subsets (of indices) I, J ⊆ [`], with J ⊆ I and |J | ≥ 2, if µ(SI) > τ the SI = SJ .

The first two properties above are typical conditions seen in intersecting systems, but the
“restrictions” are not particularly restrictive. The third property is a typical condition that
if derived when the sets Si represent agreement sets of some fixed word with codewords
of an orthogonal error-correcting code. (This condition is usually proved using Parseval’s
identity, or using the Johnson bound, for c = 2.) The final condition is effectively “Helly”-
like. It says, roughly, that the only way a large collection of sets {Si}{i∈I} can have a
non-trivially large intersection is if every pair of intersecting sets with indices from I have
the same intersection.

Our main theorem about set systems with special intersections roughly shows that the
density of the union of the Si’s is relatively large compared to the density of the sets
themselves.

Theorem 3.2 For every c < ∞, there exists a C < ∞ such that the following holds: Let
ρ > 0 and let S1, . . . , S` ⊆ X be a (ρ, ρ2, c)-special intersecting family. Let αi = µ(Si) − ρ
and let α = µ

(
∪i∈[`]Si

)
− ρ. Then αC ≥

∑
i∈[`] α

C
i .

We defer the proof of Theorem 3.2 to the next section. We first show how it can be used
to prove upper bounds on the list size when decoding affine homomorphisms.

3.2 Upper bound for H = Zr
p

In this case and the next one, we will be dealing with a special class of groups G that are
called p-groups. Specifically, G is a p-group if |G| is a power of a prime p. What we use
below is that every subgroup of a p-group has cardinality at most |G|/p.

Theorem 3.3 There exists a constant C such that the following is true for every prime
p and positive integer r. Let H = Zrp. Given any function f : G → H and agreement
parameter ε > 0, the number of affine homomorphisms from G to H that have agreement
at least 1/p+ ε with f is at most (1/ε)C .

Proof Fix f : G → H. Note that f can be viewed as an r-tuple of functions f =
〈f1, . . . , fr〉 with fi : G→ Zp. For k ∈ [r] define the kth projection of f to be the function
f [k] : G → Zkp given by f [k](x) = 〈f1(x), . . . , fk(x)〉. We extend this notation to include
k = 0, by allowing a unique function from G → Z0

p (which is considered to be an affine
homomorphism).
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For k1 ≤ k2, we say that a function f2 : G→ Zk2p extends f1 : G→ Zk1p if f1 = f
[k1]
2 .

In what follows, we fix k, 0 ≤ k < r and consider the function f [k]. We also fix an affine
homomorphism φ from G to Zkp that has agreement 1

p + α with f [k], for some α ≥ ε. We
prove that the number of affine homomorphisms that extend φ and have agreement 1/p+ ε
with f is small.

Claim 3.4 For every 0 ≤ k ≤ r, and for every affine homomorphism φ that has agreement
1/p+ α with f [k], the number of affine homomorphisms from G to Zrp that have agreement
1/p+ ε with f and extend φ, is at most (α/ε)C , where C is the constant from Theorem 3.2,
for c = 2.

Proof We prove the claim by induction on r − k. When r − k = 0, the claim is trivially
true. So assume the claim is true for r − (k + 1) and we will now prove it for the case of
r − k.

Let S = {x ∈ G|f [k](x) = φ(x)}. Consider f [k+1] and let φ1, . . . , φ` be all the affine
homomorphisms from G to Zk+1

p that extend φ with agreement at least 1
p + ε with f [k+1].

Let Si = {x|f [k+1](x) = φi(x)} and let µ(Si) = 1
p + αi.

We prove below that the sets S1, . . . , S` ⊆ G form a ((1/p), (1/p2), 2)-special intersecting
family. This will allow us to apply Theorem 3.2 to these sets and this in turn will allow us
to derive the inductive claim easily.

Verifying Intersection Properties: The first property requires that µ(Si) ≥ 1
p which is

immediate from the definition of the Si’s. The second property required that µ(Si∩Sj) ≤ 1
p .

This again is true, since Si∩Sj ⊆ {x|φi(x) = φj(x)} and the latter has density at most 1/p.

The third property follows from the “p-ary Johnson bound” applied to the function f [k+1]
k+1 :

G → Zp. Let (φi)j denote the jth coordinate of the function φi. Then note that the
functions (φi)k+1 are distinct affine homomorphisms, with (φi)k+1 having agreement at
least 1/p+ αi with fk+1. It follows from Lemma D.1 (in Section D) that

∑`
i=1 α

2
i ≤ 1.

Finally, we come to the crucial “special-intersection” property. We need to show that if
µ(SI) > 1/p2, and J ⊆ I contains at least two distinct elements, then SI = SJ . For any
set K ⊆ [`] define TK = {x|φi(x) = φj(x), ∀i, j ∈ K}. Note that TK = G if and only
if |K| ≤ 1. Since TK is a coset of a subgroup of G, we have that µ(TK) = 1/pi for non-
negative integer i. But SK ⊆ TK for every K, and since µ(SI), µ(SJ) > 1/p2, it must be
that µ(TI), µ(TJ) = 1/p. Since TI ⊆ TJ , we get that TI = TJ . Finally, fix some j ∈ J and
let Y = {x|φj(x) = f [k+1](x)}. Since φi(x) = φj(x) for every x ∈ Y ∩ TI and i ∈ I, we have
SI = Y ∩ TI = Y ∩ TJ = SJ as required for the fourth property.

Proof of Claim: We are now ready to prove the claim. Since the sets S1, . . . , S` form a
(1/p, 1/p2, 2)-special intersecting family, we can apply Theorem 3.2 to conclude that (α′)C ≥∑`

i=1 α
C
i where α′ = µ(∪i∈`Si) − 1/p. Since for every i, Si ⊆ S, we have ∪i∈`Si ⊆ S and

so α ≥ α′. We may thus conclude that αC ≥
∑`

i=1 α
C
i . But this immediately leads to the

claim as follows. By induction we have that the number of extensions of φi in aHom(G,H)
that have 1

p + ε agreement with f is at most (αi/ε)C . Since every affine homomorphism in
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aHom(G,H) that extends φ and has 1
p + ε agreement with f must also extend one of the φi,

we have that the total number of such extensions (of φ) is at most
∑

i∈[`](αi/ε)
C ≤ (α/ε)C

as desired.

The theorem statement follows immediately, by using k = 0.

3.3 Upper bound for H = Zpr

We now consider a variant of Theorem 3.3 with H = Zpr , the cyclic group of integers
modulo a prime power (as opposed to the vector space H = Zrp).

We state the theorem below and prove it in Appendix A.1. We remark the proof is essentially
the same as that of Theorem 3.3.

Theorem 3.5 There exists a constant C such that the following is true for every prime
p and positive integer r. Let H = Zpr . Given any function f : G → H and agreement
parameter ε > 0, the number of affine homomorphisms from G to H that have agreement
at least 1/p + ε with f is at most (1/ε)C . Furthermore, if φ1, . . . , φ` : G → H are affine
homomorphisms with agree(f, φi) = 1/p+ αi ≥ 1/p+ ε, then

∑`
i=1 α

C
i ≤ 1.

3.4 General abelian groups

Finally we deal with the case of general H. We first deal with the case of slightly restricted
G which we describe below.

Let H = Zpr1
1
× · · ·Zprm

m
. We assume below that pi divides the order of G for every i, and

that p = p1 ≤ p2 ≤ · · · ≤ pm. Thus ΛG,H = 1/p. The following lemma deals with this case.
Later we remove the restriction on G.

Lemma 3.6 There exists a constant C1 such that the following holds. Let p = p1 ≤ · · · ≤
pm be primes and r1, . . . , rm be positive integers. Let H =

∏m
i=1 Zpri

i
and let G be a finite

abelian group such that pi divides the order of G for every i ∈ [m]. Given any function
f : G → H and agreement parameter ε > 0, the number of affine homomorphisms from G
to H that have agreement at least 1/p+ ε with f is at most (1/ε)C .

Proof The proof is obtained by essentially notational changes to the proof of Theorem 3.3.
For i ∈ [m] let Hi = Zpri

i
. Fix f : G → H. We view f as an m-tuple of functions

f = 〈f1, . . . , fm〉 with fi : G→ Hi.

For k ∈ [m], letH[k] =
∏k
i=1Hi, and let f [k] : G→ H[k] be given by f [k](x) = 〈f1(x), . . . , fk(x)〉.

We extend this notation to include k = 0, by allowing a unique function from G → {1}
(which is considered to be a homomorphism).

For k1 ≤ k2, we say that a function f2 : G→ H[k2] extends f1 : G→ H[k1] if f1 = f
[k1]
2 .

8



In what follows, we fix k, 0 ≤ k < m and consider the function f [k]. We also fix a
homomorphism φ from G to H[k] that has agreement 1

p + α with f [k], for some α ≥ ε. We
prove that the number of homomorphisms that extend φ and have agreement 1/p+ ε with
f is small.

Claim 3.7 For every 0 ≤ k ≤ m, and for every homomorphism φ that has agreement
1/p+α with f [k], the number of homomorphisms from G to H that have agreement 1/p+ ε
with f and extend φ, is at most (α/ε)C1, where C1 is the constant from Theorem 3.2, for
c = C2, and C2 is the constant from Theorem 3.5.

Proof We prove the claim by induction on r − k. When r − k = 0, the claim is trivially
true. So assume the claim is true for r − (k + 1) and we will now prove it for the case of
r − k.

Let S = {x ∈ G|f [k](x) = φ(x)}. Consider f [k+1] and let φ1, . . . , φ` be all the homomor-
phisms from G to H[k+1] that extend φ with agreement at least 1

p + ε with f [k+1]. Let
Si = {x|f [k+1](x) = φi(x)} and let µ(Si) = 1

p + αi.

We prove below that the sets S1, . . . , S` ⊆ G form a ((1/(pk+1), (1/p2
k+1), C2)-special inter-

secting family. This will allow us to apply Theorem 3.2 to these sets and this in turn will
allow us to derive the inductive claim easily. We use q as shorthand for pk+1.

Verifying Intersection Properties: The first property requires that µ(Si) ≥ 1
q which is

immediate from the definition of the Si’s. The second property required that µ(Si∩Sj) ≤ 1
q .

This again is true, since Si∩Sj ⊆ {x|φi(x) = φj(x)} and the latter has density at most 1/q.

The third property follows from Theorem 3.5, applied to the function f
[k+1]
k+1 : G → Hk+1.

Let (φi)j denote the jth coordinate of the function φi. Then note that the functions (φi)k+1

are distinct homomorphisms fromG toHk+1, with (φi)k+1 having agreement at least 1/q+αi
with fk+1. It follows from Theorem 3.5, that

∑`
i=1 α

C2 ≤ 1.

Finally, we come to the fourth property. We need to show that if µ(SI) > 1/q2, and
J ⊆ I contains at least two distinct elements, then SI = SJ . For any set K ⊆ [`] define
TK = {x|φi(x) = φj(x), ∀i, j ∈ K}. Note that TK = G if and only if |K| ≤ 1. Also note
that φi(x) = φj(x) if and only if (φi)k+1(x) = (φj)k+1(x) (since both extend φ). Thus
TK is the kernel of a homomorphism from G to Hk+1, we have that 1/µ(TK) must divide
|Hk+1| and so µ(TK) = 1/qi for non-negative integer i. But SK ⊆ TK for every K, and
since µ(SI), µ(SJ) > 1/q2, it must be that µ(TI), µ(TJ) = 1/q. Since TI ⊆ TJ , we get that
TI = TJ . Finally, fix some j ∈ J and let Y = {x|φj(x) = f [k+1](x)}. Since φi(x) = φj(x)
for every x ∈ Y ∩ TI and i ∈ I, we have SI = Y ∩ TI = Y ∩ TJ = SJ as required for the
fourth property.

Proof of Claim: We are now ready to prove the claim. Since the sets S1, . . . , S` form
a (1/q, 1/q2, C2)-special intersecting family, we can apply Theorem 3.2 to conclude that
there exists a constant C1 such that (α′)C1 ≥

∑`
i=1 α

C1
i where α′ = µ(∪i∈`Si)− 1/p. Since

for every i, Si ⊆ S, we have ∪i∈`Si ⊆ S and so α ≥ α′. We may thus conclude that
αC1 ≥

∑`
i=1 α

C1
i . This immediately yields the claim.
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The lemma statement follows immediately, by using k = 0.

Using Lemma 3.6 it is easy to complete the proof of our main theorem, Theorem 2.2. We
defer the proof to Appendix A.2.

4 Analyzing Special Intersecting Families

In this section we give an overview of the proof of Theorem 3.2, the complete proof being
deferred to Appendix B.

Fix a (ρ, ρ2, c)-special intersecting family S1, . . . , S` ⊆ X and let αi = µ(Si) − ρ. Let
α = µ(∪i∈[`]Si) − ρ. Recall that our goal is to prove that αC ≥

∑`
i=1 α

C
i for a sufficiently

large C (that depends only on c).

The proof has two main stages. In the first stage, we show a weak lower bound on α in
terms of the αi. This is done in Lemma B.5, where we show that there exist constants
c1 > 0, c2 < 1 and c3 depending only on c such that, for every K ⊆ [`],

αc1 ≥ 1
c3 · |K|c2

·
∑
k∈K

αc1k .

The constraint c2 < 1 makes this Lemma extremely useful. Then, in the second stage, we
show that the weak bound obtained above, along with the observation α ≥ αi + αj for all
i 6= j, together imply the existence of C depending only on c with αCi ≥

∑`
i=1 α

C
i . This is

proved in Lemma B.6.

We prove the weak lower bound on α (Lemma B.5) by exploiting the rich structure in the
sets SI . We say I ⊆ [`] is a collinear set if either |I| ≤ 2 or µ(SI) > ρ2. Property (4) of
special intersecting families gives us some some interesting properties of collinear sets, that
make them resemble collinear sets of points on the plane.

1. If I is a collinear set, and J ⊆ I, then J is a collinear set.

2. If I, J are collinear sets with |I ∩ J | ≥ 2, then I ∪ J is a collinear set.

3. For i 6= j ∈ [`], then the set Li,j of all points k ∈ [`] such that {i, j, k} is a collinear
set, is itself a collinear set.

Pushing the analogy further, we say J ⊆ [`] is in general position if there is no collinear set
K ⊆ J with |K| = 3.

The argument for proving the weak lower bound on α proceeds by separately analyzing
collinear sets and sets in general position. For any collinear set I, by finding a sunflower in
the set system, we obtain a lower bound on α of the form

∑
i∈I αi (see Lemma B.3). For a

set J in general position, by an inclusion exclusion argument, we obtain a lower bound on
α of the form Ω(

∑
j∈J αj) (see Lemma B.3). The weak lower bound on α (Lemma B.5) is

now obtained by showing a dichotomy: either there is a collinear set I with with
∑

i∈I αi
large, or there is a set J in general position with

∑
j∈J αj large. The details are given in

Appendix B.
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A Proofs of Combinatorial List Decodability

A.1 Upper bound for H = Zpr

Here we prove Theorem 3.5. Recall that G is a p-group, H = Zpr , the cyclic group of
integers modulo a prime power (as opposed to the vector space H = Zrp as in Theorem 3.3).

Proof

For any function g : G → Zpr and i ∈ [`]. let g(i) : G → Zpi be given by g(i)(x) = g(x)
mod (pi). Also, let g(−i) : G→ Zpr−i be such that 1 for all x ∈ G, g(x) = pi·g(−i)(x)+g(i)(x).
g(−i) is clearly well defined. Note that if g is an affine homomorphism, then g(i) is also an
affine homomorphism, while g(−i), in general, need not be one. For j ≤ i, we say that
g : G→ Zpi extends h : G→ Zpj if g(j) = h.

Now fix f : G→ H. Fix k ∈ {0, . . . , r}. Let φ : G→ Zpk be an affine homomorphism with
agreement 1/p+α ≥ 1/p+ε with f (k). (As usual, we assume there is a single function from G
to Zp0 and that it is a homomorphism.) We claim that the number of affine homomorphisms
extending φ is small.

Claim A.1 For every 0 ≤ k ≤ r, and for every affine homomorphism φ that has agreement
1/p+α with f (k), the number of affine homomorphisms from G to Zpr that have agreement
1/p+ ε with f and extend φ, is at most (α/ε)C , where C is the constant from Theorem 3.2,
for c = 2.

Proof The proof is identical to that of Claim 3.4 with mainly notational changes switching
f [·] to f (·). The only noticeable change is in the argument for the third property of “special
intersections”.

We prove the claim by induction on r − k. When r − k = 0, the claim is trivially true. So
assume the claim is true for r − (k + 1) and we will now prove it for the case of r − k.

Let S = {x ∈ G|f (k)(x) = φ(x)}. Consider f (k+1) and let φ1, . . . , φ` be all the affine
homomorphisms from G to Zpk+1 that extend φ with agreement at least 1

p + ε with f (k+1).
Let Si = {x|f (k+1)(x) = φi(x)} and let µ(Si) = 1

p + αi.

We prove below that the sets S1, . . . , S` ⊆ G form a ((1/p), (1/p2), 2)-special intersecting
family. This will allow us to apply Theorem 3.2 to these sets and this in turn will allow us
to derive the inductive claim easily.

Verifying Intersection Properties: The first property requires that µ(Si) ≥ 1
p which is

immediate from the definition of the Si’s. The second property required that µ(Si∩Sj) ≤ 1
p .

This again is true, since Si∩Sj ⊆ {x|φi(x) = φj(x)} and the latter has density at most 1/p.

The third property follows from the “p-ary Johnson bound”: applied to the function g =
(f (k+1))(−k) : G→ Zp. Let ψi = φ

(−k)
i : G→ Zp (we warn the reader that ψi need not be an

1Here we abuse notation and identify an element of Zpr−i with the least non-negative integer in its residue
class mod pr−i.
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affine homomorphism). Note that the agreement set of ψi with g contains Si. Furthermore,
note that for i 6= j, ψi 6= ψj and agree(ψi, ψj) = agree(ψi − ψj , 0) = agree(φi − φj , 0) ≤ 1

p

(since φi = pk · ψi + φ, φj = pk · ψj + φ, φi 6= φj , and image(φi − φj) ⊆ pk · Zpk+1
∼= Zp).

Then ψ1, . . . , ψ` are distinct with pairwise agreement at most 1
p , and each ψi has agreement

at least 1/p+ αi with g. It follows from Lemma D.1 (in Appendix D) that
∑`

i=1 α
2
i ≤ 1.

Finally, the fourth property can be verified exactly as in Claim 3.4, and the inductive proof
of the claim is also derived exactly as in the proof of Claim 3.4.

The theorem statement follows immediately, by using k = 0.

A.2 General abelian groups

Here we show how to use Lemma 3.6 to prove Theorem 2.2.

Proof of Theorem 2.2 Let H = H ′ × H ′′, where H ′ = Zpe1
1
× . . . × Zpm

em and H ′′ =
Zqe1

1
× . . . × Zqek

k
, such that p := p1 ≤ . . . ≤ pm, pi||G| for each i ∈ [m], while qj 6 ||G| for

each j ∈ [k]. Thus Λ = 1
p .

Let f = (f ′, f ′′) : G→ H be any function, where f ′ : G→ H ′ and f ′′ : G→ H ′′. Let

L = {φ ∈ aHom(G,H) : agree(φ, f) ≥ Λ + ε}.

Consider a φ = (φ′, φ′′) ∈ L where φ′ ∈ aHom(G,H ′) and φ′′ ∈ aHom(G,H ′′). Then
agree(φ′, f ′) ≥ Λ + ε and agree(φ′′, f ′′) ≥ Λ + ε. Thus

φ′ ∈ L1 := {ψ′ ∈ aHom(G,H ′) : agree(ψ′, f ′) ≥ 1
p

+ ε},

and,

φ′′ ∈ L2 := {ψ′′ ∈ aHom(G,H ′) : agree(ψ′′, f ′′) ≥ 1
p

+ ε}.

By Lemma 3.6, the size of L1 is at most
(

1
ε

)C1 . Since gcd(|G|, |H ′′|) = 1, the only functions
in aHom(G,H ′′) are the constant functions (which pairwise disagree everywhere), and hence
the size of L2 is at most 1

ε .

Thus L ⊆ L1 × L2, and so

|L| ≤ |L1| · |L2| ≤
(

1
ε

)C1

· 1
ε
.

Taking C = C1 + 1, the theorem follows.
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B Special Intersecting Families

We prove Theorem 3.2 by a sequence of lemmas. Fix a (ρ, ρ2, c)-special intersecting family
S1, . . . , S` ⊆ X and let αi = µ(Si)− ρ. Let α = µ(∪i∈[`]Si)− ρ. Recall our goal is to prove
that αC ≥

∑`
i=1 α

C
i for a sufficiently large C (that depends only on c).

The first three of the lemmas prove different lower bounds on α under some special condi-
tions, We glue these together to prove a weak variant of Theorem 3.2 in Lemma B.5. In
Lemma B.6 we show that the weak condition actually implies the strong condition and this
leads to the proof of Theorem 3.2 at the end of this section.

B.1 A weak bound on the cardinality of the union

Lemma B.1 For all i 6= j ∈ [`], α ≥ αi + αj.

Proof Simple inclusion-exclusion, using Property (2) of special intersecting families. We
have

ρ+ α ≥ µ(Si ∪ Sj) = µ(Si) + µ(Sj)− µ(Si ∩ Sj) ≥ (ρ+ αi) + (ρ+ αj)− ρ = αi + αj + ρ.

The lemma follows.

Let I ⊆ [`]. We say that I is a collinear set if either |I| ≤ 2 or µ(SI) > ρ2. Collinear sets
enjoy the following properties2:

1. If I is a collinear set, and J ⊆ I, then J is a collinear set. Indeed, if |J | ≥ 2, then
by property (4) of special intersecting families, SJ = SI and J is collinear. If |J | < 2,
then J is collinear by definition.

2. If I, J are collinear sets with |I ∩ J | ≥ 2, then I ∪ J is a collinear set. To see this,
notice that SI∪J = SI ∩ SJ , and by property (4) of special intersecting families,
SI = SI∩J = SJ . Thus SI∪J = SI = SJ , and so I ∪ J is a collinear set.

3. For i 6= j ∈ [`], let Li,j = {i, j} ∪ {k ∈ [`] \ {i, j}|{i, j, k} is a collinear set}. Then Li,j
is a collinear set. This follows easily from the previous property.

We say J ⊆ [`] is in general position if there is no collinear set K ⊆ J with |K| = 3.

First, in Lemma B.2, we obtain a lower bound on α in terms of
∑

i∈I αi, for any collinear
set I. Next, in Lemma B.3, we obtain a lower bound on α in terms of

∑
j∈J αj for any J in

general position. Finally, in Lemma B.5 we show a weak version of Theorem 3.2 by showing
a dichotomy: either there is a collinear set I with with

∑
i∈I αi large, or there is a set J in

general position with
∑

j∈J αj large.

2We draw an analogy with a set of points, labelled by elements of [`], on an abstract plane. Here a subset
of [`] is called “collinear” if the corresponding points all lie on a single straight line.
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Lemma B.2 If I ⊆ [`] is a collinear set, then α ≥
∑

i∈I αi.

Proof For distinct i1, i2 ∈ I, we know that S{i1,i2} = SI . Thus the sets {Si}i∈I form a
sunflower, i.e, each set Si is of the form Ri ∪ SI , where the Ri’s are pairwise disjoint. In
turn this implies that

ρ+ α = µ(∪i∈[`]Si)
≥ µ(∪i∈ISi)
= µ(SI) +

∑
k∈J

µ(Si − SI)

= µ(Si0) +
∑

i∈I\{i0}

µ(Si − SI) (for some i0 ∈ I)

≥ (αi0 + ρ) +
∑

i∈I\{i0}

αi

= ρ+
∑
i∈I

αi.

We thus get α ≥
∑

i∈I αi as claimed.

Lemma B.3 If J ⊆ [`] is in general position, and |J | ≤ 1/
√
ρ, then α ≥ |J |−2

3 ρ+ 1
2

∑
j∈J αj.

Proof Before proving the lemma, we first state and prove a simple variant of the standard
inclusion-exclusion lower bound on the cardinality of ∪jSj .

Claim B.4 For any set J ⊆ [`],∣∣∣∣∣∣
⋃
j∈J

Sj

∣∣∣∣∣∣ ≥ 1
2

∑
j∈J
|Sj | −

1
2

∑
i,j,k∈J, i<j<k

|Si ∩ Sj ∩ Sk|.

Proof Consider an element e ∈ ∪j∈JSj and say it is contained in m of the sets. Then e
additively contributes m/2 to the first term, 1

2

∑
j∈J |Sj |. On the other hand in the second

term it subtracts at least 1
2

(
m
3

)
. Thus the net contribution of e to the RHS is at most

m
2

(
1− (m−1)(m−2)

6

)
. It can be verified that this contribution is at most 1 for every positive

integer m, which is also a lower bound on its contribution to the LHS.
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We are now ready to prove the lemma. We have:

ρ+ α = µ

⋃
j∈[`]

Sj


≥ µ

⋃
j∈J

Sj


≥ 1

2

∑
j∈J

µ(Sj)−
1
2

∑
i,j,k∈J, i<j<k

µ(S{i,j,k}) (Using Claim B.4)

≥ 1
2

∑
j∈J

(ρ+ αj)−
1
2

(
|J |
3

)
ρ2 (Using definition of αj and that J is in general position)

=
|J |
2
ρ− 1

2

(
|J |
3

)
ρ2 +

1
2

∑
j∈J

αj

Rearranging terms above, we get

α ≥ |J | − 2
2

ρ− 1
2

(
|J |
3

)
ρ2 +

1
2

∑
j∈J

αj

=
|J | − 2

2
· ρ ·

(
1− |J |(|J | − 1)

3
ρ

)
+

1
2

∑
j∈J

αj

≥ |J | − 2
3

· ρ+
1
2

∑
j∈J

αj ,

as claimed.

We are now ready to put the above ingredients together to prove a weak version of The-
orem 3.2. Specifically the following lemma claims that some positive power of α is lower
bounded by some multiple of the sum of the αi’s to the same power. Unfortunately, the mul-
tiple is a pretty weak one and becomes smaller as the number of summands grow (whereas
in Theorem 3.2 we want this multiple to be 1!). Nevertheless this weak version is good
enough, as we’ll see later.

Lemma B.5 For every c < ∞ there exist constants c1, c2, c3 (depending only on c) with
c1, c3 <∞ and c2 < 1 such that for every set K ⊆ [`],

αc1 ≥ 1
c3 · |K|c2

·
∑
k∈K

αc1k .

Remark: Note that if the constant c2 in the exponent of |K| had been replaced by 1, the
lower bound on α would have been quite trivial (with c1, c2 = 3). The slightly smaller
exponent turns out to be sufficiently powerful to let us derive Theorem 3.2 later.
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Proof Fix a set K ⊆ [`].

We prove the lemma for c1 = c + 1. (The other constants will be determined later.) Let
P = {k ∈ K|αk < ρc1} and Q = {k ∈ K|αk ≥ ρc1}. We consider two cases based on
whether

∑
k∈P α

c1
k is larger than

∑
k∈Q α

c1
k or not.

Case 1:
∑

k∈P α
c1
k ≥

∑
k∈Q α

c1
k : If |P | = 1, then it must be that |Q| = 0 and then |K| = 1

and if so this case is trivial. So |P | must be at least 2 in this case. Again we divide the
analysis into two subcases.

The first subcase we consider is when there exist distinct i, j, k ∈ P with {i, j, k} not
collinear. In this case, by applying Lemma B.3 to the set J = {i, j, k}, we get α ≥ ρ/3. On
the other hand, we have∑

k∈P
αc+1
k ≤ max

k∈P
αk ·

∑
j∈P

αcj

≤ max
k∈P

αk · 1 (Using the third property of the set systems)

≤ ρc1 (By definition of P ).

So in this subcase we have

αc1 ≥ ρc1/(3c1)

≥ 1
3c1

∑
k∈P

αc1k

≥ 1
2 · 3c1

∑
k∈K

αc1k (Since P contains more than half the weight of K)

≥ 1
c3|K|c2

∑
k∈K

αc1k (provided c3 ≥ 2 · 3c1 and c2 ≥ 0.)

Now we move to the second subcase. In this case, we assume that for every triple i, j, k
in P , {i, j, k} is collinear. This implies that P itself is collinear. By Lemma B.2, we
have α ≥

∑
k∈P αk. Thus αc1 ≥

∑
k∈P α

c1
k ≥

1
2

∑
k∈K α

c1
k . Thus again we have αc1 ≥

1
c3|K|c2

∑
k∈K α

c1
k provided c3 ≥ 2 and c2 ≥ 0. This concludes the analysis of Case 1.

Case 2:
∑

k∈P α
c1
k <

∑
k∈Q α

c1
k : Note that this is the case, where our lower bound on α will

start deteriorating with |K|.

Note that in this case |Q| is at most 1
ρc·c1 by Property (3) of the (ρ, ρ2, c)-special intersection

condition. We divide our analysis into two subcases again. For a subset I ⊆ K, let
wt(I) =

∑
i∈I α

c1
i .

Let c2 = 1− 1/(2c · c1).

The first subcase is when there exists a collinear I ⊆ K such that wt(I) ≥ wt(Q)
|Q|c2 . If so, by

Lemma B.2, we have that α ≥
∑

i∈I αi and so

αc1 ≥
∑
i∈I

αc1i ≥
wt(Q)
|Q|c2

≥ wt(K)
2|Q|c2

≥ wt(K)
2|K|c2

.

17



This yields the lemma for every c3 ≥ 2.

Now we consider the final remaining subcase, where for every collinear I ⊆ K, it is the
case that wt(I) < wt(Q)

|Q|c2 . We first prove that there is a J ⊂ Q in general position such that

|J | = |Q|1/(2c·c1 and wt(J) ≥ wt(Q)/|Q|c2 . Applying Lemma B.3 to this set then completes
the analysis for this case.

We start with showing that such a set J exists. We pick J greedily starting with J = ∅.
We maintain a set of candidates Q′, initially containing all of Q. We then add the element
i ∈ Q′ with the largest value of αi to J . We remove i from Q′ as also every element k ∈ Q′
such that for some j ∈ J ∈ {i}, {i, j, k} is collinear. We repeat until |J | = |Q|1/(2c·c1).

To analyze this construction, we first claim that Q′ does not become empty (which would
preclude us from growing J). Note that for every i, j ∈ J , the total weight of the elements
removed from Q′ on account of i, j is at most wt(Li,j) < wt(Q)/|Q|c2 . Since there are at
most |J |2/2 ≤ |Q|1/(c·c1)/2 such pairs, the total weight of the removed elements is at most
wt(Q)/(2 · |Q|c2−1/(c·c1)) < wt(Q)/2, provided c2 > 1/(c · c1), which holds for c2 ≥ 1/2 and
c ≥ 1 and c1 ≥ 2.

Thus, the process concludes with |J | = |Q|1/(2c·c1) and J is in general position by construc-
tion. To see that the weight of J is large, notice that every element of J has weight at least
that of the average element, i.e., αc1k ≥ wt(Q′)/|Q′| ≥ wt(Q)/(2|Q|). We thus conclude that
wt(J) ≥ |J | · wt(Q)/(2|Q|) ≥ wt(Q)/(2|Q|1−1/(2c·c1)) = wt(Q)/(2|Q|c2).

Finally, note that |J | = |Q|1/(2c·c1) ≤ (1/(ρc·c1))1/(2c·c1) = 1/
√
ρ. So this puts us in a

position to apply Lemma B.3 to the set J to conclude that α ≥ 1
2

∑
j∈J αj . This in turn

yields αc1 ≥ 1
2c1 (

∑
j∈J αj)

c1 ≥ 1
2c1

∑
j∈J α

c1
j ≥

1
2c1 wt(Q)/|Q|c2 ≥ 1

2c1+1 wt(K)/|K|c2 . This
yields the lemma statement for c2 = 1− 1/(2c · c1) and c3 ≥ 21+c1 .

Putting all the cases together, we get the lemma statement for c2 = max{1− 1/(2c · c1), 1
2}

and c3 = 2 · 3c1 (and, of course, c1 = max{2, c+ 1}).

B.2 Strengthening the bound

Our final lemma shows how to convert the assertion of Lemma B.5, in conjunction with
Lemma B.1, to get the assertion of Theorem 3.2.

Lemma B.6 For every c1 < ∞, c2 < 1, and c3 < ∞ there exists C < ∞ such that the
following holds: Let α, α1, . . . , α` be non-negative reals such that (1) α ≥ αi + αj for every
i 6= j ∈ [`] and (2) For every K ⊆ [`], αc1 ≥ 1

c3|K|c2 ·
∑

k∈K α
c1
k . Then αC ≥

∑`
k=1 α

C
k .

Proof In what follows, we assume without loss of generality that c1 = 1. The reason we
can do so is the following: Suppose the lemma holds for some constant C when c1 = 1 and
some c2, c3. Then, by applying it to the sequence β, β1, . . . , β` for β = αc1 and βi = αc1i ,
we get the lemma for general c1 for the constant C ∗ c1. Thus, from now on we assume
c1 = 1. By scaling all the αi’s and α and sorting the αi’s, we may also assume α1 = 1 and
αi ≥ αi+1.
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We prove the lemma for (every) C ≥ log2(8c3)
1−c2 .

In what follows, we attempt to find the maximum value of
∑`

i=1 β
C
i for any sequence 1 =

β1 ≥ β2 ≥ · · · ≥ β` that satisfy the properties (1) β1+β2 ≤ α; and (2) β1+· · ·+βk ≤ c3kc2 ·α
for every k ∈ [`]. The following claim will prove to be a useful tool in this maximization.

Claim B.7 Suppose a1 ≥ · · · ≥ a` ≥ 0 and b1 ≥ · · · ≥ b` satisfy
∑k

i=1 ai ≥
∑k

i=1 bi for
every k ∈ [`]. Then, for every C > 1,

∑`
i=1 a

C
i ≥

∑`
i=1 b

C
i .

Proof Consider the set of sequences d1, . . . , d` that satisfy the conditions
∑k

i=1 di ≤∑k
i=1 ai for every k and d1 ≥ · · · ≥ dk. This is a closed compact set and so there is

an element in this set that maximizes the sum
∑`

i=1 d
C
i . We claim that this sequence is

a1, . . . , a`.

If not, and suppose d1, . . . , d` maximize this sum. Let i0 be the smallest index such that
di0 6= ai0 . Since

∑i0−1
j=1 dj =

∑i0−1
j=1 aj , and

∑i0
j=1 dj ≤

∑i0
j=1 aj , it must be that di0 < ai0 .

Since
∑`

j=1 d
C
j >

∑`
j=1 a

C
j , there must also be an index j such that aj < dj . Let j1 be the

smallest index such that aj1 < dj1 . Note that i0 < j1. Now let i1 be the largest index less
that j1 such that ai1 > di1 . Then it must be that ak = dk for all k ∈ {i1 + 1, . . . , j1 − 1}.
Now let i2 be the smallest index such that di2 = di1 and let j2 be the largest index such
that dj2 = dj1 . Let ε = min{ai2 − di2 , di2−1 − di2 , dj2 − aj2 , dj2 − dj2+1}. Now consider the
sequence e1, . . . , ek with ei2 = di2 + ε and ej2 = dj2 − ε, and ek = dk otherwise. We claim
that the sequence e1, . . . , e` is (A) non-increasing, (B) satisfies

∑k
i=1 ei ≤

∑k
i=1 ai for every

k ∈ [`], and (C)
∑`

i=1 e
C
i >

∑`
i=1 d

C
i . If so, this yields a contradiction to the maximality of

di’s.

We start with the final property first. For this we note that ε > 0. This follows from
the facts that (i) ai2 − di2 ≥ ai1 − di1 > 0, (ii) i2 was the smallest index with di2 = di1
and so di2 − di1 > 0 and similarly (iii) dj2 − aj2 > 0 and (iv) dj2 > dj2+1. So

∑`
i=1 e

C
i −∑`

i=1 d
C
i = eCi2 − dCi2 + eCj2 − dCj2 = (di2 + ε)C − dCi2 + (ej2 − ε)C + ej2 . From the strict

convexity of the function f(x) = xC when x ≥ 0, and the fact that di2 ≥ dj2 it follows that
(di2 + ε)C − dCi2 + (dj2 − ε)C + dj2 > 0.

We now show that the ei’s are non-increasing. The only possible violations would involve ei2
or ej2 . First note that ei2 > di2 ≥ di2+1 ≥ ei2+1 (specifically di2+1 = ei2+1 unless i2 +1 = j2
in which case dj2 > ej2). Similarly it can be checked that ej2−1 ≥ ej2 . Finally, the choice of
ε ensures ei2−1 ≤ ei2 and ej2 ≤ ej2+1.

Finally to verify the prefix sum conditions, note that if k < i2 or k ≥ j2, then
∑k

i=1 ei =∑k
i=1 di ≤

∑k
i=1 ai. It remains to prove the condition for k ∈ {i2, . . . , j2 − 1}. To do so

we note the following inequalities hold: di ≤ ai for i ∈ {1, . . . , j1 − 1} with di ≤ ai − ε for
i = i2. Furthermore, di = dj1 > aj1 ≥ ai for i ≥ j1 with di ≥ ai + ε for i = j1. Thus if
i2 ≤ k < j1, we have

k∑
i=1

ei =
k∑
i=1

di + ε ≤
k∑
i=1

ai,
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as desired. On the other hand, if j1 ≤ k < j2, we have

k∑
i=1

ei =
k∑
i=1

di + ε

=
j2∑
i=1

di −
j2∑

i=k+1

di + ε

≤
j2∑
i=1

ai −
j2∑

i=k+1

di + ε

(Since di’s form a prefix sum respecting sequence)

<

j2∑
i=1

ai −
j2−1∑
i=k+1

ai − (dj2 − ε)

≤
j2∑
i=1

ai −
j2∑

i=k+1

ai

=
k∑
i=1

ai

Thus ei’s form a non-increasing, prefix sum respecting sequence that achieve a strictly larger
sum

∑`
i=1 e

C
i violating the maximality of C. This proves the claim.

We now return to the proof of the lemma. We consider two cases:

Case 1: α ≥ 2: Let k = d(c3α)1/(1−c2)e, so that c3αkc2 ≤ k. Now consider the sequence
β1, . . . , β` with βi = 1 for i ≤ k and βi = c3α(ic2 − (i− 1)c2) for i > k.

For every i ∈ [`], we claim that
∑i

j=1 αj ≤
∑i

j=1 βj . For i ≤ k, this is true since
∑i

j=1 αj ≤
i · α1 ≤ i =

∑i
j=1 βj . For i > k, we have

∑i
j=1 αj ≤ c3αic2 , while

i∑
j=1

βj = k +
i∑

j=k+1

βj ≤ c3αkc2 + c3α

i∑
j=k+1

(jc2 − (j − 1)c2) = c3αi
c2 .
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Thus we can apply Claim B.7 and get:

∑̀
i=1

αCi ≤
∑̀
i=1

βCi

≤ k + (c3α)C
∑̀
i=k+1

(ic2 − (i− 1)c2)C

≤ k + (c3α)C
∑̀
i=k+1

i−C(1−c2)

≤ k + (c3α)Ck−C(1−c2)+1 (Using C(1− c2) ≥ 2)
= k + (c3α/k1−c2)Ck1

≤ 2k
≤ 2(1 + (c3α)1/(1−c2))
≤ 4(c3α)1/(1−c2)

Thus to conclude this case, it suffices to prove that for sufficiently large C, 4(c3α)1/(1−c2) ≤
αC , which follows if 4c1/(1−c2)

3 ≤ α(C−1/(1−c2)). which in turn follows if (4c3) ≤ 2(C(1−c2)−1),
which holds if C ≥ 1

1−c2 (1 + log2(4c3)) = log2(8c3)
1−c2 . This completes the analysis for Case 1.

Case 2: α < 2. Let τ = α−1. Let k = d(c3α/τ)1/(1−c2)e so that c3αkc2 ≤ τk ≤ 1+(k−1)τ .
Let βi = 1 if i = 1, βi = τ if 2 ≤ i ≤ k and βi = c3(1 + τ)(ic2 − (i− 1)c2) for i ≥ k + 1. As
in Case 1, it can be verified that

∑i
j=1 αj ≤

∑i
j=1 βj . Applying Claim B.7, we get

∑̀
i=1

αCi ≤
∑̀
i=1

βCi

≤ 1 + (k − 1)τC + (c3α)C
∑̀
i=k+1

(ic2 − (i− 1)c2)C

≤ 1 + (k − 1)τC + (c3α)C
∑̀
i=k+1

(i−C(1−c2)

≤ 1 + (k − 1)τC + (c3α)C(k−C(1−c2)+1

= 1 + (k − 1)τC + (c3α/k1−c2)C · k
≤ 1 + 2kτC

Using the crude bound 2k ≤ (4c3(1 + τ)/τ)1/(1−c2) we see that it suffices to prove that
1 + (4c3(1 + 1/τ))1/(1−c2)τC ≤ (1 + τ)C which is equivalent to proving that (4c3(1 +
1/τ))1/(1−c2) ≤ (1 + 1/τ)C − 1/τC . Using (x + 1)C − xC ≥ (x + 1)C−1, we find that it
suffices (4c3)1/(1−c2) ≤ (1 + 1/τ)C−1/(1−c2) which holds if (4c3) ≤ 2C(1−c2)−1, which in turn
holds if C ≥ 1

1−c2 log2(8c3).
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Proof of Theorem 3.2 Follows by combining Lemmas B.1, B.5 and B.6.

C Algorithmic Results

In this section, we sketch a proof of Theorem 2.4. As we shall see, the combinatorial bounds
that we proved make the algorithm relatively straightforward. Our algorithm can be viewed
as a direct extension of the original list-decoder of Goldreich and Levin [3].

We are given a function f : G → H. We want to locally list decode all homomorphisms
φ ∈ Hom(G,H) such that agree(f, φ) ≥ ΛG,H + ε.

We first assume H = Zpr . We will later use the algorithm for this special case to handle
the case of general H.

Let L = {φ ∈ Hom(G,H) : ∃b ∈ H s.t. agree(φ + b, f) ≥ ΛG,H + ε}. Let G =
⊕k

i=1 Zpri
i

.

For t ∈ [k], let Gt =
⊕t

i=1 Zpri
i

and Ft =
⊕k

t+1 Zpri
i

. We say φ ∈ Hom(Gt, H), extends
to φ′ ∈ Hom(G,H) if there exists θ ∈ Hom(Ft, H) with φ′(x, y) = φ(x) + θ(y). For any
homomorphism φ′ ∈ Hom(G,H), there is exactly one homomorphism φ ∈ Hom(Gt, H) such
that φ extends to φ′. Let Φt = {φ ∈ Hom(Gt, H) : ∃φ′ ∈ L s.t. φ extends to φ′}. Our first
goal will be to compute Φk.

We start with t = 1 and set S0 = ∅. For any given t, given a set St−1 containing Φt−1, we
will compute a set St containing Φt. This is done in two phases, extending and pruning.

Extending: Note that G = Gt−1 × Zprt
t
× Ft. If pt 6= p, then we just set St = St−1 and

exit. Otherwise, we proceed as follows.

For each φ ∈ St−1, do the following poly(log |G|, log |H|, 1
ε ) times:

1. Pick s ∈ Ft at random.

2. Repeat the following poly(log |G|, log |H|, 1
ε ) times.

(a) Pick x1, x2 ∈ Gt−1 and c1, c2 ∈ Zprt

(b) If c1 − c2 is not divisible by p, solve the system of equations for a, s ∈ Zpr :

φ(x1) + ac1 + s = f(x1, c1, s)

φ(x2) + ac2 + s = f(x2, c2, s)

(c) Let θ ∈ Hom(Gt−1 × Zprt
t
, H) be given by θ(x, c) = φ(x) + a · c( mod pr). Add

θ to St.

It can be shown that if Φt−1 ⊆ St−1, then with high probability, Φt ⊆ St.

Pruning: Now we write G = Gt × Ft. In the pruning phase, we will cut down the size of
St while preserving the fact that Φt ⊆ St.

Repeat poly(log |G|, log |H|, 1
ε ) times:
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1. Pick a random s ∈ Ft.

2. For each φ ∈ St, by random sampling, find all b ∈ H such that Prx∈Gt [φ(x, s) −
f(x, s) = b] ≥ ΛG,H + ε/2.

3. If there exists even one b as above, then add φ to S′t.

Upon conclusion, replace St with S′t.

Our list decoding bound implies that after the pruning phase, the cardinality of St is at
most poly(log |G|, log |H|, 1

ε ) for some fixed polynomial. Furthermore, with high probability,
all the φ ∈ Φt remain in St.

After executing these two phases for t = 1 . . . , k, we get a set Sk ⊇ Φk. Now by random
sampling, we may test the elements of Sk and their affine shifts for agreement with f to get
the final list. This concludes the description of the list decoding algorithm for H = Zpr .

General H Using the above algorithm, we can now handle the case of general H. We
induct on the number of components in H. Suppose H = H1 × Zrp. Let f = (f1, f2) where
f1 : G→ H1 and f2 : G→ Zpr . The algorithm list decodes from f1 (by induction) and from
f2 (by the algorithm above), and takes the product of the resulting lists. This list may now
be pruned by random sampling to verify agreement. By the combinatorial list decoding
bound, we have that the resulting list’s size is at most (1

ε )
C . This is the list that we output.

It is crucial for the induction that the size of the list is a polynomial independent of the
size of H.

It can be easily seen that the running time of the algorithm is poly(log |G|, log |H|, 1
ε ).

D p-ary Johnson Bound

Lemma D.1 Let f, φ1, . . . , φ` : [n]→ [q] be functions satisfying the following properties:

1. agree(f, φi) = 1
q + αi for αi ≥ 0.

2. agree(φj , φi) ≤ 1
q for every i 6= j.

Then
∑`

i=1 α
2
i ≤ 1.

Proof Let ζ1, . . . , ζq ∈ Rq−1 be the vertices of the q-point simplex, i.e., they satisfy
〈ζi, ζi〉 = 1 and 〈ζi, ζj〉 = −1/(q − 1) if i 6= j. Fix a bijection π[q] → {ζ1, . . . , ζq}, and use
π to convert the functions f : [n] → [q] to to functions g, ψ1, . . . , ` : [n] → (Rq−1) using
g = π ◦f and ψi = π ◦φi. Note that for any two functions h, k : [n]→ [q], we have 〈π ◦h, π ◦
k〉def= Ex∈U [n][π(h(x)) · π(k(x))] is given by 〈π ◦ h, π ◦ k〉 = (q/(q− 1))agree(h, k)− 1/(q− 1).
Thus we get: 〈g, ψi〉 = (q/(q − 1))αi ≥ 0 and −1/(q − 1) ≤ 〈ψi, ψj〉 ≤ 0. This implies, via
Lemma D.2,

∑`
i=1〈g, ψi〉2 ≤ 〈g, g〉2 and so

∑`
i=1 α

2
i ≤ (q − 1)/q.
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Lemma D.2 Let w, v1, . . . , vn ∈ Rm such that:

1. 〈vi, vi〉 = 1 for each i ∈ [n].

2. 〈w, vi〉 ≥ 0 for each i ∈ [n].

3. 〈vi, vj〉 ≤ 0 for any distinct i, j ∈ [n].

Then
n∑
i=1

〈w, vi〉2 ≤ 〈w,w〉.

Proof Let u1, . . . , un be the Gram-Schmidt orthogonalization of v1, . . . , vn. Explicitly,

ui = vi −
i−1∑
j=1

u∗j
〈
u∗j , vi

〉
,

where for a vector u, u∗ is the scalar multiple of u with 〈u∗, u∗〉 = 1. (Notice that each uj
has magnitude ≤ 1).

We will check the following two claims:

1. For each i < k, 〈ui, vk〉 ≤ 0.
By induction on i: When i = 1, it is clearly true for any k. Assume we know it for
any (i′, k′) where i′ < i and k′ ≤ k.

〈ui, vk〉 = 〈vi, vk〉 −
i−1∑
j=1

〈
u∗j , vk

〉 〈
u∗j , vi

〉
≤ 〈vi, vk〉 (since each term of the summation is nonnegative

by induction hypothesis on (j, k) and (j, i))
≤ 0

2. For each i, 〈w, ui〉 ≥ 〈w, vi〉 ≥ 0.
By induction on i again. assume we know it for any i′ < i.

〈w, ui〉 = 〈w, vi〉 −
i−1∑
j=1

〈
w, u∗j

〉 〈
u∗j , vi

〉
≥ 〈w, vi〉 .

(because each term in the sum is negative, by the first claim above and the induction
hypothesis.)

Thus 〈w, vi〉 ≤ 〈w, ui〉 ≤ 〈w, u∗i 〉, (since 〈w, ui〉 ≥ 0 and ui has magnitude at most 1).

But we know that
∑n

i=1 〈w, u∗i 〉
2 ≤ 1. So

∑n
i=1 〈w, vi〉

2 ≤ 1.
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