
A Lower-Variance Randomized Algorithm for

Approximate String Matching∗

Mikhail J. Atallah Elena Grigorescu

Yi Wu

Department of Computer Science

Purdue University

West Lafayette, IN 47907

U.S.A.

{mja,egrigore,wu510}@cs.purdue.edu

Abstract

Several randomized algorithms make use of convolution to estimate the
score vector of matches between a text string of length N and a pattern
string of length M , i.e., the vector obtained when the pattern is slid
along the text, and the number of matches is counted for each position.
These algorithms run in deterministic time O(kN logM), and find an
unbiased estimator of the scores whose variance is (M − c)2/k where c
is the actual score; here k is an adjustable parameter that provides a
tradeoff between computation time and lower variance. This paper pro-
vides an algorithm that also runs in in deterministic time O(kN logM)
but achieves a lower variance of min(M/k,M − c)(M − c)/k. For all
score values c that are less thanM−(M/k), our variance is essentially a
factor of k smaller than in previous work, and for M−(M/k) < c ≤ M
it matches the previous work’s variance. As in the previous work, our
estimator is unbiased, and we make no assumption about the proba-
bilistic characteristics of the input, or about the size of the alphabet,
and our solution extends to string matching with classes, class comple-
ments, “never match” and “always match” symbols, to the weighted
case and to higher dimensions.

∗Portions of this work were supported by National Science Foundation Grants CNS-

0915436, CNS-0913875, Science and Technology Center CCF-0939370; by an NPRP grant

from the Qatar National Research Fund; by Grant FA9550-09-1-0223 from the Air Force

Office of Scientific Research; and by sponsors of the Center for Education and Research in

Information Assurance and Security. The statements made herein are solely the responsi-

bility of the authors.

1

Keywords: convolution, FFT, approximate string matching, random-
ized algorithms.

1 Introduction

Given a text string T = t0t1 . . . tN−1 and a pattern string P = p0p1 . . . pM−1

over an alphabet Σ of size σ, we address the problem of computing the
score vector of matches between T and P . This is defined as the vector C
whose ith component ci is the number of matches between the text and the
pattern when the first letter of the pattern is positioned in front of the ith
letter of the string.

We avoid repeating the discussion of the applicability of the above prob-
lems, which is amply discussed in the cited references and elsewhere in the
literature.

As in [2, 10, 4], we seek a randomized algorithm of Monte-Carlo type to
compute an unbiased estimate of the score vector, and as in the previous
work we make crucial use of convolution, specifically, of the well-known fact
that by doing N/M convolutions one can compute all the N − M scalar
products between a vector of length M and all contiguous length-M sub-
vectors of another vector of length N (see ,e.g., [1, 9]).

Also as in the previous work, the algorithm we propose here proceeds by
computing and averaging k independent equally distributed estimates for
the score vector, and has the property that the expected value of the aver-
aged estimator is equal to the exact value: The expected value of the ith
component ĉi of the estimate Ĉ of the score vector equals ci. Our improve-
ment is that the variance is now min(M/k,M − c)(M − c)/k, whereas it was
(M − ci)

2/k in the previous work, k being a parameter that can be tuned to
achieve a desired level of accuracy. The time complexity is the same as in
the previous work: O(kNγ(M)/M), where γ(M) is the time needed to per-
form the convolution of two vectors of length M . As is commonly done, we
replace γ(M) by M logM , which corresponds to the computational model
where an arithmetic operation takes constant time. This makes the time
complexity O(kN logM). The following theorem summarizes our main re-
sult.

Theorem 1. An estimate for the score C between a text string of length N
and a pattern string of length M can be computed by a Monte-Carlo al-
gorithm in time O(kN logM), where k is the number of iterations in the
algorithm. The randomized result has mean C and each entry has a vari-
ance bounded by min(M/k,M − c)(M − c)/k.

2

2 Previous Work and New Contribution

The problem of computing the score vectors has a long history, in which
the goal has always been to avoid the naive brute-force O(MN) solution.
Fischer and Paterson used convolution to solve the special case of finding
all exact occurrences (i.e., scores that equal exactly M) in the presence of
“always match” symbols [7], for the case of constant-size alphabet. Abra-
hamson and Kosaraju independently extended the algorithm by Fischer
and Paterson into a deterministic algorithm for computing the vector C
in time complexity of O(min(|Σ|,

√
M/ logM) N logM) [1, 9] for any al-

phabet size. An algorithm of Baeza-Yates and Gonnet, that works remark-
ably well in practice, solves the problem in time O(NM logM/ logN) [5],
which is better than O(N logM) for very small M , i.e., M = o(logN).
Another algorithm, by Baeza-Yates and Perleberg, solves the problem in
time O(NMfmax) where fmax is the maximal occurrence frequency of sym-
bols in the pattern [6].

An algorithm of deterministic time O(N logM) was given in [3], whose
analysis depends on some restrictive assumptions on the probabilistic char-
acteristics of the input, namely the Bernoulli model. Karloff studied the
case when the alphabet is not known beforehand and gave a deterministic
O(N log3M) time algorithm for estimating all the scores of mismatches [8],
and also provided a randomized variant of deterministic time complex-
ity O(N log2M). Karloff’s estimator is intentionally biased in order to
guarantee not to overestimate the number of mismatches by more than a
constant multiplicative factor. The method apparently cannot be modified
to estimate the number of matches (rather than of mismatches).

The work that is closest to this paper is in [2, 10, 4]. In these as in this
paper, the algorithm runs in deterministic time O(kN logM). The main
difference is that in the present paper the variance goes down by a factor of
essentially k, for all values of a score that are ≤ M−(M/k) (for score values
that are greater the variance bound is the same as in the previous work).

The algorithm in [2] was based on the idea of mapping the alphabet
symbols into the primitive σth roots of unity, and then using convolution,
relying on the nullity of the sum of all the σth roots of unity for its unbiasted-
estimator property. The process was repeated k times, each with a different
random mapping, and the average of the k results was taken to be the
answer. In the follow-on work in [10, 4] different mappings were used. The
scheme in [10] is particularly well suited for small alphabet sizes (≤ 20).

The main new idea here is to do a judicious pre-processing step that also
takes O(kN logM) time, and then to prove that it results in the claimed im-

3

proved variance. That is the main new ingredient, and in fact What follows
the pre-processing step could be any of the schemes in [2, 10, 4], although
here we chose a different variant for simplicity (of both the presentation and
the variance proof). The next sections present the algorithm and analyze
its properties.

3 The Algorithm

The steps of the algorithm are given below, where we assume that the sym-
bols in T that do not occur in P have been replaced by a special “match
nothing” symbol #; this means that the reduced alphabet (which we still
denote Σ) has a size σ that is at most the length of M plus one.

Score-Estimation Algorithm:

INPUT: a text T = t0 . . . tN−1; a pattern P = p0 . . . pM−1 where the ti’s
and the pi’s are letters from Σ; an integer k that determines the desired
tradeoff between time and accuracy.

OUTPUT: an estimate for the score vector C.

1. Compute in time O(M + σ log σ) the number of occurrences in P of
every symbol of Σ, and let Σ′ denote the subset of Σ whose symbols
occur more than M/k times in P . Note that |Σ′| ≤ k.

2. For every symbol s in Σ′, compute the exact contribution of symbol s
to the score vector C. It is well known that this can done with N/M
convolutions for each symbol, hence in O(N logM) time per symbol
(see, e.g., [1, 9]). As this is done for all the symbols of Σ′, it takes
a total of O(|Σ′|N logM) time. The rest of the algorithm deals with
estimating the contribution of the symbols in Σ− Σ′.

Note. As stated earlier, the rest of the agorithm could have used any
of the schemes in [2, 10, 4]. The variant we chose is convenient for the
proof of the lower variance.

3. For ℓ = 1, 2, · · · , k:

(a) From the text T and pattern P , obtain vectors Tℓ and (respec-
tively) Pℓ as follows. First, replace in T and P every occurrence
of a symbol from Σ′ ∪ {#} with a 0. Then, for each symbol
s ∈ Σ−Σ′−{#}, flip a fair coin and, if its outcome is head (tail),
replace in T and P every occurrence of s with a +1 (resp., −1).

4

(b) Compute the vector Cℓ such that, for 0 ≤ i ≤ N −M − 1, Cℓ[i]
is the scalar product of Pℓ with the sub-vector of Tℓ of length M
that starts at position i in Tℓ; in other words:

Cℓ[i] =

M−1∑

j=0

Pℓ[j] ∗ Tℓ[i+ j]

Implementation note: This can be done using N/M convolutions,
where the ith such convolution is between the following two vec-
tors of size 2M each: (i) the reverse of Pℓ padded with M zeroes;
and (ii) the sub-vector of Tℓ of length 2M that starts at position
iM in Tℓ.

4. Compute the vector Ĉ =
k∑

ℓ=1

Cℓ/k as the estimate of the contribution

to C of symbols in Σ−Σ′. Adding to this the contribution of symbols
in Σ′ as computed in Step 2 gives the desired estimate of C.

4 Analysis of the Output Estimate

That the estimator of a ci for that particular iteration is unbiased is obvious,
because each one of the M terms of the summation that it makes up has
zero mean if the two symbols are different and 1 if they are same. So we
henceforth focus on the variance.

We first analyze the variance for one of the k iterations, and then divide
by k to obtain the variance for their average. The variance is the sum of
the M2 entries of the M × M covariance matrix for the M terms of the
summation that makes up a this iteration’s estimate of ci. For a term
that corresponds to equal symbols, the corresponding row and column of
the covariance matrix are zero, and because there are ci such terms the sub-
matrix that contributes to nonzero entries is no larger than (M−ci)×(M−ci)
(it can be smaller because of the symbols from Σ′, whose involvement in
any of the terms causes the value of that term to be zero, and its row and
column to also be all zeroes in the covariance matrix). A nonzero entry of
the covariance sub-matrix contains a 1, and has a row (resp., column) that
is a term whose corresponding 2 symbols are unequal and are both from
Σ − Σ′. For any such term (say, arising out of the alignment of distinct
symbols a and b), its covariance with any other such term is zero unless the
other term also involves the same two symbols a and b. But the number of

5

such repetitions of symbols a and b is bounded by M/k (by its definition
Σ−Σ′ excludes symbols that occur more than M/k times in P). This means
that no such term can have more than M/k nonzero covariances with other
terms, whence the upper bound of (M−ci)(M/k) on the number of nonzero
entries of the covariance matrix. Of course (M−ci)

2 is also an upper bound,
and combining these two gives us the desired min(M/k,M − ci)(M − ci)
bound on the variance of the estimator of ci for that iteration. Therefore
the variance of the overall estimator (the average over the k iterations) is
min(M/k,M − ci)(M − ci)/k.

References

[1] Abrahamson, K. Generalized string matching. SIAM J. Comput. 16,
6 (1987), 1039–1051.

[2] Atallah, M. J., Chyzak, F., and Dumas, P. A randomized al-
gorithm for approximate string matching. Algorithmica 29, 3 (2001),
468–486.

[3] Atallah, M. J., Jacquet, P., and Szpankowski, W. Pattern
matching with mismatches: a simple randomized algorithm and its
analysis. In Combinatorial Pattern Matching (Proceedings of the Third
Annual Symposium held in Tucson, Arizona, April 29–May 1, 1992)
(Berlin, 1992), A. Apostolico, M. Crochemore, Z. Galil, and U. Manber,
Eds., vol. 644 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 27–40.

[4] Baba, K., Shinohara, A., Takeda, M., Inenaga, S., and

Arikawa, S. A note on randomized algorithm for string matching
with mismatches. Nordic J. of Computing 10, 1 (Mar. 2003), 2–12.

[5] Baeza-Yates, R. A., and Gonnet, G. H. A new approach to text
searching. Comm. ACM 35 (1992), 74–82.

[6] Baeza-Yates, R. A., and Perleberg, C. H. Fast and practical
approximate string matching. Inform. Process. Lett. 59, 1 (1996), 21–
27.

[7] Fischer, M. J., and Paterson, M. S. String-matching and other
products. In Complexity of computation (Proc. SIAM-AMS Appl. Math.
Sympos., New York, 1973) (Providence, R. I., 1974), Amer. Math. Soc.,
pp. 113–125. SIAM–AMS Proc., Vol. VII.

6

[8] Karloff, H. Fast algorithms for approximately counting mismatches.
Inform. Process. Lett. 48, 2 (1993), 53–60.

[9] Kosaraju, S. R. Efficient string matching. Manuscript, Johns Hop-
kins University, 1987.

[10] Schoenmeyr, T., and Zhang, D. Y. Fft-based algorithms for the
string matching with mismatches problem. J. Algorithms 57, 2 (Nov.
2005), 130–139.

7

