
Purdue University
Purdue e-Pubs
Department of Computer Science Technical
Reports Department of Computer Science

2015

vHaul: Towards Optimal Scheduling of Live Multi-
VM Migration for Multi-tier Applications
Hui Lu

Cong Xu

Cheng cheng

Ramana Kompella

Dongyan Xu

Report Number:

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

vHaul: Towards Optimal Scheduling of Live
Multi-VM Migration for Multi-tier Applications

Hui Lu,Cong Xu,Cheng Cheng,Ramana Kompella,Dongyan Xu
Department of Computer Science, Purdue University

Abstract
Live virtual machine (VM) migration enables seamless

movement of an online server from one location to another
to achieve failure recovery, load balancing, and system main-
tenance. Beyond single VM migration, a multi-tier applica-
tion involves a group of correlated VMs and its live migra-
tion will require careful scheduling of the migrations of the
member VMs. Our observations from extensive experiments
using a variety of multi-tier applications suggest that, in a
dedicated data center with dedicated migration links, differ-
ent migration strategies result in distinct performance im-
pacts on a multi-tier application. The root cause of the prob-
lem is the inter-dependence between functional components
of a multi-tier application.

We leverage these observations in vHaul, a system that
coordinates multi-VM migration to approximate the opti-
mal scheduling. Our evaluation of a vHaul prototype on Xen
suggests that vHaul yields the optimal multi-VM live migra-
tion schedules. Further, our application-level evaluation us-
ing Apache Olio, a web 2.0 cloud application, shows that the
optimal migration schedule produced by vHaul outperforms
the worst-case schedule by 52% in application throughput.
Moreover, the optimal schedule significantly reduces service
latency during migration by up to 70%.

1. Introduction
Live VM migration techniques (e.g., XenMotion [10] and
vMotion [8]) have been increasingly adopted in the cloud to
achieve seamless movement of online services – executed
by VMs – from one physical host to another by transferring
active memory, CPU and storage states. However, resource

[Copyright notice will appear here once ’preprint’ option is removed.]

contention during migration could result in significant per-
formance degradation to a VM’s workload [15, 23, 26].
While most state-of-the-art live VM migration techniques
[16, 19, 20, 24, 29] mainly focus on minimizing the perfor-
mance impact on single VM migration, less effort is made in
understanding multi-VM migration.

In a virtualized cloud infrastructure, multi-tier applica-
tions consisting of multiple functional components are usu-
ally deployed in multiple inter-dependent VMs [1]. Such
inter-dependent VMs are subjected to migration as a group
within a data center or across various data centers [4]. Re-
cently, COMMA [30] sheds some light on live migration
of multi-tier applications, which discovered that the perfor-
mance of a multi-tier application can severely degrade, if the
dependent components become split across a high-latency
network path. To mitigate such impact, COMMA proposes
to migrate a group of related VMs simultaneously – by start-
ing and finishing the migration of related VMs at the same
time, hence minimizing the VMs’ communication via the
high latency network path.

With the intention of minimizing the performance impact
revealed by COMMA, we conducted live multi-VM migra-
tion within a dedicated data center environment, which of-
fers low network latency between any two physical machines
(e.g., less than 1ms). Further, we designated a dedicated net-
work link for VM migration to avoid the interference be-
tween application traffic and VM migration traffic. Surpris-
ingly, the performance degradation of a multi-tier applica-
tion still exists and sometimes becomes significant. In ad-
dition, migrating groups of related VMs simultaneously, as
suggested by COMMA, does not seem to be the optimal op-
tion under our environment.

In the hope of finding other major factors impacting the
performance of live multi-VM migration for a multi-tier ap-
plication, we then conduct an extensive measurement study
using a variety of multi-tier applications. Our results sug-
gest that, in a dedicated data center with dedicated migra-
tion links, different migration strategies (e.g., sequential mi-
gration and parallel migration) could likewise result in dis-
tinct performance impacts on a multi-tier application. Fur-
ther, the performance gap between different migration strate-

1 2015/2/11

gies becomes increasingly large as the application workload
increases.

Furthermore, using measurement results, controlled ex-
periments, and queueing theory, we identify the root cause
of the problem as the inter-dependence between functional
components of a multi-tier application. More specifically, in
the sequential migration case (i.e., VMs migrating one af-
ter another), the pending requests backlogged from the VM
that has just migrated will propagate to the following mi-
gration phase, negatively impacting the performance of the
next VM to be migrated. Owing to various characteristics
of each tier – loads of varying magnitude and duration of
VM migration – different sequential migration orders may
result in drastically different application-level performance
impacts. While in the parallel migration case (i.e., VMs mi-
grating simultaneously), the application performance tends
to be more affected than in the sequential case, as the perfor-
mance degradation during parallel migration is caused by all
VMs instead of one (in the sequential case).

With this observation, we propose a simple yet effec-
tive solution, called vHaul, that coordinates multi-VM mi-
gration to approximate the optimal scheduling. vHaul cov-
ers two typical migration scenarios. (1) Without a constraint
on end-to-end migration time, the least performance impact
can be achieved by migrating VMs one by one, separated by
a no-migration interval between two VM migrations. This
way the pending requests will be processed during the no-
migration interval. (2) To complete the end-to-end migra-
tion without any delay, vHaul determines an optimal VM
migration order according to the VMs’ resource utilization
and estimated migration time, with the goal of reducing the
impact of pending requests. Our evaluation results validate
the effectiveness of vHaul. Our results with application-level
benchmarks (Olio) show that the application throughput un-
der the migration schedule computed by vHaul outperforms
the worst-case migration schedule by 52%. Moreover, vHaul
significantly reduces application request processing latency
during the migration by up to 70%.

The main contributions of this paper are summarized as
follows: (1) We observe and demonstrate that the functional
inter-dependence between participating VMs leads to vary-
ing degree of performance degradation for a multi-tier ap-
plication, under different migration strategies (Section 2 and
3). (2) We propose vHaul as a simple approach to mitigating
such impact that can be deployed for a range of cloud appli-
cation scenarios (Section 4). (3) We have implemented a pro-
totype of vHaul based on Xen [14] to coordinate multi-VM
migration and demonstrated improvement in application-
level performance (Section 5).

2. Investigation and Observations
In this section, we discuss the performance degradation
caused by single and multi-VM migration. Then we motivate
the new problem by demonstrating the impact of various VM

Web App

Source Machines Destination Machines

Migration Channel
DB

Traffic Channel

Figure 1: Multi-tier application migration scenario

VM1 VM2 VM1VM2

VM1

VM2

VM1

VM2

0 t1 t2 0 t2 t1

Sequential Migration

Ba
nd

w
id

th
Ba

nd
w

id
th

Ba
nd

w
id

th

0 t1t2 t1=t2

Ba
nd

w
id

th

0

timetime

time time

Parallel Migration

Figure 2: Strategies to migrate a multi-tier application

migration strategies on the performance of multi-tier appli-
cations during migration.

2.1 Single VM Live Migration
Live migration is a key technology driving virtualized data
center which enables moving a running VM from one phys-
ical host to another for better load balancing or hardware
maintenance with minimum service interruption. During a
VM’s migration, the source and destination hosts both need
to run a per-VM migration process in the background to
store and transfer the active memory, OS execution states
and virtual I/O devices configurations, which consumes non-
negligible system resources such as CPU cycles, memory
and network bandwidth. We observed that the performance
degradation of a VM’s workload during migration just can
be caused by the resource contention between the VM’s run-
ning workload and the migration process.

Hence, it is important to shorten the duration of VM mi-
gration to mitigate its performance impact on user level ap-
plications. Several existing live migration techniques such as
stop-and-copy[25], on-demand[28], pre-copy [16] and post-
copy [19] have been applied to real world data centers to
boost migration speed and reduce service downtime. For
almost all of them, two parameters – total migration time
and service downtime – are of particular concern. Particu-
larly, we observe that two influential factors affect these two
parameters: link bandwidth available for migration and the
page dirty rate[12] in host. Clearly, the higher the bandwidth
available, the shorter the total migration time and service
downtime, because the involved active memory and VM run-
ning state can be transferred to the destination host faster.
The page dirty rate affects the amount of memory pages

2 2015/2/11

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

CD
F

of
 L

at
en

cy

Latency (ms)

db-web

web-db

simultaneity

30 clients 60 clients 120 clients

migrating
web first

migrating
db first

Performance
gap

Figure 3: CDF of latency for various loads (30 clients, 60
clients and 120 clients) in RUBiS

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 50 100 150 200 250

CD
F

of
 L

at
en

cy

Latency (ms)

db-web
web-db
simultaneity

(a) 300 client

(a) 300 clients

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 2000 4000 6000 8000 10000 12000 14000

CD
F

of
 L

at
en

cy

Latency (ms)

db-web
web-db
simultaneity

(b) 900 client

(b) 900 clients

Figure 4: CDF of request processing latency under various
loads (300 clients and 900 clients) for the calendar-based
application

transferred during migration. As a consequence, a higher
page dirty rate translates into longer VM migration time and
service downtime.

2.2 Multi-VM Live Migration
So far, we only discuss individual VM migration scenario.
However, in real world most applications deployed in the
cloud are multi-tier, consisting of several interactive VMs
each running logically separated but inter-dependent work-
load (e.g., web servers, application servers and database
servers). All (or part) of these VMs may need to be migrated
as a group during cloud runtime. Figure 1 shows an exam-

ple of migrating a 3-tier e-commerce application from the
source to the destination.

Existing solutions described in Section 2.1 work well for
migrating an individual VM. However, few of them can be
applied to migrate a group of inter-dependent VMs. In gen-
eral, there are two strategies for multi-VM live migration as
shown in Figure 2. (1) Sequential migration, VMs are mi-
grated one by one. In the two-VM case shown in Figure 2,
there are two optional sequential schemes with reverse or-
ders – VM1 first or VM2 first. (2) Parallel migration, VMs
are migrated simultaneously. One scheme is to start the mi-
gration of all VMs at the same time but may stop at different
times; another scheme is to start and stop the migration of
all VMs at the same time [30].

Live migration in the single VM case does negatively im-
pact on the performance of the VM. Intuitively, the two per-
formance influential factors, migration link bandwidth and
page dirty rate, are also critical in the multi-VM scenario. In
addition, COMMA claimed that the performance of a multi-
tier application may suffer from severe degradation if its
dependent components become split across a high latency
network path. Such performance degradation would become
even worse if the working traffic and migration traffic share
the same network link. To avoid this communication prob-
lem, COMMA strived to migrate VMs of a multi-tier appli-
cation simultaneously – all VMs are managed to start and
end the migration at the same time.

Nonetheless, in today’s data centers the migration link is
usually separated from the production network link to avoid
performance interference. That is, we can have a high-speed
network dedicated for VM migration traffic only (i.e. vMo-
tion [4]). Considering the latency of modern network fab-
rics is typically sub-millisecond, the communication prob-
lem above should not be significant, if the multi-VM migra-
tion happens within the same data center. So the migration
link bandwidth is not the main influential factor any more
in modern virtualized date center. We will show this in our
measurement study using a dedicated data center environ-
ment with designated migration links.

2.3 Measurement Methodology
To identify the factors impacting multi-VM migration per-
formance, let us focus on a concrete example. we adopt
a 2-tier web system consisting of a web server running
in VM1 and a database server running in VM2. We study
the application-level performance impact imposed by three
multi-VM migration schemes. They are (1) migrating VM1
first and then VM2, (2) migrating VM2 first and then VM1,
and (3) migrating both VMs simultaneously. As the 2-tier
model is common in request-response multi-tier applica-
tions and usually serves as the basic unit in more complex
multi-tier applications, we believe the observations based on
this 2-tier model are helpful and generalizable for studying
more complex models.

3 2015/2/11

We measure the performance of the web service by com-
puting the average response time of each request from the
clients side. Since a web request is typically composed of
various sub-types (e.g., “preview”, “purchase”, etc.), we em-
ploy the geometric mean to represent the mean response time
of all sub-types. The overall application-level performance
during migration is gauged by averaging all response times
in the entire migration duration, called the average latency.
For each migration scheme, we run the experiments 30 times
and plot the CDFs of the average latency during the migra-
tion. Note that higher average latency means worse applica-
tion performance.

To avoid the communication impact mentioned in Section
2.2, we set up a dedicated network link (i.e., 1Gb) for VM
migration traffic. The network round-trip-times (RTTs) be-
tween source machines and destination machines are within
1 millisecond (in Amazon EC2, the latency among zones is
in the same millisecond range). With this setup, the overhead
for VMs communicating across the working network is neg-
ligible. Besides, we adopt pre-copy VM migration technique
in our experiments and only migrate the memory and CPU
states by adopting shared storages between source and des-
tination machines.

2.4 Multi-VM Migration Characterization
We first choose RUBiS, a well-known benchmark for evalu-
ating web system which simulates an online bookstore. We
adopt PHP version RUBiS consisting of a web server and a
database server. Correspondingly, the three basic migration
strategies are: (1) migrating the web server first; (2) migrat-
ing the database server first; (3) migrating them simultane-
ously. We initiate three different loads: 30 clients, 60 clients
and 120 clients to represent light, medium and high loads
of the web server. Sufficient resources (e.g., CPU, memory
and disk) are assigned to both VMs to ensure that neither of
these VMs is overloaded by the clients.

Figure 3 shows the CDFs of the average latency of three
loads during migration separately. We observe very consis-
tent results from these three migration strategies: migrat-
ing the web server first always brings the best performance
(the lowest latency) during migration. While the strategy
migrating both VMs simultaneously always leads to the
worst performance (the highest latency). More specifically,
in Figure 3, with the light loads (30 clients) both sequential
strategies, either migrating web or database first, show the
same result; with the medium loads (60 clients) migrating
web server first outperforms the other sequential scheme in
terms of lower latency. Notably, the performance gap be-
tween two sequential schemes widens as the workload goes
up.

To further explore the possible factors affecting the multi-
tier application performance during migration, we character-
ize the behaviors of RUBiS. The main findings are: (1) the
web server, as the front-end of the client-server application,
is low-stressed consuming relatively less resource (10∼30%

CPU utilization and a small memory footprint); while (2) the
database server, as the back-end of this 2-tier application,
is relatively highly-loaded (30 ∼ 80% CPU utilization and
a relatively large memory footprint); (3) thus, the database
server suffers from 1.7 times of duration as the web server to
complete the migration in both sequential cases (two VMs
are configured with the same memory size of 2 GB).

We are curious about whether such outcome commonly
exists. So we choose another 2-tier application that simulates
an event calendar to repeat the same migration experiment.
Different from RUBiS, the web server of this calendar-based
application is relatively highly-loaded due to many dynamic
contents. The database server has a smaller amount of load.
We initiate two different loads: 300 clients and 900 clients
to represent light and high loads.

Figure 4 shows the CDFs of the average response time
during migration for this calendar-based application. We still
observe the consistent trends for three migration schemes.
Similarly, migrating VMs simultaneously still leads to the
worst performance. Differently, migrating the database server
first appears to be the best scheme. The performance gap be-
tween two sequential strategies also increases as the load
goes up.

What causes the different results for these two 2-tier ap-
plications? We analyze the the main characteristics of the
calendar-based application: (1) the web server is highly-
loaded (30 ∼80% CPU utilization with a large memory
footprint); while (2) the database server is relatively lightly
loaded (10 ∼ 30% CPU utilization with a small memory
footprint); (3) the web server suffers from almost twice the
duration as the database server to complete the whole migra-
tion in sequential migration cases.

Consequently, we can draw some conclusions based on
the observations above. (1) The sequential migration order
does impact the performance of a multi-tier application. (2)
Different applications have different migration preferences
due to their varying component workloads. (3) The perfor-
mance impact of different migration schemes becomes in-
creasingly significant as workload increases. Since we elim-
inate the influence of the communication impact by sepa-
rating VM migration and application traffic, the differences
in performance impact among the three migration strategies
are only determined by the semantic interactions of different
components in each multi-tier application.

3. Root Cause Analysis
As observed in Section 2, different migration strategies im-
pact the performance of multi-tier applications and the per-
formance gap increases as application workload goes up.
Then, what is the root cause? COMMA suggested that the
high latency network path between different data centers
could be the culprit. However, in our local data center envi-
ronment, by separating application and migration traffic, the
application network is never congested (within 1 millisec-

4 2015/2/11

0

40

80

120

160

200

240

280

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

33
7

34
9

O
pe

ra
tio

ns
 p

er
 se

co
nd

Time Line [Seconds]

db-web

web-db

simultaneity

Before
migration

Database
migration
(db-web)

Database
migration
(web-db)

Web Server
migration
(db-web)

After
migration

Web Server
migration
(web-db)

Both VMs migration
(simultaneity)

⓪

①

①

②

② ③

① ②&

Figure 5: Performance breakdowns of three migration strate-
gies

ond), suggesting that network latency is not a main factor to
cause the performance degradation.

We will show both empirically and analytically in this
section that the inter-dependence between different compo-
nents in a multi-tier application causes this problem.

3.1 Pre-copy VM Migration
To fully understand the impact of live migration, we must
first present some background on the single VM migration
technique, we selected “pre-copy”. Pre-copy VM migration
combines a bounded iterative push step with a final and typ-
ically short stop-and-copy phase. The design leverages the
idea of iterative convergence, which involves the following
main steps:

(1) Initialization: a destination is selected and the re-
sources are reserved.

(2) Iterative pre-copy: the entire RAM is sent in the first
iteration;in the following iterations, only the dirty pages dur-
ing the previous iteration are transferred to the destination.

(3) Stop-and-copy: the VM is halted for a final transfer
round due to conditions such as, less than a minimum num-
ber of pages (i.e., 50 pages) are dirtied during last period;
a maximum number of iterations (i.e., 29 iterations) have
been executed; and more than a number times (3x) the total
amount of RAM of a VM has been transferred to the desti-
nation.

(4) Activation: resources are re-attached to the VM on
and destination and the VM is resumed.

Since the iterative pre-copy processes compete for CPU
and memory resources during migration, the performance
of the workload running inside the migrating VM will be
affected. Further, services will be interrupted for a very short
period (i.e., downtime) during the stop-and-copy phase.

0

1

2

3

4

5

6

7

Phase 1 (db) Phase 2 (web) Phase 3(post phase)

La
te

nc
y

(s
ec

on
ds

)

db-web
web-db
simultaneity

Figure 6: Latency breakdowns of three migration strategies

3.2 Empirical Explanation
To explore the root cause of the performance gap observed
above, we break down the migration procedure into sev-
eral phases. In this section, we mainly focus on the case
of the “event calendar” web application with a workload of
900 clients. For comparison, one representative experimen-
tal sample of each migration scheme, discussed in Section 2,
is chosen.

Figure 5 illustrates the application-level throughput in
terms of operations per second over the migration time. Fur-
ther, in Figure 6, we break down the corresponding average
latency, the same performance metric used in Section 2. As
illustrated in Figure 5, there are 4 phases during each migra-
tion case: phase 1 is the migration duration of the database
server; phase 2 is the migration duration of the web server1;
while phase 0 and phase 3 are phases before and after the
migration. For the parallel migration, phase 1 and phase 2
fully overlap.

We observe that, during the end-to-end migration process,
the application-level throughput becomes much lower than
that during the non-migration phases. Especially, during the
migration phase of the web server, the throughput is reduced
by more than 50%. We also observe the lowest throughput
occurs at the end of each VM pre-copy stage because of stop-
and-copy. These observations are consistent with the impact
of corresponding pre-copy steps introduced in Section 3.1.

Sequential migration: Let’s first compare two sequen-
tial migration schemes, Scheme web-db (migrating the web
server first) and Scheme db-web (migrating the database
server first). As shown in Figure 6, during phase 1, Scheme
web-db shows 16 times the latency of Scheme db-web. Dur-
ing phase 2, Scheme web-db suffers almost the same latency
as Scheme db-web. While during phase 3, Scheme web-db
shows 1.58 times the latency of Scheme db-web. For phase
3, we only measure a short period (e.g., 10 seconds), as the
average latency quickly bounces back to the normal level
as phase 0. Notably, there is a big throughput fluctuation in

1 Please note that the phase numbers do not necessarily reflect the temporal
ordering of the phases. In particular, for the web-db scheme, the temporal
ordering of phases is 0, 2, 1, 3.

5 2015/2/11

0

40

80

120

160

200

240

280

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

O
pe

ra
tio

ns
 p

er
 se

co
nd

Time Line (seconds)

Migrating web only

Pending
Requests

Recovery
window

Figure 7: Application-level performance behaviors when mi-
grating web server alone

0

2,000

4,000

6,000

8,000

10,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

La
te

nc
y

(m
s)

Time Line(seconds)

Migrating db after web
Migrating db only
Migrating db after web (Trend)

Figure 8: Latency comparisons between two cases: (1)
purely migrating database server and (2) migrating database
server after web server

phase 1 of Scheme web-db in Figure 5, demonstrating un-
stable working status of the web services.

The decomposed results indicate that the main perfor-
mance difference between two sequential migration schemes
lies in the migration phase 1 – the migration phase of the
database server. Let’s now turn back to Figure 4b, we can in-
fer the reason that Scheme db-web has better average latency
than Scheme web-db during whole migration arises from the
lower latency in the migration phase of the database server.
Notice that in Figure 6, there is little performance degrada-
tion or latency explosion during phase 1 of Scheme db-web.
On the contrary, latency explosion happens during phase 1
of Scheme web-db. Then, why does Scheme web-db lead to
higher latency during phase 1?

To answer this question, we conduct another experiment
by migrating the web server alone and examine the work-
load’s dynamics. Figure 7 shows the throughput before,
during and after migration of the web server. Surprisingly,
when the migration of web server completes, there is a spike
in throughput lasting for 10 seconds. After this spike, the
throughput gets back to normal (i.e., before the migration).

The results first assert that network latency is not suffi-
cient to cause the performance degradation issue described
in COMMA, as there is neither throughput drop nor latency

increase, even when the web server and the database server
communicate across the network path. Note that after migra-
tion, the web server resides on the destination host while the
database server still on the source host.

On the other hand, much of the blame of latency explo-
sion during phase 1 of Scheme web-db should rest upon the
spike. The spike is twice as the normal throughput, which
definitely puts more stresses on the web server. Correspond-
ingly, this spike also introduces more load for other com-
ponent(s), such as the database server, because of interac-
tions between application tiers. We can imagine that, if the
database server migrates right after web server, its perfor-
mance will probably be impaired in relation to the spike
and decreased processing rate (because of the intervention
of migration processes). Hence, it’s imperative to know what
causes the spike.

Recall that the length of the pre-copy and downtime pe-
riod is mainly dependent on the memory size of a VM,
the type of an application (how memory-intensive it is) and
the migration bandwidth. Besides, the stop-and-copy policy
also plays an important role in deciding the length of down-
time. From previous work, we know pre-copy time could
be long while downtime should be small (i.e., 2∼ seconds
[4]). In our measurements, the web server, which is memory-
intensive, usually takes around 80 seconds to complete pre-
copy and 4∼5 seconds to transfer the last amount of memory
(with the loads of 900 clients). The stop-and-copy condition
is usually triggered by reaching to the maximum number of
iterations (i.e., 29 in Xen).

Through reviewing the main steps of the pre-copy tech-
nique, we could infer such spike in throughput stems from
two sources. First, during the iterative pre-copy period, an
increasing number of requests are pending 2 at the web
server side, as the request processing rate decreases while the
request arrival rate keeps fixed. Second, during the stop-and-
copy period, the incoming requests continuously become
pending, as services are interrupted. Note that, thousands of
requests could be pending and waiting to be processed dur-
ing the 4∼5 second downtime, and hence coupled with the
ones accumulating from the period of pre-copy, the pending
requests could result in the spike in throughput when the web
server resumes after migration.

After inferring the cause of the spike in throughput, we
depict the latency comparisons in Figure 8 to verify that the
spike does impact the average latency during migration of
the database in Scheme web-db using two scenarios: (1)
migrating the database server alone and (2) migrating the
database server right after the web server, which is Scheme
web-db. When the database server is migrated alone, little
latency explosion occurs, with only a small latency increase

2 In order to improve performance, an application server usually maintains
multiple request queues at the front end. Requests would wait(or be pend-
ing) for a while before being processed, when the application server is busy.
The number of pending requests mainly depends on request arrival rate and
application’s service time [22].

6 2015/2/11

at the end of the migration because of stop-and-copy. It im-
plies that only a very small amount of pending requests exist
after migration of the database server. That is the reason why
we do not observe higher throughput degradation during the
migration of the database server (phase 1) in Scheme db-web
than that in Scheme web-db shown in Figure 5. However, in
the scenario that the database server is migrated right after
the web server, the application-level latency remains high.
Such latency tends to decrease as pending requests becomes
fewer, supporting the fact that the high latency is caused by
the pending requests.

We have now figured out the root cause of the perfor-
mance gap between the two sequential schemes: It is be-
cause of the pending requests from the preceding VM that
has just been migrated, negatively impacting the application-
level performance of the next VM to be migrated. As an ex-
ample, in our earlier event-calendar application, for Scheme
web-db, pending requests during the migration phase of the
web server propagate to the migration phase of the database
server, resulting in high latency (phase 1 of Figure 6). While
for Scheme db-web, a small amount of pending requests dur-
ing the migration phase of the database server propagate to
the migration phase of the web server. Hence, there is no sig-
nificant impact on performance during the migration phase
of the web server for Scheme db-web (phase 2 of Figure 6).

Parallel migration: Let’s investigate the parallel scheme
– migrating both VMs simultaneously. Why is the perfor-
mance of this scheme always the worst in our measure-
ments?

Recall that in our experiments, all VMs share the same
migration network link. Assume both sequential and paral-
lel schemes transfer the same amount of memory during the
entire migration. It is easy to understand the total migration
time should be the same for all schemes. In other words, for
each VM in the parallel migration, it takes longer time to
complete the migration. For example, given two VMs of the
same memory size sharing the same migration bandwidth,
each of them will (roughly) occupy half of the total band-
width; thus the migration time doubles for each VM. We can
easily confirm this in Figure 5 – the total migration time of
the parallel scheme is nearly the same as that of the sequen-
tial schemes.

Note that during parallel migration, the overall perfor-
mance degradation is decided by both VMs, since both mi-
grating VMs suffer the performance degradation simultane-
ously. Figure 6 proves this – the parallel scheme suffers high
latency during the whole migration - phase 1 and phase 2.
The sequential schemes only suffer high latency during the
migration of the web server (phase 2).

Moreover, in our experimental settings, two VMs are
placed on the same source machine and migrate to the same
destination machine. The migration processes are observed
to be CPU-intensive and usually consume more than 1 vCPU
for each VM’s migration. Therefore, physical resources be-

.

.

.

Request Queue

Working Threads

VM1

.

.

.

Request Queue

Working Threads

VM2

To Tier2

Request
Rate λ

Response α·λ

Request
rate α·λ

Service
rate μ1

Service
rate μ2Response λ

Figure 9: A two-tier queueing model

come more competitive under the parallel scheme than se-
quential schemes, hence causing more application perfor-
mance degradation. It explains what we have observed in
Figure 3, the parallel scheme performs worse than the two
sequential schemes, even when the overall application work-
load is very light (30 clients in RUBiS). We can imagine that
the resource competition would become more severe as the
number of parallel migrated VMs increases within the same
physical host.

As a result of these two influential factors – the aggra-
vated performance impact of two VMs and the high resource
contention – the parallel scheme potentially results in higher
performance degradation than the sequential schemes. We
will further prove this analytically in Section 3.3.

So far, we have drawn comparisons between different mi-
gration strategies with an event- calendar application. To ver-
ify the observations above, we extensively examine other ap-
plications, which corroborates our conclusions. For exam-
ple, in RUBiS, a large amount of pending requests are gen-
erated during the migration of the database server (instead
of the web server), impairing performance during the migra-
tion of the web server in the sequential migration cases. For
RUBiS, Scheme web-db outperforms Scheme db-web.

3.3 Analytical Explanation
In this section, we will confirm the conclusions above an-
alytically. To formulate the application-level performance
impact of various migration strategies, we present a basic
two-tier queueing model in Figure 9. In this model, VM1
(tier 1) is responsible for processing (1) incoming requests
from clients with the request arrival rate at λ and (2) the
response results from VM2 (tier 2). Each client request to
VM1 may trigger zero or more communication with VM2.
So, to complete λ requests per second, VM1 needs to send
α · λ subsequent requests to VM2 and wait for correspond-
ing responses. Usually, each tier consists of one or several
request queues and multiple working threads. The perfor-
mance capacity of each tier is represented by the service pro-
cessing rate, µ. We assume the model in Figure 9 is a M/M/1
[22] queueing system, which has been proved to be a good
approximation for a large number of queueing systems.

According to the queueing theory, given an M/M/1
queueing system, the average time (latency) spent in the

7 2015/2/11

system is determined by:

w =
1

µ− λ
(1)

By the equation above, the average latency of the two-tier
web application during migration – via different migration
schemes can be expressed as:

Wtier1 tier2 = {(
1

µ
′
1 − (1 + α) · λ

+
1

µ2 − α · λ
)︸ ︷︷ ︸

phase2

·t1 +

(
1

µ1 − (1 + α) · (λ+ ∆λ1

+
1

µ
′
2 − α · (λ+ ∆λ1)

)︸ ︷︷ ︸
phase1

·t2}/(t1 + t2)

Wtier2 tier1 = {(
1

µ
′
1 − (1 + α) · λ−∆λ2

+
1

µ2 − α · λ−∆λ2

)︸ ︷︷ ︸
phase2

·t1 +

(
1

µ1 − (1 + α) · λ
+

1

µ
′
2 − α · (λ)

)︸ ︷︷ ︸
phase1

·t2}/(t1 + t2)

Wparallel = {(
1

µ
′
1 − (1 + α) · λ

+
1

µ
′
2 − α · λ

)︸ ︷︷ ︸
phase1&2

·t1 +

(
1

µ
′
1 − (1 + α) · λ

+
1

µ
′
2 − α · λ

)︸ ︷︷ ︸
phase1&2

·t2}/(t1 + t2)

(2)
The overall latency consists of the latency in both phase 1
and phase 2. Because of migration contentions, the service
rate of the web server and the database server during migra-
tion reduce to µ

′

1 and µ
′

2 separately. For sequential schemes,
we transform the pending requests into additional request
arrival rate for the next VM to migrate, as ∆λ1 and ∆λ2.
The underlying rationale is that, the pending requests from
the previous migration phase are supposed to be processed in
the next migration phase. Thus, in addition to the normal re-
quest arrival rate λ, ∆λ1 and ∆λ2 are adopted to reflect such
impact of pending requests – respectively, ∆λ1 and ∆λ2 are
proportional to the number of pending requests. According
to Equation (2), larger ∆λ1 or ∆λ2 leads to higher latency.
Total migration time is represented as t1 (for the web server)
and t2 (for the database server). Thus, the optimization ob-
jective for this two-tier model is to determine the minimum
overall latency of three schemes:

argmin
k

Wk | k ∈ {tier1 tier2, tier2 tier1, parallel} (3)

In practice, it’s not easy to solve this optimization prob-
lem accurately, although we can make some rough compar-
isons. The question, “which sequential scheme is better in
terms of lower overall average latency?” mainly depends on
two factors – pending requests and migration time. Equation
(2) also implicates that the parallel scheme only beats the se-
quential schemes when both ∆λ1 and ∆λ2 are significantly
high while µ

′

1 and µ
′

2 are not significant low, which contra-
dicts each other, especially for the real-world applications.

VM1 VM2

0 t1 t2

Sequential Migration with
idle interval

Ba
nd

w
id

th

time

t5 0 t1 t2

Sequential Migration with
optimal order

Ba
nd

w
id

th

time

t3
Long migration time Short migration time

VM3

t3 t4

VM3 VM2 VM1

Figure 10: Multi-VM migration senarios

This supports the fact that, in our measurements, we did not
observe such a situation in which the parallel scheme out-
performs the sequential schemes.

Using the event-calendar application as an example,
where ∆λ2 ≈ 0 and ∆λ1 � 0. We can draw the same
conclusions presented in Section 3.2 – Scheme db-web is
better than Scheme web-db, as Wdb web < Wweb db. Then
let us compare Scheme db-web with the parallel scheme un-
der the same example – the latency during parallel migration
is higher than both phase 1 and phase 2 of Scheme db-web.
So Scheme db-web is better than the parallel scheme.

Though the practical multi-tier queueing model could be
more complex than the one presented in Figure 9, this sim-
plified model is useful for performance modeling because it
renders a smaller parameter space which is easy to estimate.
Through this model, we understand that, (1) the pending re-
quests and migration time are two critical factors for deter-
mining the optimal sequential migration order; (2) the paral-
lel migration scheme usually leads to the worst performance
under the shared migration link configuration.

4. Optimal Multi-VM Migration Scheduling
Based on the root cause analysis, we have the following ob-
servations for two-tier application migration: (i) if there is
no performance impact from pending requests, two sequen-
tial strategies should be equivalent and result in the same
performance degradation, while the parallel migration strat-
egy results in worse performance; (ii) if there is performance
impact from pending requests, by solving Equation (3), we
can obtain the optimal migration strategy.

However, solving Equation (3) is difficult in practice.
There are several reasons: (1) Migration time is hard to ac-
curately estimate because of the non-deterministic property
of multi-tier applications. (2) A VM’s working status is not
easy to discern without accessing the running VMs. For ex-
ample, in a public cloud environment, the cloud provider
cannot obtain full control of the customer’s VMs. (3) Pend-
ing requests are particularly hard to measure, as they are spe-
cific to applications.

4.1 vHaul Design and Implementation
Instead of solving Equation (3) directly, we propose vHaul,
the multi-VM migration coordination system, to approxi-
mate the optimal solution. vHaul mainly covers two typical

8 2015/2/11

migration scenarios considering different migration require-
ments illustrated in Figure 10.

(a) If we wish to achieve the minimum performance im-
pact on applications while performing migration without any
constraint on end-to-end migration time, VMs can be mi-
grated one by one, separated by a long non-migration in-
terval between two consecutive VM migrations. The un-
derlying rationale is to mitigate the performance impact by
pending requests, as pending requests are supposed to be
processed during the non-migration interval. This simple
method benefits directly from observation (i) mentioned at
the beginning of Section 4.

(b) If we need to complete the end-to-end migration with-
out any delay, the migration strategy requires shortest mi-
gration time while maintaining an acceptable service down-
time for the least performance loss. To this end, we devise a
concrete multi-VM migration scheduling algorithm in Algo-
rithm 1. vHaul assumes we have a dedicated migration link
shared by all VMs for traffic non-interference and security
[9]. For simplicity, we only show the algorithm pseudo code
in the next subsection.

In Algorithm 1, given a set of VMs to be migrated, we
first categorize them according to their logical relationship –
VMs belonging to the same application are grouped together.
According to Equation (2), it’s practically impossible that
the parallel strategy could outperform the sequential strate-
gies in terms of performance. In addition, considering the
high resource contention caused by parallel migration pro-
cesses, vHaul prefers to migrate VMs in a specific sequence.

In order to determine the sequential migration order, we
sort VMs in the same group by the product of resource uti-
lization and migration time, U currvm · t. We adopt U currvm · t
to roughly approximate the impact of both pending requests
and migration time (proved to be the critical factors in Sec-
tion 3.3). Large U currvm · t means a VM potentially impacts
more on the next migrated VM, and vice versa. According
to Equation (2), vHaul prefers to migrate VMs with smaller
U currvm · t ahead of VMs with larger U currvm · t for the purpose
of reducing the impact by pending requests.

Finally, to decide the migration order of different VM
groups (i.e., applications), we assign priority values to these
groups/applications in advance, and migrate them by this
value. We note that, in this paper, we mainly focus on study-
ing the performance impact on one multi-tier application us-
ing vHaul. Hence we focus on the migration order of VMs
belonging to the same application.

4.2 Parameterization
To implement Algorithm 1, we need to group related VMs,
define U currvm and estimate migration time t.

First, we developed a traffic monitor inside Xen’s driver
domain to construct the traffic matrix between VMs, because
all VMs’ IO traffic have to go through the driver domain
[5]. Using this traffic matrix, we are able to group VMs

accordingly – VMs with communication traffic are treated
within a multi-tier group.

Next, in order to represent the resource utilization of a
VM, we choose the following performance metrics: CPU,
memory and IO resource. Correspondingly, Xentop[11] and
Iostat[3] are employed to collect VM-level CPU and storage
IO utilization. While memory utilization of each VM is
recorded from the hypervisor. We assign a weight for each
metric to determine its relative importance, as we found that
CPU and memory utilization play a more important role in
deciding the overall resource utilization rather than storage
IO.

Finally, to determine the migration time for each VM, we
employed the ”AVG Simulation Model” in [12]. The dirty
page rates are measured and reported from the hypervisor,
while the migration network bandwidth can be known in
advance.

Algorithm 1 Multi-tier migration scheduling algorithm
Initialization:

VMs with communication traffic belong to the same group;
Assign unique group ID for each application group;
Assign priority for each application group;

Function:
Given set of VMs Cvm to be migrated;
/* Categorize VMs for each application group */
for each vm in Cvm do

group id = get application id(vm);
G[group id].append(vm);

end for
/* Calculate vm migration order in each group*/
for each g in G do

for each vm in g do
vm.migration order =
(vm.U curr · vm.migration time)

end for
sort vm by migration order(g);

end for
/* Determine migration order among different groups by priori-
ties */
q = sort group by priority(g1, g2, ..., gk);
/* where gj ∈ G*/
Q.append(qi); /* Q, the migration queue */
Return Q;

5. Evaluation
In this section, we first evaluate the effectiveness of our
system by choosing simple client-server architecture appli-
cations running within two VMs. Next, to evaluate more
complex multi-tier application migration scenarios, we use
Apache Olio, a web 2.0 benchmark [2], running within four
VMs.

Experimental setup: Our testbed consists of servers with
quad-core 3.2GHz Intel Xeon CPUs and 16GB RAM. They
are connected via two separate Gigabit Ethernets. One net-

9 2015/2/11

work is for application production traffic while the other
is for VM migration traffic. All VMs share the same 1
Gbps migration bandwidth. By doing so, we avoid the per-
formance impact from the in-band migration traffic, hence
purely focusing on the multi-tier dependency issue. These
physical servers run Xen 4.1.2 as hypervisor and Linux 3.2
in both domain0 and VMs. For each VM, we assign rea-
sonable configurations with enough vCPU number, memory
size and disk capacity to ensure there is no performance
bottlenecks when no VM is being migrated.

5.1 vHaul 2-tier Evaluation
First, we evaluate vHaul using a similar setup as the “event
calendar” web application in Section 2, but with different
configurations: (1) the web server gets relatively highly-
loaded and (2) the database server gets relatively highly-
loaded. For both scenarios, we equally assign 2.5 GB mem-
ory to the web server and 1 GB memory to the database
server.

Highly-loaded web server: In most two-tier web appli-
cations, the web server usually exercises the business logic,
hence can easily get highly-loaded. We simulates this sce-
nario by running 600 concurrent users, each sending re-
quests at a speed of one request per five seconds. Once the
benchmark starts running, the overall resource utiliazaiton
(including CPU, memory and disk IO) of the web server
becomes higher than that of the database server. Hence,
through counting the resource utilization and estimating the
migration time, vHaul computes that migrating the database
server first leads to the optimal scheme in this scenario (note
that the resource weights of CPU, memory and disk I/O are
set to 4:4:2).

To show the performance benefits, the optimal scheme
is compared with other schemes. Figure 11 shows the av-
erage throughput during 5 minutes (including all migration
phases). The results indicate the optimal scheme, Scheme
db-web, leads to the best throughput (with the highest
number) among three schemes. Further, Figure 12 depicts
Scheme db-web also results in the lowest average latency
in all three phases, whereas Parallel scheme results in the
highest latency in most phases. 3

In addition, as illustrated in Figure 13, we note that
Scheme web-db results in longer total migration time for the
database server than the optimal scheme, Scheme db-web.
It is because, for Scheme web-db, during migration of the
database server, pending requests from the web server make
the database server busier. As a result of the corresponding
higher dirty page rate, Scheme web-db incurs longer time to
migrate the database server than Scheme db-web.

3 Note that we display the latency in the post migration phase just for a
short interval, i.e., 10 seconds. It is because, in the post migration phase
the average latency quickly bounces back to the normal level, as no VM is
being migrated or influenced by the earlier migration.

On the other hand, Parallel scheme leads to the longest
total migration time for both VMs. But surprisingly, we no-
tice the total migration time (equals to the migration time
of the web server, because the web server completed mi-
gration last) of Parallel scheme becomes a little bit shorter
than two sequential schemes. After investigation, we find it
is because Xen’s pre-copy algorithm is less efficient for a
single VM migration than that for multiple-VM migration,
in which one Gbps migration link cannot be fully utilized by
a single VM migration process.

Highly-loaded database server: To model more complex
two-tier applications, we deploy an OLTP workload [7] in
the database server VM to simulate the typical online trans-
action processing scenario, which is widely used in the SQL
Server database [6]. In other words, we run two workloads –
one is the web service workload and the other is the OLTP
workload – within the same two-tier virtual platform. For the
OLTP workload, 400 requests per second are sent from the
clients to the database server. For the web service workload,
500 concurrent users are simulated to visit the web server.
Due to the high OLTP workload, the database becomes heav-
ily loaded in this scenario.

In Figure 14, the average throughput during 5 minutes in-
dicates that the optimal scheme – Scheme web-db, calcu-
lated by vHaul– achieves the best performance among the
three. Specifically, Scheme web-db leads to the lowest re-
quest processing latency in Figure 15 as well as shortest mi-
gration time in Figure 16. Notably, in Figure 15 during the
web server migration phase, the latency of the sub-optimal
scheme, Scheme db-web, is much longer than the other two
schemes.

It is worth mentioning that, in Figure 16, we observe the
web server takes longer time to migrate than the database
server, mainly because of the larger memory (2.5 GB) as-
signed (with comparison to 1 GB for the database server).
However, both CPU and memory utilizations of the database
server are much higher than the web server. Thus, the prod-
uct of resource utilization and migration time of the database
server is higher than that of the web server. According to Al-
gorithm 1, vHaul prefers to migrate the database server last.

5.2 vHaul Multi-tier Evaluation
Next, We use Apache Olio, a Web 2.0 benchmark, to eval-
uate vHaul. The Apache Olio benchmark consists of four
components: (1) a web server to process user requests, (2) a
MySQL database server to store user profiles and event in-
formation, (3) an NFS server to store images and documents
and (4) a memory cache server to cache recent accessed con-
tents for better performance. The PHP version of this bench-
mark is adopted.

We run 650 concurrent users, each sending requests at
a speed of one request per every five seconds. We allocate
enough resources for each VM to ensure there is no per-
formance bottleneck during the non-migration time. Partic-

10 2015/2/11

0

20

40

60

80

100

120

High-loaded web server

Th
ro

ug
hp

ut
 (O

pe
ra
tio

ns
 p

er
 S

ec
on

d)

In sequence (db-web)
In sequence (web-db)
In parallel

*optimal
scheme

Figure 11: Throughput (Highly-loaded
web)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Db server phase Web server phase Post migration phase

La
te

nc
y

(s
ec

on
ds

)

In sequence (db-web)
In sequence (web-db)
In parallel

Figure 12: Latency (Highly-loaded web)

0

20

40

60

80

100

120

140

160

180

200

Database server Web server Total migration time

M
ig

ra
tio

n
tim

e
(s

ec
on

ds
)

In sequence (db-web)
In sequence (web-db)
In parallel

Figure 13: Duration (Highly-loaded web)

0

20

40

60

80

100

120

High-loaded database server

Th
ro

ug
hp

ut
 (O

pe
ra
tio

ns
 p

er
 S

ec
on

d)

In sequence (db-web)
In sequence (web-db)
In parallel

*optimal
scheme

Figure 14: Throughput (Highly-loaded
DB)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Db server phase Web server phase Post migration phase

La
te

nc
y

(s
ec

on
ds

)

In sequence (db-web)
In sequence (web-db)
in parallel

Figure 15: Latency (Highly-loaded DB)

0

20

40

60

80

100

120

140

160

Database server Web server Total migration time

M
ig

ra
tio

n
tim

e
(s

ec
on

ds
)

In sequence (db-web)
In sequence (web-db)
In parallel

Figure 16: Duration (Highly-loaded DB)

In sequence (db-file-cache-web)* In sequence (web-db-cache-file) In parallel (start simultaneously)
HomePage 1.42 3.78 5.63
Login 0.48 2.20 3.32
TagSearch 4.21 6.33 9.36
EventDetail 1.30 1.91 3.34
PersonDetail 8.21 10.11 13.30
AddPerson 2.90 3.34 6.67
AddEvent 17.71 26.02 32.04
Geomean Latency 2.86 5.09 7.74
Ratio - 1.78x 2.70x

Table 1: Latency breakdown for each request operation from Olio experiments

ularly, we assign 2.5 GB memory to the web server, 1 GB
memory to the database server and 0.5 GB memory for the
file server and cache server respectively. The peak CPU uti-
lization of the web server is about 70%, which is very close
to the CPU load in cloud environments. The rest of the VMs
have much lower CPU and memory utilization (10% - 40%).
For each request, the web server first needs to check whether
a response can be retrieved directly from the cache server. If
the content is not cached, the web server requires contact-
ing the database server and the NFS server to compose the
complete content and reply to the client. All VMs migrate
through the dedicated 1 Gbps migration link.

Initially, all VMs are running on the same source physi-
cal node. After certain time, a migration command is issued
to vHaul to conduct the group migration. Then, vHaul com-
putes the optimal migration scheme based on Algorithm 1
and coordinates the multi-VM migration. The optimal mi-
gration order calculated by our framework is marked with an
asterisk in Figure 17 and Figure 18: db-file-cache-web. We
also execute the worst sequential migration case and the par-
allel case for comparison. In the parallel case, we only start
migrations of all VMs simultaneously but do not control the
ending time.

The optimal scheme outperforms both the worst sequen-
tial scheme and the parallel scheme by 37% and 43% respec-

11 2015/2/11

0

20

40

60

80

100

120

Olio Benchmark

Th
ro

ug
hp

ut
 (O

pe
ra
tio

ns
 p

er
 se

co
nd

) In sequence (db-file-cache-web)*
In sequence (web-db-cache-file)
In parallel

Figure 17: Throughput of Olio benchmark

0

50

100

150

200

250

300

Web server Database server NFS server Cache serverTotal migration time

M
ig

ra
tio

n
tim

e
(s

ec
on

ds
) In sequence (db-file-cache-web)*

In sequence (web-db-cache-file)

In parallel

Figure 18: Migration time for Olio benchmark

tively as shown in Figure 17. Looking into the detailed per-
formance data, we find that for the worst scheme, the perfor-
mance is negatively impacted not only by the highly-loaded
web server but also by the file server. The reason is that dur-
ing migration, the file server could become highly-loaded as
a consequence of the pending requests as discussed earlier.
Sometimes, the file server becomes even over-loaded and
just hangs without any responses for several seconds. On the
other hand, the performance of the parallel scheme is mainly
negatively impacted by the highly-loaded web server as well
as high resource contention.

Table 1 shows the latency breakdown for each Olio opera-
tion. The geometric mean is applied to calculate the average
latency of the seven Olio operations. The optimal scheme
suggested by vHaul results in the lowest latency. Specifi-
cally, the worst sequential scheme shows 1.78× the latency;
and the parallel scheme shows 2.7× the latency – of the op-
timal scheme. In addition, the optimal scheme also leads to
a shorter migration time (in Figure 18) than other schemes.

6. Related Work
In this section we discuss related work in the problem space
of this paper. We group them into two categories: (1) single
VM migration and (2) multi-VM migration.

Single VM migration: Live migration of single virtual
machine has been widely studied. Both pre-copy [16, 24]
and post-copy [19] are classic single VM migration mech-
anisms. In [16], Clark et al. investigated live migration of
an entire VM and discussed trade-offs between minimizing
VM migration time and achieving minimum application/ser-
vice disruption. The post-copy [19] approach improves VM
migration by transferring every page only once to the des-
tination host. Some compression and de-duplication tech-
niques are developed to transfer less amount of memory
pages. MECOM [20] adopted memory compression tech-
nique,while MDD [29] only transferred differences between
dirtied and original pages instead of the entire page. vHaul
is orthogonal to these techniques and can leverage their per-
formance optimizations for live multi-VM migration.

Multi-VM migration: Recently, Ye et al. [27] evaluated
live migration strategy of multiple virtual machines from
experimental perspective and investigated the impact of re-
source reservation method. Deshpande et al. [13] and Al-
Kiswany et al. [17] optimized concurrent live migration of
multi-VM using de-duplication approach. LIME [21] lever-
ages Software Define Networking advances to bring up a
transparent solution to migrate VMs of a tenant. However,
none of existing work focused on the inter-dependence re-
lationships between multi-tier VMs and consequential per-
formance impact. COMMA [30] and Clique [18] tackle the
multi-VM migration problem in geographically distributed
clouds. COMMA identified that the performance of a multi-
tier application can severely degrade if its dependent com-
ponents become split across a high latency network path.
To handle a large group of VMs, Clique further optimized
the group migration method by partitioning a large group
of VMs into subgroups based on the traffic affinities among
VMs. However, vHaul studies multi-VM migration problem
within a different environment – namely within a local data
center with dedicated migration link of low latency.

7. Conclusion
In this paper, we demonstrate that different migration strate-
gies result in distinct performance impacts on a multi-tier ap-
plication in dedicated data centers. Notably we find that such
performance impacts are a property of the multi-tier appli-
cation rather than the network, and that the performance gap
becomes increasingly significant as the loads of the appli-
cation increase. Using controlled experiments and queuing
theory, we show the interdependence between different tiers
of a multi-tier application causes this problem. We present a
system, vHaul, which detects the resource utilization and the
migration time for each VM within a multi-tier application,
and computes the optimal multi-VM migration scheme. Our
evaluation results indicate the effectiveness and significant
performance benefits brought by vHaul. Though the proto-
type of vHaul is built on Xen using pre-copy live migration
technique, it is easily portable to other VMMs and able to

12 2015/2/11

leverage advanced live migration techniques to achieve bet-
ter performance.

References
[1] Amazon. aws reference architecture. http://aws.amazon.com/

architecture/.
[2] Apache olio. http://incubator.apache.org/projects/olio.

html.
[3] Iostat. http://linux.die.net/man/1/iostat.
[4] The new business continuity: Moving applications across data cen-

ters without interruption. http://www.brocade.com/downloads/
documents/solution_briefs/.

[5] Paravirtualization (pv). http://wiki.xenproject.org/wiki/

Paravirtualization_\%28PV\%29.
[6] Sql server on vmware best practices guide. http://www.vmware.

com/files/pdf/solutions/SQL_Server_on_VMware-Best_

Practices_Guide.pdf.
[7] Sysbench. http://www.storagereview.com/sysbench_oltp_

benchmark.
[8] Vmotion. http://www.vmware.com/files/pdf/

VMware-VMotion-DS-EN.pdf.
[9] vsphere vmotion networking requirements. http:

//pubs.vmware.com/vsphere-51/index.jsp?

topic=\%2Fcom.vmware.vsphere.vcenterhost.doc\

%2FGUID-3B41119A-1276-404B-8BFB-A32409052449.html.
[10] Xenmotion. http://blogs.citrix.com/2012/08/24/storage_

xenmotion/.
[11] Xentop. http://wiki.xen.org/wiki/Xentop\%281\%29.
[12] AKOUSH, S., SOHAN, R., RICE, A., MOORE, A. W., AND HOPPER,

A. Predicting the performance of virtual machine migration. In IEEE
MASCOTS (2010).

[13] AL-KISWANY, S., SUBHRAVETI, D., SARKAR, P., AND RIPEANU,
M. Vmflock: virtual machine co-migration for the cloud. In HPDC
(2011).

[14] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T.,
HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and
the art of virtualization. SIGOPS Oper. Syst. Rev. (2003).

[15] BREITGAND, D., KUTIEL, G., AND RAZ, D. Cost-aware live migra-
tion of services in the cloud. SYSTOR ’10.

[16] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,
LIMPACH, C., PRATT, I., AND WARFIELD, A. Live migration of
virtual machines. In USENIX NSDI (2005).

[17] DESHPANDE, U., SCHLINKER, B., ADLER, E., AND GOPALAN, K.
Gang migration of virtual machines using cluster-wide deduplication.
In IEEE/ACM CCGrid (2013).

[18] HE, T. L. S. M. K. T. X. Clique migration: Affinity grouping of vir-
tual machines for inter-cloud live migration. Networking, Architecture,
and Storage (NAS), 2014 9th IEEE International Conference on.

[19] HINES, M. R., DESHPANDE, U., AND GOPALAN, K. Post-copy
live migration of virtual machines. ACM SIGOPS operating systems
review (2009).

[20] JIN, H., DENG, L., WU, S., SHI, X., AND PAN, X. Live virtual
machine migration with adaptive, memory compression. In CLUSTER
(2009), IEEE, pp. 1–10.

[21] KELLER, E., GHORBANI, S., CAESAR, M., AND REXFORD, J. Live
migration of an entire network (and its hosts). In ACM HotNets-XI
(2012).

[22] KLEINROCK, L. Theory, Volume 1, Queueing Systems. Wiley-
Interscience, 1975.

[23] LIU, H., XU, C.-Z., JIN, H., GONG, J., AND LIAO, X. Performance
and energy modeling for live migration of virtual machines. In ACM
HPDC (2011).

[24] NELSON, M., LIM, B.-H., AND HUTCHINS, G. Fast transparent mi-
gration for virtual machines. In Proceedings of the annual conference
on USENIX Annual Technical Conference (Berkeley, CA, USA, 2005),
ATEC ’05, USENIX Association, pp. 25–25.

[25] SAPUNTZAKIS, C. P., CHANDRA, R., PFAFF, B., CHOW, J., LAM,
M. S., AND ROSENBLUM, M. Optimizing the migration of virtual

computers. SIGOPS Oper. Syst. Rev..
[26] VOORSLUYS, W., BROBERG, J., AND VENUGOPAL, S. Cost of

virtual machine live migration in clouds: A performance evaluation.
[27] YE, K., JIANG, X., HUANG, D., CHEN, J., AND WANG, B. Live

migration of multiple virtual machines with resource reservation in
cloud computing environments. In IEEE CLOUD (2011).

[28] ZAYAS, E. Attacking the process migration bottleneck. SOSP ’87.
[29] ZHANG, X., HUO, Z., MA, J., AND MENG, D. Exploiting data dedu-

plication to accelerate live virtual machine migration. In CLUSTER
(2010), IEEE, pp. 88–96.

[30] ZHENG, J., NG, T. S. E., SRIPANIDKULCHAI, K., AND LIU, Z.
Comma: Coordinating the migration of multi-tier applications. VEE
’14.

13 2015/2/11

	Purdue University
	Purdue e-Pubs
	2015

	vHaul: Towards Optimal Scheduling of Live Multi-VM Migration for Multi-tier Applications
	Hui Lu
	Cong Xu
	Cheng cheng
	Ramana Kompella
	Dongyan Xu
	Report Number:

