
Fixed-Parameter Algorithms for Longest Heapable
Subsequence and Maximum Binary Tree
Karthekeyan Chandrasekaran
University of Illinois, Urbana-Champaign, USA
karthe@illinois.edu

Elena Grigorescu
Purdue University, USA
elena-g@purdue.edu

Gabriel Istrate
West University of Timişoara, Romania, and the e-Austria Research Institute
gabrielistrate@acm.org

Shubhang Kulkarni1

University of Illinois, Urbana-Champaign, USA
smkulka2@illinois.edu

Young-San Lin
Purdue University, USA
lin532@purdue.edu

Minshen Zhu
Purdue University, USA
zhu628@purdue.edu

Abstract
A heapable sequence is a sequence of numbers that can be arranged in a min-heap data structure.
Finding a longest heapable subsequence of a given sequence was proposed by Byers, Heeringa,
Mitzenmacher, and Zervas (ANALCO 2011) as a generalization of the well-studied longest increasing
subsequence problem and its complexity still remains open. An equivalent formulation of the longest
heapable subsequence problem is that of finding a maximum-sized binary tree in a given permutation
directed acyclic graph (permutation DAG). In this work, we study parameterized algorithms for
both longest heapable subsequence and maximum-sized binary tree. We introduce alphabet size as a
new parameter in the study of computational problems in permutation DAGs and show that this
parameter with respect to a fixed topological ordering admits a complete characterization and a
polynomial time algorithm. We believe that this parameter is likely to be useful in the context of
optimization problems defined over permutation DAGs.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases maximum binary tree, heapability, permutation directed acyclic graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.23

Funding Karthekeyan Chandrasekaran: Supported by NSF CCF-1814613 and NSF CCF-1907937
Elena Grigorescu: Supported by NSF CCF-1910659 and NSF CCF-1910411.
Gabriel Istrate: Supported by a grant of the Romanian Ministry of Research and Innovation, CNCS
- UEFISCDI project number PN-III-P4-ID-PCE-2016-0842, within PNCDI III.
Young-San Lin: Supported by NSF CCF-1910411.
Minshen Zhu: Supported by NSF CCF-1910659.

1 Work done while at Purdue University, USA.

© Karthekeyan Chandrasekaran, Elena Grigorescu, Gabriel Istrate, Shubhang Kulkarni, Young-San
Lin, Minshen Zhu;
licensed under Creative Commons License CC-BY

IPEC 2020: 15th International Symposium on Parameterized and Exact Computation.
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:karthe@illinois.edu
mailto:elena-g@purdue.edu
mailto:gabrielistrate@acm.org
mailto:smkulka2@illinois.edu
mailto:lin532@purdue.edu
mailto:zhu628@purdue.edu
https://doi.org/10.4230/LIPIcs.IPEC.2020.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

K. Chandrasekaran et al. 23:1

1 Introduction

The longest increasing subsequence is a fundamental computational problem that has led to
numerous discoveries in algorithms as well as combinatorics. The motivation behind this
work is a generalization of the longest increasing subsequence problem, known as the longest
heapable subsequence problem, introduced by Byers, Heeringa, Mitzenmacher, and Zervas
[5]. We begin by defining this problem. A rooted tree whose nodes are labeled with values
has the heap property if the value of every node is at least that of its parent; a sequence of
natural numbers is heapable if the elements can be sequentially placed one at a time to form
a binary tree with the heap property. For example, the sequence 1, 5, 3, 2, 4 is not heapable
while the sequence 1, 3, 3, 2, 4 is heapable. Throughout this work, we will be interested in
sequences whose elements are natural numbers. In the longest heapable subsequence problem,
the goal is to find a longest heapable subsequence of a given sequence. Although the longest
increasing subsequence problem is solvable in polynomial-time, the complexity of the longest
heapable subsequence problem is still open.

The problem of verifying if a given sequence is heapable, although non-trivial, is solvable
efficiently using a greedy approach [5]. In order to address the longest heapable subsequence
problem, Porfilio [12] observed a connection to a graph problem on directed acyclic graphs
(DAGs). The permutation DAG associated with a sequence σ = (σ(1), σ(2), . . . , σ(n)),
denoted PermDAG(σ), is obtained by introducing a vertex ti for every sequence element
i ∈ [n], and arcs (tj , ti) for every i, j ∈ [n] such that i < j and σ(i) ≤ σ(j). We recall
that a directed graph G is a permutation DAG if there exists a sequence τ such that G is
isomorphic to PermDAG(τ). We need the notion of a binary tree in a given directed graph G:
a subgraph T of G is an r-rooted binary tree if r is the unique vertex in T with no outgoing
edges, every vertex in T has a unique directed path to r in T , and every vertex in T has
in-degree at most 2 in T ; the size of T is the number of vertices in T . Porfilio showed that a
longest heapable subsequence of a given sequence σ is equivalent to a maximum-sized binary
tree in PermDAG(σ). This result raises the question of whether one can efficiently find a
maximum-sized binary tree in a given permutation DAG. The complexity of this problem
also remains open.

In an earlier work [6], we showed that maximum-sized binary tree in arbitrary input
directed graphs is fixed-parameter tractable when parameterized by the solution size: we gave
a 2knO(1) time algorithm, where k is the size of the largest binary tree and n is the number
of vertices in the input graph. This also implies that the longest heapable subsequence
problem is fixed-parameter tractable when parameterized by the solution size. In this work,
we consider two alternative parameterizations for the maximum-sized binary tree/longest
heapable subsequence problem.

Firstly, we show that the longest heapable subsequence problem is fixed-parameter
tractable when parameterized by the number of distinct values in the input sequence. Next,
we introduce alphabet size as a new parameter in the study of computational problems in
permutation DAGs. Our algorithmic result for longest heapable subsequence problem implies
that the maximum-sized binary tree problem in a given permutation DAG is fixed-parameter
tractable when parameterized by the alphabet size. We currently do not know how to compute
the alphabet size of a given permutation DAG. As a stepping stone towards computing
alphabet size, we show that alphabet size with respect to a fixed topological ordering can be
computed efficiently and it also admits a min-max relation and a polyhedral description.
Our results suggest that alphabet size is an interesting parameterization for computational
problems defined on permutation DAGs and merits a thorough study. Finally, we design a

IPEC 2020

23:2 FPT Algorithms for LHS and MBT

fixed-parameter algorithm for the maximum-sized binary tree problem in undirected graphs
when parameterized by treewidth. We elaborate on our contributions now.

1.1 Results
Our first result shows that the longest heapable subsequence problem is fixed-parameter
tractable when parameterized by the number of distinct values in the sequence.

I Theorem 1. There exists an algorithm that takes as input an n-length sequence τ with
k distinct values and returns a longest heapable subsequence of τ in time (k + 1)! · k ·O(n).
Equivalently, our algorithm returns a maximum-sized binary tree in PermDAG(τ).

We emphasize that our algorithm also works in the streaming model of computation—i.e.,
when the input sequence arrives one by one and the algorithm has to find the longest heapable
subsequence of the input that has arrived so far with sublinear memory (in particular, the
algorithm does not have the capability to store the entire input sequence seen so far). The
space complexity of our algorithm is (k + 1)! · k ·O(logn) and is logarithmic for constant k.

Theorem 1 can also be viewed as a fixed-parameter algorithm to find a maximum-sized
binary tree in a given permutation DAG when parameterized by alphabet size. We define
this parameter now. We note that for a fixed permutation DAG G, there could be several
sequences τ such that PermDAG(τ) is isomorphic to G (e.g., see Figure 1). In fact, there
could be sequences τ1 and τ2 such that the difference between the number of distinct symbols
in τ1 and τ2 may be arbitrarily large—e.g., consider an n-vertex tournament DAG G in its
unique topological ordering (all arcs oriented in the backward direction) which is isomorphic
to PermDAG(τ1) as well as PermDAG(τ2) where τ1 = (1, 2, . . . , n) and τ2 = (1, 1, . . . , 1). This
motivates our parameterization for permutation DAGs: The alphabet size of a n-vertex
permutation DAG G, denoted α(G), is defined as follows (see Figure 1 for an example):

α(G) := min{k : ∃ sequence τ ∈ [k]n with PermDAG(τ) being isomorphic to G}.

We recall that directed graphs G = (V,A) and G′ = (V,′ , A′) are isomorphic if there exists a
bijection φ : V ′ → V such that (u′, v′) ∈ A′ if and only if (φ(u′), φ(v′)) ∈ A. Theorem 1 also
implies that there exists an algorithm that takes as input, an n-vertex permutation DAG G

and a sequence τ with α(G) = k distinct values such that PermDAG(τ) is isomorphic to G
and returns a maximum-sized binary tree in G in time (k+1)! ·k ·O(n), i.e., a fixed-parameter
algorithm for maximum-sized binary tree in permutation DAGs when parameterized by
alphabet size.

t1 t2 t3 t4 t1 t2 t3 t4

a

b

c

d

PermDAG(τ1 = (2, 3, 1, 2)) PermDAG(τ2 = (2, 1, 2, 1))G

Figure 1 Let G be the input permuation DAG. The graph G is isomorphic to PermDAG(τ1) and
PermDAG(τ2). The sequence τ1 = (2, 1, 2, 1) uses only two distinct values, which turns out to be the
minimum, so α(G) = 2.

Next, we explore algorithmic aspects of our newly defined parameter, namely the alphabet
size. A natural question is whether the alphabet size of a given permutation DAG can

K. Chandrasekaran et al. 23:3

be computed in polynomial-time. Currently, we do not know the answer to this question.
However, there is a natural related problem that seems like a stepping stone towards resolving
the complexity of computing the alphabet size of permutation DAGs. We define this related
problem now.

We recall that every DAG G = (V,A) admits a topological ordering—a bijection γ :
V → [n] corresponding to a permutation of its n vertices such that every arc (v, u) ∈ A has
γ(u) < γ(v) (i.e., all edges are oriented in the backward direction with respect to the ordering
defined by γ). For a fixed topological ordering γ : V → [n] of an n-vertex permutation
DAG G, we define the γ-alphabet size of G, denoted α(G, γ), as follows (see Figure 2 for an
example illustrating the definition):

α(G, γ) := min
{
k : ∃ sequence τ ∈ [k]n with PermDAG(τ) = ({t1, . . . , tn}, A′)

being isomorphic to G under the mapping φ : {t1, . . . , tn} → V (G)

given by φ(ti) = γ−1(i) ∀ i ∈ [n]
}
.

We note that the optimization problem α(G, γ) may be infeasible in which case, we use
α(G, γ) := ∞ as the convention. The following relationship between alphabet size and
γ-alphabet size is immediate for a permutation DAG G:

α(G) = min{α(G, γ) : γ is a topological ordering of G}.

c a d b

γ−1(1) γ−1(2) γ−1(3) γ−1(4)

t1 t2 t3 t4

φ(t1) φ(t2) φ(t3) φ(t4)

Figure 2 The graph at the top corresponds to G in topological order γ where γ(c) = 1, γ(a) = 2,
γ(d) = 3, and γ(b) = 4. The graph at the bottom corresponds to PermDAG(τ = (2, 1, 2, 1)).
Note that the two graphs are isomorphic under the mapping φ : {t1, t2, t3, t4} → V (G) given by
φ(t1) = γ−1(1) = c, φ(t2) = γ−1(2) = a, φ(t3) = γ−1(3) = d, and φ(t4) = γ−1(4) = b (shown by
dotted lines). We have that α(G, γ) = 2 and is achieved by the sequence τ .

As a stepping stone towards understanding α(G), we show that α(G, γ) for a given
topological ordering γ of G (i.e., the γ-alphabet size of G) can be computed in polynomial
time.

I Theorem 2. There exists a polynomial-time algorithm that takes a permutation DAG G

and a topological ordering γ of G as input and detects if α(G, γ) is finite and if so, then
returns a sequence that achieves α(G, γ).

Our algorithm underlying Theorem 2 also reveals a min-max relation for γ-alphabet
size that we describe now. Let G = (V,A) be a permutation DAG with n vertices and
let γ : V → [n] be a topological ordering of G such that α(G, γ) is finite. Let −→E :=
{(u, v) : γ(u) < γ(v) and (v, u) 6∈ A} and H(G, γ) := (V,A ∪ −→E). We note that H(G, γ) is a

IPEC 2020

23:4 FPT Algorithms for LHS and MBT

tournament.2 Also, let w : A ∪ −→E → {0, 1} be an arc weight function for H(G, γ) defined as
follows:

w(e) :=

0 if e ∈ A,
1 if e ∈ −→E .

Then, we have the following min-max relation for the minimization problem corresponding
to α(G, γ).

I Theorem 3. Let G = (V,A) be a permutation DAG and γ be a topological ordering of V
such that α(G, γ) is finite. Then,

α(G, γ) = 1 + max

∑
e∈P

w(e) : P is a path in H(G, γ)

 .

In addition to the algorithm and the min-max relation, we give a polyhedral description
(see Theorem 17 in Section 3.3) that also leads to an LP-based algorithm to compute
α(G, γ). We believe that alphabet size, as a parameter, is likely to be useful in the context of
permutation DAGs and consequently, merits a thorough study. We view Theorems 2 and 3
as stepping stones towards the problem of efficiently computing the alphabet size of a given
permutation DAG and Theorem 1 to be an application of this parameter. Resolving the
complexity of computing the alphabet size is an intriguing open problem.

Next, we address the maximum binary tree problem in undirected graphs with bounded
treewidth. Here, we are given an undirected graph G and the goal is to find a subgraph
that is a binary tree with maximum number of nodes. An undirected graph is said to be a
binary tree if the graph is acyclic and every vertex has degree at most 3. We observe that
the existence of a binary tree can be expressed as a monadic second order logic property
and hence, extensions of Courcelle’s theorem [7] can be used to obtain an algorithm for
maximum-sized binary tree that runs in time f(w)n for some function f(w), where n is
the number of vertices and w is the treewidth of the input graph. However, the run-time
dependence f(w) is at least doubly exponential on the treewidth w in this approach. We
improve this dependence substantially.

I Theorem 4. Given a tree decomposition of an n-vertex undirected graph G with treewidth
w, there exists an algorithm to find a maximum-sized binary tree in G in time wO(w)n.

1.2 Related Work
Heapability of integer sequences was introduced in [5] and has been investigated further in
[9, 12, 10, 2, 3, 4, 1]. Heapability of integer sequences can be decided by a simple greedy
algorithm [5] (see also [10] for an alternate approach based on integer programming, and [1]
for connections with Dilworth’s theorem and an algorithm based on network flows). Besides
introducing the longest heapable subsequence problem, [5] also showed that deciding if a
sequence can be arranged in a complete binary heap is NP-complete.

Heapable sequences of integers can be regarded as “loosely increasing”. The celebrated
Ulam-Hammesley problem aims to understand the length of the longest increasing sequence
of a random permutation. This has a long history with deep connections to many areas

2 A tournament is a directed graph H = (V,A) in which we have exactly one of the two arcs (v, u) and
(u, v) for every pair of distinct vertices u, v ∈ V .

K. Chandrasekaran et al. 23:5

of science (e.g., see [13]). [5] studied the counterpart of this problem for heapability: they
showed that the longest heapable subsequence of a random permutatoin of length n is of size
n− o(n) with high probability and it can also be found in an online fashion.

As mentioned earlier, Porfilio [12] showed that the longest heapable subsequence is
equivalent to solving the maximum-sized binary tree problem in permutation DAGs. In an
earlier work [6], we showed that the maximum-sized binary tree problem is NP-hard in DAGs
and showed further inapproximability results. We also gave a fixed-parameter algorithm for
the maximum binary tree problem when parameterized by the solution size. Furthermore,
we designed a polynomial-time algorithm to solve the maximum-sized binary tree problem
in the special class of bipartite permutation graphs. It is also known that maximum-sized
binary tree problem in DAGs induced by sets of intervals can be solved in polynomial time
[1].

Organization. In Section 2, we present the fixed-parameter algorithm for longest heapable
subsequence when parameterized by the alphabet size and prove Theorem 1. In Section 3,
we address the problem of computing γ-alphabet size and present a min-max relation. We
present a polyhedral description for γ-alphabet size that leads to an LP-based algorithm for
α(G, γ) in Section 3.3. Due to page limits, we present our fixed-parameter algorithm for
computing a maximum-sized binary tree in bounded treewidth graphs in the full version3.

2 Longest heapable subsequence parameterized by alphabet size

In this section, we prove Theorem 1 by giving a (k+ 1)! · k ·O(n)-time algorithm to compute
the longest heapable subsequence of a given n-length sequence containing k distinct values.
We begin with certain useful definitions. Given a rooted non-empty binary tree T , we define
the extended binary tree Ext(T) by introducing new leaf nodes in a way that makes every
node in T have exactly 2 children. The nodes in T are also referred to as internal nodes, and
the new leaf nodes are referred to as external nodes (see Figure 3). We will denote a directed
binary tree where each node is labeled by some number in [k] := {1, 2, . . . , k} such that the
labels on every leaf to root path is non-increasing as a heap over alphabet [k].

I Definition 5 (Shape). Given a heap H over alphabet [k], we define its shape as a tuple
x = (x0, x1, . . . , xk−1, xk), where xi is the number of external nodes whose parents have label
i in Ext(H). We also follow the convention that the shape of an empty heap is (1, 0, . . . , 0).

Intuitively, an external node represents the location of a potential future insertion into
the heap. Since an insertion is effectively replacing an external node with a new internal
node (thus introducing two new external nodes), it is captured by simple manipulations
of shapes. This naturally leads us to defining insertions with respect to shapes. Given a
shape x = (x0, . . . , xk) and labels a ≤ b, the shape obtained by inserting b under a, denoted
x(a← b), is defined as

x (a← b) :=

(x0, . . . , xa−1, xa + 1, xa+1, . . . , xk) if xa > 0 and a = b,
(x0, . . . , xa−1, xa − 1, xa+1, . . . , xb−1, xb + 2, xb+1, . . . , xk) if xa > 0 and a < b,
⊥ if xa = 0.

For example, consider the shape x = (0, 1, 0, 2, 0). The shape x (1← 2) is (0, 0, 2, 2, 0), and
the shape x(2← 3) is ⊥. Given a heap H and a sequence a = (a1, . . . , an), consider a longest

3 The full version is available at https://www.cs.purdue.edu/homes/lin532/file/FPT_algorithms_
for_MBT_IPEC.pdf.

IPEC 2020

https://www.cs.purdue.edu/homes/lin532/file/FPT_algorithms_for_MBT_IPEC.pdf
https://www.cs.purdue.edu/homes/lin532/file/FPT_algorithms_for_MBT_IPEC.pdf

23:6 FPT Algorithms for LHS and MBT

3

1

c

a b

Figure 3 Given a binary tree T composed of two nodes 1 and 3, the extended binary tree Ext(T)
has two internal nodes 1 and 3, and three new external nodes a, b, and c. Suppose k = 4. The shape
of the heap above is x = (x0, x1, x2, x3, x4) = (0, 1, 0, 2, 0) because the parent of a and b has label 3
and the parent of c has label 1.

subsequence of a which can be sequentially inserted to H as leaf nodes while maintaining
the heap property. We will call such a subsequence a longest heapable subsequence starting
from H. We observe that the longest heapable subsequence of a given sequence starting
from H depends only the shape of H and not the precise structure of H (i.e., the optimum
does not change for two different heaps H1 and H2 sharing the same shape). Therefore, it is
equivalent and also convenient to consider the longest heapable subsequence problem starting
from an initial shape instead of an initial heap. This line of thought also suggests a natural
dynamic programming approach where the subproblems are specified by shapes.

To analyze the running time, we need to upper bound the number of subproblems,
which is the same as the number of distinct shapes. As a starting point, the number of
distinct shapes can be upper bounded by nO(k). This is because in any n-node heap H

there are exactly n+ 1 external nodes in Ext(H) (an elementary property of binary trees).
Therefore, the number of shapes is bounded by the number of non-negative integral solutions
to x0 + x1 + . . .+ xk = n+ 1, which is nO(k). Although this estimate seems like a very crude
upper bound, bringing down the estimate into the fixed-parameter regime (i.e., f(k)nO(1))
seems very difficult. We employ additional ideas to design a fixed-parameter algorithm.

Consider the longest heapable subsequence problem starting from initial shape x =
(x0, x1, . . . , xk). Suppose that the initial shape also satisfies the condition that xj ≥ k− j + 1
for some j ∈ [k]. Our key observation is that all elements with labels at least j are heapable
from x: we can reserve an external node attached to j for each label v ∈ {j, j + 1, . . . , k},
which can then be used to form a chain of elements with the same label v. Essentially, once
we have reached the shape x, there are “infinitely” many external nodes available for future
elements with label at least j, and hence, we no longer need to keep track of the precise
values of xj , xj+1, . . . , xk. This motivates the following notion of refined shapes.

I Definition 6 (Refined shapes). A tuple (x0, x1, . . . , xk) is a refined shape (over alphabet
size k) if for each j ∈ {0, 1, . . . , k} we have xj ∈ {0, 1, . . . , k − j}∪{∞}, and xj =∞ implies
x` =∞ for all ` > j. We will write Xk for the set of all refined shapes over alphabet size k.

We are going to see later that the total number of refined shapes is bounded by O((k+1)!).
The operation refine(·) introduced below formalizes the intuition discussed earlier.

I Definition 7. Let x = (x0, . . . , xk) be such that xj ∈ N ∪ {∞} for all j. Let

refine(x) :=

x if xj ≤ k − j for all j,
(x0, . . . , xj0−1,∞,∞, . . .) j0 is the smallest j such that xj ≥ k − j + 1.

K. Chandrasekaran et al. 23:7

We remark that refine(x) ∈ Xk for any x. Next we define insertions with respect to
refined shapes. Given a refined shape x = (x0, . . . , xk) and labels a ≤ b, the shape obtained
by inserting b under a, denoted x(a← b), is defined as

x(a← b) :=
refine (x0, . . . , xa−1, xa + 1, xa+1, . . . , xk−1) if xa > 0 and a = b,
refine (x0, . . . xa−1, xa − 1, xa+1, . . . , xb−1, xb + 2, xb+1, . . . , xk−1) if xa > 0 and a < b,
⊥ if xa = 0.

where we followed the convention that ∞ > 0 and ∞+ c =∞ for any constant c.
Now we are ready to state the dynamic programming algorithm. In the following, we fix

(a1, a2, . . . , an) as the input sequence. For x ∈ Xk and i ∈ [n] define LHS[i,x] to be the length
of the longest heapable subsequence in the prefix sequence (a1, a2, . . . , ai), with an additional
constraint that the refined shape of the heap constructed from the subsequence should be x.
We write LHS[i,x] = −∞ if there is no feasible solution (i.e. shape x is not reachable by
any subsequence of (a1, . . . , ai)). With this definition, the longest heapable subsequence of
the given sequence has length maxx∈Xk

LHS[n,x]. Our goal now is to compute LHS[n,x] for
each x ∈ Xk.

For a label v ∈ {1, 2, . . . , k} and two refined shapes x and x′, we say that x is reachable
from x′ via an insertion of v if there exists b ≤ v such that x′(b← v) = x. We denote by
prev(x, v) the set of refined shapes from which x is reachable via an insertion of v. We show
that LHS satisfies the following recurrence relation.

I Lemma 8. For every i ∈ [n] and x ∈ Xk, we have that

LHS[i,x] = max
{

LHS[i− 1,x], max
x′∈prev(x,ai)

{
LHS[i− 1,x′]

}
+ 1
}
.

Proof. We will show that

LHS[i,x] ≤ max
{
LHS[i− 1,x], max

x′∈prev(x,ai)

{
LHS[i− 1,x′]

}
+ 1
}

as the other direction is trivial. Let us fix an optimal heapable subsequence s of (a1, . . . , ai).
If ai does not belong to s, it must be the case that s is also an optimal heapable subsequence
of (a1, . . . , ai−1). In this case LHS[i,x] = LHS[i− 1,x]. If ai belongs to s, we further fix an
optimal heap H (with refined shape x) and assume that ai is inserted under an element
with value b in H. Removing ai from H results in a heap H ′ with a shape x′ satisfying
x′(b← ai) = x. In particular, x′ ∈ prev(x, ai). In this case, LHS[i,x] = LHS[i− 1,x′] + 1 ≤
maxx′∈prev(x,ai)

{
LHS[i− 1,x′]

}
+ 1. J

Proof of Theorem 1. Given Lemma 8, it remains to show that the recurrence relation can
be implemented in time (k + 1)! · k ·O(n). We observe that the number of subproblems is
bounded by O(n|Xk|). The set prev(x, ai) can be enumerated in time O(k) by inverting the
operation x′(b← ai) for each b ≤ ai. Therefore, it suffices to show that |Xk| = O((k + 1)!).

In order to bound the size of Xk, we observe that for every x = (x0, x1, . . . , xk) ∈ Xk, we
have that x0 = 0 unless x = (1, 0, . . . , 0), and that xj ∈ {0, 1, . . . , k − j} ∪ {∞} for j ≥ 1.
Therefore |Xk| ≤ 1 +

∏k
j=1(k − j + 2) = (k + 1)! + 1. J

Algorithm 1 gives an implementation of this dynamic programming algorithm. This
implementation requires space complexity O((k + 1)!n · logn), which can be optimized to

IPEC 2020

23:8 FPT Algorithms for LHS and MBT

O((k+ 1)! · logn) using a standard rolling array technique: we observe that in the recurrence
relation, LHS[i,x] depends only on LHS[i − 1,x′] but not on LHS[j,x′] for any j < i − 1.
Therefore the values LHS[i− 2,x] become obsolete and the space can be recycled to store
new values. Essentially, we only need two arrays LHS1[x] and LHS2[x] and store new values
alternately between them.

Input: A sequence a = (a1, . . . , an) such that ∀i ∈ [n], ai ∈ {1, 2, . . . , k}.
Output: The length of longest heapable subsequence in a.

LHS(a1, a2, . . . , an) :
1: X ←

{
(1, 0, . . . , 0)

}
. X maintains a set of reachable refined shapes

2: LHS← integer array of size n× (k + 1)× k × . . . 2× 1
3: LHS[0, (1, 0, . . . , 0)]← 0
4: for i← 1 to n do . DP main body
5: for x ∈ X do
6: LHS[i,x]← LHS[i− 1,x] . Discard ai
7: for x ∈ X do
8: for b ∈

{
b′ : 0 ≤ b′ ≤ ai, xb′ > 0

}
do

9: x′ ← x(b← ai) . Insert ai under b to reach refined shape x′
10: if x′ /∈ X then . First time reaching shape x′
11: X ← X ∪

{
x′
}

12: LHS[i,x′]← LHS[i− 1,x] + 1
13: else if LHS[i,x′] < LHS[i− 1,x] + 1 then
14: LHS[i,x′]← LHS[i− 1,x] + 1

return max
{
LHS[n,x] : x ∈ X

}
1 Longest Heapable Subsequence for Alphabet Size k

Remark. We note that our dynamic programming algorithm also works in the streaming
model, where the elements of the input sequence have to be processed one by one without
storing all of them in memory and the goal is to find the length of a longest heapable
subsequence of the input that has arrived so far. For constant alphabet size k, the space
complexity of our algorithm is O (logn).

3 γ-Alphabet Size of Permutation DAGs

In this section, we consider the problem of computing the γ-alphabet size of a permutation
DAG G, where γ is a given topological ordering of G. We give an efficient algorithm in
Section 3.1 and a min-max relation in Section 3.2. We also give a polyhedral description in
Section 3.3. We begin with some useful background on permutation DAGs.

We recall that a directed graph G is a permutation DAG if there exists a sequence σ
such that PermDAG(σ) is isomorphic to G. We note that permutation DAGs are transitively
closed, i.e., for a permutation DAG G = (V,A), if (u, v), (v, w) ∈ A, then (u,w) ∈ A. In
order to recognize if a given DAG is a permutation DAG, we need the notion of umbrella-free
ordering defined below (see Figure 4 for an example). This notion will also help us recognize
if α(G, γ) is finite.

I Definition 9 (Umbrella-free Order). Let G = (V,A) be an n-vertex DAG. An order γ :
V → [n] of V is umbrella-free if for all (v, u) ∈ A and for every vertex w ∈ V with

K. Chandrasekaran et al. 23:9

γ(u) < γ(w) < γ(v), either (w, u) ∈ A or (v, w) ∈ A (or both).

u w v a b c d

(a) (b)

a b d c

Figure 4 (a) Scenario when the triple (u,w, v) is an umbrella. (b) Two topological orderings of
the same DAG. The order (a, b, c, d) is not umbrella-free due to the (highlighted) umbrella (b, c, d),
while the the order (a, b, d, c) is umbrella-free.

The following lemma characterizes permutation DAGs in terms of the existence of an
umbrella-free topological ordering.

I Lemma 10 ([11, 8]). Let G = (V,A) be a transitively closed DAG. Then G is a permutation
DAG if and only if there exists an umbrella-free topological ordering of G. Moreover, there
exists a polynomial-time algorithm to verify if a given DAG G is a permutation DAG and if
so, then construct an umbrella-free topological ordering of G.

Lemma 10 implies that α(G, γ) is finite if and only if γ is an umbrella-free topological
ordering of G.

3.1 Algorithm
In this section, we will prove Theorem 2—we will give an algorithm to compute the γ-alphabet
size of a given permutation DAG G, i.e., α(G, γ), where γ is a topological ordering of G.

We note that umbrella-freeness of a given topological ordering can be verified in polynomial-
time, so we may henceforth assume that the input γ is in fact an umbrella-free topological
ordering of G. We will give an iterative algorithm to compute α(G, γ). We observe that
computing α(G, γ) involves assigning a value to each vertex of G such that the sequence
obtained by ordering the values of the vertices in the same order as γ gives the same
permutation DAG as G. At each iteration, our algorithm will choose a vertex of G and assign
a value to it. The next definition will allow us to formally define the choice of this vertex.

I Definition 11 (Fully Suffix Connected Vertex). Let G = (V,A) be a permutation DAG and
γ be a topological ordering of G. A vertex u ∈ V is fully suffix connected if for all v ∈ V
such that γ(v) > γ(u), we have (v, u) ∈ A. The γ-least fully suffix connected (γ-LFSC) vertex
is the fully suffix connected vertex u with smallest γ(u).

Figure 5 The DAG in the given topological order γ has 3 fully suffix connected vertices that are
depicted as filled circles. The leftmost fully suffix connected vertex is the (unique) γ-LFSC vertex.

See Figure 5 for an example showing fully suffix connected vertices. We note that γ-LFSC
is unique. The following lemma states a useful property of the γ-LFSC vertex.

IPEC 2020

23:10 FPT Algorithms for LHS and MBT

I Lemma 12. Let G = (V,A) be a permutation DAG and γ be an umbrella-free topological
ordering of G. Then, the γ-LFSC vertex has no outgoing arcs in G.

Proof. Let v ∈ V be the γ-LFSC and suppose for contradiction that v has an outgoing arc
in G. Let u be the vertex with largest γ(u) such that (v, u) ∈ A. We note that γ(u) < γ(v)
since γ is a topological ordering. We will show that such a vertex u is fully suffix connected
and hence contradicts the γ-least fully suffix connected property of vertex v.

We first show that for every vertex w ∈ V such that γ(w) ≥ γ(v), we have (w, u) ∈ A.
For w = v, this follows since (v, u) ∈ A by the choice of u. Let w be a vertex such that
γ(w) > γ(v). Since v is fully suffix connected, we have that (w, v) ∈ A. Also, since G is a
permutation DAG, it is transitively closed. Hence, (v, u) ∈ A implies that (w, u) ∈ A.

Next, we show that for every vertex w ∈ V such that γ(u) < γ(w) < γ(v), we have
(w, u) ∈ A. Let w be a vertex such that γ(u) < γ(w) < γ(v). By assumption, the ordering γ
is umbrella-free. Thus, at least one of (w, u) or (v, w) must exist in A. However, (v, w) 6∈ A
as otherwise, w will contradict the choice of vertex u. Therefore, (w, u) ∈ A. J

We now discuss a high level overview of our iterative greedy algorithm for computing
α(G, γ). During the first iteration, the algorithm greedily chooses the γ-LFSC vertex v1 (say)
in G1 := G to assign the smallest alphabet, namely σ(v1) = 1. The vertex v1 and its incident
edges are deleted from G1 to form G2, and the remaining n− 1 vertices V \{v} are ordered
in the same relative order as γ—denote this ordering as γ2. In the second iteration, our
algorithm greedily chooses the γ2-LFSC vertex v2 (say) in G2 to assign the next smallest
alphabet—the next smallest alphabet is chosen based on whether v2 lies to the left or right of
v1: if v2 lies to the left of v1 with respect to γ, then we set σ(v2) = σ(v1) + 1, otherwise we
set σ(v2) = σ(v1). This iterative removal and assignment process continues for n iterations,
i.e., until all vertices are removed from G. The final output sequence will just be the sequence
of assigned values in the order of vertices in γ. Before presenting our complete algorithm
(Algorithm 2), we introduce a definition to formalize the reordering of vertices after removing
a vertex from G — this will allow us to obtain γi+1 from γi.

I Definition 13 (Projected order). Let G = (V,A) be an n-vertex DAG, and γ be a topological
ordering of V . Let H = G − v. Then the projection of γ onto H, denoted by ProjH [γ] :
V \{v} → [n− 1], is defined as

ProjH [γ](u) =

γ(u) if γ(u) < γ(v),
γ(u)− 1 if γ(u) > γ(v).

Armed with the notions of fully suffix connected vertices and projected order, we state
our algorithm below.

K. Chandrasekaran et al. 23:11

Input: Permutation DAG G = (V,A) on n vertices in umbrella-free topological order γ : V → [n]
Output: Sequence σ of length n

GreedyAssign(G, γ):
1: Initialize α← 1; G1 ← G; γ(v0)← −∞; γ1 ← γ

2: for i← 1 to n do
3: vi ← γi-LFSC in Gi

4: if γ(vi) < γ(vi−1) then α← α+ 1
5: Gi+1 ← Gi − vi

6: γi+1 ← ProjGi+1
[γi]

7: σ(vi)← α

8: Return σ ← (σ(γ−1(1)) . . . σ(γ−1(n)))

2 GreedyAssign algorithm to compute α(G, γ)

The algorithm can be implemented to run in polynomial-time since a γ-LFSC vertex in
G can be computed in polynomial-time. We now prove the correctness of the algorithm. Let
G = (V,A) be an n-vertex permutation DAG, and γ be an umbrella-free topological ordering
of G. Let v1, . . . , vn be the sequence of vertices chosen in the execution of GreedyAssign(G, γ).
Let αi, Gi and γi denote the alphabet size α at the end of the ith iteration, the remaining
subgraph at the start of the ith iteration, and γ projected onto Gi respectively. Finally, let σ
be the sequence returned by GreedyAssign(G, γ). We have the following observations about
the execution of the algorithm.

B Observation 1. The vertex vi has no outgoing arcs in Gi for all i ∈ [n].

B Observation 2. If γ(vi+1) < γ(vi) then σ(vi+1) = σ(vi) + 1 and (vi, vi+1) 6∈ A, otherwise
σ(vi+1) = σ(vi) and (vi+1, vi) ∈ A. Thus, alphabet assignments by GreedyAssign are
non-decreasing with increasing iterations i.e. σ(vi) ≤ σ(vj) for all i, j ∈ [n] with i < j.

Observation 1 directly follows from Lemma 12. Observation 2 is due to the conditional
increment of the alphabet size, α, in GreedyAssign. The next two lemmas show feasibility
and optimality of GreedyAssign respectively. Theorem 2 then immediately follows from
Lemmas 14 and 15.

I Lemma 14 (Feasibility of GreedyAssign). Let PermDAG(σ) = ({t1 . . . tn}, A′). Then
PermDAG(σ) is isomorphic to G under the mapping φ : {t1 . . . tn} → V given by φ(ti) =
γ−1(i).

Proof. We will prove isomorphism of the two graphs under φ by showing that (u, v) ∈ A if
and only if (φ−1(u), φ−1(v)) ∈ A′.

For the forward direction, it suffices to show that σ(u) ≤ σ(v) whenever (u, v) ∈ A. We
observe that if (u, v) ∈ A, then γ(v) < γ(u). By Observation 1, GreedyAssign must assign
σ(v) before σ(u). Observation 2 then implies that σ(u) ≤ σ(v).

Next we show the contrapositive of the converse direction. Assume that (u, v) 6∈ A.
We first consider the case when γ(v) > γ(u). Let φ−1(u) = tγ(u) and φ−1(v) = tγ(v). By
definition of permutation DAGs, PermDAG(σ) does not have arc (ti, tj) when i < j. Thus
(tγ(u), tγ(v)) 6∈ A. Next, we consider the case when γ(v) < γ(u). For this, it suffices to show
that σ(u) < σ(v). Since (u, v) 6∈ A, the vertex v will never become fully suffix connected
before the removal of u. Thus GreedyAssign sets σ(u) before σ(v). Thus, by Observation
2, we have that σ(u) ≤ σ(v). Let u = vi and v = vj , where i, j ∈ [n] are the iteration
numbers during which GreedyAssign assigns σ(u) and σ(v) respectively. Then, there exists

IPEC 2020

23:12 FPT Algorithms for LHS and MBT

k such that i ≤ k < j and γ(vk+1) < γ(vk) as otherwise, Observation 2 would imply that
γ(vi) < γ(vj), a contradiction. Thus, σ(u) < σ(v). J

I Lemma 15 (Optimality of GreedyAssign). Let σ∗ be a sequence achieving α(G, γ). Then,
σ(vi) ≤ σ∗(vi) for all i ∈ [n].

Proof. We will show this by induction on i. For the base case of i = 1, GreedyAssign
always sets σ(v1) = 1, the smallest possible alphabet assignment. Thus σ(v1) ≤ σ∗(v1)
holds. For the induction step, let i ≥ 2. We have the following two cases based on whether
GreedyAssign incremented the alphabet size while assigning vi.

1. Suppose σ(vi) = σ(vi−1). By the description of the algorithm GreedyAssign, we have
that vi−1 is fully suffix connected in Gi−1 and γ(vi) > γ(vi−1). Thus, the arc (vi, vi−1)
must exist in Gi−1 and so also in G. It follows that

σ(vi) = σ(vi−1) ≤ σ∗(vi−1) ≤ σ∗(vi).

Here, the first inequality is by the induction hypothesis, while the second inequality is
due to the observation that (vi, vi−1) ∈ A.

2. Suppose σ(vi) 6= σ(vi−1). By the description of the algorithm GreedyAssign, we have
that γ(vi) < γ(vi−1). Thus by Observation 1, the arc (vi−1, vi) does not exist in Gi−1
and hence, does not exist in G. It follows that

σ(vi) = σ(vi−1) + 1 ≤ σ∗(vi−1) + 1 ≤ σ∗(vi).

The equality relation is due to Observation 2. The first inequality is due to the induction
hypothesis while the second inequality is due to our observation that (vi−1, vi) 6∈ A.

J

Remark. Algorithm 2 can be implemented to run in O(|V |+ |A|) time. This can be done by
using a priority queue data structure initialized as a stack. All fully suffix connected vertices
should be added to the priority queue with priorities being position in γ. The choice of vertex
to assign is the vertex with the minimum priority. The alphabet size should be incremented
whenever a vertex removal results in new vertices becoming fully suffix connected.

3.2 Min-Max Relation
Min-max relations are significant in optimization literature as they are strong indicators for
the existence of a polynomial-time algorithm. In the context of algorithm design, min-max
relations bring the optimization problem into NP ∩ coNP, thus providing strong evidence for
the existence of polynomial-time algorithms. In this section, we prove the min-max relation
for α(G, γ), i.e., Theorem 3. A consequence of our min-max relation will be an alternative
linear time algorithm for computing α(G, γ). We believe that the min-max relation could be
a useful tool towards computing α(G). We restate and prove the min-max relation below
(see Section 1.1 for the definition of the graph H(G, γ) and weights w for this graph).

I Theorem 3. Let G = (V,A) be a permutation DAG and γ be a topological ordering of V
such that α(G, γ) is finite. Then,

α(G, γ) = 1 + max

∑
e∈P

w(e) : P is a path in H(G, γ)

 .

K. Chandrasekaran et al. 23:13

Proof. We will show the equation by showing inequality in both directions. We begin
by showing the lower bound on α(G, γ). Let P be any path in H(G, γ), and σ be any
sequence such that PermDAG(σ) = ({t1, . . . , tn}, A′) is isomorphic to G under the mapping
φ : {t1, . . . , tn} → V given by φ(ti) = γ−1(i). For every arc (φ(ti), φ(tj)) ∈ P such that
(φ(ti), φ(tj)) ∈

−→
E , we have the following two observations. First, the arc (φ−1(tj), φ−1(ti)) 6∈

A′ as the arc (φ(tj), φ(ti)) 6∈ A. Second, σ(φ(ti)) ≥ σ(φ(tj)) + 1 as i < j. It follows that

w(P) =
∑

(u,v)∈P

w(u, v) =
∑

(u,v)∈P∩−→E

w(u, v) ≤
∑

(u,v)∈P∩−→E

σ(u)− σ(v) ≤ α(G, γ)− 1.

The first and second equations are by definition of w(P) and the weight function w respectively.
The first inequality is due to our observation that σ(u) ≥ σ(v) + 1 whenever (u, v) ∈ −→E . Let
a and b be the first and last vertices on P . Then the final inequality follows from σ(a) ≥ 1
and σ(b) ≤ α(G, γ).

Next, we show the upper bound on α(G, γ). We recall that v1, . . . , vn is the order in
which GreedyAssign processes vertices of G. Consider P = (vn, vn−1, . . . , v1). To prove the
upper bound, it suffices to show that (1) P is a path in H(G, γ); and (2) w(P) ≥ α(G, γ)− 1.
To prove (1), we show that (vi, vi−1) ∈ A ∪

−→
E for each i ≥ 2. Consider the case when

γ(vi) > γ(vi−1). Since vi−1 was γi−1-LFSC in Gi, the arc (vi, vi−1) ∈ A. Next, consider the
case when γ(vi) < γ(vi−1). By Observation 1, we have that the arc (vi−1, vi) 6∈ A. Thus, the
arc (vi, vi−1) ∈ −→E by definition of −→E . We now prove (2). By Observation 2, and definitions
of w and −→E , we have w(vi, vi−1) = σ(vi)− σ(vi−1) It follows that

w(P) =
n∑
i=2

w(vi, vi−1) =
n∑
i=2

σ(vi)− σ(vi−1) = α(G, γ)− 1.

The second equality is due to our previous observation. The final equality is due to the
GreedyAssign assignments σ(vn) = α(G, γ) and σ(v1) = 1. J

We remark that although the RHS problem in the min-max relation given in Theorem
3 is the longest path problem in a directed graph, it can be solved in the graph H(G, γ)
owing to the following lemma. Lemma 16 allows the optimization problem in the RHS of
Theorem 3 to be solved in O(|V |+ |A|) time by the classical dynamic programming algorithm
for maximum weight path in a DAG. This leads to an alternative algorithm for computing
α(G, γ).

I Lemma 16. H(G, γ) is a DAG.

Proof. Suppose for contradiction thatH(G, γ) contains a cycle. Let C = (u1, u2, . . . uk, u1) be
a cycle with the smallest number of vertices. If (u1, u3) ∈ A∪−→E , then C ′ = (u1, u3, . . . , uk, u1)
is a cycle, contradicting our choice of C. Since H(G, γ) is a tournament, the arc (u3, u1) ∈
A∪
−→
E , and C ′ = (u1, u2, u3, u1) is also a cycle i.e. k = 3. We recall that the subgraph (V,A)

is transitively closed. Thus, at most one edge of C can belong to A. To get the required
contradiction, it suffices to show that the subgraph (V,−→E) is transitively closed. Suppose
for contradiction that −→E is not transitively closed. Then, there exist arcs (u, v), (v, w) ∈ −→E
such that the arc (u,w) 6∈ −→E . By definition of −→E , we have that γ(u) < γ(v) < γ(w). It
follows that the arc (w, u) ∈ A, and the triple (u, v, w) is an umbrella in G ordered by γ.
This contradicts that γ is umbrella-free. J

IPEC 2020

23:14 FPT Algorithms for LHS and MBT

3.3 Polyhedral Description for γ-alphabet size
In this section, we give a polyhedral description for the convex-hull of sequences that are
feasible for α(G, γ). As a consequence, it leads to an LP-based algorithm to compute α(G, γ).
We emphasize that our polyhedral result is stronger than giving an LP-based algorithm to
compute α(G, γ): it implies that one can efficiently compute an integer-valued sequence
σ = (σ(1), . . . , σ(n)) with minimum weight

∑n
i=1 wiσ(i) for any given non-negative weights

w1, . . . , wn such that PermDAG(σ) is isomorphic to G under the mapping φ : {t1, . . . , tn} → V

given by φ(ti) = γ−1(i) for every i ∈ [n]. The following is the main result of this section.

I Theorem 17. Let G = (V,A) be an n-vertex permutation DAG and γ be an umbrella-free
topological ordering of its vertices. Let Q(G, γ) be the convex-hull of indicator vectors of
x ∈ Nn whose sequence σ := (x1, . . . , xn) is such that PermDAG(σ) = ({t1, . . . , tn}, A′) is
isomorphic to G under the mapping φ : {t1, . . . , tn} → V given by φ(ti) = γ−1(i) for all
i ∈ [n]. Then,

Q(G, γ) =

x ∈ Rn

∣∣∣∣∣∣∣
xγ(u) ≤ xγ(v) ∀(v, u) ∈ A,
xγ(v) ≤ xγ(u) − 1 ∀(v, u) 6∈ A with γ(u) < γ(v), and
xi ≥ 1 ∀ i ∈ [n]

 .

For notational convenience, let P (G, γ) denote the polyhedron defined in the RHS of
Theorem 17. Before proving Theorem 17, we describe how α(G, γ) can be obtained by
optimizing over P (G′, γ′) for a graph G′ and an ordering γ′ obtained from G and γ. Let
G′ = (V ′, A′) be obtained from G by adding a vertex t with edges (t, u) for all u ∈ V and
γ′ : V ′ → [n+ 1] be defined as γ′(u) = γ(u) if u ∈ V and γ′(t) = n+ 1. We note that if G is
a permutation DAG and γ is an umbrella-free topological ordering of G, then G′ is also a
permutation DAG and γ′ is an umbrella-free topological ordering of G′. Moreover, we also
have that

α(G, γ) = min
{
xγ′(n+1) : x ∈ Q(G′, γ′)

}
.

Thus, by Theorem 17, the γ-alphabet size of G, i.e., α(G, γ), can be computed by optimizing
along the objective direction (0, . . . , 0, 1) ∈ Rn+1 over the polyhedron P (G′, γ′).

We now prove Theorem 17.

Proof of Theorem 17. We recall that a point x is an extreme point of a polyhedron if x
cannot be expressed as a convex combination of any two distinct points in the polyhedron.
Any extreme point x of Q(G, γ) satisfies the constraints defining P (G, γ). Thus, Q(G, γ) ⊆
P (G, γ). In order to show equality, it suffices to show that all extreme points of P (G, γ) are
integral. Lemma 18 shows that all extreme points of P (G, γ) are integral, thus completing
the proof of Theorem 17. J

I Lemma 18. Let G = (V,A) be an n-vertex DAG and γ be a topological ordering of its
vertices. If x is an extreme point of P (G, γ), then x ∈ Zn.

Proof. Suppose for contradiction that x is non-integral. We will show the existence of two
points in P (G, γ) such that x is a convex combination of these points. Let S := {i : xi 6∈ Z}.
We note that the set S is non-empty due to our choice of x. Let ε ∈ R be as follows

ε := min
i∈S

{
min(xi − bxic , dxie − xi)

}
.

K. Chandrasekaran et al. 23:15

Since S is non-empty, we have ε > ε
2 > 0. Let y ∈ Rn be defined as follows:

yi :=

ε/2 if i ∈ S,
0 otherwise.

We note that x = 1
2 (x + y) + 1

2 (x − y). It suffices to show that x + y,x − y ∈ P . We will
show that the point x + y ∈ P and remark that the proof of x − y ∈ P is along very similar
lines. We observe that y ≥ 0.

Constraint (3) is always satisfied as xi + yi ≥ xi ≥ 1. We first focus on constraint (1).
Consider any arc (v, u) ∈ A. Since y ≥ 0, the constraint is easily seen to be satisfied in
the cases where (1) xγ(u), xγ(v) ∈ Z; (2) xγ(u), xγ(v) 6∈ Z; and (3) xγ(u) ∈ Z but xγ(v) 6∈ Z.
Consider the case when xγ(u) 6∈ Z but xγ(v) ∈ Z. Then, we have that

xγ(u) + yγ(u) < xγ(u) + ε ≤
⌈
xγ(u)

⌉
≤ xγ(v) = xγ(v) + yγ(v).

The first inequality is by yi ≤ ε/2 for all i ∈ [n]. The second inequality is by definition of ε.
The third inequality is due to x ∈ P and our case assumption that xγ(v) ∈ Z. The equality
relation is by definition of y.

Next, we consider constraint (2). Let γ(u) < γ(v) but (v, u) 6∈ A. Similar to the above
analysis, the constraint is easily seen to be satisfied in the cases where (1) xγ(u), xγ(v) ∈ Z;
(2) xγ(u), xγ(v) 6∈ Z; and (3) xγ(u) 6∈ Z but xγ(v) ∈ Z. Consider the case when xγ(u) ∈ Z but
xγ(v) 6∈ Z. Then, we have that

xγ(v) + yγ(v) < xγ(v) + ε ≤
⌈
xγ(u)

⌉
≤ xγ(u) = xγ(u) + yγ(u).

The first inequality is due to yi ≤ ε/2 for all i ∈ [n]. The second inequality is by definition
of ε. The third inequality is due to x ∈ P and our case assumption that xγ(u) ∈ Z. The
equality relation is by definition of y. J

Based on Lemma 18, it is natural to wonder if the integral extreme points of P (G, γ)
have any combinatorial interpretation when G is an arbitrary DAG and γ is an arbitrary
topological ordering of G. The following lemma shows that integrality of P (G, γ) is useful
only when G is a permutation DAG and γ is an umbrella-free topological ordering of G.

I Lemma 19. Let G be a DAG and γ be a topological ordering of G. Then, P (G, γ) is
non-empty if and only if G is a permutation DAG and γ is umbrella-free.

Proof. The reverse direction follows from the correctness of GreedyAssign (Lemma 14). We
focus on proving the forward direction. Let x ∈ P (G, γ) be a feasible point. It suffices to
show that G is transitively closed and γ is umbrella-free.

First, assume for contradiction that G is not transitively closed. Then, there exist arcs
(u, v), (v, w) ∈ A such that the arc (u,w) 6∈ A. Since x is feasible, we have the following: (1)
xγ(v) ≤ xγ(u); (2) xγ(w) ≤ xγ(v); and (3) xγ(u) ≤ xγ(w) − 1. However, these inequalities do
not admit any feasible solution, a contradiction.

Next, assume for contradiction that γ is not umbrella-free. Then, there exists a triple
(u, v, w) such that γ(u) < γ(v) < γ(w), and the arc (w, u) ∈ A, but the arcs (v, u), (w, v) 6∈ A.
Since the point x is feasible, we have the following: xγ(w) ≤ xγ(v) − 1; (2) xγ(v) ≤ xγ(u) − 1;
and (3) xγ(u) ≤ xγ(w). However, these inequalities do not admit any feasible solution, a
contradiction. J

IPEC 2020

23:16 FPT Algorithms for LHS and MBT

References
1 János Balogh, Cosmin Bonchiş, Diana Diniş, Gabriel Istrate, and Ioan Todinca. The heapability

of finite partial orders. Discrete Mathematics and Theoretical Computer Science, 22(1), 2020.
2 Anne-Laure Basdevant, Lucas Gerin, Jean-Baptiste Gouéré, and Arvind Singh. From Ham-

mersley’s lines to Hammersley’s trees. Probability Theory and Related Fields, pages 1–51,
2016.

3 Anne-Laure Basdevant and Arvind Singh. Almost-sure asymptotic for the number of heaps
inside a random sequence. Electronic Communications in Probability, 23(17), 2018.

4 Cosmin Bonchiş, Gabriel Istrate, and Vlad Rochian. The language (and series) of Hammersley-
type processes. In Proceedings of the Eighth Conference on Machines Computation and
Universality (MCU’18), volume 10881 of Lecture Notes in Computer Science, 2018.

5 John Byers, Brent Heeringa, Michael Mitzenmacher, and Georgios Zervas. Heapable sequences
and subseqeuences. In Proceedings of the Eighth Workshop on Analytic Algorithmics and
Combinatorics, ANALCO ’11, pages 33–44, 2011.

6 Karthekeyan Chandrasekaran, Elena Grigorescu, Gabriel Istrate, Shubhang Kulkarni, Young-
San Lin, and Minshen Zhu. The maximum binary tree problem. In Proceedings of the 32nd
European Symposium on Algorithms (ESA’20), to appear, 2020. arXiv preprint: 1909.07915.
URL: https://arxiv.org/pdf/1909.07915.pdf.

7 Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer Verlag,
2012.

8 Martin Charles Golumbic. Chapter 7 - permutation graphs. In Martin Charles Golumbic,
editor, Algorithmic Graph Theory and Perfect Graphs, pages 157 – 170. Academic Press, 1980.

9 Gabriel Istrate and Cosmin Bonchiş. Partition into heapable sequences, heap tableaux and a
multiset extension of Hammersley’s process. In Proceedings of the 26th Annual Symposium on
Combinatorial Pattern Matching (CPM’15), Ischia, Italy, volume 9133 of Lecture Notes in
Computer Science, pages 261–271. Springer, 2015.

10 Gabriel Istrate and Cosmin Bonchiş. Heapability, interactive particle systems, partial orders:
Results and open problems. In Proceedings of the 18th International Conference on Descrip-
tional Complexity of Formal Systems (DCFS’2016), Bucharest, Romania, volume 9777 of
Lecture Notes in Computer Science, pages 18–28. Springer, 2016.

11 A. Pnueli, A. Lempel, and S. Even. Transitive orientation of graphs and identification of
permutation graphs. Canadian Journal of Mathematics, 23(1):160–175, 1971.

12 Jaclyn Porfilio. A combinatorial characterization of heapability. Master’s thesis, Williams
College, 2015.

13 Dan Romik. The surprising mathematics of longest increasing subsequences. Cambridge
University Press, 2015.

https://arxiv.org/pdf/1909.07915.pdf

	Introduction
	Results
	Related Work

	Longest heapable subsequence parameterized by alphabet size
	-Alphabet Size of Permutation DAGs
	Algorithm
	Min-Max Relation
	Polyhedral Description for -alphabet size

