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Abstract—Group testing is the process of pooling arbitrary subsets
from a set of n items so as to identify, with a minimal number
of disjunctive tests, a “small” subset of d defective items. In
“classical” non-adaptive group testing, it is known that when
d = o(n1−δ) for any δ > 0, θ(d log(n)) tests are both information-
theoretically necessary, and sufficient to guarantee recovery with
high probability. Group testing schemes in the literature meeting
this bound require most items to be tested Ω(log(n)) times, and
most tests to incorporate Ω(n/d) items.

Motivated by physical considerations, we study group testing models
in which the testing procedure is constrained to be “sparse”.
Specifically, we consider (separately) scenarios in which (a) items
are finitely divisible and hence may participate in at most γ
tests; and (b) tests are size-constrained to pool no more than
ρ items per test. For both scenarios we provide information-
theoretic lower bounds on the number of tests required to guar-
antee high probability recovery. In particular, one of our main
results shows that γ-finite divisibility of items forces any group
testing algorithm with probability of recovery error at most ε to
perform at least Ω(γd(n/d)(1−2ε)/((1+2ε)γ)) tests. Analogously,
for ρ-sized constrained tests, we show an information-theoretic
lower bound of Ω(n log(n/d)/(ρ log(n/ρd))). In both scenarios
we provide both randomized constructions (under both ε-error and
zero-error reconstruction guarantees) and explicit constructions of
computationally efficient group-testing algorithms (under ε-error
reconstruction guarantees) that require a number of tests that are
optimal up to constant factors in some regimes of n, d, γ and ρ. We
also investigate the effect of unreliability/noise in test outcomes.

I. INTRODUCTION

Group testing deals with identifying a relatively small number
of defective items among a large population via non-linear
“grouped” tests. The model was introduced by Dorfman
[1] in 1943, motivated by the task of identifying syphilitic
individuals among military inductees during World War II.
Individual blood tests for syphilis were expensive, so multiple
blood samples could be pooled and tested simultaneously.
It was desirable to minimize the number of tests, while
correctly identifying the disease status of every individual.

This paper studies group testing with two potential types of
constraints. First, we consider a model where each item can
be tested a limited number of times (e.g. due to a limited
amount of blood that can be taken an individual). Second, we
consider a model where each test can have a limited number
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of items (e.g. equipment limitations impose a maximum on
the number of objects that can be simultaneously tested).

II. MODEL

There is a set S that contains n items, including an unknown
subset D of size d which are said to be “defective”. Here d
is considered to be “small” with respect to n – perhaps as
small as a constant, but at any rate no larger than O(n1−ε)
for some ε > 0.1 We wish to identify these items through a
series of group tests, which take as input a subset (group) of
the n items, and outputs whether or not there exists at least
one defective item in the subset/group.2

Group testing may be adaptive (the set of items to be tested
in a group may be a function of prior test outcomes) or non-
adaptive (all group tests have to be chosen independently of
prior test outcomes). The advantage of non-adaptive group-
tests is that they allow for parallel testing, and can use off-the
shelf hardware, and hence we focus on non-adaptive group
testing in this paper.

The goal of non-adaptive group testing is to correctly identify
the exact set of defective items with a minimal number of
non-adaptive group tests T . The correctness may be required
either with high probability over the identity of the set D of
d defective items assumed to be uniformly distributed over
all
(
n
d

)
such sets (ε-error group testing) or with probability

1 (zero-error group testing).

We use binary test matrices to represent non-adaptive group
tests. For a given T × n test matrix M , there is a 1 in the
(i, j)th location if item j is tested in test i, and 0 otherwise.

The weight-d binary input vector X ∈ {0, 1}n represents the
set S, and contains 1’s in the locations corresponding to the
items of D. The locations with 1s are said to be defective
while others are said to be non-defective. The outcomes of
the tests correspond to the result vector Y ∈ {0, 1}T , with a
1 in the ith location if and only if the ith test has at least one
defective item, i.e., the OR of the components of X restricted
to the support of the ith row of M is 1.

The decoder then estimates the locations of the defective
items and outputs an estimate vector X̂ ∈ {0, 1}n, with 1’s
in the locations where the group testing algorithm estimates
the defective items to be. The probability of error of any

1The regime where d = θ(n) is much less well-studied.
2We assume that the true value of d is known a priori.



group testing algorithm is defined as the probability over the
input vector X that the estimate vector X̂ differs from X
in any location. Thus, ε-error group testing requires a test
matrix M and a corresponding decoding procedure such that
Pr
X

[
X̂ 6= X

]
< ε over all possible sets of defectivesD, where

each set of defectives may occur uniformly3 with probability
1/
(
n
d

)
. In contrast, zero-error group testing requires a test-

matrix M and a decoding procedure such that for all d-
sparse inputs X , the decoding procedure outputs X̂ = X .
Some authors [2], [3] also consider “noisy” tests, in which
with probability σ, test outcomes are misreported. In such
models, an ε-error reconstruction guarantee is desired, where
the probability is over randomness in X and in the noise
process that converts Y to a noisy vector Ŷ (via, for instance
a binary-symmetric channel with crossover probability σ).
We briefly consider such models in Section VII.

We define the γ-divisible model, where each item can be
tested at most γ times, and so each column of M contains
at most γ 1’s. Similarly, we define the ρ-sized model, where
each test can include at most ρ items, and so each row of M
contains at most ρ 1’s.

All logarithms in this paper are base 2. The function H(X)
denotes the entropy of the (vector valued) random variable X ,
H(p) denotes the binary entropy function, H(X|Y ) denotes
the conditional entropy of X given Y , and I(X;Y ) the
mutual information between X and Y .

A. Related work

While there is significant literature on multiple alternative
models of group testing [3]–[11], the focus of this work is
primarily on non-adaptive group testing, under ε-error and
zero-error reconstruction guarantee metrics. We thus restrict
the discussion of prior work to the literature on lower bounds
and algorithms (both deterministic and randomized) for ε-
error and zero-error non-adaptive group testing.

Du and Hwang [12] show through disjunct matrices that
O(d2 log n) tests suffice for zero-error group testing, while
Porat and Rothschild [13] provide an explicit NAGT algo-
rithm with O(d2 log n) tests, almost matching the best known
lower bound of Ω

(
d2 log n/ log d

)
[14].

The lower bound of Ω((1− ε)d log(n/d)/(1−H(σ)) for ε-
error group testing, [15] is met (up to constant factors) by
[11], [16], [17].

3One may also consider slightly different distributions over D, as other
authors do. For instance, it may be of interest to consider a uniform
distribution over all

∑d
i=0

(n
i

)
subsets of size at most d (rather than exactly

d, as we do in our model). Alternatively, one may consider a model in which
items are defective i.i.d. Bernoulli(d/n), leading to an expected group size
of d. It turns out that these model perturbations do not substantially change
our results, and hence we focus on just the model wherein each set of d
items may equal D with probability 1/

(n
d

)
.

In all the works mentioned above there are no a priori
constraints on the group tests themselves. In classical group
testing algorithms that meet the information-theoretic lower
bound of θ(d log(n)) tests for ε-error reconstruction, each
item is tested Ω(log(n/d)) times.

III. RESULTS

A. γ-divisible items

Small-error: Suppose there are n items, including d defective
items. If each item can be tested at most γ times, then to
identify the d defective items with probability at least 1− ε
in the non-adaptive group testing model:

Theorem III.1 (Section V-A). For γ = o(log n), at least

Ω
(
γd
(
n
d

) 1−2ε
(1+2ε)γ

)
tests are needed.

Theorem III.2 (Section V-B). There exists a randomized
algorithm using T = O

(
(γd)

(
n−d
ε

)1/γ)
tests.

Theorem III.3 (Section V-C). There exists a deterministic
algorithm using T = d2γ

ε

(
nε
d2

)1/γ
tests.

Zero-error: We also study the zero-error model where the d
out of n defective items have to identified without error. We
show the following results for γ-divisible group testing:

Theorem III.4 (Section VI-A). There exists a randomized
algorithm for γ-divisible group testing with zero errors using

O

(
γd
(
n
(
n
d

)d) 1
γ

)
tests.

Noisy tests: Finally, we consider the case where individual
tests can fail with probability σ. We show:

Theorem III.5 (Section VII). It is not possible to recover
the set of defective items with probability at least 1 − ε for
arbitrary 0 < ε < 1 and γ = o(log n), when each item can
be tested at most γ times.

B. ρ-sized tests

Small-error: Suppose there are n items, including d defective
items. If each test can contain at most ρ items, then to identify
the d defective items with probability at least 1 − ε in the
non-adaptive group testing model:

Theorem III.6. At least Ω

(
n
ρ

log(nd )
log( n

ρd )

)
tests are needed.

Theorem III.7. There exists a randomized algorithm using
T = O

(
n
ρ log

(
n
ε

))
tests.

Theorem III.8. For ρ = n1−1/k, for some integer k ≥ 2,
there exists a deterministic algorithm using T = n

ρ
d2 logn

ε log(np )
tests.



Zero-error: For ρ-sized group testing without error, we show
that

Theorem III.9. There exists a randomized algorith-
m for ρ-sized group testing with zero-errors using
O
(
n
ρ log

(
n(nd )d

))
tests.

Noisy tests:

Theorem III.10. There exists a randomized algorithm for ρ-
sized group testing with kT tests, where T = O

(
n
ρ log

(
n
ε

))
and k = O

(
log
(
n
ρ log

(
n
ε

)))
, which will recover the set of

defective items with probability at least 1− ε.

For detailed proofs to these results, we refer to the full version
of the paper [18]. Table I contains a summary of prior work
and our results.

IV. PROOF OVERVIEW

For our information-theoretic lower bounds on ε-error non-
adaptive group testing, we start with the “folklore” obser-
vation that for any group testing procedure to succeed, the
entropy of the test outcome vector Y must almost equal the
entropy of the input vector X (which has entropy log

((
n
d

))
,

which is approximately d log(n/d) for d = O(n1−ε)).
Indeed, in classical group testing, this is a design principle
for the test matrices M , leading to designs such that the
probability of test outcomes being either positive or negative
should ideally be close to 1/2 (and hence the entropy of each
individual test should be close to 1). 4 This design principle
implies that each test should include about g∗ = (n/d) ln(2)
items, since then the probability of a negative test outcome
can then be shown to be ≈ 1/2. This density of items
per test (corresponding to the density of items per row of
M ) coupled with the desire to use only an information-
theoretically optimal number of tests of about θ(d log(n/d))
(hence restricting M to have θ(d log(n/d)) rows), induces
the fact that each column of M should have on average about
θ(log(n/d)) items.

But for “sparse” matrices, for instance when tests are size
constrained to ρ = o(n/d), it may be impossible to meet
this design principle. This implies a fundamental upper bound
on the entropy that can be “squeezed” out of each test Yj .

4Note that this is not a sufficient condition to guarantee low-error
reconstructability of X from Y , merely a necessary one. For instance,
consider a test matrix M such that the first test Y1 has entropy 1 bit,
and each of the remaining d log(n/d) rows are identical to this first row.
So while the sum of the entropies of individual tests is large, the overall
entropy of the test outcome vector is just 1 bit. This is due to the extreme
correlation across tests. So really, one needs to design a matrix M which not
only has high entropy per tests, but also high entropy for most collections
of tests. Nonetheless, as a lower-bounding technique, bounding the entropy
of individual tests often provides a reasonable first-order approximation, as
indeed seems to be the case in this work.

Coupled with the need to squeeze a total of d log(n/d)
bits of entropy out of the test vector Y , and “standard”
information-theoretic techniques (such as Fano’s inequality)
relating entropic quantities to probability of error give us
non-trivial lower bounds on the number of tests required in
the ρ-sized constrained model.

Similar techniques also work in Section V-A to provide lower
bounds in the case when the testing procedure involves γ-
divisible items – this puts a fundamental upper bound on γ
on the number of 1’s in any column of the testing matrix M .
This implies a constraint on the average density of each row
in M . However, more care is required in this model, since
there may be a few test rows of M with “high” weight.
Our bounding technique therefore proceeds by choosing a
threshold above which we consider a test to be “heavy”. We
then do a two-stage approximation to obtain an upper bound
on the entropy of the test outcome vector Y , and the rest of
the proof is similar to the one on ρ-sized tests.

As an explicit example of the type of results obtainable via
these lower bounding techniques, we can show that to detect
a single defective (d = 1) out of n items, with a constraint
that each item may be tested at most twice (γ = 2), it must
be the case that group testing procedure has at least about

√
n

tests. (Compared with log(n) tests, which would suffice in
the unconstrained case.) To gain further intuition on why such
a lower bound might be tight, consider the following testing
algorithm. The n items are arranged into a

√
n ×
√
n grid,

6 7 8
3 4 5
0 1 2

Test 1 Test 2 Test 3

Test 6

Test 5

Test 4

negative negative positive

negative

positive

negative

Fig. 1: If n = 9, γ = 2, d = 1, the above test uniquely determines
that item 5 is defective.

as in Figure 1. The test matrix then comprises of 2
√
n rows,

corresponding to the
√
n sets of

√
n items in each column

of this grid, and the
√
n sets of

√
n items in each row of this

grid. The unique defective item then must correspond to the
item sitting at the intersection of the single column and the
single row that return positive test outcomes.

Generalizing this design to general item and test constrained
settings takes more work. We provide explicit constructions
that use the toy example (d = 1, γ = 2) and generalize to



Model ε-error 0-error
Lower Bound Upper Bound Lower Bound Upper Bound

General

Randomized Ω
(
(1 − ε)d log n

d

)
[15] O((1 − ε)d log(n/d) [11], [16], [17] Ω

(
d2 logn

log d

)
[14] O(d2 logn) [12]

Explicit Same as above O
(
d

logn
log d

log(n
ε

)
)

[19] Same as above O(d2 logn) [9], [13], [20], [21]

γ-divisible items

Randomized Ω

γd (n
d

) 1−2ε
(1+2ε)γ

 [Thm III.1] O

(
(γd)

(
n−d
ε

)1/γ)
[Thm III.2] Ω

(
γd
(
n
d

) 1
γ

)
[Thm III.1] O

γd(n (n
d

)d) 1
γ

 [Thm III.4]

Explicit Same as above O

(
d2γ
ε

(
nε
d2

)1/γ
)

[Thm III.3] Same as above O

n 1

γ1/d

 [22]

ρ-sized tests

Randomized Ω

n
ρ

log
(
n
d

)
log
(
n
ρd

)
[Thm III.6] O

(
n
ρ

log
(
n
ε

))
[Thm III.7] Ω

n
ρ

log
(
n
d

)
log
(
n
ρd

)
[Thm III.6] O

(
n
ρ

log
(
n(n
d

)d
))

[Thm III.9]

Explicit Same as above O

n
ρ
d2 logn

ε log
(
n
p

)
 [Thm III.8] Same as above O

(
n
ρ

(
logn

log(n/ρ)

)d)
[22]

TABLE I: A summary of non-adaptive group testing results.

arbitrary d, and γ or ρ, via a “divide-and-conquer” approach.
Details are provided in Section V-C.

We also provide randomized designs that draw intuition
from the analysis of “classical” (unconstrained) group testing
schemes. We analyze the probability that randomly chosen
matrices chosen from suitable ensemble of matrices with
either ρ-sparse rows or γ-sparse columns (for the two mod-
els considered) have a “reasonable” probability of success,
by analyzing the probability that a non-defective item is
“masked” by the set of d defective items. These results are
outlined in Section III.

We extend these randomized constructions in two ways,
paralleling the development of the literature in unconstrained
group testing. In Section VI we consider the randomized
design of zero-error group testing schemes. The techniques
here are relatively straightforward – essentially, we take the
corresponding matrices ensembles of matrices in Section V-B
that guarantee ε-error reconstructability for γ-divisible item
models and ρ-sized test models respectively, and union bound
over all

(
n
d

)
possible sets of defectives. Finally, in Section VII

we examine the effect of σ-noise (say BSC(σ) noise for con-
creteness) in test outcomes Yi on the reconstructability of X –
interestingly, while non-trivial achievability schemes exist in
the ρ-test size constrained setting with σ-noisy test outcomes
(for instance by repeating each test an appropriate number
of times and taking the majority), in the γ-divisible item
scenario any non-trivial amount of noise renders any group
testing algorithm unable to reconstruct X with a vanishing
probability of error. This latter impossibility result stems
from the fact that if the columns of M are sufficiently sparse
(o(log(n)), then with non-trivial probability (1−σo(log(n)))n,
all information about the status of at least one item will be
completely masked by the noise in the tests in which the item
participates.

V. γ-DIVISIBLE ITEMS

A. Theorem III.1: Information-Theoretic Lower Bounds

In classical group testing, each item is tested Ω
(
log n

d

)
times.

Thus, we consider the regime where γ = o
(
log n

d

)
. We now

provide information-theoretic lower bounds on the number of
tests required to guarantee high probability reconstruction of
the set of defectives items in a model with column constraints
(i.e., each item can be tested at most γ times).

Proof of Theorem III.1: Recall that X is the input vector,
Y is the result vector, and X̂ is the estimate vector so
that X → Y → X̂ forms a Markov chain. From standard
information-theoretic definitions, we have

H(X) = H(X|X̂) + I(X; X̂), (1)

where H(X) is the binary entropy of the length-n binary
vector X , and I(X; X̂) is the mutual information between
X and X̂ . Since X is uniformly distributed over X , the set
of all length-n, d-sparse binary vectors, we have

H(X) = log |X | = log

(
n

d

)
(2)

We now upper bound each of the terms in RHS of E-
quation 1 separately. By Fano’s Inequality, H(X|X̂) ≤
H(ε) + ε log(|X | − 1). Note that for ε < 1

2 ,

H(ε) < −2ε log ε. (3)

Also, by the data processing inequality and standard in-
formation theoretic inequalities, I(X; X̂) ≤ I(X;Y ) =
H(Y ) − H(Y |X) ≤ H(Y ). The bound on H(Y ) follows
from Lemma V.1 which will be proved later.



Lemma V.1.

H(Y ) ≤ (1 + 2ε)γd log

(
T

γd

)
Plugging in the value of H(X) from Equation 2 and the
inequalities from Equation 3 and Lemma V.1 in Equation 1,

H(X) = H(X|X̂) + I(X; X̂)

≤ H(ε) + ε log(|X | − 1) +H(Y )

log

((
n

d

))
≤ −2ε log ε+ ε log

((
n

d

))
+ (1 + 2ε)γd log

(
T

γd

)
.

By reordering the terms we get a lower bound on the number
of tests as

T ≥ γde
(1−ε) log((nd))+2ε log ε

(1+2ε)γd

≥ γde
(1−2ε) log((nd))

(1+2ε)γd (for sufficiently large n)

≥ γd
(
n

d

) 1−2ε
(1+2ε)γd

≥ γd
(n
d

) (1−2ε)(1+ε)
(1+2ε)γ

(by Sterling’s approximation)

to ensure a probability of reconstruction error of at most ε.
Hence, T = Ω

(
γd
(
n
d

) 1−2ε
(1+2ε)γ

)
tests are needed. We remark

that the same inequalities hold for adaptive group testing. 2

Proof of Lemma V.1: Let Y = (Y1, Y2, . . . , YT ), where

Yi =

{
1 if test i is negative
0 if test i is positive.

By the chain rule, H(Y ) ≤
∑T
i=1H(Yi). We partition the

tests T into sets S1 and S2, where i ∈ S1 if test i includes
less than n

εd log( Tγd )
items, and i ∈ S2 otherwise (that is, test

i includes at least n

εd log( Tγd )
items). 5

Since there are at most γn items that can be tested in total
and the entropy of each test outcome binary variable Yi is at
most 1, then∑

i∈S2

H(Yi) ≤ |S2| ≤
γn(
n

εd log( Tγd )

) = εγd log

(
T

γd

)
.

5Roughly speaking, tests in set S1 are “light” (test “few” items per test)
and hence have a “high” probability of being negative, and thus “low”
entropy (significantly less than 1 bit per test). Conversely, tests in set S2 are
“heavy” (test “many items per test) and may potentially have “high” entropy
(as much as 1 bit per test) - however, there cannot be too many heavy tests,
due to the constraint that each item is tested at most γ times.

For i ∈ S1, test i includes gi items, where gi < n

εd log( Tγd )
.

Then the probability p−i that Yi is negative is(
n− gi
d

)
/

(
n

d

)
=

(n− d)!(n− gi)!
(n− d− gi)!n!

≥
(

1−O
(

1

n− d− gi

))
× (n− d)n−d+

1
2 (n− gi)n−gi+

1
2

nn+
1
2 (n− d− gi)n−d−gi+

1
2

(by Sterling’s approximation)

= (1− δ)
(

1− d

n

)n−d+ 1
2

×

 (
1− gi

n

)n−gi+ 1
2(

1− d
n −

gi
n

)n−d−gi+ 1
2


(for any δ > 0 and sufficiently large n)

Since
(
1− d

n −
gi
n

)
<
(
1− d

n

) (
1− gi

n

)
, then(

n− gi
d

)
/

(
n

d

)
≥ (1− δ)

(
1− d

n

)n−d+ 1
2

×

 (
1− gi

n

)n−gi+ 1
2(

1− d
n

)n−d−gi+ 1
2
(
1− gi

n

)n−d−gi+ 1
2


= (1− δ)

(
1− d

n

)gi (
1− gi

n

)d
≥ (1− δ)

(
1− d

n

)gi (
1− dgi

n

)
(by Bernoulli’s Inequality)

≥ (1− δ)
(

1− d

n

)gi 1− 1

ε log
(
T
γd

)


(since gi corresponds to a “light” test)

≥ (1− 2δ)

(
1− d

n

)gi
(for sufficiently large n)

where the last inequality comes from the observation that in
the regime where γ = o

(
log
(
n
d

))
and T = Ω

(
d log

(
n
d

))
,

then limn→∞
T
γd = ∞. (See the beginning of the section

for a discussion of why we consider this regime.) By the
Arithmetic-Geometric Mean Inequality,

(1− 2δ)
1

|S1|
∑
i∈S1

(
1− d

n

)gi
≥

(1− 2δ)

(∏
i∈S1

(
1− d

n

)gi) 1
|S1|

.

Claim V.2.
∑
i∈S1

gi

|S1| ≤ γn
T



Proof: Since i ∈ S1 for gi < n

εd log( Tγd )
and i ∈ S2 for

gi ≥ n

εd log( Tγd )
, then

∑
i∈S1

gi

|S1| < n

εd log( Tγd )
≤
∑
i∈S2

gi

|S2| . But
then

|S2|
∑
i∈S1

gi ≤ |S1|
∑
i∈S2

gi

|S1|
∑
i∈S1

gi + |S2|
∑
i∈S1

gi ≤ |S1|
∑
i∈S1

gi + |S1|
∑
i∈S2

gi

(|S1|+ |S2|)
∑
i∈S1

gi ≤ |S1|
∑

i∈(S1∪S2)

gi

|T |
∑
i∈S1

gi ≤ |S1|γn,
∑
i∈S1

gi

|S1|
≤ γn

T

We now use the bound in Claim V.2 and properties of the
binary entropy function to bound the entropy of tests in S1.
Since

∑
i∈S1

gi

|S1| ≤ γn
T , then

(1− 2δ)

(∏
i∈S1

(
1− d

n

)gi) 1
|S1|

= (1− 2δ)

(
1− d

n

)∑
i∈S1

gi

|S1|

≥ (1− 2δ)

(
1− γd

T

)
,

by Bernoulli’s Inequality. Note that in the γ = o
(
log n

d

)
regime, (1 − δ)

(
1− γd

T

)
≥ 1

2 since T = Ω
(
d log n

d

)
.

Specifically,

1 ≥
∏
i∈S1


(
n− gi
d

)
(
n

d

)


1
|S1|

≥ (1− 2δ)

(
1− γd

T

)
≥ 1

2
.

(4)
Since the binary entropy function H(x) is monotonically
decreasing for x ∈ (1/2, 1), using Equation 4 above we have
that:

H

(
1− γd

T

)
≥ H


∏
i∈S1

(
n− gi
d

)
(
n

d

)


1
|S1|


≥ H

 1

|S1|
∑
i∈S1

(
n− gi
d

)
(
n

d

)
 = H

(
1

|S1|
∑
i∈S1

p−i

)
.

Furthermore, in the γ = o
(
log n

d

)
regime, (1−2δ)

(
1− γd

T

)
approaches 1 − ε (since T = Ω(d log(n/d)) even in the
unconstrained group testing case). This implies that H(p−i ) ≤

−(1 + 2δ)(1 − p−i ) log(1 − p−i ) for all sufficiently large n.
Hence,

H

(∑
i∈S1

p−i

)
≤
(
γd

T
+ 3δ

)
log

T

γd
.

Therefore,

H(Y ) =
∑
i∈S1

H(Yi) +
∑
i∈S2

H(Yi)

≤ T
(
γd

T
+ 3δ

)
log

(
T

γd

)
+ εγd log

(
T

γd

)
≤ (1 + 2ε)γd log

(
T

γd

)
(for appropriate choice of δ).

2

B. Theorem III.2: Randomized Construction of Test Matrices

We describe a randomized construction of a T×n test matrix
M , where T = O

(
(γd)

(
n−d
ε

)1/γ)
. We pick each column

of M uniformly at random from the vectors of {0, 1}T with
support size γ. Now, we describe how to recover the estimate
vector X̂ from the test results.

1) The Column Matching Algorithm (CoMa): To obtain
the estimate vector X̂ from result vector Y , the Column
Matching algorithm (CoMa) from [15] uses the tests which
have positive outcomes to identify all defective items, while
declaring all other items to be non-defective. Namely, the
algorithm marks item i defective if every test in which i is
included is positive. Note that CoMa cannot incorrectly mark
positive items. CoMa can only incorrectly designate a non-
defective item as defective if the item is not tested, or is only
tested in positive tests (i.e., every test it occurs in has at least
one defective item). If M is chosen to have enough rows
and d = o(n), then with significant probability, each non-
defective item should appear in at least one negative test,
and hence will be appropriately marked non-defective.

2) Analysis: Since each of the d defective items can be tested
at most γ times, the maximum number of tests which are
positive is at most dγ. Now, an item will be marked by CoMa
as defective if all the tests which pick this particular item
are positive. Therefore for a fixed item i, the probability that
it is incorrectly marked defective is the probability that i
is always tested with one of the d-defective items which is
given as

(
dγ
γ

)
/
(
T
γ

)
. Taking a union bound over the (n − d)

non-defective items, we require (n− d)
(
dγ
γ

)
/
(
T
γ

)
< ε. Since(

dγ
γ

)
< (ed)γ and

(
T
γ

)
>
(
T
γ

)γ
, then this certainly occurs if

(ed)γ(n− d) < ε
(
T
γ

)γ
. Thus, we see that

T > (eγd)

(
n− d
ε

)1/γ



suffices to ensure correct recovery of the set of defective
items with a probability of error of at most ε.

C. Theorem III.3: Explicit Construction of Test Matrices

Recall that we seek to identify the d defective items among all
n items, where each item may be tested at most γ times. We
first attempt to generalize the grid construction in Section IV,
and point out a shortcoming in a naı̈ve implementation.

1) First Tool: γ-Dimensional Hypergrid: For ease of presen-
tation, define b = n1/γ and assume b to be an integer. We
represent each item i ∈ {0, . . . , n − 1} by its base-b repre-
sentation (xγ . . . x2x1)b, so that each xj ∈ {0, 1, . . . , b− 1}
and

i =

γ∑
j=1

xjb
j−1.

For test j, where j = αb + k, where α ∈ {0, 1, . . . , γ − 1}
and k ∈ {0, 1, . . . , b−1}, we include exactly the items whose
(α + 1)th coordinate is k, i.e., xα+1 = k. Hence, there are
γb = γn1/γ tests in total. See Figure 2, for an example.

Intuitively, test j = αb + k returns whether there exists a
defective item i whose base-b representation has xα+1 = k.
Note that a defective item i ∈ [n] will cause exactly γ tests to
be defective, corresponding to when each of its coordinates is
tested. Thus, if there exists a unique defective item, it can be
successfully recovered from its unique base-b representation.

However, with multiple defective items, we may not be able
to uniquely determine each item. For example, for n = 9,
d = 2 and γ = 2, if items 2 and 4 are defective, then positive
tests will tell us that there exist defective items with x1 = 1
(corresponding to item 4), x1 = 2 (corresponding to item 2),
x2 = 0 (corresponding to item 2) and x2 = 1 (corresponding
to item 4). However, another pair of defective items which
return the same positive test results are items 1 and 5. Thus,
we cannot uniquely recover all defective items, unless there
is only one defective item. See Figure 2 for more details.

2) Block Algorithm: Divide and Conquer: We now provide
an explicit construction a T × n test matrix M , where T =
d2γ
ε

(
nε
d2

)1/γ
, using the previous ideas. The key observation

is that the first previous algorithm succeeds if there is a low
number of defective items. Thus, we split [n] into cd2 blocks,
where c = 1

ε and run the previous algorithm on each block
of size n′ = n/cd2. (See Figure 3, for an example.) Then
the probability that no two defective items fall into the same
block is

1

(
1− 1

cd2

)(
1− 2

cd2

)
· · ·
(

1− d− 1

cd2

)
≥
(

1− d

cd2

)d
=

(
1− 1

cd

)d
≥ 1− 1

c
= 1− ε (by Bernoulli’s Inequality)

6 7 8
3 4 5
0 1 2

Test 1 Test 2 Test 3

Test 6

Test 5

Test 4

negative positive positive

negative

positive

positive

Fig. 2: If n = 9, γ = 2, d = 2, the above test cannot distinguish
whether the red items or the blue items are defective. However,
if there were only one defective item, the series of tests would
uniquely identify the defective item.

Thus, with probability at least 1 − ε, the maximum number
of defective items in a single block is 1, so we can also suc-
cessfully identify the d defective items with the probability
at least 1−ε using the previous algorithm for n′ items. Since
there are d2

ε blocks, each requiring γ
(
nε
d2

)1/γ
tests, for a total

of T = d2γ
ε

(
nε
d2

)1/γ
tests.

Fig. 3: The test matrix for the block algorithm, where each gray
block represents the test matrix for the first part.

VI. ZERO-ERROR TESTS

A matrix M is called d-disjunct if the union of any d columns
does not contain any other column. It is well known [20] that
a T × n binary d-disjunct matrix corresponds to an efficient
non-adaptive group testing algorithm to identify the d defects
among n items with T tests. In this section we focus on
construction of γ-divisible matrices.

D’yachkov and Rykov [23] showed that there are at most T
columns in a T × n d-disjunct matrix of weight at most d.
This gives a trivial lower bound of n tests for γ-divisible non-
adaptive group tests if γ ≤ d. d-disjunct matrices have been
well-studied by [24], [25] under the name of superimposed
codes. Macula [22] gave a deterministic construction of T×n
binary d-disjunct matrix which is simultaneously γ-divisible
and ρ-sized with t = O(γn1/γ

1
d ) rows. We therefore give

an efficient randomized procedure to construct a T × n
binary matrix M which is d-disjunct with high probability
for sufficiently large T and satisfies the row (or column)
constraints.



A. Theorem III.4 : γ-divisible d-disjunct matrices

In this section, we give a randomized construction of d-
disjunct matrices with each column having weight at most
γ.

Define a random T×n binary d-disjunct matrix M as follows:
For each column Cj , j ∈ [n] of M , sample γ rows, R ⊆
[T ], |R| = γ with replacement and set Mi,j = 1 for i ∈ R.
We now show that for sufficiently large number of rows, M
will be d-disjunct with high probability.

Lemma VI.1. For 0 ≤ ε ≤ 1 and T ≥ γd
(
n
ε

(
en
d

)d) 1
γ

, then
M is a d- disjunct matrix with probability at least 1− ε.

Proof: Let S ⊆ [T ] be the set of positive test outcomes.
Since each item is tested at most γ times, there are at most
γd positive test outcomes. Note that M cannot distinguish a
column Cj from the defectives if support(Cj) ⊆ S For any
fixed column Cj , this probability is at most

Pr [support(Cj) ⊆ S] =
|S|
T
≤
(
γd

T

)γ
Taking a union bound over all possible columns correspond-
ing to (n − d) non-defective items and over all possible
choices of d defective items, we get

Pr [M is not d− disjunct] ≤
(
n

d

)
(n− d)

(
γd

T

)γ
≤ n

(en
d

)d(γd
T

)γ
·

Therefore, if T ≥ γd
(
n
ε

(
en
d

)d) 1
γ

, then M is d-disjunct with
probability at least 1− ε.

VII. IMPACT OF NOISY TESTS

A. Theorem III.5: γ-Divisible Items

We consider the noisy setting, where each test can be
incorrect with probability σ, for γ-divisible tests. Since the
Coupon Collector Algorithm collects certificates for non-
defective items, and each item is tested at most γ times, there
is probability σγ that a non-defective item will not have a
certificate (i.e., all of the tests for which it is included are
erroneous). Note that for γ = o(log n), this probability is
ω(1/n). Thus it is not possible to recover the set of defective
items with probability at least 1− ε for arbitrary 0 < ε < 1.
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[16] András Sebö. On two random search problems. Journal of Statistical
Planning and Inference, 11:23–31, 1985.

[17] Matthew Aldridge, Oliver Johnson, and Jonathan Scarlett. Improved
group testing rates with constant column weight designs. CoRR, 2016.

[18] Venkata Gandikota, Elena Grigorescu, Sidarth Jaggi, and Samson
Zhou. Nearly optimal sparse group testing. In preparation.

[19] Arya Mazumdar. Nonadaptive group testing with random set of
defectives via constant-weight codes. CoRR, 2015.

[20] W. Kautz and R. Singleton. Nonrandom binary superimposed codes.
IEEE Transactions on Information Theory, 10(4):363–377, Oct 1964.

[21] Mahdi Cheraghchi. Noise-resilient group testing: Limitations and
constructions. In International Symposium on Fundamentals of Com-
putation Theory, pages 62–73. Springer, 2009.

[22] Anthony J Macula. A simple construction of d-disjunct matrices with
certain constant weights. Discrete Mathematics, 162(1):311–312, 1996.

[23] Arkadii Georgievich D’yachkov and Vladimir Vasil’evich Rykov.
Bounds on the length of disjunctive codes. Problemy Peredachi
Informatsii, 18(3):7–13, 1982.

[24] A. G. D’yachkov, I. V. Vorob’ev, N. A. Polyansky, and V. Yu. Shchukin.
Bounds on the rate of disjunctive codes. Problems of Information
Transmission, 50(1):27–56, 2014.

[25] Arkadii Georgievich D’yachkov and Vladimir Vasil’evich Rykov. A
survey of superimposed code theory. Problems of Control and
Information Theory, 12(4):1–13, 1983.


	Introduction
	Model
	Related work

	Results
	-divisible items
	-sized tests

	Proof Overview
	-Divisible Items
	Theorem III.1: Information-Theoretic Lower Bounds
	Theorem III.2: Randomized Construction of Test Matrices
	The Column Matching Algorithm (CoMa)
	Analysis

	Theorem III.3: Explicit Construction of Test Matrices
	First Tool: -Dimensional Hypergrid
	Block Algorithm: Divide and Conquer


	Zero-Error Tests
	 Theorem III.4 : -divisible d-disjunct matrices

	Impact of Noisy Tests
	Theorem III.5: -Divisible Items

	References

