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Abstract—Guruswami and Vardy (IEEE Trans. Inf.
Theory, 2005) show that given a Reed-Solomon code
over a finite field F, of length n and dimension t, and
given a target vector v ∈ Fn, it is NP-hard to decide
if there is a codeword that disagrees with v on at most
n − t − 1 coordinates. Understanding the complexity of
this Bounded Distance Decoding problem as the amount
of error in the target decreases is an important open
problem in the study of Reed-Solomon codes. In this work
we generalize this result by proving that it is NP-hard to
decide the existence of a codeword that disagrees with
v on n − t − 2 and on n − t − 3 coordinates. No other
NP-hardness results were known before for an amount
of error < n − t − 1. The core of our proof is showing
the NP-hardness of a parameterized generalization of the
Subset-Sum problem to higher degrees (called Moments
Subset-Sum) that may be of independent interest.

I. INTRODUCTION

A linear error-correcting code of length n and
dimension t, over a finite field alphabet F, is a vec-
tor space C ⊆ Fn of dimension t. The Hamming
distance between x, y ∈ Fn is δ(x, y) := |{i ∈
[n] : xi 6= yi}|, and the minimum distance of C is
λ(C) = minx 6=y∈C δ(x, y). In the Bounded Distance
Decoding problem with parameter d, we are given a
code C ⊆ Fnq and a target vector v ∈ Fnq , and we are
asked to decide whether there exists a codeword c ∈ C
such that the Hamming distance δ(v, c) ≤ e(d, λ(C)),
where e(d, ·) is an error-weight function of interest.
This is a fundamental question in the study of general
error-correcting codes, and its complexity is not fully
understood even for well-studied codes such as Reed-
Solomon (RS) codes. More precisely, RS codes still
exhibit a wide gap between the setting of small error-
weight, where the problem is solvable in polynomial-
time [Sud97], [GS99], and the setting of large error,
where the problem is known to be NP-hard [GV05].
In this work we improve this gap by generalizing the
decade-old NP-hardness results of [GV05] to smaller
error parameters.

A Reed-Solomon code of length n, dimension t,
defined over a finite field F, and specified by an
evaluation set D = {x1, x2, . . . , xn} ⊆ F is the

set RSD,t = {〈f(x1), . . . , f(xn)〉 : x1, . . . , xn ∈
D, f(x) ∈ F[x], deg(f(x)) ≤ t − 1}. Its minimum
distance is λ = n − t + 1. Here we are studying the
Bounded Distance Decoding problem for RS codes with
parameter d (denoted RS-BDDd) corresponding to the
error-weight function e(d, λ) = λ− d− 1 = n− t− d.

It is well-known that when e0 = n −
√
nt (i.e.,

the “Johnson radius”) the list-decoding algorithms of
[Sud97], [GS99] can solve RS-BDD√nt−t in polyno-
mial time. At the other end of the spectrum, if e = n−t
one can easily interpolate a degree t−1 polynomial that
agrees with the target on a set of t arbitrary entries.
The famous result of [GV05] shows that right below
this value, i.e. for error-weight e1 = n − t − 1, RS-
BDD1 becomes suddenly NP-hard. Their proof is via a
reduction from the 3D-matching problem, and it does
not imply any hardness results for smaller values of the
error-weight parameter. In the range where e < n−t−1,
the only known hardness result is due to [CW10] who
show a reduction from the Discrete Log problem, when
the evaluation set is D = F∗q , for e ≥ 2

3 (n − t + 1).
Note that the hardness of Discrete Log is a stronger
complexity-theoretic assumption than P 6= NP . In
particular, [Sho97] gives a polynomial-time quantum
algorithm solving the Discrete Log problem.

In this work, we prove that for every e ∈ {n− t−
2, n − t − 3}, the RS-BDDn−t−e problem is NP-hard.
We note that this reduction requires that |F| = exp(n),
which was also the case in [GV05]. Our proof relies
on the observation that an extension of the Subset-Sum
problem up to d moments (called Moments Subset-Sum
with parameter d) reduces to RS-BDDd. The crux of
our proof is showing the NP-hardness of the Moments
Subset-Sum problem, formally defined next.

Definition 1 (Moments Subset-Sum MSSd). Given a
set A = {a1, a2, . . . , an} ⊆ Fn, integer k, and
m1,m2, . . . ,md ∈ F, decide if there exists a subset
S ⊆ A of size k, satisfying

∑
s∈S s

i = mi for all
i ∈ [d].

Note that MSS1 is the usual Subset-Sum problem,
which is fact used by [CM07] to show an alternate



proof of [GV05]. The NP-hardness of Subset-Sum can
be shown to be NP-hard by a well-known reduction
from 3-SAT. Surprisingly, it turns out to be much more
difficult to prove NP-hardness for MSSd for values of
d ≥ 2. Intuitively, this is because the reduction from
3-SAT to Subset-Sum encodes satisfiability of a 3-SAT
formula in the decimal representation of the integers of
the Subset-Sum instance, and it becomes more difficult
to control the decimal representations when constraints
involving squares and higher powers are introduced.

In fact, the current barrier to extending our proof
approach to show the NP-hardness of MSSd for larger
values of d (and thereby obtain the NP-hardness of RS-
BDDd for smaller values of the error) is the following
intriguing algebraic question.

Question 1. Given a prime field F, a, b ∈ F,
and d ∈ N, does there exist t = t(d) and
x1, x2, . . . , xt, y1, y2, . . . , yt ∈ F 1 satisfying x1 +x2 +

...+xt = y1 +y2 + ...+yt and ai+
t∑

j=1

xij = bi+

t∑
j=1

yij

for every i ∈ {2, . . . , d}

We are able to answer this question in the affirmative
by providing explicit constructions for d ∈ {2, 3},
over domains that are large prime fields, the rational
numbers, and for the integers. These constructions form
the starting point of our NP-hardness proofs.

Finally, we remark that a positive answer to Ques-
tion 1 could yield to a better understanding of the
structure of BCH codes over large fields, and to their
the local testability properties (e.g., [GK12].)

II. REDUCTION FROM MOMENTS SUBSET SUM

We start by reformulating the RS-BDD question as
a polynomial reconstruction problem as follows.

Definition 2 (RS-BDDd). Given a set of n distinct
points in F2, D = {(x1, y1), (x2, y2), · · · , (xn, yn)},
and an integer t < n, decide if there exists a polynomial
f(x) ∈ F[x] of degree at most t− 1 passing though at
least t+ d points in D.

Here the set of evaluation points of the code is D′ =
{x1, · · ·xn} and the target vector is y = (y1, · · · , yn) ∈
Fn. Note that if a polynomial f(x) passes through at
least t+d points in D, then the corresponding codeword
〈f(x1), . . . , f(xn)〉 is at Hamming distance of at most
e = n− t− d from y.

We first show a reduction from the following prob-
lem which is easily seen to be equivalent to MSSd over
large prime finite fields F, using Newton’s identities

1We note that the same question is relevant when a, b,
x1, x2, . . . , xt, y1, y2, . . . , yt are integers, or rational numbers.

[Sta99]. We note that this connection has been previ-
ously made (e.g. [LW08]).

Definition 3 (Symmetric Subset Sum (SSSd)). Given a
set of n distinct elements of F, A = {a1, a2, · · · , an},
integer k, and B1, B2, · · ·Bd ∈ F, decide if there
exists a subset S of A of size exactly k, such that
for every i ∈ [d] the elementary symmetric sums of
the elements of S = {s1, . . . , sk} satisfy Ei(S) =∑

1≤j1<j2<...ji≤k sj1 . . . sji = Bi.

We defer the proof of the reduction from SSSd (and
hence from MSSd) to RS-BDDd to the appendix.

III. NP-HARDNESS OF MSS2

Theorem 4. There is an absolute constant c > 0 such
that if F is a finite field of characteristic p ≥ 2cn

2

, then
MSS2 is NP-hard.

Note that to prove Theorem 4, it is enough to
show that MSS2 is NP-hard in the case where all
the universe elements are integers of absolute value
≤ 2O(n2). Then, Theorem 4 follows by first embedding
these integers in Fp for p ≥ 2cn

2

by replacing addition
and multiplication in Z by addition and multiplication
modulo p respectively, and then viewing the elements of
Fp as elements of F using the fact that Fp is a subfield
of F.

Proof: We give a polynomial-time reduction from
the 1-in-3-SAT problem in which we are given a 3SAT
formula φ on n variables and m clauses and are
asked to determine whether there exists an assignment
x ∈ {0, 1}n that satisfies exactly one literal in each
clause. We start by recalling the reduction from 1-in-3-
SAT to Subset-Sum which will be used in our reduction
toMSS2. In that reduction, each variable (xi, xi) is
mapped to 2 integers ai (corresponding to xi) and bi
(corresponding to xi). The integers ai and bi and the
target B are defined in terms of their length-(n + m)
Σ-ary representation (for some sufficiently large even
constant, say Σ = 4) as follows:

• The Σ-ary representation of each of ai and bi
consists of two parts: a variable region con-
sisting of the leftmost n digits and a clause
region consisting of the (remaining) rightmost
m digits.

• In the variable region, ai and bi have a 1 at the
ith digit and 0’s at the other digits.

• In the clause region, for every j ∈ [m], ai (resp.
bi) has a 1 at the jth location if xi (resp. xi)
appears in clause j, and a 0 otherwise.

• The target B is set to the integer whose Σ-ary
representation is the all 1’s.

2



Those Σ-ary representations are illustrated in Figure 1.

variable region clause region

n Σ-ary digits m Σ-ary digits

Target: B = 111111 · · · · · · · · · · · · · · · · · · · · · · · · · · ·111111

Fig. 1. Σ-ary representations in the original reduction from 1-in-3-
SAT to Subset-Sum.

This reduction to Subset-Sum can be seen to be
complete and sound. We now use it to give a reduction
to MSS2. In this reduction, each variable (xi, xi) is
mapped to 6 integers ai,1, ai,2, ai,3 (corresponding
to xi) and bi,1, bi,2, bi,3 (corresponding to xi). Let
{ai, bi : i ∈ [n]} be the integers produced by
the above reduction to Subset-Sum. We denote
by avi (resp. aci ) the Σ-ary representation of the
variable (resp. clause) region of ai. For any Σ-ary
representation x of a natural number, let (x)Σ′ be
the natural number whose Σ′-representation is x.
For example, if x is the Σ-ary number (10011), then
(x)Σ′ = Σ′4 +Σ′+1. Denote by 1l the concatenation of
l ones. Let ν and h be natural numbers to be specified
later on. The integers ai,1, ai,2, ai,3, bi,1, bi,2, bi,3
and the targets B1 and B2 are defined as follows:

• ai,1 = Σν+m+h−1(avi )Σh + Σν(aci )Σ

• bi,1 = Σν+m+h−1(bvi )Σh + Σν(bci )Σ

• ai,2 =
a2i,1−b

2
i,1

4Σi − Σi

2 and ai,3 = −ai,2.

• bi,2 =
a2i,1−b

2
i,1

4Σi + Σi

2 and bi,3 = −bi,2.
• B1 = Σν+m+h−1(1n)Σh + Σν(1m)Σ

• B2 =

n∑
i=1

a2
i,1 + a2

i,2 + a2
i,3.

Note that ai,1 (resp. ai,2) defined above can be seen
as obtained by inserting h − 1 consecutive 0’s in the
variable region of the Σ-ary representation of ai (resp.
bi), and then inserting ν zeros at the right. Those Σ-ary
representations are illustrated in Figure 2. Moreover,
observe that ai,2, ai,3, bi,2, bi,3 are defined above in
such a way that ai,2 + ai,3 = bi,2 + bi,3 = 0 and
a2
i,1 + a2

i,2 + a2
i,3 = b2i,1 + b2i,2 + b2i,3.

Note that this reduction runs in time polynomial in
n, m, h and ν. We next prove the correctness of the
reduction.

a) Completeness: Assume that the starting 3SAT
formula has a satisfying 1-in-3-SAT assignment x.
Consider the subset S = ∪i∈[n]:xi=1{ai,1, ai,2, ai,3} ∪
∪i∈[n]:xi=0{bi,1, bi,2, bi,3} of size 3n. We now check
that the first two moments of S are equal to B1 and
B2.

∑
y∈S

y =
∑

i∈[n]:xi=1

ai,1 + ai,2 + ai,3

+
∑

i∈[n]:xi=0

bi,1 + bi,2 + bi,3

=
∑

i∈[n]:xi=1

ai,1 +
∑

i∈[n]:xi=0

bi,1

=
∑

i∈[n]:xi=1

Σν+m+h−1(avi )Σh + Σν(aci )Σ

+
∑

i∈[n]:xi=0

Σν+m+h−1(bvi )Σh + Σν(bci )Σ

= Σν+m+h−1(
∑

i∈[n]:xi=1

avi +
∑

i∈[n]:xi=0

bvi )Σh

+ Σν(
∑

i∈[n]:xi=1

aci +
∑

i∈[n]:xi=0

bci )Σ

= Σν+m+h−1(1n)Σh + Σν(1m)Σ

= B1

Furthermore,∑
y∈S

y2 =
∑

i∈[n]:xi=1

a2
i,1 + a2

i,2 + a2
i,3

+
∑

i∈[n]:xi=0

b2i,1 + b2i,2 + b2i,3

=
∑
i∈[n]

a2
i,1 + a2

i,2 + a2
i,3

= B2

where we used the fact that a2
i,1 + a2

i,2 + a2
i,3 = b2i,1 +

b2i,2 + b2i,3 for every i ∈ [n].

b) Soundness: Assume that S is a satisfying
subset of the MSS2 instance. We will use S in order
to construct a 1-in-3-SAT satisfying assignment to the
starting 3-SAT instance φ. Let’s first sketch the high-
level intuition of the proof. First, we argue that S
should contain the same number of positive and neg-
ative integers from the set {a1,2, b1,2, a1,3, b1,3}. This
is because these four integers have roughly the same
absolute value, which turns out to be much larger
than B1 and than any other possible integer in S.
Thus, unless S contains the same number of positive
and negative elements from {a1,2, b1,2, a1,3, b1,3}, the
integers in S cannot add up to B1. Then, we show
using an inductive argument that for each i ∈ [n],
S contains the same number of positive and negative
elements from {ai,2, bi,2, ai,3, bi,3} (i.e., Lemma 1). We
next prove that, in fact, the elements of S from the
set ∪ni=1{ai,2, bi,2, ai,3, bi,3} exactly cancel each other
out, i.e., they add up to 0. Hence, we obtain that the
integers of S from ∪ni=1{ai,1, bi,1} add up to B1, at

3



large components region variable region clause region shift region

nh Σ-ary digits m Σ-ary digits ν Σ-ary digits

1st moment: B1 = 000000 · · · · · · · · · · ·000 100100 · · · · · · · · · ·100 111111 · · · · · · · · · ·111 000000 · · · · · · · · ·· 000

Fig. 2. Σ-ary representations in the reduction from 1-in-3-SAT to MSS2. In this figure, h = 3. The “large components region” only contains
zeros in {ai,1, bi,1 : i ∈ [n]} but contains non-zeros in {|ai,2|, |bi,2| : i ∈ [n]}.

which point we can run the soundness analysis of the
original reduction from 1-in-3-SAT to Subset Sum in
order to construct an assignment satisfying exactly one
litteral in each clause.

We now give the formal proof, which starts with
the following lemma. We assume henceforth that ν ≥
10(m+ nh) and h ≥ 10m.

Lemma 1. For every i ∈ [n], |S ∩ {ai,2, bi,2}| = |S ∩
{ai,3, bi,3}|.

The proof of Lemma 1 uses the following lemma
whose proof is deferred to the end of the section.

Lemma 2. Let j ≥ 1 be an integer and assume that |S∩
{aj,2, bj,2}| 6= |S ∩ {aj,3, bj,3}|. Furthermore, assume
that if j ≥ 2, then |S∩{ai,2, bi,2}| = |S∩{ai,3, bi,3}| for
all i < j. Then, we have the following two inequalities:

(i)

∣∣∣∣∣∣
∑

y∈S∩{aj,2,bj,2,aj,3,bj,3}

y

∣∣∣∣∣∣ ≥ Ω(Σ2ν−n).

(ii)

∣∣∣∣∣∣
∑

y∈S∩{aj,2,bj,2,aj,3,bj,3}

y

∣∣∣∣∣∣ ≥ ΣΩ(min(ν,h)) ×∣∣∣∣∣∣
∑

y∈S\{aj,2,bj,2,aj,3,bj,3}

y

∣∣∣∣∣∣.
We are now ready to prove Lemma 1.

Proof of Lemma 1: We proceed by induction on
i ∈ [n]. At the jth step of the induction (with j ≥ 2), we
assume that |S ∩ {ai,2, bi,2}| = |S ∩ {ai,3, bi,3}| for all
i < j and we need to show that |S∩{aj,2, bj,2}| = |S∩
{aj,3, bj,3}|. Assume for the sake of contradiction that
|S∩{aj,2, bj,2}| 6= |S∩{aj,3, bj,3}|. Then, Lemma 2 and
the fact that for any a, b ∈ R, |a− b| ≥ max(|a|, |b|)−
min(|a|, |b|) imply that∣∣∣∣∣∣
∑
y∈S

y

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

y∈S∩{aj,2,bj,2,aj,3,bj,3}

y +
∑

y∈S\{aj,2,bj,2,aj,3,bj,3}

y

∣∣∣∣∣∣

≥

∣∣∣∣∣∣
∑

y∈S∩{aj,2,bj,2,aj,3,bj,3}

y

∣∣∣∣∣∣−
∣∣∣∣∣∣

∑
y∈S\{aj,2,bj,2,aj,3,bj,3}

y

∣∣∣∣∣∣
≥ (1− 1

ΣΩ(min(ν,h))
)

∣∣∣∣∣∣
∑

y∈S∩{aj,2,bj,2,aj,3,bj,3}

y

∣∣∣∣∣∣
= Ω(Σ2ν−n)

On the other hand, we have that |B1| = B1 ≤
Σnh+m+ν . Hence, we get a contradiction since ν ≥
10(m+ nh).

The base case of the induction corresponds to setting
j = 1 and it follows along the same lines as above
except that we invoke Lemma 2 with j = 1. This
concludes the proof of Lemma 1.

Lemma 1 implies that for every i ∈ [n],∑
y∈S∩{ai,2,bi,2,ai,3,bi,3}

y = bi × Σi for some bi ∈

{−1, 0, 1}. The next lemma argues that, in fact, all bi’s
are equal to 0.

Lemma 3. For every i ∈ [n], bi = 0

Proof of Lemma 8: To see this, assume for the
sake of contradiction that there exists i ∈ [n] s.t.
bi ∈ {−1, 1} and let i∗ ∈ [n] be the smallest such
i. Since the Σ-ary representations of each of B1 and
{ai,1, bi,1 : i ∈ [n]} have zeros in the rightmost ν digits,
the first moment constraint

∑
y∈S

y = B1 is equivalent to

∑̀
i=i∗+1

ciΣ
i + bi∗Σ

i∗ = 0 for some ` ∈ N and ci ∈ Z

for all i ∈ {i∗+ 1, . . . , `}. Dividing by Σi
∗
, we get that∑̀

i=i∗+1

ciΣ
i−i∗ = −bi∗ . Since Σ is assumed to be an

even integer and since bi∗ ∈ {−1, 1}, the left-hand side
is an even integer whereas the right-hand side is an odd
integer; a contradiction.

Lemma 8 implies that∑
y∈S∩∪n

i=1{ai,2,bi,2,ai,3,bi,3}

y = 0

4



and hence that ∑
y∈S∩∪n

i=1{ai,1,bi,1}

y = B1

We can now carry out the soundness analysis of the
original reduction from 1-in-3-SAT to Subset Sum in
order to construct an assignmnent that satisfies exactly
one litteral in each clause of the given 3-SAT formula.
This concludes the soundness analysis of our reduction.

To sum up, setting h = 10m, ν = 10(m+ nh) and
Σ to be a sufficiently large even constant (say 4) yields
a polynomial-time reduction from 1-in-3-SAT to MSS2.
Hence, MSS2 is NP-hard.

The only remaining part is to prove Lemma 2.

Proof of Lemma 2: We first derive in the next
proposition some inequalities that are satisfied by the
integers {ai,1, ai,2, ai,3, bi,1, bi,2, bi,3 : i ∈ [n]} and
that will be used to prove Lemma 2.

Proposition 1. Let j ∈ [n].

1) |aj,1 − bj,1| ≥ Σν .
2) If ν ≥ 10(m+ nh), then

∀i ∈ [n] :
|aj,2|
ai,1

≥ ΣΩ(ν) and
|aj,2|
bi,1

≥ ΣΩ(ν)

3) If h ≥ 10m and j < n, then

∀i ∈ {j + 1, . . . , n} :
|aj,2|
|ai,2|

≥ ΣΩ(h) and

|aj,2|
|bi,2|

≥ ΣΩ(h)

The same inequalities also hold if we replace aj,2 by
bj,2.

Proof of Proposition 1: The first part of the
proposition follows from the assumption (which can be
made without loss of generality) that for each j ∈ [n],
there exists a SAT clause that contains exactly one of
xj and xj .

We next prove the second part of the proposition.
Fix j, i ∈ [n]. Without loss of generality, assume that
aj,1 > bj,1. Then, the first part of the proposition yields
that aj,1 − bj,1 ≥ Σν . Then, we have that

aj,2 =
a2
j,1 − b2j,1

4Σj
− Σj

2

=
(aj,1 − bj,1)(aj,1 + bj,1)

4Σj
− Σj

2

≥ ΣνΣν

4Σj
− Σj

2
≥ Σ2ν−3n

On the other hand, we have that ai,1 ≤ Σν+m+nh

and bi,1 ≤ Σν+m+nh. Using the assumption that
ν ≥ 10(m+ nh), we conclude that |aj,2|ai,1

≥ ΣΩ(ν) and
|aj,2|
bi,1
≥ ΣΩ(ν).

We now prove the third part of the proposition. Fix
j < n and i ∈ {j+1, . . . , n}. Without loss of generality,
assume that aj,1 > bj,1 and ai,1 > bi,1. Then, we have
that

aj,2 =
(aj,1 − bj,1)(aj,1 + bj,1)

4Σj
− Σj

2

≥ Σν × 2× Σ(n−j)h+m+ν

4Σj
− Σj

2
≥ Σ2ν+(n−j)h+m−j

On the other hand, we have that

ai,2 =
(ai,1 − bi,1)(ai,1 + bi,1)

4Σi
− Σi

2

≤ Σν+m × 2× Σ(n−i)h+m+ν+1

4Σi

= 2× Σ2ν+m+(n−i)h−i+1

Therefore,

|aj,2|
|ai,2|

≥ 1

2
Σ(i−j)h−m+(i−j)−1 ≥ 1

2
Σh−m = ΣΩ(h)

where the last equality above follows from the assump-
tion that h ≥ 10m. The proof that |aj,2||bi,2| ≥ ΣΩ(h)

follows along the same lines.

Observe that for any integer j ≥ 1, if
|S ∩ {aj,2, bj,2}| 6= |S ∩ {aj,3, bj,3}|, then S ∩
{aj,2, bj,2, aj,3, bj,3} is one of the following possible
sets:

{aj,2}, {bj,2}, {aj,3}, {bj,3}, {aj,2, bj,2, aj,3},
{aj,2, bj,2, bj,3}, {aj,2, aj,3, bj,3}, {bj,2, aj,3, bj,3}

In each of these cases, the following inequality is
satisfied∣∣∣∣∣∣

∑
y∈S∩{aj,2,bj,2,aj,3,bj,3}

y

∣∣∣∣∣∣ ≥ min(|aj,2, bj,2|)− Σj (1)

We now prove the first part of Lemma 2. Since
|S ∩ {aj,2, bj,2}| 6= |S ∩ {aj,3, bj,3}| and assuming that
aj,1 > bj,1 without loss of generality, Equation (1) gives

5



that∣∣∣∣∣∣
∑

y∈S∩{aj,2,bj,2,aj,3,bj,3}

y

∣∣∣∣∣∣ ≥ (aj,1 − bj,1)(aj,1 + bj,1)

4Σj

− 3Σj

2

≥ Σν × 2× Σν+m+(n−j)h

4Σj

− 3Σj

2
= Ω(Σ2ν−n)

We now prove the second part of Lemma 2, which
we first show for the case where j ≥ 2 and |S ∩
{ai,2, bi,2}| = |S ∩ {ai,3, bi,3}| for all i < j. These
equalities imply that∣∣∣∣∣∣

∑
y∈S∩∪j−1

i=1 {ai,2,bi,2,ai,3,bi,3}

y

∣∣∣∣∣∣ ≤ ΣO(n)

and hence

min(|aj,2, bj,2|) ≥ Σ2ν−3n

≥ ΣΩ(ν)

∣∣∣∣∣∣
∑

y∈S∩∪j−1
i=1 {ai,2,bi,2,ai,3,bi,3}

y

∣∣∣∣∣∣
(2)

Using Equation (1) and Proposition 1, we then have that∣∣∣∣∣∣
∑

y∈S∩{aj,2,bj,2,aj,3,bj,3}

y

∣∣∣∣∣∣ ≥ min(|aj,2, bj,2|)− Σj

≥ 1

Θ(n)

Θ(n)∑
j=1

min(|aj,2, bj,2|)− Σj

≥ 1

Θ(n)

( ∑
y∈S∩∪n

i=1{ai,1,bi,1}

ΣΩ(ν)y

+
∑

y∈S∩∪n
i=j+1{ai,2,bi,2,ai,3,bi,3}

ΣΩ(h) |y|

+ ΣΩ(ν)

∣∣∣∣∣∣
∑

y∈S∩∪j−1
i=1 {ai,2,bi,2,ai,3,bi,3}

y

∣∣∣∣∣∣
)
− Σj

≥ ΣΩ(min(ν,h)) ×

∣∣∣∣∣∣
∑

y∈S\{aj,2,bj,2,aj,3,bj,3}

y

∣∣∣∣∣∣
where the last inequality above follows from the triangle
inequality.

The proof for the case where j = 1 follows
along the same lines as above except that the quantity

∑
y∈S∩∪j−1

i=1 {ai,2,bi,2,ai,3,bi,3}

y is replaced by 0 and Equa-

tion (2) is not needed.

IV. NP-HARDNESS OF MSS3

Theorem 5. There is an absolute constant c > 0 such
that if F is a finite field of characteristic p ≥ 2cn

3

, then
MSS3 is NP-hard.

By an argument similar to the one that appears
after Theroem 4, it is enough to show that MSS3 is
NP-hard in the case where all the universe elements
are integers of absolute value ≤ 2O(n3). In fact, it is
also enough to show that MSS3 is NP-hard in the case
where the universe consists of O(n) elements that can
be written as rational numbers whose numerators and
denominators are each ≤ 2O(n2). This is because this
version of the problem can be reduced to the integral
case by multiplying all the universe elements and the
target moments by the least-common multiple of all the
denominators. The moment constraints in Definition 1
are preserved since they are homogenous in the universe
elements and the target moments.

Proof: We give a polynomial-time reduction from
the 1-in-3-SAT problem in which we are given a
3SAT formula φ on n variables and m clauses and are
asked to determine whether there exists an assignment
x ∈ {0, 1}n that satisfies exactly one literal in each
clause. Recall the known reduction from 1-in-3-SAT
to Subset-Sum that is described at the beginning of
the proof of Theorem 4. Let ai and bi be the positive
integers corresponding to variable (xi, xi) and let
B be the target positive integer in that reduction.
As before the Σ-ary representations of the ai’s, the
bi’s and B are illustrated in Figure 1. We now use
this reduction to reduce 1-in-3-SAT to MSS3. In the
new reduction, each variable (xi, xi) is mapped to
6 rational numbers a′i,1, a

′
i,2, a

′
i,3 (corresponding

to xi) and b′i,1, b
′
i,2, b

′
i,3 (corresponding to xi). Let

{ai, bi : i ∈ [n]} be the positive integers produced by
the above reduction to Subset-Sum. We denote by avi
(resp. aci ) the Σ-ary representation of the variable (resp.
clause) region of ai. For any Σ-ary representation x
of a natural number, let (x)Σ′ be the natural number
whose Σ′-representation is x. For example, if x is the
Σ-ary number (10011), then (x)Σ′ = Σ′4 + Σ′ + 1.
Denote by 1l the concatenation of l ones. Let ν and
h be natural numbers to be specified later on. The
rational numbers a′i,1, a

′
i,2, a

′
i,3, b

′
i,1, b

′
i,2, b

′
i,3 and

the targets B1, B2 and B3 are defined as follows:
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• a′i,1 = Σν+m+h−1(avi )Σh + Σν(aci )Σ

• b′i,1 = Σν+m+h−1(bvi )Σh + Σν(bci )Σ

• Define βi := Σi, γi :=
a′2i,1−b

′2
i,1

2βi
and αi :=

a′3i,1−b
′3
i,1

6βiγi
.

• a′i,2 = αi + γi
2 −

βi

2 .
• a′i,3 = αi − γi

2 + βi

2 .
• b′i,2 = αi + γi

2 + βi

2 .
• b′i,3 = αi − γi

2 −
βi

2 .
• B1 = Σν+m+h−1(1n)Σh + Σν(1m)Σ +

n∑
i=1

a′i,2 + a′i,3.

• B2 =

n∑
i=1

a′
2
i,1 + a′

2
i,2 + a′

2
i,3.

• B3 =

n∑
i=1

a′
3
i,1 + a′

3
i,2 + a′

3
i,3.

Note that a′i,1 (resp. a′i,2) defined above can be seen
as obtained by inserting h − 1 consecutive 0’s in the
variable region of the Σ-ary representation of ai (resp.
bi), and then inserting ν zeros at the right. Also, note
that a′i,1 and b′i,1 are positive integers and that their
Σ-ary representations are identical to those illustrated
in Figure 2 for the the reduction from 1-in-3-SAT to
MSS2.

Note that this reduction runs in time polynomial in
n, m, h and ν. We next prove the correctness of the
reduction.

c) Completeness: The completeness analysis
uses the next proposition.

Proposition 2. For every i ∈ [n], the quantities
a′i,2, a

′
i,3, b

′
i,2, b

′
i,3 defined above satisfy

a′i,2 + a′i,3 = b′i,2 + b′i,3

a′
2
i,1 + a′

2
i,2 + a′

2
i,3 = b′

2
i,1 + b′

2
i,2 + b′

2
i,3

a′
3
i,1 + a′

3
i,2 + a′

3
i,3 = b′

3
i,1 + b′

3
i,2 + b′

3
i,3

Proof of Proposition 2: For the first identity, we
have that

a′i,2 + a′i,3 = 2αi = b′i,2 + b′i,3

For the second identity, we have that

a′
2
i,1 + a′

2
i,2 + a′

2
i,3 − (b′

2
i,1 + b′

2
i,2 + b′

2
i,3)

= a′
2
i,1 − b′

2
i,1 + (a′i,2 − b′i,2)(a′i,2 + b′i,2)

+ (a′i,3 − b′i,3)(a′i,3 + b′i,3)

= a′
2
i,1 − b′

2
i,1 − βi(2αi + γi) + βi(2αi − γi)

= a′
2
i,1 − b′

2
i,1 − 2βiγi

= 0

For the third identity, we have that:

a′
3
i,1 + a′

3
i,2 + a′

3
i,3 − (b′

3
i,1 + b′

3
i,2 + b′

3
i,3)

= a′
3
i,1 − b′

3
i,1 + (a′i,2 − b′i,2)(a′

2
i,2 + a′i,2b

′
i,2 + b′

2
i,2)

+ (a′i,3 − b′i,3)(a′
2
i,3 + a′i,3b

′
i,3 + b′

2
i,3)

= a′
3
i,1 − b′

3
i,1 − βi(a′

2
i,2 + a′i,2b

′
i,2 + b′

2
i,2)

+ βi(a
′2
i,3 + a′i,3b

′
i,3 + b′

2
i,3)

= a′
3
i,1 − b′

3
i,1 − βi

(
(a′i,2 − a′i,3)(a′i,2 + a′i,3)

+ a′i,2b
′
i,2 − a′i,3b′i,3 + (b′i,2 − b′i,3)(b′i,2 + b′i,3)

)
= a′

3
i,1 − b′

3
i,1 − βi

(
(γi − βi)2αi + a′i,2b

′
i,2

− a′i,3b′i,3 + (γi + βi)2αi

)
= a′

3
i,1 − b′

3
i,1 − 4αiβiγi − βi(a′i,2b′i,2 − a′i,3b′i,3)

= a′
3
i,1 − b′

3
i,1 − 6αiβiγi

= 0

where the penultimate equality uses the fact that
a′i,2b

′
i,2 − a′i,3b′i,3 = 2αiγi.

Assume that the starting 3SAT formula has
a satisfying 1-in-3-SAT assignment x. Consider
the subset S = ∪i∈[n]:xi=1{a′i,1, a′i,2, a′i,3} ∪
∪i∈[n]:xi=0{b′i,1, b′i,2, b′i,3} of size 3n. We now check,
using Proposition 2, that the first three moments of S
are equal to B1, B2 and B3 respectively.

∑
y∈S

y =
∑

i∈[n]:xi=1

a′i,1 + a′i,2 + a′i,3

+
∑

i∈[n]:xi=0

b′i,1 + b′i,2 + b′i,3

=
∑

i∈[n]:xi=1

a′i,1 +
∑

i∈[n]:xi=0

b′i,1

+
∑

i∈[n]:xi=1

a′i,2 + a′i,3 +
∑

i∈[n]:xi=0

b′i,2 + b′i,3

=
∑

i∈[n]:xi=1

a′i,1 +
∑

i∈[n]:xi=0

b′i,1

+
∑
i∈[n]

a′i,2 + a′i,3

=
∑

i∈[n]:xi=1

Σν+m+h−1(avi )Σh + Σν(aci )Σ

+
∑

i∈[n]:xi=0

Σν+m+h−1(bvi )Σh + Σν(bci )Σ

+
∑
i∈[n]

a′i,2 + a′i,3
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= Σν+m+h−1(
∑

i∈[n]:xi=1

avi +
∑

i∈[n]:xi=0

bvi )Σh

+ Σν(
∑

i∈[n]:xi=1

aci +
∑

i∈[n]:xi=0

bci )Σ

+
∑
i∈[n]

a′i,2 + a′i,3

= Σν+m+h−1(1n)Σh + Σν(1m)Σ +
∑
i∈[n]

a′i,2 + a′i,3

= B1

Furthermore,∑
y∈S

y2 =
∑

i∈[n]:xi=1

a′
2
i,1 + a′

2
i,2 + a′

2
i,3

+
∑

i∈[n]:xi=0

b′
2
i,1 + b′

2
i,2 + b′

2
i,3

=
∑
i∈[n]

a′
2
i,1 + a′

2
i,2 + a′

2
i,3

= B2

Finally, ∑
y∈S

y3 =
∑

i∈[n]:xi=1

a′
3
i,1 + a′

3
i,2 + a′

3
i,3

+
∑

i∈[n]:xi=0

b′
3
i,1 + b′

3
i,2 + b′

3
i,3

=
∑
i∈[n]

a′
3
i,1 + a′

3
i,2 + a′

3
i,3

= B3

d) Soundness: Assume that S is a satisfying
subset of the MSS3 instance. We will use S in order
to construct a 1-in-3-SAT satisfying assignment to the
starting 3-SAT instance φ. Let’s first sketch the high-
level intuition of the proof. First, we argue that S
should contain the same number of positive and negative
rational numbers from the set {a′1,2, b′1,2, a′1,3, b′1,3}.
This is because these four numbers have roughly the
same absolute value, which turns out to be much larger
than B1 and than any other possible number in S. Thus,
unless S contains the same number of positive and
negative elements from {a′1,2, b′1,2, a′1,3, b′1,3}, the el-
ements of S cannot add up to B1. Then, we show using
an inductive argument that for each i ∈ [n], S contains
the same number of positive and negative elements
from {a′i,2, b′i,2, a′i,3, b′i,3} (i.e., Lemma 4). Next, we
prove that for every i ∈ [n], S should contain exactly
two elements from the set {a′i,2, b′i,2, a′i,3, b′i,3}. This
is because otherwise, the sum of squares of the ele-
ments in S ∩ {a′i,2, b′i,2, a′i,3, b′i,3} would be very far
from a′

2
i,2 + a′

2
i,3, which would imply that the sum

of squares of the elements in S is very far from B2.

This property is shown by induction on i ∈ [n] in
Lemma 5. We then show that, in fact, the elements
of S ∩ {a′i,2, b′i,2, a′i,3, b′i,3} exactly add up to 2αi
(i.e., Lemma 6); namely, the βi and γi terms cancel
each other out. Hence, we obtain that the elements of
S from ∪ni=1{a′i,1, b′i,1} add up to B1 − 2

∑
i∈[n]

αi =

Σν+m+h−1(1n)Σh + Σν(1m)Σ, at which point we can
run the soundness analysis of the original reduction
from 1-in-3-SAT to Subset Sum in order to construct an
assignment satisfying exactly one literal in each clause.

We now give the formal proof which uses the fol-
lowing lemmas whose proofs are deferred to the end of
the section. We assume henceforth that ν ≥ 10(m+nh)
and h ≥ 10m.

Lemma 4. For every i ∈ [n], |S ∩{a′i,2, b′i,2}| = |S ∩
{a′i,3, b′i,3}|.
Lemma 5. For every i ∈ [n], |S ∩
{a′i,2, b′i,2, a′i,3, b′i,3}| = 2.

Lemma 6. We have that∑
y∈S∩∪n

i=1{a′i,2,b′i,2,a′i,3,b′i,3}

y = 2

n∑
i=1

αi.

Lemmas 4, 5 and 6 imply that∑
y∈S∩∪n

i=1{a′i,1,b′i,1}

y = Σν+m+h−1(1n)Σh + Σν(1m)Σ

We can now carry out the soundness analysis of the
original reduction from 1-in-3-SAT to Subset Sum in
order to construct an assignmnent that satisfies exactly
one literal in each clause of the given 3-SAT formula.
This concludes the soundness analysis of our reduction.

To sum up, setting h = 10m, ν = 10(m+ nh) and
Σ to be a sufficiently large even constant (say 4) yields
a polynomial-time reduction from 1-in-3-SAT to MSS3.
Hence, MSS3 is NP-hard.

We now turn to the proofs of Lemmas 4, 5 and
6. We will use the following proposition whose proof
is similar to that of Proposition 1 (because of the fact
that |a′i,`| = Θ(|ai,`|) and |b′i,`| = Θ(|bi,`|) for every
i ∈ [n] and ` ∈ [3]).

Proposition 3. Let j ∈ [n].

1) |a′j,1 − b′j,1| ≥ Σν .
2) If ν ≥ 10(m+ nh), then

∀i ∈ [n] :
|a′j,2|
a′i,1

≥ ΣΩ(ν) and
|a′j,2|
b′i,1

≥ ΣΩ(ν)

3) If h ≥ 10m and j < n, then

∀i ∈ {j + 1, . . . , n} :
|a′j,2|
|a′i,2|

≥ ΣΩ(h)
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4) If ν ≥ 10(m + nh), j ≥ 2, i < j and |S ∩
{a′i,2, b′i,2, a′i,3, b′i,3}| = 2, then a′2j,2/Σ

Ω(ν)

is at least∣∣∣∣∣∣a′2i,2 + a′
2
i,3 −

∑
y∈S∩{a′i,2,b′i,2,a′i,3,b′i,3}

y2

∣∣∣∣∣∣
The same inequalities also hold if we replace a′j,2 by
one of {b′j,2, a′j,3, b′j,3} or if we replace a′i,2 by one
of {b′i,2, a′i,3, b′i,3}

Proof of Lemma 4: Follows along the same lines
as the proof of Lemma 1 but using Proposition 3 instead
of Proposition 1.

The proof of Lemma 5 uses the following lemma.

Lemma 7. Let j ≥ 1 be an integer. Furthermore, as-
sume that if j ≥ 2, then |S∩{a′i,2, b′i,2, a′i,3, b′i,3}| = 2
for all i < j. Then, min

y∈{a′j,2,b′j,2,a′j,3,b′j,3}
y2 is lower

bounded by:

(i) ΣΩ(min(ν,h)) ×
( n∑
i=1

a′
2
i,1 +

n∑
i=j+1

(a′
2
i,2 + a′

2
i,3) +

j−1∑
i=1

∣∣∣∣∣∣a′2i,2 + a′
2
i,3 −

∑
y∈S∩{a′i,2,b′i,2,a′i,3,b′i,3}

y2

∣∣∣∣∣∣
)

(ii) ΣΩ(min(ν,h)) ×( ∑
y∈S∩∪n

i=j+1{a′i,2,b′i,2,a′i,3,b′i,3}

y2 +

∑
y∈S∩∪n

i=1{a′i,1,b′i,1}

y2

)

Proof of Lemma 7: The proof is similar to that
of Lemma 2 but uses Proposition 3 instead of Proposi-
tion 1.

Proof of Lemma 5: We proceed by induction
on i ∈ [n]. At the jth step of the induction (with
j ≥ 2), we assume that |S ∩ {a′i,2, b′i,2, a′i,3, b′i,3}| =
2 for all i < j and we need to show that |S ∩
{a′j,2, b′j,2, a′j,3, b′j,3}| = 2. Assume for the sake of
contradiction that |S∩{a′j,2, b′j,2, a′j,3, b′j,3}| 6= 2. We
have that

∣∣∣∣∣∣B2 −
∑

y∈S∩∪j
i=1{a′i,2,b′i,2,a′i,3,b′i,3}

y2

∣∣∣∣∣∣ = |q1 − q2|

where

q1 := (a′
2
j,2 + a′

2
j,3)−

∑
y∈S∩{a′j,2,b′j,2,a′j,3,b′j,3}

y2

and

q2 :=

j−1∑
i=1

( ∑
y∈S∩{a′i,2,b′i,2,a′i,3,b′i,3}

y2 − a′2i,2 − a′
2
i,3

)
−

n∑
i=1

a′
2
i,1 −

n∑
i=j+1

(a′
2
i,2 + a′

2
i,3)

Then, Lemma 7 and the fact that for any a, b ∈ R,
|a− b| ≥ max(|a|, |b|)−min(|a|, |b|) imply that

∣∣∣∣∣∣B2 −
∑

y∈S∩∪j
i=1{a′i,2,b′i,2,a′i,3,b′i,3}

y2

∣∣∣∣∣∣ ≥ |q1| − |q2|

≥

∣∣∣∣∣∣(a′2j,2 + a′
2
j,3)−

∑
y∈S∩{a′j,2,b′j,2,a′j,3,b′j,3}

y2

∣∣∣∣∣∣
−

(
j−1∑
i=1

∣∣∣∣∣∣a′2i,2 + a′
2
i,3 −

∑
y∈S∩{a′i,2,b′i,2,a′i,3,b′i,3}

y2

∣∣∣∣∣∣
+

n∑
i=1

a′
2
i,1 +

n∑
i=j+1

(a′
2
i,2 + a′

2
i,3)

)
≥ Ω( min

y∈{a′j,2,b′j,2,a′j,3,b′j,3}
y2)

− 1

ΣΩ(min(ν,h))
min

y∈{a′j,2,b′j,2,a′j,3,b′j,3}
y2

= Ω( min
y∈{a′j,2,b′j,2,a′j,3,b′j,3}

y2)

On the other hand, the fact that
∑
y∈S

y2 = B2 and

Lemma 7 imply that∣∣∣∣∣∣B2 −
∑

y∈S∩∪j
i=1{a′i,2,b′i,2,a′i,3,b′i,3}

y2

∣∣∣∣∣∣
=

∑
y∈S∩∪n

i=j+1{a′i,2,b′i,2,a′i,3,b′i,3}

y2

+
∑

y∈S∩∪n
i=1{a′i,1,b′i,1}

y2

≤ 1

ΣΩ(min(ν,h))
min

y∈{a′j,2,b′j,2,a′j,3,b′j,3}
y2

which yields a contradiction.
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Proof of Lemma 6: Lemmas 4 and 5 imply that for
every i ∈ [n],

∑
y∈S∩{a′i,2,b′i,2,a′i,3,b′i,3}

y = 2αi+ri×Σi

for some ri ∈ {−1, 0, 1}. The next lemma argues that,
in fact, all ri’s are equal to 0.

Lemma 8. For every i ∈ [n], ri = 0

Proof of Lemma 8: To see this, assume for
the sake of contradiction that there exists i ∈ [n]
s.t. ri ∈ {−1, 1} and let i∗ ∈ [n] be the smallest
such i. Note that the first moment constraint

∑
y∈S

y =

B1 is equivalent to
∑

y∈S∩∪n
i=1{a′i,1,b′i,1}

y +

n∑
i=1

ri ×

Σi = Σν+m+h−1(1n)Σh + Σν(1m)Σ. Since the Σ-
ary representations of each of the positive integers
Σν+m+h−1(1n)Σh + Σν(1m)Σ and {a′i,1, b′i,1 : i ∈
[n]} have zeros in the rightmost ν digits, this constraint

is also equivalent to
∑̀

i=i∗+1

ciΣ
i + ri∗Σ

i∗ = 0 for some

` ∈ N and ci ∈ Z for all i ∈ {i∗ + 1, . . . , `}. Dividing

by Σi
∗
, we get that

∑̀
i=i∗+1

ciΣ
i−i∗ = −ri∗ . Since Σ is

assumed to be an even integer and since ri∗ ∈ {−1, 1},
the left-hand side is an even integer whereas the right-
hand side is an odd integer; a contradiction.

This completes the proof of Lemma 6.

V. CONCLUSION

In this work, we proved that for every e ∈ {n− t−
2, n− t−3}, the RS-BDDn−t−e problem is NP-hard. It
would be very interesting to understand whether one can
design an explicit construction satisfying the properties
in Question 1, and use it to prove the NP-hardness of
RS-BDDn−t−e for larger values of e.
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APPENDIX

A. Missing proofs from Section II

Lemma 9. SSSd reduces to RS-BDDd.

Proof: Given an instance, 〈A, k,B1, B2, · · · , Bd〉
of SSSd, we first construct an instance 〈D, t〉 of RS-
BDDd such that there exists a polynomial f(x) ∈ Fq[X]
of degree at most t− 1 which agrees with at least t+ d
points of D if and only if there is a solution to the given
instance of SSSd.
Let A = {a1, a2, · · · an} be a set of distinct, non-
zero elements of Fq, B1, B2, · · · , Bd ∈ Fq , k ∈ Z
be the instance of SSSd. Let t = k − d + 1. Let
p(x) be a degree d polynomial defined as p(x) =
xd−B1x

d−1 + · · ·+(−1)d−1Bd−1x. For each ai of A,
define an element of Fq as yi = −p(ai) The set D is
then D = {(a−1

i , yi) for all ai ∈ A}∪{(0, (−1)dBd)}.
Note that 〈D, t〉 is an instance of RS-BDDd which can
be constructed in polynomial time, from the instance
〈A, k,B1, · · · , Bd〉 of SSSd.

Let S be the solution to SSSd. We now show that
there exists a polynomial of degree at most k−d which
agrees with D in at least k + 1 points.

Define a degree k polynomial,

g(x) =
∏
ai∈S

(x− ai) = c0 + c1x+ · · ·+ ck−1x
k−1 + xk

The coefficients of this polynomial are the symmet-
ric sums of the roots of g(x). Therefore, ck−d =
(−1)dBd, · · · , ck−2 = B2, and ck−1 = −B1. Now
define,

f(x) = (xkg(1/x)− xdp(1/x))/xd

= f(x) = c0x
k−d + c1x

k−d−1 + · · ·+ ck−d,
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and note that f(x) has degree k − d = t− 1. Also, the
constant term of this polynomial is ck−d = (−1)dBd.
Hence, f(0) = (−1)dBd and since g(ai) = 0, for
all ai ∈ S, it follows that f(a−1

i ) = −p(ai) =
yi, for all ai ∈ S. Therefore, f(x) agrees with k+1 =
t+ d points in D.

Conversely, we now show that if there is a polyno-
mial f(x), of degree at most t − 1 which agrees with
t+ d points in D, then there is a solution to SSSd. We
first observe that if a degree t − 1 polynomial passes
through t + d points of D, then it has to pass through
(0, (−1)dBd). To show this, assume f(x) agrees with
t + d points of the form (a−1

i , yi) ∈ D. Let g(x) be a
t+ d− 1 degree polynomial defined as,

g(x) = xt−1(f(1/x) + p(x))

Therefore, if f(x) = c0 + c1x+ · · · ct−1x
t−1, g(x) can

be written as

g(x) = xt+d−1 +B1x
t+d−2 + · · ·+ (−1)d−1Bd−1x

t

+ c0x
t−1 + c1x

t−2 + · · ·+ ct−1

Since, we know that f(a−1
i ) = yi = −p(ai) for t + d

points, we have by defintion, g(ai) = 0 for those t +
d a′is. This is a contradiction since g(x) has degree at
most t+d−1 and it cannot have t+d roots. Therefore,
f(0) = c0 = (−1)dBd. Also, g(x), has t + d − 1 = k
roots which have their first d symmetric sums equal
to B1, B2, · · · , Bd respectively. Hence, there exists a
solution to the given instance of SSSd.
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