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NP-HARDNESS OF REED–SOLOMON DECODING, AND THE
PROUHET–TARRY–ESCOTT PROBLEM∗

VENKATA GANDIKOTA† , BADIH GHAZI‡ , AND ELENA GRIGORESCU†

Abstract. Establishing the complexity of bounded distance decoding for Reed–Solomon codes is a
fundamental open problem in coding theory, explicitly asked by Guruswami and Vardy [IEEE Trans.
Inform. Theory, 51 (2005), pp. 2249–2256]. The problem is motivated by the large current gap
between the regime when it is NP-hard and the regime when it is efficiently solvable (i.e., the Johnson
radius). We show the first NP-hardness results for asymptotically smaller decoding radii than the
maximum likelihood decoding radius of Guruswami and Vardy. Specifically, for Reed–Solomon codes
of length N and dimension K = Θ(N), we show that it is NP-hard to decode more than N −K −
c logN
log logN

errors (with c > 0 an absolute constant). Moreover, we show that the problem is NP-hard

under quasi-polynomial-time reductions for an error amount > N − K − c logN (with c > 0 an
absolute constant). An alternative natural reformulation of the bounded distance decoding problem
for Reed–Solomon codes is as a polynomial reconstruction problem. In this view, our results show that
it is NP-hard to decide whether there exists a degree K polynomial passing through K + c logN

log logN

points from a given set of points (a1, b1), (a2, b2) . . . , (aN , bN ). Furthermore, it is NP-hard under
quasi-polynomial-time reductions to decide whether there is a degree K polynomial passing through
K+c logN many points. These results follow from the NP-hardness of a generalization of the classical
subset sum problem to higher moments, called moments subset sum, which has been a known open
problem, and which may be of independent interest. We further reveal a strong connection with the
well-studied Prouhet–Tarry–Escott problem in number theory, which turns out to capture a main
barrier in extending our techniques. We believe the Prouhet–Tarry–Escott problem deserves further
study in the theoretical computer science community.
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1. Introduction. Despite being a classical problem in the study of error-
correcting codes, the computational complexity of decoding Reed–Solomon (RS) codes
[RS60] in the presence of large amounts of error is not fully understood. In the
bounded distance decoding (BDD) problem, the goal is to recover a message cor-
rupted by a bounded amount of error. Motivated by the large gap between the
current efficient decoding regime and the NP-hard regime for RS codes, we study the
NP-hardness of BDD for asymptotically smaller error radii than previously known. In
this process, we unravel a strong connection with the Prouhet–Tarry–Escott (PTE)
problem, a famous problem from number theory that has been studied for more than
two centuries.
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An RS code of length N , dimension K, defined over a finite field F, is the set
of vectors (called codewords) corresponding to evaluations of low-degree univariate
polynomials on a given set of evaluation points D = {α1, α2, . . . , αN} ⊆ F. Formally,
RSD,K = {〈p(α1), . . . , p(αN )〉 | p ∈ F[x] is a univariate polynomial of degree < K}.
The Hamming distance between x, y ∈ FN is ∆(x, y) := |{i ∈ [N ] | xi 6= yi}|. In the
BDD problem, given a target vector y ∈ FN and a distance parameter λ, the goal is
to output c ∈ C such that ∆(c, y) ≤ λ.

It is well-known that if the number of errors is λ ≤ (N − K)/2, there is a
unique codeword within distance λ from the message, which can be found efficiently
[Pet60, BW86]. Further, Sudan [Sud97] and Guruswami and Sudan [GS99] show that
efficient decoding of up to λ = N −

√
NK errors (the “Johnson radius”) is possible

(in this setting, the algorithm may output a small list of possible candidate mes-
sages). At the other extreme, if the number of errors is at least N −K (the covering
radius), finding one close codeword becomes trivial, amounting to interpolating a deg-
ree K − 1 polynomial through ≤ K points. However, just below that radius, namely,
at N −K − 1 errors, the problem becomes NP-hard, a celebrated result of Guruswami
and Vardy [GV05]. The proof approach of [GV05] is only applicable to the maximum
likelihood decoding setting of N−K−1 errors, prompting the fundamental problem of
understanding the complexity of BDD in the wide remaining range between N−

√
NK

and N −K − 1: “It is an extremely interesting problem to show hardness of bounded
distance decoding of Reed-Solomon codes for smaller decoding radius” [GV05].

The only other work addressing the hardness of decoding RS codes is due to
Cheng and Wan [CW07, CW10], who show randomized reductions from the discrete
log problem over finite fields, which is not believed to be NP-hard.

In this work, we study the complexity of the decision version of BDD, where the
number of errors is parametrized by d ≥ 0, as formalized next:

Problem Bounded distance decoding of Reed–Solomon codes with parame-
ter d (RS-BDD(d))
Input D = {α1, α2, . . . , αN} ⊆ F, where αi 6= αj for all i 6= j, target
y = (y1, y2, . . . , yN ), and integer K < N
Goal Decide if there exists p ∈ RSD,K such that ∆(p, y) ≤ N −K − d

We emphasize that the BDD problem above is in fact the basic and natural
polynomial reconstruction problem, where the input is a subset of points D =
{(α1, y1), (α2, y2), . . . , (αN , yN )} ⊆ F × F, and the goal is to decide if there exists
a polynomial p of degree < K that passes through at least K + d points in D. We
will next state our main result in both forms.

1.1. Contributions. Our main technical contribution is the first NP-hardness
result for BDD of RS codes for a number of errors that is asymptotically smaller than
N −K, and its alternative view in terms of polynomial reconstruction.

Theorem 1.1. There exists c > 0 such that for every 1 ≤ d ≤ c · logN
log logN , the

RS-BDD(d) problem for RS codes of length N, dimension K = N/2−d+1 over finite
fields of size |F| = 2poly(N), and characteristic larger than d is NP-hard. Furthermore,
there exists c > 0 such that for every 1 ≤ d ≤ c · logN, RS-BDD(d) over finite fields

of size |F| = 2N
O(log N)

, and characteristic larger than d does not have NO(logN)-time
algorithms unless NP has quasi-polynomial-time algorithms.
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Equivalently, there exists c > 0 such that for every 1 ≤ d ≤ c · logN
log logN , it is NP-

hard to decide whether there exists a polynomial of degree < K = N/2− d+ 1 passing
through K + d many points from a given set D = {(α1, y1), (α2, y2), . . . , (αN , yN )} ⊆
F × F with |F| = 2poly(N). Furthermore, there exists c > 0 such that for every 1 ≤
d ≤ c · logN , the same interpolation problem over fields of size |F| = 2N

O(log N)

and
characteristic larger than d does not have NO(logN)-time algorithms unless NP has
quasi-polynomial-time algorithms.

We note that, as in [GV05], we require the field size to be exponential in N in our
Theorem 1.1. Our results significantly extend [GV05], which only show NP-hardness
for d = 1.

The core of the proof of Theorem 1.1 is showing the NP-hardness of the follow-
ing natural generalization of the classic subset sum problem to higher moments, and
which may be of independent interest:

Problem Moments subset sum with parameter d, over a field F (MSS(d))
Input Set A ⊆ F of size |A| = N , integer k, elements m1,m2, . . . ,md ∈ F
Goal Decide if there exists S ⊆ A such that

∑
w∈S w

` = m` for all ` ∈ [d],
and |S| = k.

We point out that the moments subset sum problem has natural analogues over
continuous domains in the form of generalized moment problems and truncated mo-
ments problems, which arise frequently in economics, operations research, statistics,
and probability [Las09].

We also note that the reduction from MSS(d) to RS-BDD(d) uses the equiva-
lence between elementary symmetric polynomials and moments polynomials, which
holds when the field is of characteristic larger than d (see Lemma 2.1 for the formal
reduction).

In this work, we prove the NP-hardness of the moments subset sum problem for
large degrees.

Theorem 1.2. There exists c > 0 such that for every 1 ≤ d ≤ c · logN
log logN , the

moments subset sum problem MSS(d) over prime fields of size |F| = 2poly(N) is NP-
hard. Furthermore, there exists c > 0 such that for every 1 ≤ d ≤ c · logN , the

moments subset sum problem MSS(d) over fields of size |F| = 2N
O(log N)

does not have
NO(logN)-time algorithms unless NP has quasi-polynomial-time algorithms.

Furthermore, we reveal a novel connection between moments subset sum (and
hence RS decoding) and the well-studied PTE problem in diophantine analysis, which
is the main barrier for extending Theorems 1.2 and 1.1 to d = ω(logN), as we will
explain shortly.

The PTE problem [Pro51, Dic13, Wri59] first appeared in letters between Euler
and Goldbach in 1750–1751, and it is an important topic of study in classical number
theory (see, e.g., the textbooks of Hardy and Wright [HW79] and Hua [Hua82]). It
is also related to other classical problems in number theory, such as variants of the
Waring problem and problems about minimizing the norm of cyclotomic polynomials,
considered by Erdös and Szekeres [ES59, BI94]. The PTE system is sometimes also
referred to as the Vinogradov system (see, e.g., [Woo92]).

In the PTE problem, we are given k ≥ 1 and the goal is to find disjoint sets of
integers {x1, x2, . . . , xs} and {y1, y2, . . . , ys} satisfying the system



1550 V. GANDIKOTA, B. GHAZI, AND E. GRIGORESCU

x1 + x2 + · · ·+ xs = y1 + y2 + · · ·+ ys,

x21 + x22 + · · ·+ x2s = y21 + y22 + · · ·+ y2s ,

. . .

xk1 + xk2 + · · ·+ xks = yk1 + yk2 + · · ·+ yks .

We call s the size of the PTE solution. It turns out that the completeness proof of
our reduction in Theorem 1.2 relies on explicit solutions to this system for degree
k = d and of size s = 2k. As explained next, despite significant efforts that have
been devoted to constructing PTE solutions during the last 100 years, no explicit
solutions of size s = 2o(k) are known. This constitutes the main barrier to extending
our Theorems 1.2 and 1.1 to d = ω(logN).

The main open problem that has been tackled in the PTE literature is construct-
ing solutions of small size s compared to the degree k. It is relatively easy to show that
s ≥ k+ 1, and straightforward (yet nonconstructive!) pigeonhole counting arguments
show the existence of solutions with s = O(k2). If we further impose the constraint
that the system is not satisfied for degree k + 1 (which is a necessary constraint for
our purposes), then solutions of size s = O(k2 log k) are known to exist [Hua82].
However, these results are nonconstructive, and the only general explicit solutions
have size s = O(2k) (e.g., [Wri59, BI94]). A special class of solutions studied in the
literature is for s = k+ 1 (i.e., of minimum possible size). Currently there are known
explicit parametric constructions of infinitely many minimum-size solutions for k ≤ 12
(e.g., [BI94, BLP03]), and finding such solutions often involves numerical simulations
and extensive computer-aided searches [BLP03].

From a computational point of view, an important open problem is to understand
whether PTE solutions of size O(k2) (which are known to exist) can be efficiently
constructed, i.e., in time poly(k).

We identify the following generalization of the PTE problem as a current barrier
to extending our results.

Problem 1.1. Given a field F, integer d, and a, b ∈ F, efficiently construct two
disjoint sets {x1, . . . , xs}, {y1, . . . , ys} ⊆ F, with s = o(2d), satisfying

x1 + x2 + · · ·+ xs = y1 + y2 + · · ·+ ys,

ai +

s∑
j=1

xij = bi +

s∑
j=1

yij ∀i ∈ {2, . . . , d}.

We believe that this question is worth further study in the theoretical computer
science community. In this work, we prove the following theorem, which is at the core
of the completeness of our reduction.

Theorem 1.3. There is an explicit construction of solutions for Problem 1.1 with
s = O(2d), which can be computed in time poly(s).

In the next subsection, we outline the proof of Theorem 1.2, and in the process, we ex-
plain how PTE solutions of degree d naturally arise when studying the computational
complexity of MSS(d).

1.2. Proof overview.
Reduction from 1-in-3-SAT to Subset-Sum. The proof of Theorem 1.1 will follow

from Theorem 1.2 along with a reduction from MSS(d) to RS-BDD(d) (given in
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section 2). To prove Theorem 1.2, we will give a polynomial-time reduction from the
1-in-3-SAT problem in which we are given a 3-SAT formula φ on n variables and m
clauses and are asked to determine if there exists an assignment z ∈ {0, 1}n satisfying
exactly one literal in each clause. It is known that this problem is NP-hard even for
m = O(n) [Sch78]. We start by briefly recalling the reduction from 1-in-3-SAT to
Subset-Sum which will be used in our reduction to MSS(d) (for more details on the
standard reduction from 1-in-3-SAT to Subset-Sum, we refer the reader to section 3).
In this reduction, we are given a 3-SAT formula which we use to construct a set of
integers such that there is a subset whose sum equals a given target m′1 iff there is
an assignment that satisfies exactly one literal of each clause of the 3-SAT formula.
Specifically, each variable (zt, zt) is mapped to two integers a′t (corresponding to zt)
and bt (corresponding to zt). The integers a′t and b′t and the target m′1 are defined in
terms of their length-(n+m) Σ-ary representation (for some sufficiently large constant,
say, Σ = 10) as follows:

• The Σ-ary representations of a′t and b′t consist of two parts: a variable re-
gion consisting of the leftmost n digits and a clause region consisting of the
(remaining) rightmost m digits.

• In the variable region, a′t and b′t have a 1 at the tth digit and 0’s at the other
digits.

• In the clause region, for every j ∈ [m], a′t (respectively, b′t) has a 1 at the jth
location if zt (respectively, zt) appears in clause j and a 0 otherwise.

• The target m′1 is set to the integer whose Σ-ary representation is the all 1’s.
Those Σ-ary representations are illustrated later in Figure 1. In section 3 we sketch
the completeness and soundness of the reduction.

Extending to higher moments via inhomogeneous PTE systems. Extending this
reduction so that the second moment also equals the target m2 (whenever the given
3-SAT formula has an assignment satisfying exactly one literal in each clause) raises
immediate technical hurdles, since we have very little grasp on the second moment. As
the number of moments increases, the problem becomes more complex, since in order
to show completeness we need to simultaneously satisfy several polynomial equations
of increasingly larger degrees.

We next describe the general idea behind our reduction from 1-in-3-SAT to
MSS(d). In this reduction, the completeness step will rely on explicit solutions to
“inhomogeneous PTE instances” and the soundness step will rely on a delicate bal-
ancing of the magnitudes of these explicit solutions.

Our starting point is the standard reduction from 1-in-3-SAT to Subset-Sum,
which we build on as follows. For each 1-in-3-SAT variable, we create a collection
of explicit auxiliary numbers which “stabilize” the contribution of this variable to all
ith moment equations with 2 ≤ i ≤ d while having no net effect on the first moment
equation. Concretely, if a and b are the numbers corresponding to the two literals of
the given variable, then we need to find numbers x1, . . . , xs, y1, . . . , ys satisfying

x1 + x2 + · · ·+ xs = y1 + y2 + · · ·+ ys,

ai +

s∑
j=1

xij = bi +

s∑
j=1

yij ∀i ∈ {2, . . . , d}.(†)

Note that in order for the overall reduction to run in polynomial time, the above
auxiliary variables should be efficiently constructible. Moreover, we observe that (†) is
an inhomogeneous PTE instance: for a = b, it reduces to a PTE instance of degree d.
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Of course, in our case a and b will not be equal, and (†) is a more general system (and
is hence harder to solve) than PTE instances. Nevertheless, as we will see shortly,
solving (†) can be essentially reduced to finding explicit PTE solutions of degrees
i ≤ d.

In addition, we ensure that the added auxiliary rational numbers satisfy a “bi-
modality” property regarding their magnitudes, which will allow the recovery of a
satisfying 1-in-3-SAT assignment from any solution to the MSS(d) instance.

Property 1.2 (bimodality (informal)). Every subset S of the auxiliary numbers
is such that either |

∑
w∈S w| is tiny or |

∑
w∈S w| is huge.

We note that the existence of explicit and efficiently constructible solutions of
small size s = O(d) to system (†) (and hence to a PTE system too) would at least
ensure the completeness of a reduction with d = O(N). If soundness can also be
ensured for such solutions, then our techniques would extend to radii closer to the
Johnson bound radius.

Overview of procedure for solving system (†). We build the auxiliary numbers
recursively, by reducing the solution for degree i to a solution for degree i−1. Toward
this goal, we design a subprocedure, which we refer to as AtomicSolver, that takes
as inputs an integer i ∈ {2, 3, . . . , d}, and a number Ri, and outputs 2i rational1

numbers {xi,j , yi,j}j∈[2i−1] that satisfy a PTE system of degree i − 1, along with a
nonhomogeneous equation of degree i:

2i−1∑
`=1

(xji,` − y
j
i,`) = 0 ∀ 2 ≤ j < i,(1a)

2i−1∑
`=1

(xii,` − yii,`) = Ri.(1b)

We can then run AtomicSolver sequentially on inputs i ∈ {2, . . . , d} with the
Ri input corresponding to a “residual” term that accounts for the contributions to the
degree-i equation of the outputs of AtomicSolver(j,Rj) for all 2 ≤ j < i, namely,

(2) Ri = bi − ai +
∑

2≤j<i

2j−1∑
`=1

(yij,` − xij,`).

Note that the aim of the AtomicSolver(i,Ri) procedure is to satisfy the degree-i
equation (1b) without affecting the lower-degree equations (1a).

We then argue that the union ∪2≤i≤d{xi,j , yi,j}j∈[2i−1] of all output variables
satisfies the polynomial constraints in (†) with t = exp(d).

Specifics of the AtomicSolver. We next illustrate the AtomicSolver proce-
dure by describing its operation in the particular case where i = d = 4. In what
follows, we drop “i = 4 subscripts” and denote R = R4, x` = x4,`, and y` = y4,` for
all 1 ≤ ` ≤ 8. Then, (1b) above, which we need to satisfy, becomes

1In our case, we can afford having rational solutions to (1a) and (1b). Note that this system is
still a generalization of the PTE problem since we can always scale the rational solutions by their
least common denominator to get a PTE solution of degree i− 1.
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(3)

8∑
`=1

(x4` − y4` ) = R.

First, we let α be a constant parameter (to be specified later on) and we set

x1 − y1 = α,(4a)

y2 − x2 = α.(4b)

Namely, in (4a) and (4b), we “couple” the ordered pairs (x1, y1) and (y2, x2) in the
same way. Then, using (4a) and (4b), we substitute y1 = x1 − α and x2 = y2 − α,
and the sum of the ` = 1 and ` = 2 terms in (3) can be written as

(5) (x41 − y41)− (y42 − x42) = pα(x1)− pα(y2),

where pα is a cubic polynomial. If we set x1 − y2 = β, then (5) further simplifies to

(6) pα(x1)− pα(y2) = qα,β(x1),

where qα,β is a quadratic polynomial.2

In the next step, we couple the ordered tuple (y3, x3, y4, x4) in the same way that
we have so far coupled the tuple (x1, y1, x2, y2). The sum of the first four terms in
the left-hand side (LHS) of (3) then becomes

4∑
`=1

(x4` − y4` ) = (x41 − y41 + x42 − y42)− (y43 − x43 + y44 − x44)

= qα,β(x1)− qα,β(y3).

(7)

As before, we set x1 − y3 = γ and (7) further simplifies to

(8) qα,β(x1)− qα,β(y3) = wα,β,γ(x1),

where wα,β,γ(x1) is a linear polynomial in x1. Finally, we couple the ordered tuple
(y5, x5, y6, x6, y7, x7, y8, x8) in the same way that we have so far coupled the tuple
(x1, y1, x2, y2, x3, y3, x4, y4), and we obtain that the following equation is equivalent
to (3) above:

(9) wα,β,γ(x1)− wα,β,γ(y5) = R.

Setting x1 − y5 = θ, (9) further simplifies to

(10) θ · hα,β,γ = R,

where hα,β,γ is the coefficient of x1 in the linear polynomial wα,β,γ(x1). We conclude
that to satisfy (3), it suffices to choose α, β, γ such that hα,β,γ 6= 0 and to then set
θ = R/hα,β,γ .

It is easy to see that there exist α, β, γ such that hα,β,γ 6= 0 and that the above
recursive coupling of the variables guarantees that (1a) is satisfied. The more difficult
part will be to choose α, β, γ in a way that ensures the soundness of the reduction.
This is briefly described next.

2Intuitively, we can think of the LHS of (6) (along with the setting x1 − y2 = β) as being a
“derivative operator.” This explains the fact that we are starting from a cubic polynomial pα(·) and
getting a quadratic polynomial qα,β(·). This intuition was also used (twice) in (5) and will be again
used in (8) and (9) in order to reduce the degree further.
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Bimodality of solutions. In the above description of the particular case where
i = d = 4, it can be seen that the produced solutions are {0,±1}-linear combinations
of {α, β, γ, θ}, which are required to satisfy (10). It turns out that in this case hα,β,γ =
24 · α · β · γ, and so (10) becomes

(11) θ · α · β · γ =
R

24
.

So assuming we can upper bound |R|,3 we would be able to set θ to a sufficiently large
power of 10 while letting α, β, and γ have tiny absolute values and satisfy (11). Using
the fact that the auxiliary xi and yi variables are set to {0,±1}-linear combinations
of {α, β, γ, θ}, this implies that the bimodality property is satisfied. In section 3, we
show that the bimodality property ensures that in any feasible solution to MSS(d), the
auxiliary variables should have no net contribution to the degree-1 moment equation
(Proposition 3.3), which then implies the soundness of the reduction.

General finite fields. We remark that as described above, our solution works over
the rational numbers and, by scaling appropriately, over the integers. By taking the
integer solution modulo a large prime p (i.e., p = 2poly(N)) the same arguments extend
to Fp. Moving to general finite fields F = Fp` , we first observe that system (†) (and
thus a PTE system too) has nonconstructive solutions of size O(d), which follows
from Deligne’s generalization of the Weil bound (see section 6). Our reduction in the
proof of Theorem 1.2 also extends to general fields F = Fp` , where p is any prime
larger than d and ` = poly(N, d!). In this case, our reduction uses a representation
of field elements in a polynomial basis {1, γ, γ2, . . . , γ`−1} ⊆ F, instead of decimal
representations. For more details on this reduction, we refer the reader to section 7.

1.3. Related work. A number of fundamental works address the polynomial
reconstruction problem in various settings. In particular, Goldreich, Rubinfeld, and
Sudan [GRS00] show that that the polynomial reconstruction problem is NP-complete
for univariate polynomials over large fields. H̊astad’s celebrated results [H̊as01] imply
NP-hardness for linear multivariate polynomials over finite fields. Gopalan, Khot,
and Saket [GKS10] show NP-hardness for multivariate polynomials of larger degree
over the field F2.

We note that in general, the polynomial reconstruction problem does not require
the evaluation points to be all distinct (i.e., xi 6= xj whenever i 6= j). This distinction
is crucial to the previous results on polynomial reconstruction (e.g., [GRS00, GKS10]).
It is this distinction that prevents those results from extending to the setting of RS
codes and to their multivariate generalization, Reed–Muller codes.

On the algorithmic side, efficient algorithms for decoding of RS codes and their
variants are well-studied. As previously mentioned, [Sud97, GS99] gave the first
efficient algorithms in the list-decoding regime. Parvaresh and Vardy [PV05] and
Guruswami and Rudra [GR08] construct capacity achieving codes based on variants
of RS codes. Koetter and Vardy [KV03] propose soft decision decoders for RS codes.
More recently, Rudra and Wootters [RW14] prove polynomial list-bounds for random
RS codes.

A related line of work is the study of BDD and of maximum likelihood decoding for
general codes, possibly under randomized reductions, and when an unlimited amount
of preprocessing of the code is allowed. These problems have been extensively studied

3Which we will do by inductively upper bounding |Ri|.
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under diverse settings, e.g., [Var97, ABSS97, DKRS03, DMS03, FM04, Reg04, GV05,
Che08].

1.4. Organization of the rest of the paper. In section 2 we begin with a
reduction from MSS(d) to RS-BDD(d). In section 3 we show our main reduction
from 1-in-3-SAT to MSS(d) over the integers (and over primitive fields of large size)
by showing how to build sets satisfying PTE equations; we prove the useful properties
of these sets in sections 4 and 5 and Appendix A. In section 6 we show the existence
of solutions to PTE equations over fields Fp` of large characteristic, and in section 7
we show how to modify the reduction from section 3 to work over Fp` . We describe
some final remarks in section 8.

2. Reduction from MSS(d)MSS(d)MSS(d) to RS-BDD(d)RS-BDD(d)RS-BDD(d). Throughout the paper, we use
[n] to denote the set {1, 2, . . . , n} for any positive integer n. In this section we show
a formal reduction from MSS(d) to RS-BDD(d). Recall the MSS(d) problem.

Definition 2.1 (moments subset sum: MSS(d)). Given a set A = {a1, . . . , aN},
ai ∈ F, integer k, and m1, . . . ,md ∈ F, decide if there exists a subset S ⊆ A of size
k, satisfying Mi(S) =

∑
a∈S a

i = mi for all i ∈ [d]. We call k the size of the MSS(d)
instance.

In Lemma 2.1 we show a reduction from MSS(d) to RS-BDD(d). We note that
this connection has been previously made (e.g., [LW08]).

Lemma 2.1. MSS(d) is polynomial-time reducible to RS-BDD(d). Moreover, the
reduction maps instances of MSS(d) on N numbers and of size k to RS codes of block
length N + 1 and of dimension k − d+ 1. The reduction holds over any finite field F
of characteristic larger than d.

The reduction in the proof of Lemma 2.1 uses the following symmetric subset sum
problem, which is equivalent to MSS(d), over large fields.

Definition 2.2 (symmetric subset sum: SSS(d)). Given a subset A={a1, a2, . . . ,
aN} of N distinct elements of F, an integer k, and elements e1, e2, . . . ed ∈ F, decide if
there exists a subset S ⊆ A of size k such that for every i ∈ [d], the elementary symmet-
ric sums of the elements of S = {s1, . . . , sk} satisfy Ei(S) =

∑
1≤j1<j2<···<ji≤k sj1 . . .

sji = ei.

We now describe the reduction from SSS(d) to RS-BDD(d).

Lemma 2.2. SSS(d) is polynomial-time reducible to RS-BDD(d).

Proof. Given an instance 〈A, k, e1, e2, . . . , ed〉 of SSS(d), we construct an instance
〈D, y,K〉 of RS-BDD(d) such that there exists an RS codeword p ∈ RSD,K with
∆(y, p) ≤ N − K − d iff there is a solution to the given instance of SSS(d). Here,
A = {a1, a2, . . . , aN} is a set of distinct nonzero elements of F, e1, e2, . . . , ed ∈ F and
k ∈ Z.

Let K := k − d+ 1. Define the degree d polynomial f(x) := xd − e1xd−1 + · · ·+
(−1)d−1ed−1x. For each element ai of A, define an element yi ∈ F as yi = −f(ai).
Define the target vector y = (y1, . . . , yN , (−1)ded). The set D is then defined as
D := {a−11 , . . . , a−1N , 0}. Note that 〈D, y,K〉 is an instance of RS-BDD(d) which can
be constructed in polynomial time given the instance 〈A, k, e1, . . . , ed〉 of SSS(d). Let
D := {(a−1i , yi) for all ai ∈ A}∪{(0, (−1)ded)}. Note that an RS codeword p ∈ RSD,K
at a distance at most N −K − d from y corresponds to a univariate polynomial p(x)
of degree at most K − 1, which agrees with D in at least K + d points.
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Let S be a solution to SSS(d). We now show that there exists a polynomial of
degree at most k − d = K − 1 that agrees with D in at least k + 1 = K + d points.
Define the following degree k polynomial:

g(x) :=
∏
ai∈S

(x− ai) = c0 + c1x+ · · ·+ ck−1x
k−1 + xk.

The coefficients of this polynomial are the symmetric sums of the roots of g(x) (pos-
sibly negated), i.e., ck−d = (−1)ded, . . . , ck−2 = e2 and ck−1 = −e1. We now define

p(x) := (xkg(1/x)− xdf(1/x))/xd

= c0x
k−d + c1x

k−d−1 + · · ·+ ck−d.

Note that the polynomial p(x) has degree k − d. We point out that g(1/x) refers to
the rational function obtained by replacing x by 1/x in the polynomial g(x). Also,
the constant term of this polynomial is ck−d = (−1)ded. Hence, p(0) = (−1)ded and
since g(ai) = 0 for all ai ∈ S, it follows that p(a−1i ) = −f(ai) = yi for all ai ∈ S.
Therefore, p(x) agrees with at least k + 1 points in D.

Conversely, we now show that if there is a polynomial p(x) of degree at most
K − 1 = k− d which agrees with (at least) K + d = k+ 1 points in D, then there is a
solution to SSS(d). We first observe that if a degree k− d polynomial passes through
at least k+1 points of D, then it has to pass through the point (0, (−1)ded). To show
this, assume p(x) agrees with at least k+ 1 points of the form (a−1i , yi) ∈ D. Let g(x)
be a degree k polynomial defined as

g(x) = xk−d(p(1/x) + f(x)).

Therefore, if p(x) = c0 + c1x+ · · ·+ ck−dx
k−d, then g(x) can be written as

g(x) = xk + e1x
k−1 + · · ·+ (−1)d−1ed−1x

k−d+1 + c0x
k−d + c1x

k−d−1 + · · ·+ ck−d.

If p(a−1i ) = yi = −f(ai) for k + 1 points, we have by definition that g(ai) = 0 for
these k + 1 ai points. This is a contradiction since g(x) has degree at most k and
it cannot have k + 1 roots. Therefore, p(0) = c0 = (−1)ded. Also, g(x) has k roots
which have their first d symmetric sums equal to e1, e2, . . . , ed, respectively. Hence,
there exists a solution to the given instance of SSS(d).

To complete the proof of Lemma 2.1 we finally show a reduction from MSS(d) to
SSS(d).

Claim 2.3. MSS(d) is polynomial-time reducible to SSS(d) over finite fields of
characteristic > d.

Proof. By Newton’s identities [Sta99] for set S and j ∈ [|S|], it holds that

j · ej(S) =

j∑
k=1

(−1)k−1ej−k(S) ·Mk(S)

(where e0 = 1). Applying them iteratively, we conclude that given an instance
〈A, k,m1, . . . ,md〉 of MSS(d), one can construct an instance 〈A, k, e1, . . . , ed〉 of SSS(d)
using the transformation

ej =
1

j!

∣∣∣∣∣∣∣∣∣∣∣

m1 1 0 · · ·
m2 m1 2 0 · · ·
...

. . .
. . .

mj−1 mj−2 · · · m1 j − 1
mj mj−1 · · · m2 m1

∣∣∣∣∣∣∣∣∣∣∣
for every j ∈ [d].



NP-HARDNESS OF REED–SOLOMON DECODING 1557

Note that we need that (j!)−1 ∈ F, which holds if F has characteristic larger than
d. Since we also have

mj = (−1)j

∣∣∣∣∣∣∣∣∣∣∣

e1 1 0 · · ·
2e2 e1 1 0 · · ·

...
. . .

. . .

(j − 1)ej−1 ej−2 · · · e1 1
jej ej−1 · · · e2 e1

∣∣∣∣∣∣∣∣∣∣∣
for every j ∈ [d],

it follows that a set S ⊂ A implies a “yes” instance for MSS(d) iff it also implies a
“yes” instance for SSS(d).

3. Reduction from 1-in-3-SAT to MSS(d)MSS(d)MSS(d). Recall the 1-in-3-SAT problem
in which we are given a 3-SAT formula φ on n variables and m clauses and are asked
to determine if there exists an assignment z ∈ {0, 1}n satisfying exactly one literal in
each clause. It is known that this problem is NP-hard even for m = O(n) [Sch78].

In order to prove Theorem 1.2, we start by describing the reduction from 1-in-3-
SAT to MSS(d) and its properties. Henceforth, we denote by 1` the concatenation of
` ones and we let (1`)10 denote the positive integer whose decimal representation is 1`.

Reduction from 1-in-3-SAT to Subset-Sum. We start by recalling the standard
reduction from 1-in-3-SAT to Subset-Sum (already discussed in the proof overview in
subsection 1.2), which will be used in our reduction to MSS(d). In that reduction,
each variable (zt, zt) (with t ∈ [n]) is mapped to two integers a′t (corresponding to
zt) and b′t (corresponding to zt). The integers a′t and b′t and the target m′1 have the
following decimal representation of length (n+m):

• The decimal representations of a′t and b′t consist of two parts: a variable
region consisting of the leftmost n digits and a clause region consisting of the
(remaining) rightmost m digits.

• In their variable regions, a′t and b′t have a 1 at the tth digit and 0’s at the other
digits. We denote the variable part of a′t (respectively, b′t) by a′t

v
(respectively,

b′t
v
).

• In the clause region, for every j ∈ [m], a′t (respectively, b′t) has a 1 at the
jth location if zt (respectively, zt) appears in clause j and a 0 otherwise. We
denote the clause part of a′t (respectively, b′t) by a′t

c
(respectively, b′t

c
).

• We thus have that a′t = 10ma′t
v

+ a′t
c

(and similarly for b′t).
• The target m′1 is set to the integer whose decimal representation is the all

1’s, i.e., we set m′1 = 10m(1n)10 + (1m)10.
See Figure 1 for an illustration of the decimal representations. We now argue that
this reduction from 1-in-3-SAT to Subset-Sum is complete and sound. Indeed, given
a (1-in-3) satisfying assignment z to the 3-SAT formula φ, the subset S = {a′t | t ∈
[n], zt = 1} ∪ {b′t | t ∈ [n], zt = 0} satisfies∑

w∈S
w =

∑
t∈[n]
zt=1

a′t +
∑
t∈[n]
zt=0

b′t = m′1.

Conversely, a subset S ⊆ {a′t, b′t | t ∈ [n]} such that
∑
w∈S w = m′1 can be used to

construct a (1-in-3) satisfying assignment z to φ by setting zt = 1 if a′t ∈ S and 0
otherwise.

Our reduction from 1-in-3-SAT to MSS(d). Recall that an instance of MSS(d)
consists of a tuple 〈A, k,m1, . . . ,md〉. In our reduction, each variable (zt, zt) is mapped
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variable region clause region

n digits m digits

Target: m′1 = 111111 · · · · · · · · · · · · · · · · · · · · · · · · · · ·111111

Fig. 1. Decimal representations in the standard reduction from 1-in-3-SAT to Subset-Sum.

to 2d+1 − 2 distinct rational numbers: {at} ∪ {xt,i | i ∈ [2d − 2]} (corresponding to
zt) and {bt} ∪ {yt,i | i ∈ [2d − 2]} (corresponding to zt). Let {a′t, b′t | t ∈ [n]} be the
integers produced by the above standard reduction from 1-in-3-SAT to Subset-Sum.
We denote by a′t

v
(respectively, a′t

c
) the variable (respectively, clause) region of a′t.

Let ν be a natural number to be specified later on. Define

at := 10ν(10ma′t
v

+ a′t
c
),

bt := 10ν(10mb′t
v

+ b′t
c
).

(12)

For each t ∈ [n], we will explicitly construct two sets of 2d − 2 auxiliary rational
numbers Xt = {xt,i | i ∈ [2d − 2]} and Yt = {yt,i | i ∈ [2d − 2]} which satisfy the
following four properties:

Property (1): ∑
x∈Xt

x =
∑
y∈Yt

y = 0.

Property (2): ∑
x∈Xt

xk −
∑
y∈Yt

yk = bkt − akt for every k ∈ {2, . . . , d}.

Property (3): For any subset S ⊆
⋃
t∈[n]

(Xt ∪ Yt), either

∣∣∣∣∣∑
w∈S

w

∣∣∣∣∣ > 10m+2n+ν or∣∣∣∣∣∑
w∈S

w

∣∣∣∣∣ < 10ν .

Property (4): Every rational number in the set
⋃
t∈[n]

(Xt ∪ Yt) can be written as a

fraction whose numerator and denominator are integers of magnitudes
at most 10poly(n,d!). Moreover,∣∣∣∣∣∣

⋃
t∈[n]

(Xt ∪ Yt)

∣∣∣∣∣∣ = n · (2d+1 − 4).

Properties (1) and (2) will be used to ensure completeness, Property (3) will be used
to ensure soundness and Property (4) will guarantee the polynomial running-time.
Constructing such auxiliary rational numbers is the crux of our reduction.

We now define the set A :=
⋃
t∈[n]({at} ∪ {bt} ∪Xt ∪ Yt). We will observe that

|A| = n(2d+1 − 2) by showing that all the numbers {at}, {bt} and those in Xt and
Yt for t ∈ [n] are distinct. Let N := |A| = n(2d+1 − 2) and k = N/2. The targets
m1, . . . ,md are defined as
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large components region variable region clause region tiny components region

n digits m digits ν digits

1st moment: m1 = 000000· · · · · · · · · · ·000 111111· · · · · · · · · ·111 111111· · · · · · · · · ·111 000000· · · · · · · · ·· 000

Fig. 2. Decimal representations in the reduction from 1-in-3-SAT to MSS(d). The “large com-
ponents region” only contains zeros in {at, bt | t ∈ [n]} but contains nonzeros in {|xt,i|, |yt,i| | t ∈
[n], i ∈ [2d − 2]}.

m1 := 10ν(10m(1n)10 + (1m)10),

mj :=

n∑
t=1

ajt +

n∑
t=1

∑
x∈Xt

xj for every j ∈ {2, . . . , d}.(13)

Note that at (respectively, bt and m1) defined above are obtained by inserting ν zeros
to the right of the decimal representation of a′t (respectively, b′t and m′1). Therefore,
at = 10ν · a′t. Similarly, bt = 10ν · b′t and m1 = 10ν ·m′1 (see Figure 2 for a pictorial
illustration).

The next fact is immediate.

Fact 3.1. For any x ∈ {at, bt | t ∈ [n]} ∪ {m1}, we have

10ν < |x| < 10m+n+ν+1.

The next lemma is proved using Property (4) above (and its proof appears in
section 4).

Lemma 3.1. For any positive integer d, the total size of the instance of MSS(d)
constructed by our reduction is N = n · (2d+1 − 2) and every rational number has a
poly(n, d!)-digit representation in base 10.

In section 3.1, we will show how to construct rational numbers satisfying Prop-
erties (1), (2), (3), and (4). The proof of Theorem 1.2 will follow from the next
lemma along with Lemma 3.1 above. The proof of Theorem 1.1 will then follow from
Theorem 1.2 and Lemma 2.1.

Lemma 3.2 (main). There exists a satisfying assignment to a 1-in-3-SAT in-
stance φ(z1, . . . , zn) iff there exists a subset S ⊆ A of size |S| = n(2d − 1) such that
for every k ∈ [d], ∑

w∈S
wk = mk.

We point out that the size requirement on |S| in Lemma 3.2 is needed for the
reduction from MSS(d) to RS-BDD(d) given in Lemma 2.1 to hold.

We now give the proof of Theorem 1.2.

Proof of Theorem 1.2. Consider our above reduction from 1-in-3-SAT to MSS(d).
Recall that N = n(2d+1 − 2) and thus |S| = |A|/2 = N/2. From Lemma 3.1 above,
we know that every element constructed in the instance of MSS(d) has poly(n, d!)-
digit representation. Therefore, for any d = O(log n/ log log n), the reduction runs in
poly(n) time.

Let c > 0 be any sufficiently small absolute constant. The NP-hardness of
MSS(d) for any d < c logN/ log logN (under polynomial-time reductions) and for
any d < c logN (under quasi-polynomial-time reductions) over the field of rationals
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then follows from Lemma 3.2. By Lemma 3.1 above, we deduce the same hardness
results for MSS(d) over prime fields of size 2poly(N).

We now prove Lemma 3.2.

Proof of Lemma 3.2. We start by proving the completeness of our above reduction
from 1-in-3-SAT to MSS(d). We show that given any satisfying assignment z to the
1-in-3-SAT instance φ, there exists a subset S ⊆ A such that for every k ∈ [d],∑

w∈S
wk = mk.

Consider the following subset S of the set A:

S ,
⋃

t∈[n]:zt=1

{at}
⋃

t∈[n]:zt=1

Xt

⋃
t∈[n]:zt=0

{bt}
⋃

t∈[n]:zt=0

Yt.

Note that |S| = n(2d − 1) = N/2 since the number of auxiliary rational numbers
included in S corresponding to each t ∈ [n] is exactly equal to 2d − 2.

For every k ∈ [d], we have that

(14)
∑
w∈S

wk =
∑

t∈[n]:zt=1

(
akt +

∑
x∈Xt

xk

)
+

∑
t∈[n]:zt=0

bkt +
∑
y∈Yt

yk

 .

By Property (2) of the auxiliary rational numbers, we have that for any t ∈ [n]
and any k ∈ {2, 3, . . . , d}, ∑

x∈Xt

xk −
∑
y∈Yt

yk = bkt − akt .

Summing this equation over all t ∈ [n] such that zt = 0, we get that

(15)
∑

t∈[n]:zt=0

bkt +
∑
y∈Yt

yk

 =
∑

t∈[n]:zt=0

(
akt +

∑
x∈Xt

xk

)
.

Combining (14) and (15) above, we conclude that for every k ∈ {2, 3, . . . , d},

∑
w∈S

wk =

n∑
t=1

(
akt +

∑
x∈Xt

xk

)
= mk.

For k = 1, Property (1) implies that for every t ∈ [n],
∑
x∈Xt

x = 0 and
∑
y∈Yt

y = 0.
Therefore, (14) implies that

(16)
∑
w∈S

w =
∑

t∈[n]:zt=1

at +
∑

t∈[n]:zt=0

bt.

Recall the integers a′t, b
′
t, and m′1 produced by the standard reduction from 1-in-

3-SAT to Subset-Sum (defined earlier in this section). Note that
∑
t∈[n]:zt=1 a

′
t +∑

t∈[n]:zt=0 b
′
t = m′1. Therefore, we can rewrite (16) as
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∑
w∈S

w = 10ν ·

 ∑
t∈[n]:zt=1

a′t +
∑

t∈[n]:zt=0

b′t

 = 10ν ·m′1 = m1.

We now prove the soundness of our reduction. Let S be any solution to the
MSS(d) instance. That is, S ⊆ A is such that

∑
w∈S w

k = mk for every k ∈ [d].
Proposition 3.3 — which is stated below — shows that the auxiliary rational numbers
in S should sum to 0. Therefore, there exists a subset S′ ⊆ {at, bt | t ∈ [n]} such that∑
w∈S′ w = m1. By definition of at, bt, and m1, it follows that there exists a subset

of {a′t, b′t | t ∈ [n]} which sums to m′1. The soundness of our reduction then follows
from the soundness of the standard reduction from 1-in-3-SAT to Subset-Sum.

Proposition 3.3. Let S ⊆ A be such that
∑
w∈S w = m1. Let D =

⋃
t∈[n](Xt ∪

Yt) be the set of all the auxiliary rational numbers. Then,∑
y∈S∩D

y = 0.

Proof. Since
∑
w∈S w = m1, we have that∑

y∈S∩D
y +

∑
w∈S\D

w = m1.

Note that S \ D ⊆ {at, bt | t ∈ [n]}. Since the ν least significant digits of m1 and
those of each element of S \ D are all equal to 0, either |m1 −

∑
w∈S\D w| = 0 or

|m1−
∑
w∈S\D w| > 10ν . If |m1−

∑
w∈S\D w| = 0, then we are done. Henceforth, we

assume that |m1−
∑
w∈S\D w| > 10ν ; we will derive a contradiction. By Fact 3.1, the

elements of S \D as well as m1 all have magnitudes at most 10m+n+ν+1. Therefore,
|m1 −

∑
w∈S\D w| ≤ (2n + 1) · 10m+n+ν+1 < 10m+2n+ν . On the other hand, by

Property (3) of the auxiliary rational numbers, we know that either |
∑
y∈S∩D y| >

10m+2n+ν or |
∑
y∈S∩D y| < 10ν . Since |

∑
y∈S∩D y| = |m1 −

∑
w∈S\D w|, we get a

contradiction. Therefore,
∑
y∈S∩D y = 0.

3.1. Constructing the sets XtXtXt and YtYtYt of auxiliary rational numbers.
We now show how to construct the auxiliary rational numbers, starting from at, bt
described before, for every t ∈ [n]. We do so in Algorithm 1 below, which we call
the AuxiliaryVariableGenerator. Specifically, for every t ∈ [n], we construct
2(2d − 2) distinct auxiliary rational numbers which satisfy Properties (1), (2), (3),
and (4) stated above. The AuxiliaryVariableGenerator outputs the union of
the rational numbers generated in Algorithm 2, which we call the AtomicSolver,
using the recursive coupling idea described in section 1.2. We use 1` (respectively,
0`) to denote a column vector of ` ones (respectively, zeros). For any vector v, let vT

denote its transpose.
We now give the details of AtomicSolver(t, i, Rt,i) for any t ∈ [n] and i ∈

{2, 3, . . . , d}. Let ν = n2. For every t ∈ [n], i ∈ {2, 3, . . . , d} and r ∈ [i], we define
the functions f(t, i) := (i − 1)! · νt and g(t, i, r) := (t − 1)d2 + (i − 1)i + r, where νt
is the tth prime integer greater than n4. Using the prime number theorem [Sho09],
it follows that the number of primes in the interval [n4, n5] is larger than n, and thus
νn < n5. Since the primes are of size at most n5, they can be found in deterministic
polynomial time using the sieve of Eratosthenes.

We will implement the recursive coupling idea of the AtomicSolver described
in section 1.2, in terms of matrix algebra. For example, recall that in the first step
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Algorithm 1 AuxiliaryVariableGenerator

Input:
⋃
t∈[n]
{at, bt}

Output: Sets of auxiliary rational numbers Xt, Yt for every t ∈ [n].

1: for t ∈ [n] do
2: Xt = ∅
3: Yt = ∅
4: for i ∈ {2, . . . , d} do

5: Rt,i = (bit − ait) +
∑
y∈Yt

yi −
∑
x∈Xt

xi

6: Let
{
xt,i,j | j ∈ [2i−1]

}⋃{
yt,i,j | j ∈ [2i−1]

}
= AtomicSolver(t, i, Rt,i)

7: Let Xt = Xt

⋃
{xt,i,j | j ∈ [2i−1]} and Yt = Yt

⋃
{yt,i,j | j ∈ [2i−1]}

8: end for
9: end for

of the variable coupling, we set x1 − y1 = β, y2 − x2 = β, and x1 − y2 = α. We
can then express x1, x2, y1, y2 as a linear combination of α, β, where we use the extra
degree of freedom to choose x1 = −x2 , as follows: (x1, x2)T = 1

2

[
1 1
−1 −1

]
· (α, β)T ,

and (y1, y2)T = 1
2

[
1 −1
−1 1

]
· (α, β)T . In general, the polynomial equations give rise

to 2i − 1 linear constraints on 2i unknowns (x1, . . . , x2i−1 , y1, . . . , y2i−1). The extra
degree of freedom allows us to preserve the symmetry of the solution, which enables
us to describe the algorithm and its analysis in a clean form.

Note that for any pair (t, i), the value of αt,i,r for 1 ≤ r < i constructed by
AtomicSolver is a power of 10 and hence an integer. However, αt,i,i is a rational

Algorithm 2 AtomicSolver(t, i, Rt,i)

Input: t, i, Rt,i
Output: Set of auxiliary rational numbers {xt,i,j | j ∈ [2i−1]}

⋃
{yt,i,j | j ∈ [2i−1]}

1: Let νt be the tth prime integer greater than n4

2: Let f(t, i) = (i− 1)! · νt
3: Let g(t, i, r) = (t− 1)d2 + (i− 1)i+ r for all 1 < r < i
4: Let αt,i,1 = 10f(t,i)

5: Let αt,i,r = 10g(t,i,r) for all 1 < r < i
6: Let αt,i,i = Rt,i/(i!

∏
r∈[i−1]

αt,i,r)

7: Let αt,i = [αt,i,1, . . . , αt,i,i]
T

8: if i = 2 then

9: A2 =

[
1 1
−1 −1

]
and B2 =

[
1 −1
−1 1

]
10: else

11: Ai =

[
Ai−1 12i−2

Bi−1 −12i−2

]
and Bi =

[
Bi−1 12i−2

Ai−1 −12i−2

]
12: end if
13: Let [xt,i,1, . . . , xt,i,2i−1 ]T = 1

2 ·Ai · αt,i
14: Let [yt,i,1, . . . , yt,i,2i−1 ]T = 1

2 ·Bi · αt,i
15: Return {xt,i,j | j ∈ [2i−1]}

⋃
{yt,i,j | j ∈ [2i−1]}
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large components region variable region clause region

n-digits m-digits

tiny components region

ν-digits

αt,i,1 at, bt,m1 αt,i,2, . . . , |αt,i,i|

Fig. 3. Values of αt,i,r for any i ∈ {2, . . . , d} compared to those of at, bt, and m1.

number and might be negative. In section 4 (Proposition 4.6), we will show more
concrete bounds on the magnitudes of the αt,i,r. Figure 3 shows the magnitudes of
αt,i,r for any i ∈ {2, . . . , d} compared to the values of at, bt, and m1.

4. Verifying Properties (1), (2), (3), and (4). In this section, we prove
that the rational numbers generated by the AuxiliaryVariableGenerator (Alg-
orithm 1) satisfy Properties (1), (2), (3), and (4) given in section 3. This is done
in Lemmas 4.1, 4.2, and 3.1 (the last of which appeared in section 3 and is restated
below).

Lemma 4.1. For every t ∈ [n], the auxiliary rational numbers satisfy the following
conditions: ∑

x∈Xt

x =
∑
y∈Yt

y = 0,

∑
x∈Xt

xk −
∑
y∈Yt

yk = bkt − akt for every k ∈ {2, . . . , d}.

Lemma 4.2. For any subset S ⊆
⋃
t∈[n](Xt∪Yt) of the auxiliary rational numbers,

either ∣∣∣∣∣∑
w∈S

w

∣∣∣∣∣ > 10m+2n+ν or

∣∣∣∣∣∑
w∈S

w

∣∣∣∣∣ < 10ν .

Lemma 3.1. For any positive integer d, the total size of the instance of MSS(d)
constructed by our reduction is N = n · (2d+1 − 2) and every rational number has a
poly(n, d!)-digit representation in base 10.

In order to prove Lemmas 4.1, 4.2, and 3.1, we first state some properties of
the auxiliary rational numbers generated by the AtomicSolver(t, i, Rt,i) and prove
them in section 5.

Proposition 4.4. For any t ∈ [n] and any i ∈ {2, . . . , d}, AtomicSolver(t, i,
Rt,i), on input a rational Rt,i, returns two sets of auxiliary rational numbers {xt,i,j |
j ∈ [2i−1]} and {yt,i,j | j ∈ [2i−1]} which satisfy

2i−1∑
j=1

(xit,i,j − yit,i,j) = Rt,i,

2i−1∑
j=1

(xkt,i,j − ykt,i,j) = 0 for every k ∈ {1, . . . , i− 1}.
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Proposition 4.5. For any t ∈ [n] and i ∈ {2, 3, . . . , d},

2i−1∑
j=1

xt,i,j =

2i−1∑
j=1

yt,i,j = 0.

Proposition 4.6. For any t ∈ [n] and any i ∈ {2, . . . , d}, we have that

(a) i! ·
∏i
r=1 αt,i,r = Rt,i.

(b) 10n
4

< αt,i,1 < 10d!·n
5

.

(c) αt,i,r < 10n·d
2

for any 1 < r < i− 1.
(d) |αt,i,i| < 2.

(e)
∑i
r=2|αt,i,r| < 10ν−nd.

Proposition 4.7. For any t ∈ [n], i ∈ {2, . . . , d} and j ∈ [2i−1], we have that

10(i−1)!·νt − 10ν−nd ≤ 2 · |xt,i,j | ≤ 10(i−1)!·νt + 10ν−nd.

The same bounds also hold for yt,i,j.

Proposition 4.8. The following statements hold:
1. For every (t1, i1, j1) 6= (t2, i2, j2), we have that xt1,i1,j1 6= xt2,i2,j2 .
2. For every (t1, i1, j1) 6= (t2, i2, j2), we have that yt1,i1,j1 6= yt2,i2,j2 .
3. For every (t1, i1, j1), (t2, i2, j2), we have that xt1,i1,j1 6= yt2,i2,j2 .

4.1. Proof of Lemma 4.1. We now prove Lemma 4.1, which implies Proper-
ties (1) and (2) of the auxiliary rational numbers.

Proof of Lemma 4.1. From Proposition 4.5, we have that for any t ∈ [n] and

i ∈ {2, 3, . . . , d},
∑2i−1

j=1 xt,i,j =
∑2i−1

j=1 yt,i,j = 0. Summing up this equation over all
i ∈ {2, 3, . . . , d}, we get ∑

x∈Xt

x =
∑
y∈Yt

y = 0.

To prove the second part of Lemma 4.1, note that for any k ∈ {2, . . . , d},

∑
x∈Xt

xk −
∑
y∈Yt

yk =

d∑
i=2

2i−1∑
j=1

(xkt,i,j − ykt,i,j)

=

k−1∑
i=2

2i−1∑
j=1

(xkt,i,j − ykt,i,j) +

2k−1∑
j=1

(xkt,k,j − ykt,k,j)

+

d∑
i=k+1

2i−1∑
j=1

(xkt,i,j − ykt,i,j).

From the definition of the residual Rt,k, the first term satisfies

k−1∑
i=2

2i−1∑
j=1

(xkt,i,j − ykt,i,j) = bkt − akt −Rt,k.

Also, Proposition 4.4 implies that
∑2k−1

j=1
(xkt,k,j − ykt,k,j) = Rt,k and

∑d

i=k+1∑2i−1

j=1
(xkt,i,j − ykt,i,j) = 0. Therefore, we conclude that
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x∈Xt

xk −
∑
y∈Yt

yk = bkt − akt .

4.2. Proof of Lemma 4.2. Before we prove Lemma 4.2, we note that the
auxiliary rational numbers (xt,i,j and yt,i,j) are (± 1

2 )-linear combinations of {αt,i,r |
r ∈ [i]} terms. From parts (b) and (c) of Proposition 4.6, we note that every αt,i,r
is either of small magnitude, i.e., |αt,i,r| < 10nd

2

, or of fairly large magnitude, i.e.,

αt,i,1 > 10n
4

. Also, we note that for every pair (t, i) ∈ [n] × {2, . . . , d} there is
only one large magnitude term, i.e., αt,i,1. Therefore, an auxiliary rational number
xt,i,j(or yt,i,j) is a (± 1

2 )-linear combination of one large magnitude term αt,i,1 and
i− 1 small magnitude terms.

Recall that D is the set of all the auxiliary rational numbers

D = {xt,i,j , yt,i,j | t ∈ [n], i ∈ {2, 3, . . . , d}, j ∈ [2i−1]}.

For any auxiliary rational number z ∈ D, we can split z into terms of the form ± 1
2αt,i,r

with large magnitude and terms (of the same form) with small magnitudes, namely,

z = zU + zL,

where zU is the term with large magnitude and zL is the linear combinations of terms
with small magnitudes. We now state and prove two properties of the small magnitude
sum and the large magnitude sum which will imply the proof of Lemma 4.2.

Claim 4.1. For any subset S ⊆ D,
∑
z∈S zL < 10ν .

Proof. By the triangle inequality, for any subset S ⊆ D,

∑
z∈S

zL ≤
1

2

n∑
t=1

d∑
i=2

i∑
r=2

|αt,i,r|.

By Proposition 4.6(e), we have that for any (t, i) ∈ [n] × {2, . . . , d},
∑i
r=2|αt,i,r| ≤

10ν−nd. Summing over all (t, i), we get that∑
z∈S

zL ≤ nd · 10ν−nd < 10ν .

Claim 4.2. Let S ⊆ D such that
∑
z∈S zU 6= 0; then

∣∣∑
z∈S zU

∣∣ ≥ 1
2 · 10n

4

.

Proof. We show that for any subset of the auxiliary rational numbers, the contri-
bution of the large magnitude terms is either 0 or larger than 1

2 · 10n
4

. Note that all
the large magnitude terms, i.e., αt,i,1 for any (t, i), are powers of 10 whose exponent

is larger than n4 and are therefore divisible by 1
2 · 10n

4

. Thus,
∣∣∑

z∈S zU
∣∣ is divisible

by 1
2 ·10n

4

. If it is nonzero, then it is a nonzero multiple of 1
2 ·10n

4

and is hence larger

than 1
2 · 10n

4

.

The proof of Lemma 4.2 now follows by combining Claims 4.1 and 4.2.

Proof of Lemma 4.2. For any subset S ⊆ D, we can split the sum of the rational
numbers as ∑

z∈S
z =

∑
z∈S

zU +
∑
z∈S

zL.
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If
∑
z∈S zU 6= 0, then from Claims 4.1 and 4.2 we have∣∣∣∣∣∑

z∈S
z

∣∣∣∣∣ ≥
∣∣∣∣∣∑
z∈S

zU

∣∣∣∣∣−
∣∣∣∣∣∑
z∈S

zL

∣∣∣∣∣
≥ 1

2
· 10n

4

− 10ν = Ω(10n
4

) > 10m+2n+ν [since ν = n2 and m = o(n4)].

On the other hand, if
∑
z∈S zU = 0, then from Claim 4.1,∣∣∣∣∣∑

z∈S
z

∣∣∣∣∣ =

∣∣∣∣∣∑
z∈S

zL

∣∣∣∣∣ < 10ν .

4.3. Proof of Lemma 3.1.

Proof of Lemma 3.1. In our construction of the instance of MSS(d), we create two
integers, at and bt, and 2d+1−4 auxiliary rational numbers, Xt∪Yt, corresponding to
each of the n literals in the 1-in-3-SAT instance. From Claim 4.6 below, we know that
all rational numbers in the set A are distinct. Therefore, the size of the set A in the
instance of MSS(d) is N = n(2d+1−2). Now we show that every element constructed
in the instance of MSS(d) has a poly(n, d!)-digit representation.

From Fact 3.1, Proposition 4.7 and Claim 4.3 (which is given below), we know
that the magnitudes of all the numbers generated by the reduction are bounded by
10poly(n,d!). Therefore, to complete the proof, it remains to show that the magnitudes
of denominators of all the rational numbers in the instance of MSS(d) are also bounded
by 10poly(n,d!).

We observe from the definitions of at and bt (see (12)) that they are integers for
every t ∈ [n]. Also, for any t ∈ [n] and i ∈ {2, . . . , d}, each αt,i,r with 1 ≤ r ≤ i − 1
and that is constructed by AtomicSolver(t, i, Rt,i) is a power of 10, and hence
an integer, but αt,i,i is a rational number. Each auxiliary rational number generated
by AtomicSolver(t, i, Rt,i) is therefore a rational number due to the contribution
from αt,i,i. From Claim 4.5 below, it follows that the denominator of every rational
number in the instance of MSS(d) has magnitude at most 10poly(n,d!) and therefore
has a poly(n, d!) digit representation.

The following claims bound the magnitudes of various terms in the MSS(d) in-
stance. See Appendix A.1 for their proofs.

Claim 4.3. For every k ∈ {2, . . . , d},

|mk| ≤ 10k·d!·n
6

.

We now bound the magnitude of the denominators of αt,i,i for every (t, i) ∈
[n] × {2, . . . , d}. This bound will be used in Claim 4.5 to bound the magnitudes of
denominators of all the rational numbers in the instance of MSS(d). Let D(x) denote
the magnitude of the irreducible denominator of a rational number x.

Claim 4.4. For any (t, i) ∈ [n]× {2, . . . , d},

D(αt,i,i) ≤ 10(i!)
2·n6

.

Claim 4.5. For any x ∈ A
⋃
{m1, . . . ,md},

D(x) < 10poly(n,d!).

Claim 4.6. All rational numbers in the set A are distinct.
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5. Proofs of the helper propositions, Propositions 4.4, 4.5, 4.6, 4.7, 4.8.
In this section, we prove the helper propositions stated in the previous section.

We need the following claim in order to prove Proposition 4.4.

Claim 5.1. For any i ∈ {2, . . . , d}, let Ai and Bi be the matrices defined in
the description of AtomicSolver (Algorithm 2), and let {αr | r ∈ [i]} be rational
numbers. If 

x1
x2
...

x2i−1

 =
1

2
·Ai ·


α1

α2

...
αi

 , and


y1
y2
...

y2i−1

 =
1

2
·Bi ·


α1

α2

...
αi

 ,
then {xj | j ∈ [2i−1]} and {yj | j ∈ [2i−1]} satisfy

2i−1∑
j=1

(xkj − ykj ) = 0 for every k ∈ {1, . . . , i− 1},

2i−1∑
j=1

(xij − yij) = i! ·
i∏

r=1

αr.

Proof of Proposition 4.4. We first show a structural property of the auxiliary rat-
ional numbers generated by any AtomicSolver. The proof of Proposition 4.4 follows
from it.

Note that Claim 5.1 is independent of t and the choice of the α terms. Recall the
operation of AtomicSolver(t, i, Rt,i) for any (t, i) ∈ [n]×{2, . . . , d}. It returns two
sets of auxiliary rational numbers {xt,i,j | j ∈ [2i−1]} and {yt,i,j | j ∈ [2i−1]} which
are constructed using matrices Ai and Bi. Using Claim 5.1, it then follows that these
auxiliary rational numbers satisfy

2i−1∑
j=1

(xit,i,j − yit,i,j) = i! ·
i∏

r=1

αt,i,r,

2i−1∑
j=1

(xkt,i,j − ykt,i,j) = 0 for every k ∈ {1, . . . , i− 1}.

Using Proposition 4.6(a), we get that

2i−1∑
j=1

(xit,i,j − yit,i,j) = Rt,i.

This concludes the proof of Proposition 4.4.

Now it remains to prove Claim 5.1.

Proof of Claim 5.1. We proceed by induction on i. For the base case, consider
i = 2. From the definition of A2 and B2, we get that

x1 =
α1

2
+
α2

2
,

x2 = −α1

2
− α2

2
,
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y1 =
α1

2
− α2

2
,

y2 = −α1

2
+
α2

2
.

Therefore,

x1 + x2 − y1 − y2 = 0,

x21 + x22 − y21 − y22 = 2 · α1 · α2,

and the claim thus holds for i = 2. We now assume that the induction hypothesis
holds for all i < ` ≤ d. For i = `, we have that

x1
x2
...

x2`−1

 =
1

2
·A` ·


α1

α2

...
α`

 and


y1
y2
...

y2`−1

 =
1

2
·B` ·


α1

α2

...
α`

 .
From the recursive definitions of the matrices A` and B` in Algorithm 2, we can

split the above equations as
x1
x2
...

x2`−2

 =
1

2
·A`−1 ·


α1

α2

...
α`−1

+
1

2
·


α`
α`
...
α`

 ,

x2`−2+1

x2`−2+2
...

x2`−1

 =
1

2
·B`−1 ·


α1

α2

...
α`−1

− 1

2
·


α`
α`
...
α`

 ,

y1
y2
...

y2`−2

 =
1

2
·B`−1 ·


α1

α2

...
α`−1

+
1

2
·


α`
α`
...
α`

 ,

y2`−2+1

y2`−2+2
...

y2`−1

 =
1

2
·A`−1 ·


α1

α2

...
α`−1

− 1

2
·


α`
α`
...
α`

 .
Equivalently, they can be rewritten as

xj =

{
x′j + 1

2 · α` if j ≤ 2`−2,
y′j−2`−2 − 1

2 · α` if j > 2`−2.
(17)

Similarly,

yj =

{
y′j + 1

2 · α` if j ≤ 2`−2,
x′j−2`−2 − 1

2 · α` if j > 2`−2,
(18)

where by the induction hypothesis the elements of {x′j , y′j | j ∈ [2`−2]} satisfy
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2`−2∑
j=1

(x′
k
j − y′

k
j ) = 0 for every k ∈ {1, . . . , `− 2},

2`−2∑
j=1

(x′
`−1
j − y′`−1j ) = (`− 1)! ·

`−1∏
r=1

αr.

We now use the recursive definitions of xj , yj from (17) and (18) and the induction
hypothesis to show the following set of equalities:

2`−1∑
j=1

(xkj − ykj ) = 0 for every k ∈ {1, . . . , `− 1},

2`−1∑
j=1

(x`j − y`j) = `! ·
∏̀
r=1

αr.

We first use the recursive definitions of xj , yj from (17) and (18) to get the equa-
tions in terms of x′j , y

′
j . On reordering and massaging the terms a bit, we get that for

any k ∈ N,

2`−1∑
j=1

(xkj − ykj )

=

2`−2∑
j=1

((
x′j +

1

2
· α`
)k
−
(
y′j +

1

2
· α`
)k)

+

2`−1∑
j=2`−2+1

((
y′j−2`−2 −

1

2
· α`
)k
−
(
x′j−2`−2 − 1

2
· α`
)k)

=

2`−2∑
j=1

((
x′j +

1

2
· α`
)k
−
(
x′j −

1

2
· α`
)k)

−
2`−2∑
j=1

((
y′j +

1

2
· α`
)k
−
(
y′j −

1

2
· α`
)k)

(reordering terms)

=

2`−2∑
j=1

2

k∑
r=0

r≡1 mod 2

1

2r
·
(
k

r

)
x′
k−r
j αr`


−

2`−2∑
j=1

2

k∑
r=0

r≡1 mod 2

1

2r
·
(
k

r

)
y′
k−r
j αr`

 (expanding the terms in the summation)

=

2`−2∑
j=1

2

k∑
r=0

r≡1 mod 2

1

2r
·
(
k

r

)(
x′
k−r
j − y′k−rj

)
αr`


=

k∑
r=0

r≡1 mod 2

1

2r−1
·
(
k

r

)2`−2∑
j=1

(
x′
k−r
j − y′k−rj

)αr` (switching summations).
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First, let us consider the case k ≤ ` − 1. We will now show that the inner
summation is 0 for all k ≤ ` − 1. Note that r is an odd integer ranging from 0 to `,
hence r ≥ 1. Therefore, k − r ≤ ` − 2. Recall that from the induction hypothesis,

we have
∑2`−2

j=1 (x′
k
j − y′

k
j ) = 0 for every k ∈ {1, . . . , ` − 2} . This implies that each

summation is 0, i.e.,
∑2`−2

j=1 (x′
k−r
j − y′k−rj ) = 0. Hence, it follows that

2`−1∑
j=1

(xkj − ykj ) = 0 for k ∈ {1, . . . , `− 1}.

Similarly, for k = `, we note the term corresponding to r = 1 is the only sur-
viving term in the summation. The remaining terms corresponding to r > 1 in the
summation are all 0 by the induction hypothesis.

2`−1∑
j=1

(x`j − y`j) =
∑̀
r=0

r≡1 mod 2

1

2r−1
·
(
`

r

)2`−2∑
j=1

(x′
`−r
j − y′`−rj )

αr`

=

(
`

1

)
· α`

2`−2∑
j=1

(x′
`−1
j − y′`−1j )

+
∑̀
r=2

r≡1 mod 2

1

2r−1
·
(
`

r

)2`−2∑
j=1

(x′
`−r
j − y′`−rj )

αr`

=

(
`

1

)
· α`

2`−2∑
j=1

(x′
`−1
j − y′`−1j ) (by induction hypothesis)

= ` · (`− 1)! ·
`−1∏
r=1

αr · α` (by induction hypothesis)

= `! ·
∏̀
r=1

αr.

This concludes the proof of Claim 5.1.

Proof of Proposition 4.5. The proof uses the recursive structure of the matrices
Ai and Bi. Recall that 1` denotes a vector of ` ones and 0` denotes a vector of `
zeros. Also recall the definitions of xt,i,j and yt,i,j from Algorithm 2:[

xt,i,1 . . . xt,i,2i−1

]T
=

1

2
·Ai ·

[
αt,i,1 . . . αt,i,i

]T
and[

yt,i,1 . . . yt,i,2i−1

]T
=

1

2
·Bi ·

[
αt,i,1 . . . αt,i,i

]T
.

Therefore, for any (t, i) ∈ [n]× {2, . . . , d},
2i−1∑
j=1

xt,i,j =
1

2
· (12i−1

)T ·Ai ·
[
αt,i,1 . . . αt,i,i

]T
.

Similarly, the sum of all the {yt,i,j | j ∈ [2i−1]} can be written as

2i−1∑
j=1

yt,i,j =
1

2
· (12i−1

)T ·Bi ·
[
αt,i,1 . . . αt,i,i

]T
.
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We show by induction on i ≥ 2 that

(12i−1

)T ·Ai = (0i)T and (12i−1

)T ·Bi = (0i)T .

For the base case i = 2, it can be verified that[
1 1

]
·A2 =

[
1 1

]
·
[

1 1
−1 −1

]
=
[
0 0

]
and

[
1 1

]
·B2 =

[
1 1

]
·
[

1 −1
−1 1

]
=
[
0 0

]
.

We now assume that the induction hypothesis holds for all i < ` ≤ d. For i = `, we
observe that

(12`−1

)T ·Ai =
[
(12`−2

)T (12`−2

)T
]
·

[
A`−1 12`−2

Bi−1 −12`−2

]
=
[
(12`−2

)T ·A`−1 + (12`−2

)T ·B`−1 0
]
.

By the induction hypothesis, we have that (12`−2

)T ·A`−1+(12`−2

)T ·B`−1 = (0`−1)T .
Therefore,

(12`−1

)T ·A` =
[
0`−1 0

]
.

Similarly,

(12`−1

)T ·B` =
[
(12`−2

)T ·B`−1 + (12`−2

)T ·A`−1 0
]

=
[
0`−1 0

]
.

This concludes the proof of Proposition 4.5.

We now show certain bounds on the magnitudes of αt,i,r and hence on the mag-
nitudes of the auxiliary rational numbers xt,i,j and yt,i,j . In order to prove Proposi-
tion 4.6, we will need the following claim.

Claim 5.2. For any t ∈ [n], i ∈ {2, . . . , d} and j ∈ [2i−1],

|xt,i,j − yt,i,j | = αt,i,2.

Proof. We use the recursive matrix definitions given in Algorithm 2 to show that
for every (t, i, j) ∈ [n]× {2, . . . , d} × [2i−1], it is the case that

|xt,i,j − yt,i,j | = αt,i,2.

From the definition of {xt,`,j , yt,`,j | j ∈ [2`−1]} given in Algorithm 2, we know
that 

xt,`,1
xt,`,2

...
xt,`,2`−1

 =
1

2
·A` ·


αt,`,1
αt,`,2

...
αt,`,`

 and


yt,`,1
yt,`,2

...
yt,`,2`−1

 =
1

2
·B` ·


αt,`,1
αt,`,2

...
αt,`,`

 .
Therefore, 

xt,`,1 − yt,`,1
xt,`,2 − yt,`,2

...
xt,`,2`−1 − yt,`,2`−1

 =
1

2
· (A` −B`) ·


αt,`,1
αt,`,2

...
αt,`,`

 .
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From the recursive definition of the matrices A` =

[
A`−1 12`−2

B`−1 −12`−2

]
and

B`=

[
B`−1 12`−2

A`−1 −12`−2

]
, we get that A` − B` =

[
A`−1 − B`−1 02`−2

B`−1 − A`−1 02`−2

]
. Therefore, we get

the following closed form expression for A` −B`:

A`−B`=


A2 − B2 02 · · · 02

B2 − A2 02 · · · 02

.

.

.
A2 − B2 02 · · · 02

B2 − A2 02 · · · 02

=


0 2 0 · · · 0
0 −2 0 · · · 0

.

.

.
0 2 0 · · · 0
0 −2 0 · · · 0

 (
A2−B2 =

[
0 2
0 −2

])
,

and therefore for every j ∈ [2`−1],

|xt,`,j − yt,`,j | = αt,`,2.

We are now ready to prove Proposition 4.6.

Proof of Proposition 4.6.
(a) This follows from the definition of αt,i,i in Algorithm 2.
(b) αt,i,1 = 10f(t,i) = 10(i−1)!νt , where νt is the tth prime greater than n4. Since

νt is increasing in t, and since for any fixed t, αt,i,1 is increasing in i, we have that
maxt,i{αt,i,1} = αn,d,1 and mint,i{αt,i,1} = α1,2,1. As we noted earlier, the prime
number theorem implies that the nth prime greater than n4 has value at most n5.
Therefore,

10n
4

< 10ν1 = α1,2,1 ≤ αt,i,1 ≤ αn,d,1 = 10(d−1)!·νn < 10d!·n
5

.

(c) From the definitions given in Algorithm 2, for every 1 < r < i − 1, αt,i,r =
10g(t,i,r). Note that maxt,i,r{g(t, i, r)} = g(n, d, d− 1) ≤ nd2 and therefore,

αt,i,r ≤ αn,d,d−1 = 10g(n,d,d−1) ≤ 10n·d
2

.

(d) and (e) We fix an arbitrary t ∈ [n]. We prove by induction on i ∈ {2, . . . , d}
that

(19) |αt,i,i| < 2 and

i∑
r=2

|αt,i,r| ≤ 10ν−nd.

For the base case i = 2, we have that αt,2,2 =
b2t−a

2
t

2·αt,2,1
. We recall from the definitions

of at, bt in (12) that the variable part of at is the same as that of bt. Therefore,

(20) |bt − at| ≤ 10m+ν .

Also, from Fact 3.1, we know that |at| and |bt| are at most 10m+ν+n+1. For brevity,
let M := m+ ν + n+ 1. Note that since m < O(n3),M = O(n3). So we get that

|b2t − a2t | = |(bt − at)(bt + at)| ≤ 10m+ν · 2 ·max{at, bt} < 10m+ν · 2 · 10M .

Since m+ ν < M , we have that

|αt,2,2| <
10m+ν · 2 · 10M

2 · 10f(t,2)
< 102M−f(t,2).
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By the definitions given in Algorithm 2, we have that f(t, 2) = νt and that νt is a
prime larger than n4. Also, we have that M = O(n3) and f(t, 2) > 2M . Therefore,
it follows that |αt,2,2| < 1 < 10ν−nd and the bounds in (19) hold for i = 2.

We now assume that the induction hypothesis holds for all i < ` ≤ d, and we
prove that it holds for i = `. We need to show that

|αt,`,`| < 2 and
∑̀
r=2

|αt,`,r| ≤ 10ν−nd.

We first bound the magnitude of αt,`,` for any t ∈ [n]. From the definitions given in
Algorithm 2, we have that

|αt,`,`| =
|Rt,`|

i! ·
∏

r∈[`−1]
αt,`,r

, where Rt,` = b`t − a`t +

`−1∑
u=2

2u−1∑
v=1

y`t,u,v − x`t,u,v.

We will bound each individual term in the definition of αt,`,` separately.

The term |b`t − a`t| in Rt,` can be factorized as |b`t − a`t| = |(bt − at)(
∑`−1
k=0 b

k
t a
`−1−k
t )|.

As noted earlier in (20), |bt − at| < 10m+ν < 10M . Also, from Fact 3.1, we have that
max{at, bt} < 10M . Thus, we get that

(21)

|b`t − a`t| =

∣∣∣∣∣(bt − at)
(
`−1∑
k=0

bkt a
`−1−k
t

)∣∣∣∣∣
< 10M · ` ·max{a`−1t , b`−1t }
≤ 10M · ` · 10M(`−1) = ` · 10M`.

Using the definitions of αt,`,r, the denominator in the expression for αt,`,` can be
written as

(22)
`! ·

`−1∏
r=1

αt,`,r = `! · 10
f(t,`)+

`−1∑
r=2

g(t,`,r)

≥ `! · 10f(t,`)+g(t,`,2).

Now to bound the magnitude of
∣∣∣∑`−1

u=2

∑2u−1

v=1 y`t,u,v − x`t,u,v
∣∣∣, we apply the triangle

inequality to obtain∣∣∣∣∣∣
`−1∑
u=2

2u−1∑
v=1

y`t,u,v − x`t,u,v

∣∣∣∣∣∣ ≤
`−1∑
u=2

2u−1∑
v=1

|y`t,u,v − x`t,u,v|

=

`−1∑
u=2

2u−1∑
v=1

∣∣∣∣∣(yt,u,v − xt,u,v)
(
`−1∑
k=0

ykt,u,vx
`−1−k
t,u,v

)∣∣∣∣∣
≤

`−1∑
u=2

2u−1∑
v=1

|(yt,u,v − xt,u,v)| · ` ·max{|xt,u,v|`−1, |yt,u,v|`−1}.

The last inequality follows from the fact that |xt,u,v| and |yt,u,v| are much larger than
1 for all (t, u, v), which was shown in Proposition 4.7. Using Claim 5.2, we know that
for any (t, u, v) ∈ [n]× {2, . . . , `− 1} × [2u−1],

|xt,u,v − yt,u,v| = αt,u,2 = 10g(t,u,2).
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Also, from the construction of the auxiliary rational numbers in Algorithm 2, it follows
that for any t ∈ [n] and u ∈ {2, . . . , d}, each xt,u,v and yt,u,v for v ∈ [2u−1], is a (± 1

2 )-
linear combination of {αt,u,r | r ∈ [u]}. Therefore,

max{|xt,u,v|, |yt,u,v|} ≤
1

2

u∑
r=1

|αt,u,r|.

Since u < `, using the induction hypothesis, we know that
∑u
r=2|αt,u,r| < 10ν−nd.

So, we get that

max{|xt,u,v|, |yt,u,v|} ≤
1

2
|αt,u,1|+

1

2

u∑
r=2

|αt,u,r| <
1

2
(10f(t,u) + 10ν−nd) < 10f(t,u).

From these observations, we get that∣∣∣∣∣∣
`−1∑
u=2

2u−1∑
v=1

y`t,u,v − x`t,u,v

∣∣∣∣∣∣ ≤
`−1∑
u=2

2u−1∑
v=1

10g(t,u,2) · ` · (10f(t,u))`−1.

Note that max
u
{g(t, u, 2)} = g(t, ` − 1, 2) and for any fixed t, we have that f(t, i) is

increasing in i. Therefore, f(t, u) ≤ f(t, `− 1) for all u ≤ `− 1. Thus,

(23)

∣∣∣∣∣∣
`−1∑
u=2

2u−1∑
v=1

y`t,u,v − x`t,u,v

∣∣∣∣∣∣ ≤ ` · 2` · 10g(t,`−1,2) · 10(`−1)f(t,`−1).

Combining (21), (22), and (23), we get the following upper bound on the magnitude
αt,`,`:

|αt,`,`| =
|Rt,`|

`! ·
`−1∏
r=1

αt,`,r

≤ |b`t − a`t|

`! ·
`−1∏
r=1

αt,`,r

+

∣∣∣∣∣∣
`−1∑
u=2

2u−1∑
v=1

y`t,u,v − x`t,u,v

∣∣∣∣∣∣
`! ·

`−1∏
r=1

αt,`,r

≤ ` · 10M`

`! · 10f(t,`)+g(t,`,2)
+
` · 2` · 10g(t,`−1,2)+(`−1)f(t,`−1)

`! · 10f(t,`)+g(t,`,2)
.

We now show that each of the two summands in the last equation is less than 1, and
thus |αt,`,`| < 2.
The first term can be simplified by plugging in the definition of f(t, `) and using the
fact that g(t, `, r) > 2, which yields

` · 10M`

`! · 10f(t,`)+g(t,`,2)
<

1

(`− 1)!
· 10M ·`−(`−1)!·νt−2.

Since ` ·M < (`− 1)! · νt, it follows that

` · 10M`

`! · 10f(t,`)+g(t,`,2)
< 1.
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For the second term, we note that

f(t, `) = (`− 1)! · νt = (`− 1) · (`− 2)! · νt = (`− 1) · f(t, `− 1)

and for any ` ≥ 2,
g(t, `, 2)− g(t, `− 1, 2) = 2`− 2 ≥ 2.

Moreover, for any ` ≥ 2, we have 2`/(`− 1)! ≤ 4. Therefore,

` · 2` · 10g(t,`−1,2)+(`−1)f(t,`−1)

`! · 10f(t,`)+g(t,`,2)
=

2`

(`− 1)!
· 10g(t,`−1,2)−g(t,`,2) · 10(`−1)f(t,`−1)−f(t,`)

≤ 4 · 10−1

< 1.

Now that we have established |αt,`,`| < 2, we show that
∑`
r=2|αt,`,r| < 10ν−nd. We

split this summation into two terms as follows:∑̀
r=2

|αt,`,r| =
`−1∑
r=2

|αt,`,r|+ |αt,`,`|.

From the definition of αt,`,r for 1 < r < `, we have that

`−1∑
r=2

|αt,`,r| =
`−1∑
r=2

10g(t,`,r) < 10g(t,`,`−1)+1.

Since g(t, i, r) is increasing in each value of (t, i, r), we have that

g(t, `, `− 1) + 1 ≤ g(n, d, d− 1) + 1 = n · d2.

Recall that ν = n2, and therefore, for any d = o(
√
n), we have that

10g(t,`,`−1)+1 ≤ 10n·d
2

≤ 10ν−nd−1.

Therefore, it follows that∑̀
r=2

|αt,`,r| ≤
`−1∑
r=2

|αt,`,r|+ |αt,`,`| < 10ν−nd−1 + 2 < 10ν−nd.

This concludes the proof of Proposition 4.6.

Proof of Proposition 4.7. From the definition of αt,i,r in Algorithm 2, we know
that each auxiliary rational number is a (± 1

2 )-linear combination of {αt,i,r | r ∈ [i]},
i.e.,

xt,i,j =

i∑
r=1

ur · αt,i,r with ur ∈
{
±1

2

}
.

Therefore,

1

2
· |αt,i,1| −

1

2
·

i∑
r=2

|αt,i,r| ≤

∣∣∣∣∣
i∑

r=1

ur · αt,i,r

∣∣∣∣∣ ≤ 1

2
· |αt,i,1|+

1

2
·

i∑
r=2

|αt,i,r|.

Using Proposition 4.6 (e), we know that
∑i
r=2|αt,i,r| ≤ 10ν−nd and recall from defi-

nitions given in Algorithm 2 that αt,i,1 = 10(i−1)!·νt . Therefore,

1

2
· (10(i−1)!·νt − 10ν−nd) ≤ |xt,i,j | ≤

1

2
· (10(i−1)!·νt + 10ν−nd).

This concludes the proof of Proposition 4.7.



1576 V. GANDIKOTA, B. GHAZI, AND E. GRIGORESCU

For any two integral tuples (p1, p2, . . . , pd) and (q1, q2, . . . , qd) of the same dimen-
sion, we say that (p1, p2, . . . , pd) > (q1, q2, . . . , qd) if there is an i ∈ [d] such that
pi > qi and pj = qj for all j < i.

Proof of Proposition 4.8. Let t1, t2 ∈ [n], i1, i2 ∈ {2, . . . , d}, j1 ∈ [2i1 − 1], and
j2 ∈ [2i2 −1]. If (t1, i1, j1) = (t2, i2, j2), then from Claim 5.2, we know that |xt1,i1,j1 −
yt1,i1,j1 | = αt,i,2 6= 0 and it follows that xt1,i1,j1 6= yt1,i1,j1 . We now show that if
(t1, i1, j1) 6= (t2, i2, j2), then xt1,i1,j1 6= xt2,i2,j2 . The proof holds if either or both the
xt,i,j ’s are replaced with yt,i,j . Let

xt1,i1,j1 = u1 · 10(i1−1)!·νt1 +

i1∑
r=2

ur · αt1,i1,r for some ur ∈
{
±1

2

}
and

xt2,i2,j2 = v1 · 10(i2−1)!·νt2 +

i2∑
r=2

vr · αt2,i2,r for some vr ∈
{
±1

2

}
.

If xt1,i1,j1 = xt2,i2,j2 , then on reordering the terms we get

(24)
∣∣∣u1 · 10(i1−1)!·νt1 − v1 · 10(i2−1)!·νt2

∣∣∣ =

∣∣∣∣∣
i2∑
r=2

vr · αt2,i2,r −
i1∑
r=2

ur · αt1,i1,r

∣∣∣∣∣ .
Note that if |u1 · 10(i1−1)!·νt1 − v1 · 10(i2−1)!·νt2 | is nonzero, then using the fact that
νt1 and νt2 are larger than n4, we have that∣∣∣u1 · 10(i1−1)!·νt1 − v1 · 10(i2−1)!·νt2

∣∣∣ ≥ 10n
4

.

But from part (e) of Proposition 4.6, we have that∣∣∣∣∣
i2∑
r=2

vr · αt2,i2,r −
i1∑
r=2

ur · αt1,i1,r

∣∣∣∣∣ ≤ 1

2

i2∑
r=2

|αt2,i2,r|+
1

2

i1∑
r=2

|αt1,i1,r| ≤ 10ν−nd,

which yields a contradiction since ν−nd < n4. Therefore, the LHS of (24) is 0. Since
u1, v1 ∈ {± 1

2}, it follows that u1 = v1. Also, since νt1 and νt2 are primes larger than
n4 and i1, i2 ≤ d < n, (i1 − 1)!νt1 = (i2 − 1)!νt2 holds only if t1 = t2 and i1 = i2.

Let us assume that t1 = t2 = t, i1 = i2 = i, and j1 > j2. If xt,i,j1 = xt,i,j2 , then
(24) implies that

i∑
r=2

(vr − ur) · αt,i,r = 0.

Since (vr − ur) ∈ {0,±1}, there exists a {0,±1}-linear combination of αt,i,r equal
to 0. If ur = vr for every r ∈ {2, . . . , i}, then j1 = j2 since each auxiliary rational
number is a distinct linear combination of the αt,i,r’s. So, there exists at least one
r ∈ {2, . . . , i} such that ur 6= vr. Let r∗ be the largest such r. We know that

0 =

∣∣∣∣∣
i∑

r=2

(vr − ur) · αt,i,r

∣∣∣∣∣
=

∣∣∣∣∣(vr∗ − ur∗) · αt,i,r∗ +

r∗−1∑
r=2

(vr − ur) · αt,i,r

∣∣∣∣∣ since (vr − ur = 0 for r > r∗)

≥

∣∣∣∣∣|αt,i,r∗ | − |
r∗−1∑
r=2

(vr − ur) · αt,i,r|

∣∣∣∣∣ since (|a+ b| ≥ | |a| − |b| |).
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Recall that each αt,i,r = 10g(t,i,r) for r ∈ {2, . . . , i − 1} is a distinct power of 10 and

|αt,i,i| < 2. Since r∗ − 1 < i , the term
∑r∗−1
r=2 (vr − ur) · αt,i,r is a {0,±1} linear

combination of different powers of 10. So,

2 ≤

∣∣∣∣∣
r∗−1∑
r=2

(vr − ur) · αt,i,r

∣∣∣∣∣ ≤ 2 · 10g(t,i,r
∗−1).

Now either r∗ = i, in which case |αt,i,i| < 2, or r∗ < i, and |αt,i,i| = 10g(t,i,r
∗) ≥

2 · 10g(t,i,r
∗−1). From these observations, it follows that, |αt,i,r∗ | −

∣∣∣∑r∗−1
r=2 (vr − ur) ·

αt,i,r

∣∣∣ 6= 0, which is a contradiction. Therefore, j1 = j2.

6. Existence of (inhomogeneous) PTE solutions over general finite
fields. Consider a general inhomogenenous PTE system of degree d:

x1 + x2 + · · ·+ xs = y1 + y2 + · · ·+ ys + r1,

x21 + x22 + · · ·+ x2s = y21 + y22 + · · ·+ y2s + r2,

. . .

xd1 + xd2 + · · ·+ xds = yd1 + yd2 + · · ·+ yds + rd,

where r1, r2, . . . , rd are arbitrary given field elements, x1, . . . , xs, y1, . . . , ys are the
variables, and s is the size of the inhomogeneous PTE solution. Note that this system
generalizes the one (†) that plays a key role in our NP-hardness proof for RS decoding.
We next show that this system always has a solution (for any field F = Fp` , any

d < |F|1/2−δ, and any δ > 0).

Theorem 6.1. Let F be a finite field, r1, r2, . . . , rd ∈ F, and d be a positive integer
such that d ≤ |F|1/2−δ. Then, there exists a solution in F to the system {

∑s
i=1 x

j
i −∑s

i=1 y
j
i = rj : j ∈ [d]} of size s = 3d/δ.

In order to prove Theorem 6.1, we start with some definitions that will be useful
to us. Let G be an arbitrary finite abelian group and C be the complex field. An
additive character of G is a function χ : G→ C such that χ(x+ y) = χ(x)χ(y) for all
x, y ∈ G. We will now define characters of groups of the form Fn where F = Fp` is a
finite field with p being a prime integer.

Let ω = e2πi/p be a primitive pth root of unity and let Tr : Fp` → Fp be the trace

operator which is defined as Tr(x) =
∑`−1
i=0 x

pi for all x ∈ Fp` . Then, an additive

character of Fn = (Fp`)n is χa(x) = ωTr(a·x), where a, x ∈ Fn and a · x denotes the
inner product over Fn. In the particular case where n = 1, we denote the character
of the field F corresponding to a = 1 by χ1(·). For more background on traces and
characters, we refer the reader to [LN94].

Let µ be a distribution over vectors in Fn. We denote by µ(s) the distribution of
the sum x1 +x2 + · · ·+xs, where the xi’s are sampled independently from µ. We will
use the following theorem of Kopparty and Saraf.

Theorem 6.2 (see [KS13, appendix B]). Let F be a finite field and n be a positive
integer. Assume that there exists a positive real number β such that every nontrivial
character χ of Fn satisfies

|Ex∼µχ(x)| ≤ β.
Then, ∑

x∈Fn

∣∣∣∣µ(s)(x)− 1

|F|n

∣∣∣∣ ≤ βs · |F|n,
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and thus, µ(s) is (β
s·|F|n
2 )-close to the uniform distribution on Fn in total variation

distance.

We will also use the following result of Deligne, which is a multivariate analogue
of the Weil bound [Wei48].

Theorem 6.3 (Deligne [Del78]). Let f(x1, x2, . . . , xt) be a t-variate polynomial
over F of degree at most |F|1/2−δ for some δ > 0. Then, either χ(f(x1, x2, . . . , xt)) is
constant or χ satisfies |Ex1,x2,...,xt∈F [χ(f(x1, x2, . . . , xt))] | ≤ |F|−δ.

Moreover, we will need the following basic lemma.

Lemma 6.4. Let F be any finite field. For every nonzero a ∈ F and every i <
√
|F|,

the function Tr(axi) is nonconstant (as a function of x ∈ F).

Proof. Let F = Fp` , where p is a prime and ` is a positive integer. By the definition
of the trace function, we have that

(25) Tr(axi) = axi + apxpi + ap
2

xp
2i + · · ·+ ap

`−1

xp
`−1i.

Since a is a nonzero element of the field F, we have that ap
j

is nonzero for each

j ∈ {0, . . . , `− 1}. Note also that for every x ∈ Fp` we have that xp
`

= x. Therefore,
we can evaluate the right-hand side in (25) by performing the following two steps:

1. For each j ∈ {0, . . . , `−1}, the monomial ap
j

xp
ji is replaced by the monomial

ap
j

xej , where ej ∈ {0, . . . , p` − 2} is congruent to pji modulo p` − 1.
2. While there are two monomials of the form ajx

ej and aj′x
ej′ with ej = ej′ ,

we replace them by the monomial (aj + aj′)x
ej .

It is now enough to argue that after step 1, there are more than `/2 values that are
taken by the exponents e0, e1, . . . , ep`−2. This would imply that at least one monomial
never gets merged with another monomial in step 2, which would ensure that the final
polynomial is not identically equal to zero. We now claim that since i < p`/2, the
exponents e0, e1, . . . , e`/2 are pairwise distinct. Indeed, pj · i ≡ pk · i mod p` − 1

for some 0 ≤ j < k ≤ `/2 iff i · pj · (pk−j − 1) ≡ 0 mod p` − 1. Since i · (pk−j − 1) <
p` − 1, the claim follows, and this concludes the proof of the lemma.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. For x, y ∈ F, we define vx,y := (x−y, x2−y2, . . . , xd−yd) ∈
Fd. Let µ be the distribution of vx,y when x, y are distributed independently and
uniformly in F. Note that for any nontrivial character χa (with a ∈ Fd being non-
zero), we have

Evx,y∼µ [χa(vx,y)] = E[ωTr(a·vx,y)] = Ex,y[ωTr(g(x,y))] = Ex,y[χ1(g(x, y))],

where g(x, y) :=
∑d
i=1 ai (xi−yi) is a polynomial of degree d ≤ |F|1/2−δ. By Deligne’s

Theorem 6.3, we have that either

(26) |Evx,y∼µ [χa(vx,y)]| = |E[χ1(g(x, y))]| ≤ |F|−δ

or χ1(g(x, y)) is constant. We now show that for every nonzero a ∈ Fd, the resulting
χ1(g(x, y)) is nonconstant and hence should satisfy (26). Since a is a nonzero element
of Fd, there exists i∗ ∈ [d] such that ai∗ 6= 0. For every i ∈ [d] such that i 6= i∗, we
set xi = yi. We also set yi∗ = 0. Under these settings, we get that Tr(g(x, y)) =
Tr(ai∗x

i∗). Applying Lemma 6.4 with i = i∗ and a = ai∗ now implies that Tr(g(x, y))
is nonconstant (i.e., it takes more than one value in Fp). Using the fact that the
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map x 7→ ωx is a bijection, we deduce that χ1(g(x, y)) is nonconstant, and hence it
satisfies (26).

Let µ(s) be the distribution of the sum
∑s
i=1 vxi,yi when we sample s vectors

vx1,y1 , vx2,y2 , . . . , vxs,ys ∈ Fd independently from the distribution µ. Note that µ(s) is
precisely the distribution of the vector(

s∑
i=1

xi −
s∑
i=1

yi,

s∑
i=1

x2i −
s∑
i=1

y2i , . . . ,

s∑
i=1

xdi −
s∑
i=1

ydi

)
when we sample the xi’s and yi’s independently and uniformly in F.

By Theorem 6.2 and (26), it follows that∑
v∈Fd

∣∣∣∣µ(s)(v)− 1

|F|d

∣∣∣∣ ≤ (|F|−δ)s · |F|d = |F|−δs+d.

Setting s = 3d/δ, we get that µ(s)((r1, r2, . . . , rd)) ≥ |F|−d − |F|−2d > 0. We
conclude that there exists a solution in F to the system {

∑s
i=1 x

j
i−
∑s
i=1 y

j
i = rj : j ∈

[d]} of size s = 3d/δ.

7. Reduction from 1-in-3-SAT to MSS(d)MSS(d)MSS(d) over Fp`Fp`Fp` . For the sake of this
reduction, we let p be any prime number larger than d and let ` = poly(n). Recall
that to construct the field Fq = Fp` , we consider an irreducible polynomial over Fp
of degree `. Let γ be a root of this polynomial in the algebraic closure of Fp. Every
element of Fq is then a linear combination of 1, γ, . . . , γ`−2, γ`−1 over Fp (we refer to

[LN97] for a general treatment of finite fields.). Then, for v =
∑`−1
i=0 viγ

i ∈ Fq, we will
abuse notation and view v as the vector (v1, v2, . . . , v`−1). We now define an analogue
of the notion of “magnitude” for elements in Fq. Namely, for v ∈ Fq, we define |v| to
be the largest nonzero index i ∈ [`] in the vector representation of v. Note that this
definition of magnitude satisfies the property that |u + v| ≤ max(|u|, |v|) for every
u, v ∈ Fq and thus also satisfies the triangle inequality.

We now sketch a proof of the reduction from 1-in-3-SAT to MSS(d) over Fp` ,
which follows analogously to the proof over the field of rationals given in sections 3, 4,
and 5 with some small modifications.

An instance of MSS(d) consists of a tuple 〈A, k,m1, . . . ,md〉. Similar to the
reduction over the field of rationals, each variable (zt, zt) is mapped to 2d+1−2 distinct
elements {at}∪{xt,i | i ∈ [2d−2]} (corresponding to zt) and {bt}∪{yt,i | i ∈ [2d−2]}
(corresponding to zt) which satisfy the following properties:

Property (1): ∑
x∈Xt

x =
∑
y∈Yt

y = 0.

Property (2): ∑
x∈Xt

xk −
∑
y∈Yt

yk = bkt − akt for every k ∈ {2, . . . , d}.

Property (3): The set of auxiliary field elements satisfies the “bimodal property.”
Namely, for any subset S ⊆

⋃
t∈[n]

(Xt ∪ Yt), there exists an L′ such that

either ∣∣∣∣∣∑
w∈S

w

∣∣∣∣∣ > n4 + L′ or

∣∣∣∣∣∑
w∈S

w

∣∣∣∣∣ < ν + L′,
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Now we show how to construct the instance 〈A, k,m1, . . . ,md〉 of MSS(d) over Fq.
Let 〈Ã, k̃, m̃1, . . . , m̃d〉 be the instance of MSS(d) obtained from the reduction over
the rationals described in section 3. Let us scale the instance by multiplying all the
rational numbers in the instance by the LCM L of their denominators. This makes
all the elements of the instance an integer. Consider the map ψ : Z → Fq defined as
follows: for any x =

∑
i∈[`] 10ixi ∈ Z, let ψ(x) =

∑
i∈[`] γ

ixi = (x1, . . . , x`) ∈ Fq. The

instance of MSS(d) over Fq is then obtained as follows:

• For any w̃ ∈ Ã, let w = ψ(Lw̃) ∈ A ⊂ Fq.
• Let k = k̃.
• mk = ψ(Lkm̃k) for every k ∈ [d].

We note that Properties (1), (2), and (3) of the auxiliary rational numbers described
in section 3 can be preserved if we chose p and ` to be large enough. Therefore,
the auxiliary field elements in the scaled and mapped instance over Fq now satisfy
Properties (1), (2), and (3). The L′ in Property (3) refers to the magnitude of ψ(L).

We can then state the analogous statement of Lemma 3.2, which implies the
NP-hardness of MSS(d) over Fq.

Lemma 7.1. There exists a satisfying assignment to a 3-SAT instance φ(z1,
. . . , zn) iff there exists a subset S ⊆ A such that for every k ∈ [d],∑

w∈S
wk = mk.

The proof of Lemma 7.1 follows from the properties of the auxiliary elements
stated above and all the steps of the proof over the field of rationals can be carried
over here if we chose p and ` large enough, in order to ensure that there is no wrapping
around when we add terms with large magnitudes.

8. Conclusion. The main open question that comes up from this work is to
explicitly and efficiently construct degree-d PTE solutions of size subexponential in
d (Problem 1.1). It would also be very interesting to prove analogous NP-hadness
results for BDD of RS codes in the case where preprocessing is allowed. Finally, our
NP-hardness results for RS codes apply to the case where the field size is exponential
in the block length N ; it would be very interesting to prove analogous NP-hardness
results for smaller fields.

It would also be interesting to obtain improved hardness results for either MSS(d)
or RS-BDD(d) based on the strong exponential time hypothesis, which has been
extensively studied in recent work.

Appendix A.

A.1. Missing proofs from section 4.3.

Claim 4.3. For every k ∈ {2, . . . , d},

|mk| ≤ 10k·d!·n
6

.

Proof. Recall the definition of mk from (13):

mk =

n∑
t=1

akt +

n∑
t=1

∑
x∈Xt

xk for every k ∈ {2, . . . , d}.

Using the bounds on the magnitudes of at and x ∈ Xt given in Fact 3.1 and Proposi-
tion 4.7, we get that
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|mk| ≤ n · (10k·(m+n+ν+1)) + n · 2d((10(d−1)!·νn + 10ν−nd)k)

≤ 10k·(d!)·n
6

.

Recall that D(x) denotes the magnitude of the irreducible denominator of a rat-
ional number x.

Claim 4.4. For any (t, i) ∈ [n]× {2, . . . , d},

D(αt,i,i) ≤ 10(i!)
2·n6

.

Proof. The proof proceeds by first obtaining a recursive expression for D(αt,i,i),
and then using induction on i to show the desired bound. We recall the definition of
αt,i,i from Algorithm 2:

αt,i,i =
Rt,i

i! ·
∏

r∈[i−1]
αt,i,r

,

where Rt,i is defined as

Rt,i = bit − ait +

i−1∑
u=2

2u−1∑
v=1

(yit,u,v − xit,u,v).

Therefore, it follows that the denominator of αt,i,i is upper-bounded by the product

of the denominator of Rt,i and i! ·
∏i−1
r=1 αt,i,r. i.e.,

D(αt,i,i) ≤ D(Rt,i) ·

(
i! ·

i−1∏
r=1

αt,i,r

)

= D(Rt,i) · (i! · 10
(i−1)!·νt+

i−1∑
r=2

g(t,i,r)
)

≤ D(Rt,i) · (i! · 10(i−1)!·n
5+n·d3).

The last inequality follows from the fact that
∑i−1
r=2 g(t, i, r) =

∑i−1
r=2(t − 1)d2 + (i −

1)i + r ≤ td3 for all 2 ≤ i ≤ d and νt < n5 for any t ∈ [n]. We now obtain
an expression for D(Rt,i). Since bt and at are both integers, note that D(Rt,i) =

D
(∑i−1

u=2

∑2u−1

v=1 (yit,u,v − xit,u,v)
)

. Also, recall that all the auxiliary rational numbers

obtained from a given AtomicSolver(t, u, Rt,u) (Algorithm 2) are ± 1
2 linear com-

binations of {αt,u,1 · · · , αt,u,u}. Since αt,u,u is the only rational number among them,
each auxiliary rational number obtained from AtomicSolver(t, u, Rt,u) will have
the same denominator as D(αt,u,u/2), i.e., D(xt,u,v) = D(yt,u,v) = D(αt,u,u/2) ≤
2 · D(αt,u,u), for all v ∈ [2u−1]. Therefore, D(yit,u,v − xit,u,v) ≤ 2i · D(αit,u,u). Thus,

it follows that D(
∑2u−1

v=1 yit,u,v − xit,u,v) ≤ 2i · D(αit,u,u), and we get the following
expression for D(Rt,i):

D(Rt,i) ≤ LCM({2i ·D(αit,u,u) | u ∈ {2, . . . , i− 1}}) ≤ 2i ·
i−1∏
u=2

D(αit,u,u).

Substituting the above expression for D(Rt,i) back in to the expression obtained for
D(αt,i,i), we get

(27) D(αt,i,i) ≤

(
i−1∏
u=2

D(αit,u,u)

)
· (2i · i! · 10(i−1)!·n

5+n·d3).
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We now use induction on i to show that D(αt,i,i) ≤ 10(i!)
2·n6

for every i ∈ {2, . . . , d}.
For the base case i = 2, from definition of αt,2,2 given in Algorithm 2, we know that

D(αt,2,2) = 2 · 10νt < 10n
6

.

We now assume that the induction hypothesis holds that for all i < ` ≤ d, i.e., that

D(αt,i,i) ≤ 10(i!)
2·n6

.

From (27), we know that

D(αt,`,`) ≤

(
`−1∏
u=2

D(α`t,u,u)

)
· (2` · `! · 10(`−1)!·n

5+n·d3)

≤

(
`−1∏
u=2

(10(u!)
2·n6

)`

)
· (10(`−1)!·n

5+n·d3+`2)

≤ 10
`

`−1∑
u=2

((u!)2·n6)+(`)!n5+nd3+`2

≤ 10`·(`−1)·(`−1)!
2·n6+(`)!·n5+n·d3+`2

≤ 10(`!)
2·n6

,

where the last inequality follows from the fact that ` ·(`−1)!2 ·n6 > (`!) ·n5+n ·d3+`2

for any ` ≤ d.

Claim 4.5. For any x ∈ A
⋃
{m1, . . . ,md},

D(x) < 10poly(n,d!).

Proof. We first observe that the elements {at, bt | t ∈ [n]} obtained from the
standard reduction from 1-in-3-SAT to Subset-Sum are all integers. So D(at) =
D(bt) = 1 for all t ∈ [n]. Next, we show that the magnitudes of denominators

of the auxiliary rational numbers are all bounded by 2 · 10(d!)
2·n6

. Consider the
set of auxiliary rational numbers generated by AtomicSolver(t, i, Rt,i) for some
t ∈ [n] and i ∈ {2, 3, . . . , d}. Each xt,i,j (or yt,i,j) is a (± 1

2 )-linear combination of
the {αt,i,r | r ∈ [i]} terms. From the definitions given in Algorithm 2, we note
that all αt,i,r terms constructed by the AtomicSolver are integers except for αt,i,i.
Therefore, each xt,i,j and yt,i,j have the same denominator as αt,i,i/2. Using Claim 4.4,

we get that for every (t, i), D(αt,i,i,) ≤ 10(i!)
2·n6

. Therefore, for any j ∈ [2i−1],

D(xt,i,j) < 2 · 10(i!)
2·n6

. A similar argument applies to yt,i,j .
We now bound the magnitudes of the denominators of the targets m1, . . . ,md

defined in the MSS(d) instance. Recall from Definition 13 that m1 is an integer.
Therefore, D(m1) = 1. All other targets are rational numbers defined as

mk =

n∑
t=1

akt +

n∑
t=1

∑
x∈Xt

xk for every k ∈ {2, . . . , d}.

The denominator of mk is defined by the denominator of the sum
∑n
t=1

∑
x∈Xt

xk.

This sum can be expanded as
∑n
t=1

∑d
i=2

∑2i−1

j=1 x
k
i,i,j . From the fact that

D(
∑2i−1

j=1 x
k
t,i,j) ≤ 2kD(αkt,i,i) and Claim 4.4, we get
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D(mk) ≤
∏
t∈[n]

i∈{2...,d}

2kD(αkt,i,i)

≤
∏
t∈[n]

i∈{2...,d}

10k(i!)
2·n6+k

≤ (10k(d!)
2·n6+k)nd

= 10poly(n,d!).

Therefore, we conclude that every element of the instance of MSS(d) constructed by
our reduction has a denominator of magnitude at most 10poly(n,d!).

Claim 4.6. All rational numbers in the set A are distinct.

Proof. From Proposition 4.8, we know that all auxiliary rational numbers are
distinct. Also, the distinctness of the integers {at, bt | t ∈ [n]} follows from the fact
that the integers {a′t, b′t | t ∈ [n]} constructed in standard reduction from 1-in-3-
SAT to Subset-Sum are distinct. What remains to be shown is that all the auxiliary
rational numbers are different from {at, bt | t ∈ [n]}.

We show this fact by comparing the magnitudes of the two sets of numbers. From
Fact 3.1, we know that |v| < 10m+n+ν+1 for every v ∈ {at, bt | t ∈ [n]}, and from
Proposition 4.7, we know that the magnitudes of all the auxiliary rational numbers
are larger than 10ν1 − 10ν−nd > 10m+n+ν+1. Therefore, the two sets of numbers are
disjoint.
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