
Opportunistic Flooding to Improve TCP Transmit
Performance in Virtualized Clouds

Sahan Gamage, Ardalan Kangarlou, Ramana Rao Kompella and Dongyan Xu
Department of Computer Science

Purdue University
{sgamage,ardalan,kompella,dxu}@cs.purdue.edu

ABSTRACT
Virtualization is a key technology that powers cloud computing
platforms such as Amazon EC2. Virtual machine (VM) consoli-
dation, where multiple VMs share a physical host, has seen rapid
adoption in practice with increasingly large number of VMs per
machine and per CPU core. Our investigations, however, suggest
that the increasing degree of VM consolidation has serious negative
effects on the VMs’ TCP transport performance. As multiple VMs
share a given CPU, the scheduling latencies, which can be in the
order of tens of milliseconds, substantially increase the typically
sub-millisecond round-trip times (RTTs) for TCP connections in a
datacenter, causing significant degradation in throughput. In this
paper, we propose a light-weight solution called vFlood that (a) al-
lows a TCP sender VM to opportunistically flood the driver domain
in the same host, and (b) offloads the VM’s TCP congestion control
function to the driver domain in order to mask the effects of VM
consolidation. Our evaluation of a vFlood prototype on Xen sug-
gests that vFlood substantially improves TCP transmit throughput
with minimal per-packet CPU overhead. Further, our application-
level evaluation using Apache Olio, a web 2.0 cloud application,
indicates a 33% improvement in the number of operations per sec-
ond.

Keywords
Virtualization, Cloud Computing, TCP, Datacenters

1. INTRODUCTION
Recent advances in cloud computing [11] and datacenter tech-

nologies have significantly changed the computing landscape. En-
terprises and individual users are increasingly migratingtheir ap-
plications to public or private cloud infrastructures (e.g., Amazon
EC2, GoGrid, and Eucalyptus [37]) due to their inherent economic
and management benefits. The key technology that powers cloud
computing isvirtualization. By breaking away from the traditional
model of hosting applications in physical machines, virtualization
enables the “slicing” of each physical machine in a cloud infras-
tructure into multiple virtual machines (VMs), each individually
hosting a server, service instance, or application component. This
practice, commonly known asVM consolidation(or server con-
solidation), allows dynamic multiplexing of physical resources and
results in higher resource utilization and scalability of the cloud
infrastructure.

The practice of VM consolidation naturally exploits the avail-
ability of modern commodity multi-core and multi-processor sys-
tems that facilitate easy allocation of resources (e.g., memory and
CPU) across multiple VMs. Recent trends indicate arapid increase
in VM density—in a recent survey, about 25% of the enterprises in

North America indicate that they already deploy 11-25 VMs per
server, and another 12% indicate as high as 25 VMs per server [7].
We believe that technological advances such as techniques for the
sharing of CPU [21, 44] and memory [22, 35] among VMs will
only catalyze this trend further, leading to even higher degrees of
VM consolidation in the future.

Meanwhile, many cloud applications tend to becommunication
intensive. The reason lies in the wide adoption of distributed com-
puting techniques such as MapReduce [17] for large-scale data pro-
cessing and analysis. In addition, many scalable online services
(e.g., e-commerce, Web 2.0) hosted in the cloud are often orga-
nized as multi-tier services with server load balancers redirecting
clients to web frontend servers, which in turn interact withbackend
servers (e.g., database, authentication servers). These applications
involve communication across multiple VMs in the datacenter, and
thus the application-level performance is directly dependent on the
network performance between the VMs.

Unfortunately, our recent investigations [27] suggest that the two
trends above are directly at odds with each other. Specifically, we
observe thatsharing of CPU by multiple VMs negatively impacts
the VMs’ TCP transport performance, which in turn affects the
overall performance of many cloud applications. In particular, with
multiple VMs sharing the same CPU, the latency experienced by
each VM to obtain its CPU time slices increases. Furthermore, such
CPU access latency (tens/hundreds of milliseconds) can beorders
of magnitude higherthan the typical (sub-millisecond) round-trip
time (RTT) between physical machines within a datacenter. Con-
sequently, the CPU access latency dominates the RTT betweentwo
VMs, significantly slowing down the progress of TCP connections
between them.

Due to the closed loop nature of TCP, VM CPU sharing can neg-
atively impact both thetransmitandreceivepaths of a TCP connec-
tion. On the receive path, a data packet may arrive at the physical
host from a remote sender in less than a millisecond; but the packet
needs to wait for the receiving VM to be scheduled to process it
and generate an acknowledgment (ACK). In our prior work [27],
we have proposed a solution called vSnoop, in which we place a
small module within the driver domain that essentially generates an
ACK for an in-order data packet on behalf of the receiving VM un-
der safe conditions, thus causing the TCP sender to ramp up faster
than otherwise. We demonstrated that this approach can effectively
improve the performance of network-oriented applications.

In this paper, we focus on thetransmit paththat has not been
addressed in our prior work. On the sender side, because of CPU
scheduling latency, the sender VM can get delayed in processing
the TCP ACKs coming from the remote receiver, which causes its
congestion window (and hence the sending rate) to grow slowly
over time. At first glance, it may appear that this problem is quite

1

similar to that on the receive path, and hence, we could devise a
solution similar to vSnoop. However, notice that for the receive
path, vSnoop could easily fabricate the ACKs in the driver domain
since they are generated in response to data packets that already
contain all the information necessary (mainly, sequence number)
for generating the ACKs. Unfortunately, the same cannot be done
on the transmit path since the driver domain cannot fabricate new
data packets on behalf of the VM and only the VM can undertake
this task. Thus, a straightforward extension of vSnoop willnot
work on the transmit path.

Of course, the principle of getting help from the driver domain
is still logical even on the transmit path. However, given wecannot
change the fundamental fact that only the VM can generate thedata
packets, the only other recourse then is to create a situation that
encourages the VM to generate a lot of data packets and transmit
them quickly. Achieving this is not easy though, since the VM
itself will generally adhere to the standard TCP congestioncontrol
semantics such as slow start and congestion avoidance, and hence,
cannot send too many data packets at the beginning. This behavior
will continue even if the receiver advertises a large enoughwindow,
since a normal TCP sender is programmed to behave nicely to flows
sharing the network path.

To address this problem, we propose a solution calledvFlood,
in which we make a small modification to the sending VM’s TCP
stack that essentially “offloads” congestion control functionality to
the driver domain. Specifically, we install a small kernel module
that replaces the TCP congestion control functionality in the VM
with one that just “floods” the driver domain with a lot of pack-
ets that are subsequently buffered in the driver domain. Thedriver
domain handles congestion control on behalf of the VM, thus en-
suring the compliance of TCP semantics as far as the network is
concerned.

There are two other challenges that still remain. First, buffer
in the driver domain is a finite resource that needs to be managed
acrossdifferent VMs and connections in a fair fashion. Thus, no
one connection should be able to completely occupy all the buffer
space, which would prevent other connections from taking advan-
tage of vFlood. Second, there has to be a flow control mechanism
between the VM and the driver domain that would prevent the VM
from continuously flooding the driver domain. This is especially
important for connections that have low bottleneck networkcapac-
ity. To solve the first problem, we propose to use a simple buffer
allocation policy that ensures some free space to be always avail-
able for a new connection. We solve the second problem with the
help of a simple backchannel through which the driver domaincan
easily communicate with the VM about when to stop/resume the
flooding.

We have developed a prototype of vFlood in Xen [12]. Our im-
plementation of vFlood required only about 1500 lines of code, out
of which 40% was reused from Xen/Linux code base. Using this
prototype, we performed extensive evaluation at both TCP flow and
application levels. For the flow-level experiments, vFloodachieves
about 5× higher median TCP throughput for 100 KB flows com-
pared to the vanilla Xen. Our application-level evaluationwith the
Apache Olio [2, 41] Web 2.0 benchmark shows that vFlood im-
proves its performance by 33% over the default Xen.

While we have so far discussed the receive and transmitinde-
pendently, in general, a given VM may have some TCP connec-
tions that are transmit-intensive, some receive-intensive, and some
which involve both simultaneously. Thus, in a real system, we need
an integrated version of vFlood and vSnoop. A curious question
here is how an integrated version compares with vFlood or vSnoop
alone, i.e., whether the resulting benefits are cumulative or not.

We have also implemented an integrated version of vSnoop and
vFlood in our prototype system, and our evaluation (with vSnoop
only, vFlood only, and vSnoop+vFlood configurations) showsthat
they do indeed yield orthogonal, non-counteracting performance
improvements, with the integrated system improving the perfor-
mance of the Apache Olio benchmark by almost 60% compared to
about 33% by vFlood alone and 26% by vSnoop alone.

2. vFlood MOTIVATION
We motivate the problem and the need for vFlood using an exam-

ple shown in Figure 1. We first focus on the “vanilla” case shown
in the figure on the left. In this scenario, we consider three VMs
labeled VM1-VM3 sharing a CPU. Assume a TCP sender in VM1
is transmitting packets to a remote TCP receiver not in the same
physical host. In this case, according to the standard TCP seman-
tics, the TCP sender will start conservatively with one (or afew
depending on the TCP implementation) packet at the beginning of
the connection. In many VMMs (e.g., Xen), a data packet passes
via a buffer that is shared between the VM and the driver domain
(e.g., the ring buffer in Xen). Once the driver domain is scheduled,
it will transmit the packet on the wire towards the TCP receiver.

Since each CPU scheduling slice is typically in theorder of mil-
liseconds(e.g., 30ms in Xen), and network RTTs in a datacenter are
typically sub-millisecond, the ACK packet may arrive quitequickly
but may not find VM1 running at that instance. Consequently the
packet will be buffered by the driver domain. Later when VM1 gets
scheduled, this packet will be consumed. Unfortunately, asshown
in the figure, this delay could be as high as 60ms if both VM2 and
VM3 use up the entire slice of 30ms (as in Xen). Once the ACK
packet arrives at VM1, VM1 will increase its congestion window
according to the TCP slow start semantics and will send two new
packets. Assuming network RTT is 1ms, the ACKs for these two
packets may arrive 1ms later from the network, but they may have
to get buffered until VM1 gets scheduled to process them further.

As a result of this additional scheduling latency, the progress
of the TCP connection is severely hampered. Had there been no
virtualization, the TCP sender would have doubled the congestion
window every 1ms during the slow start phase thus ramping up
quickly to the available bandwidth. Under the VM consolidation
scenario with 3 VMs and CPU slice of 30ms, we can see that in the
worst case the TCP sender doubles congestion window potentially
every 60ms. Extending this argument to the TCP congestion avoid-
ance phase, we can find that every 1ms (true network RTT), TCP
will grow its congestion window by 1 MSS, whereas the same may
happen every 60ms due to the additional latency of CPU schedul-
ing among the VMs. The slow ramp up of the connection will
negatively affect the overall TCP throughput, especially for small
flows which spend most of their lifetime in TCP slow start. Recent
studies on datacenter network characteristics [26, 13] indicate that
the majority of flows in datacenters are small flows, suggesting that
the impact of CPU sharing on TCP throughput is particularly acute
in virtualized datacenters.

2.1 Possible Approaches
We now discuss some possible approaches to address this prob-

lem. We group them into three categories depending on the layer at
which the approach resides.

TCP At the TCP layer, one possible approach is to turn off TCP
slow start completely, and start with a reasonably high value for the
congestion window. While it may mitigate the problem to some
extent, this approach will lead to a congestion collapse in the net-
work as each connection, irrespective of the congestion state in
the network, will start flooding a large number of packets. This

2

Figure 1: Illustration of TCP connection progress with vanilla VMM and with vFlood-enabled VMM.

is especially undesirable in datacenter networks that often employ
switches with shallow buffers for cost reasons [10]. For this reason,
we choose not to disable TCP slow start. More generally, it takes
decades to perfect protocols such as TCP, and a cursory fix to TCP
such as shutting off slow start may result in undesirable andeven
unpredictable consequences. Of course, it may be interesting to
conduct a more careful investigation to see if we can make changes
at the TCP layer to address this problem.

VM Scheduler At the VMM layer, one option could be to mod-
ify the scheduler to immediately schedule the VM for which an
ACK packet arrives, so that it can quickly respond to the ACKsby
sending more data. Unfortunately, this option is prone to severe
context switch overheads as the scheduler needs to keep swapping
the VMs in response to the packets on the wire, making it prac-
tically infeasible. A variation of this idea is to make the sched-
uler communication-aware and prioritize network intensive VMs
when making scheduling decisions. This approach does not in-
cur aforementioned overhead of additional context switching. In-
deed, Govindanet al. have proposed modifications to Xen’s Sim-
ple Earliest-Deadline First (SEDF) CPU scheduler to make itmore
communication-aware by preferential scheduling of receiver VMs
and anticipatory scheduling of sender VMs to improve the perfor-
mance of network-intensive workloads [18]. While their schedul-
ing mechanism achieves high performance for VMs with network-
intensive workload, the improvement may come at the expenseof
VMs running latency-sensitive applications with little network traf-
fic [38]. We do however believe that a communication-aware VM
scheduler will create morefavorableconditions for vFlood; we will
investigate such an integration in our future work.

Hardware (TOEs) One other possible approach adopted by mod-
ern TCP offload engines (TOEs) offered by different vendors (e.g.,
[1, 3]) is to implement TCP in the network interface cards directly.
While TOEs are actually designed for a different purpose, toreduce
the CPU overhead involved in TCP processing, they do mitigate
our problem to some extent. However, TOEs come with several
limitations such as requiring to modify the existing applications in
order to achieve improved performance [40], lacking flexibility in
protocol processing (such as pluggable congestion control, netfilter
and QoS features available in Linux), and being potentiallyprone
to bugs that cannot be fixed easily [36]. Interestingly, popular vir-
tualization platforms, such as VMware ESX and Xen, stilldo not

fully support offloading complete TCP processing to hardware [20,
8]. Linux also does not natively support full TCP stack offload due
to various reasons such as RFC compliance, hardware-specific lim-
itations, and inability to apply security patches by the community
(due to the closed source nature of TOE firmware) [6]. An alter-
native approach, motivated by the presence of many cores in the
modern processors, is TCP onloading [39, 40], where TCP pro-
cessing is dedicated to one of the cores. Since onloading requires
extensive modifications to a guest VM’s TCP stack, it is also not
widely adopted.

2.2 Key Intuition behind vFlood
Based on the above discussion, we opt for a solution that (1) does

not change the TCP protocol itself, (2) does not require hardware-
level changes such as TOEs, and (3) does not modify the VMM-
level scheduler. Our approach relies on thekey observationthat
some components of a virtualized host get scheduled more fre-
quently than the VMs. For instance, the driver domain in Xen (also
the VMkernel in VMware ESX, the parent partition in Microsoft
Hyper-V, etc.) is scheduled very frequently in order to perform I/O
processing and other management tasks on behalf of all the VMs
that are running on the host. Although not shown in Figure 1 for
clarity, the gaps between VM slices are essentially taken bythe
driver domain. (In Xen, the driver domain can get scheduled ev-
ery 10ms – even though the scheduling slice time may be 30ms –
so that it can process any pending I/O from the VMs.) This ob-
servation suggests the following idea: If the driver domain, upon
the arrival of an ACK packet from the TCP receiver, can push the
next data segment(s)on behalfof the sending VM, the connection
will make much faster progress and be largely decoupled fromthe
scheduling/execution of the VM. vFlood is proposed exactlyto re-
alize this idea.

Moreover, since the driver domain itself cannot generate data on
behalf of the sending VM, the data generated by some application
in the VM must first be pushed to the driver domain. (We show
one convenient approach to achieve this in Section 3.) The result-
ing progress of the TCP connection is shown on the right side of
Figure 1: The driver domain, on behalf of the VM, can emulate
the same TCP slow start and congestion avoidance semantics in re-
sponse to ACKs that are arriving from the TCP receiver, achieving
faster TCP connection progress and higher TCP throughput, which
approaches the throughput achieved by a non-virtualized (but oth-

3

erwise the same) TCP sender. The figure also shows that the inter-
actions between the driver domain and the TCP receiver are com-
pliant with the TCP standards.

3. vFlood DESIGN

Figure 2: vFlood architecture

vFlood essentially offloads the TCP congestion control function-
ality from the sender VM to the driver domain of the same host.
Under vFlood, the sender VM is allowed to opportunisticallyflood
data packets at a high rate to the driver domain during its CPUtime
slice, while the driver domain will perform congestion control on
behalf of the VM to ensure TCP congestion control semantics are
followed across the network. To realize congestion controloffload-
ing, vFlood needs to accomplish three main tasks:

(1) Enable the VM adopt anaggressivecongestion control strat-
egy during slow start and congestion avoidance phases of a
TCP flow;

(2) Implement a standards-compliant congestion control strategy
in the driver domain on behalf of the vFlood-enabled VMs;

(3) Manage buffer space for the flooded data in the driver domain
so that tasks (1) and (2) are performed in a coordinated way.

vFlood accomplishes the above tasks using three main modules
as shown in Figure 2: (1) avFlood VM modulethat resides within
the VM and its main responsibility to shut off the default congestion
control in the VM and flood the driver domain as fast as allowed;
(2) acongestion control modulein the driver domain that performs
TCP congestion control on behalf of the VM; and (3) abuffer man-
agement modulein the driver domain that controls the flooding of
packets so that the buffer space for flooded packets is used fairly
across all connections and VMs. We will discuss each of these
modules in detail for the remainder of this section. We note that the
generic design of these modules demonstrates vFlood’s applicabil-
ity to a wide class of virtualization platforms (e.g., Xen, VMware
ESX, and Hyper-V). We defer the discussion of platform-specific
implementation details to Section 4.

3.1 vFlood VM Module
The vFlood VM module resides in the VM and its main respon-

sibility is to opportunistically flood the driver domain with TCP
packets when the VM is scheduled. For packet flooding, vFlood
modifies the standard congestion control behavior of the VM so that
transmissions are done in a more aggressive fashion so long as such
a strategy does not exhaust driver domain and network resources.
This task can be conveniently implemented by installing a kernel

module within the VM that effectively replaces the VM’s conges-
tion control function with a customized one that sets the congestion
window to a high value (e.g.,cong_winvm=512 segments) whenever
desired (detailed conditions in Section 3.2). We note that,for most
operating systems, such replacement is quite straightforward as the
TCP congestion control functionality is usually implemented as a
pluggable module so that an operating system can easily be config-
ured with different congestion control implementations (e.g., Reno,
Vegas [14], CUBIC [23], FastTCP [25]). In our Linux-based imple-
mentation, vFlood leverages the same interface as other popularly-
used congestion control implementations in Linux to interact with
the kernel. Note that only the congestion window management
functions, such as growing and shrinking window in responseto
ACKs and packet losses, are replaced and offloaded to the driver
domain; whereas the VM’s TCP stack still implements all other
functionalities required for reliable transmission such as timeout
and retransmission.

As discussed earlier, such a minimal change to VMs is unavoid-
able for vFlood to realize opportunistic flooding and congestion
control offloading. However, we deem such a design quite reason-
able in virtualized cloud platforms where the guest kernel of a VM
can becustomizedfor better performance, security, and manage-
ability. In paravirtualized VMMs such as Xen, the guest kernel
is already patched for optimized interactions with the underlying
VMMs; so intuitively, one can think of our approach asparavirtu-
alizing the TCP stackto some extent. Our approach is also some-
what similar to the VMware tools [9], in which a set of system tools
are installed in a VM to improve the VM’s performance.

Note that our approach requiresno modificationseither to the ap-
plications or to the TCP protocol itself – all we require is installing
a small kernel module in the guest OS that essentially dumbs down
the congestion control portion of TCP, and a module within the
driver domain for congestion control offloading. Thus, our ap-
proach is not as radical as TOEs or implementing a new variant
of TCP.

3.2 Congestion Control Module
The vFlood congestion control module in the driver domain mainly

performs the offloaded TCP congestion control function. Upon ar-
rival of ACKs from a TCP receiver, the congestion control mod-
ule will transmit packets that have already been flooded fromthe
sender VM. However, unlike the artificial congestion windowset
in the VM (cong_winvm), the congestion window maintained by the
driver domain (cong_windrv) grows and shrinks according to TCP
standards and appears to the network and the receiver as theactual
value used for the end-to-end connection. With this design, one
can see that the presence of vFlood does not lead to any violation
of end-to-end TCP semantics and would yield an approach thatis
at most as aggressive as a TCP sender from the driver domain (or
from a non-virtualized sender).

vFlood relies on theassumptionthat the driver domain has suffi-
cient memory and computation resources to buffer packets flooded
by the VMs and to perform congestion control functions on be-
half of them. Given that TCP processing overheads are typically
dominated by the checksum computation and segmentation, and
that these tasks are increasingly delegated to hardware in modern
NICs, we believe that this assumption is quite reasonable. How-
ever, vFlood still has to carefully manage the finite amount of buffer
space for flooded data among multiple connections. (We discuss
this issue in Section 3.3.) In addition, vFlood’s design requires an
additionalcommunication channel(referred to asvflood_channel)
between the congestion control module in the driver domain and
the vFlood VM module. This channel is used by the driver do-

4

Figure 3: vFlood state machine

main to setcong_winvm (Section 3.3), which effectively throttles
the VM’s transmission rate based on available buffer space.Mean-
while, the VM module uses the channel to signal the congestion
control module when to go offline/online.

vFlood State Machine vFlood effectively de-synchronizes the
TCP sender and receiver that are usually tightly coupled (and hence,
susceptible to VM scheduling latencies) with the help of a state ma-
chine (Figure 3). For each flow, vFlood maintains a small amount
of state so that it can enable or disable congestion control offload-
ing depending on the state. In addition to the standard congestion
control state maintained, notably congestion window and slow start
threshold, vFlood’s congestion control module keeps trackof a few
other variables: (1) the highest sequence number acknowledged by
the receiver, and the number of times a packet with this sequence
number has been acknowledged (for counting duplicate ACKs), (2)
the count of unacknowledged, transmitted packets, (3) the adver-
tised receive window of the receiver, (4) the window scalingfactor,
and (5) buffer usage of a flow. These values collectively determine
when the congestion control module should actively engage in con-
gestion control on behalf of the sender VM, and when it shouldgo
offline and let the VM re-take the congestion control responsibil-
ity. The driver domain initializes the per-flow state upon receiving
a SYN or SYN-ACK packet and sets the flow’s state to ACTIVE.

Online Mode While a flow is in the ACTIVE state, vFlood buffers
all packets coming from the VM (subject to the buffer-management
policy described in Section 3.3) and performs congestion control
and packet transmission. The flow remains in the ACTIVE state
until the flow experiences one of the two conditions: First, the net-
work bottleneck capacity of the flow may decrease, in which case,
the flow may start to exceed its share of the buffer usage (i.e., the
per-flow buffer occupancy threshold defined in Section 3.3) leading
to buffer space overflow. In this case, the vFlood VM module can-
not continue to assume a large window size and pump more packets
to the driver domain. Second, depending on the severity of the net-
work congestion, one or more packets may be dropped. In this
case, the TCP receiver will continue to send duplicate acknowl-
edgements for each of the subsequent packets received afterthe
dropped packet. In case of three dup-ACKs, standard TCP senders
would trigger a fast retransmit and cut the congestion window by
half, and in case of a timeout, they would trigger a retransmission
but will cut the congestion window to 1MSS and switch to slow
start.

Buffer space overflow is easy to detect in the driver domain.
Once the congestion control module becomes aware of such an
overflow, it will go offline by setting the state to NO BUFFER and
signaling the vFlood VM module to switch to standard TCP con-

gestion control. While detecting triple duplicate ACKs canalso be
done easily based on the state maintained, it is unfortunately not
easy to detect timeouts since it requires timers and RTT estima-
tors. Additionally, to perform retransmissions, all unacknowledged
packets need to be buffered. To keep vFlood’s design lightweight,
we resort to the sender VM’s TCP stack for handling these patho-
logical situations: Once the VM’s TCP stack detects a timeout, it
will notify the vFlood VM module, which will in turn notify the
congestion control module in the driver domain viavFlood_channel.
The congestion control module will then go offline (PACKET LOSS
state) and transfer congestion control back to the sending VM.

Offline Mode When vFlood goes offline (i.e., when it switches
to NO BUFFER or PACKET LOSS state), the congestion con-
trol module in the driver domain operates in a pass-through mode,
where it does not transmit any new packets and instead lets the
sending VM do that. However, notice that the sender VM’s conges-
tion control has been replaced by the vFlood VM module that sets
a larger congestion window than the driver domain. To solve this
problem, once congestion control responsibility is transferred back
to the sender VM, it will stop using the more aggressive conges-
tion window. Instead, the vFlood VM module will function like the
original TCP stack without vFlood. To achieve this effect, vFlood
basically employs a shadow variablecong_winvm

′ that, similar to
cong_windrv, grows and shrinks according to TCP semantics. This
variable is in addition tocong_winvm that is used when vFlood is
online (i.e., in ACTIVE state). Note thatcong_winvm

′ may not be
exactly the same ascong_windrv at any given instance due to the
slight lag in TCP processing, but are going to be roughly simi-
lar since the driver domain and the VM see the same sequence of
events.

Maintaining the extra shadow variable above does not cause much
overhead as it only entails growingcong_winvm

′ by 1 MSS for ev-
ery ACK during slow start and by 1 MSS for each RTT during
congestion avoidance. Therefore, when the driver domain module
goes offline, the vFlood VM module can seamlessly take over. In
some sense, the vFlood VM module still retains the full-fledged
TCP congestion control mechanism; however, when conditions are
right, it will switch back to the flooding (online) mode and offload
congestion control back to the driver domain. Upon receiving a
notification from the sender VM that the lost packets have been re-
covered or upon detecting available buffer space, the vFlood driver
domain module will become online again and resume its conges-
tion control duty.

Adjusting Receive Window One issue that we have not discussed
so far is the value of the advertised receive window sent in the
ACKs. Given that a TCP connection’ssend windowis the min-
imum of its congestion windowand thereceiver advertised win-
dow, we also have to modify the receiver advertised window in or-
der to make the VM TCP stack flood packets to the driver domain.
One solution is to rewrite ACK packets’ receive window field at
the driver domain module while vFlood is online, so that the small
receiver advertised window does not inhibit flooding. However,
rewriting receive window invalidates a packet’s TCP checksum, so
vFlood either has to recalculate the checksum or require checksum
validation at the physical NIC. This solution might also lead to re-
transmission of more packets than expected by the receiver in a
situation where the VM detects packet losses and retransmits based
on the inflated value written by the driver domain. Hence, simi-
lar to the congestion window maintenance, vFlood’s VM module
maintains two variables. One variable corresponds to the actual re-
ceiver advertised window as read from incoming ACKs and is used
when vFlood is offline (i.e., vFlood enters PACKET LOSS or NO
BUFFER state). The other variable corresponds to the buffersize

5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1(0.1) 2(60) 3(60)

N
um

be
r

of
 P

ac
ke

ts

Flow ID (RTT)

Figure 4: Unfairness in buffer occupancy when no buffer man-
agement policy is in place

in the driver domain and is used when vFlood is online (i.e., in
ACTIVE state).

Choice of Congestion Control Algorithm Another issue con-
cerns the exact congestion control algorithm used in the driver do-
main out of many possible variants. In order to ensure maximum
flexibility in a cloud environment, we assume the driver domain
implements almost all the standard algorithms that any stock Linux
or Windows kernel implements (e.g., Reno, NewReno, Vegas, CU-
BIC). Also we have modularized the design of the congestion con-
trol module in the driver domain such that plugging-in a new TCP
congestion control algorithm is fairly easy. That way, an appro-
priate congestion control algorithm can be configured easily when
vFlood is enabled as an option. We can even run different conges-
tion control algorithms simultaneously depending on what the VMs
desire thus ensuring functional equivalence between the online and
offline modes of vFlood.

3.3 Buffer Management Module
Finally, vFlood uses the buffer management module to regulate

the buffer usage across different flows, both within and across VMs.
The need for this module stems from the fact that, in the ACTIVE
state, the sender VM acts as theproducerand the network becomes
the consumerof packets for a given flow (according to TCP se-
mantics). If the consumer process (network) becomes too slow, it
would lead to exhaustion of buffer resources in the driver domain.
This problem becomes more acute when there are multiple guest
VMs, each with multiple active TCP flows, contending for the same
buffer space. Note that this problem does not arise in our receive-
path solution vSnoop [27]. More specifically, on the receiver side,
the buffer space is limited by the amount of space in the shared ring
buffer (in Xen), or whatever other mechanism a given VMM usesto
transfer between the VMM and the receiver VM (whether vSnoop
is used or not). However, in vFlood, without care, one slow flow
(perhaps with a bottleneck in the network) can occupy all thebuffer
space thus denying the benefits of congestion control offloading to
other flows—the scenario we wish to avoid.

In vFlood, we provide two levels of isolation. First, in order to
guarantee complete isolation for flows belonging todifferent VMs,
vFlood assigns to each VM its own dedicated buffer space (e.g., a
4MB buffer) that is not shared with other VMs. This is similarin
spirit to the approach many VMMs (e.g., Xen) take to provision
ring buffers for network transfers between the driver domain and
the VMs. As a result, no one VM can greedily occupy all the avail-
able buffer at the expense of other VMs. Second, we provide a
mechanism to manage buffer usage across flows that belong to the
same VM. Note that it does not make sense to strictly partition the
buffer across flows since the number of active flows may be large
and not all flows benefit equally from vFlood. In particular, we note

that high RTT connections and low bottleneck bandwidth connec-
tions benefit less from vFlood, and also consume more buffer space
since the discrepancy between the rates at which the sender VM
produces and network drains is the most for such flows.

To understand how RTTs affect the buffer usage, we conduct a
simple experiment where a VM sends a 2MB file to three differ-
ent receivers simultaneously. The first flow has 0.1ms RTT while
the other two flows have 60ms RTT. We ensure that all three flows
havesimilar bottleneck capacity. Figure 4 shows the buffer occu-
pancy of the vFlood per-VM buffer space for all three flows. As
illustrated, flows 2 and 3 occupy a larger share of the buffer space
compared to flow 1. The larger buffer occupancy stems from the
fact thatcong_windrv grows more slowly for the high-RTT flows.
As a result, it takes longer to transmit buffered packets forflows 2
and 3. These high RTT connections will prevent a low RTT high
bandwidth connection from taking better advantage of vFlood by
occupying more available buffer space.

Buffer Allocation Algorithm Interestingly, the high-level prob-
lem faced by vFlood buffer management module is conceptually
similar to the problem of buffer allocation confounded by network
routers, where different flows compete for the same set of buffer
resources. While many ideas have been proposed in that context, a
simple yet elegant scheme that we can borrow is due to Choudhary
and Hahne [16], where the amount of available free space serves as
a dynamic threshold for each flow. Specifically, in this scheme, the
buffer usage thresholdTi for flow i is defined as

Ti = αi · (B −Q(t)) (1)

whereB is the total buffer size,Q(t) is the total buffer usage at time
t, andαi is a constant which can be set according to the priority of
flows. Thus, if only a single flow is present, it can occupy up to
one half of the total buffer space (assumingαi = 1). As soon as
a new flow arrives, both flows can occupy only1/3rd of the total
buffer space, with the remaining1/3 reserved for future flows. The
main advantage of this scheme lies in the fact that some amount
of buffer is always reserved for future flows, while the threshold
dynamically adapts based on the number of active flows.

In vFlood’s buffer management module, we implement a sim-
ilar scheme that determines how many more segments the driver
domain can receive for flowi (pkt_iniVM) from the VM module as:

pkt_iniVM = cong_winidrv − pkt_outidrv
︸ ︷︷ ︸

θi

+Ti −Qi(t)
︸ ︷︷ ︸

φi

(2)

wherecong_winidrv is the congestion window for flowi at the driver
domain,pkt_outidrv is the number of transmitted, unacknowledged
packets for flowi as maintained by the driver domain,Ti is the
buffer threshold as defined by Equation 1, andQi(t) is the buffer
usage of flowi at time t. In Equation 2, the termθi refers to
the number of segments that can be sent immediately, withoutany
buffering, while the termφi refers to available buffer space for flow
i. Consequently, the congestion window for flowi at the VM mod-
ule is defined as:

cong_winiVM = pkt_iniVM + pkt_outiVM (3)

wherepkt_outiVM is the number of transmitted, unacknowledged
packets for flowi as maintained by the VM module while vFlood is
online. To implement afair bufferingpolicy among all VM flows,
it suffices to pick the same value forαi (Equation 1) for all flows.
With this policy, flow 1 in Figure 4 would have more buffer space
and would benefit more from the presence of vFlood.

Prioritized Buffering Policy In general, however, not all flows
benefit equally from the buffer allocation. We can broadly catego-

6

Figure 5: vFlood implementation on Xen

rize flows into four classes depending on their RTT (high/low) and
bottleneck capacity (high/low). Flows with high RTT or low bot-
tleneck capacity will occupy significant buffer space. However, the
benefit of allocating buffer for these type of flows is relatively min-
imal as: (1) For high RTT flows, the VM CPU scheduling-induced
extra latency is not dominant with respect to the already high net-
work RTTs. (2) For low bottleneck capacity flows, pushing thecon-
gestion control to the driver domain is not likely to improveTCP
throughput anyway. Therefore, flows with low RTT and high bot-
tleneck capacity would mainly benefit from vFlood. Fortunately,
much of the traffic in datacenters fall into this category.

Given this classification, we devise aprioritized bufferingpol-
icy where vFlood favors low-RTT flows by picking larger values
for αi for them. While we can do similar prioritization for high-
bandwidth flows, it is not practical due to two reasons. First, de-
tecting bottleneck bandwidth is harder to do in the driver domain
and requires keeping additional state. One could implementrate
estimation as in TCP Vegas [14], but Vegas assumes rate increases
by 1 MSS every other RTT to ensure stable rate calculation which
is different from Reno semantics. Further, it requires additional
timing variables making it, although not completely impossible, a
bit more tedious to perform. A bigger problem, however, is that the
rate estimation during slow start – arguably the stage wherevFlood
benefits the most – is unreliable since the window size has notsta-
bilized yet. Thus, we advocate classifying flows mainly based on
their RTTs without considering their bottleneck capacities.

We note that in typical cloud environments, due to overprovi-
sioning of datacenter networks (to provide full bisection bandwidth
within a datacenter), intra-data center capacities are much higher
compared to the lower-bandwidth cross-datacenter links. Further,
intra-datacenter RTTs are typically much lower than acrossdata
centers; thus, high (low) bandwidths are positively correlated with
low (high) RTTs. Thus, focusing on RTT-based prioritization alone
works reasonably well in our settings. In our evaluations, we con-
sider 1.0ms as a reasonable threshold to distinguish high and low
RTTs.

4. vFlood IMPLEMENTATION
We have implemented a prototype of vFlood with paravirtualized

Xen 3.3 as VMM and Linux 2.6.18 as the guest OS kernel. One
of our main implementation goals is to minimize the code baseof
vFlood and maximize the reuse of existing Xen and Linux code.In
fact, out of the approximately 1500 lines of vFlood code1, 40% is
directly reused from existing Xen/Linux code. The reused code in-
cludes part of Linux’s Reno congestion control implementation and

1According to cloc tool (http://cloc.sourceforge.net)

flow hashing functionality; and Xen’s I/O ring buffer management.
As shown in Figure 5, Xen adopts asplit driver model for par-

avirtualized devices. Each virtual device (e.g., a virtualnetwork
or block device) has a front-end interface in the VM and a back-
end interface in the driver domain (dom0). The communication
between the two interfaces takes place via the following modules:
(1) a ring buffer that holds descriptors of I/O activities in one di-
rection (i.e., from front-end to back-end or vice versa), (2) ashared
pagereferenced by ring buffer that holds the exchanged data (e.g..
a network packet, disk block, etc.), and (3) anevent channelthat
serves like an interrupt mechanism between the two ends.

When a VM transmits a packet, the packet gets placed on the
shared page between the VM and dom0 and anevent(a paravir-
tual IRQ) is sent to dom0. Upon receiving the event from the VM,
dom0 constructs a socket buffer (sk_buff) kernel structure for the
packet and passes it to the Linux bridge module en route to thenet-
work interface card (NIC). Similar type of activities takesplace on
the receive path but in the reverse order, where ansk_buffstructure
arrives at the bridge from the NIC, the bridge identifies the desti-
nation VM and passes it to the corresponding back-end interface.
Finally the back-end interface delivers the packet to the VMvia
the front-end interface. We next describe the implementation of
different modules of vFlood outlined in Section 3.

vFlood VM Module Replacing the default congestion control
module in the VM is the only modification we made to the VM. As
we briefly alluded to in Sections 3.1 and 3.2, the vFlood VM mod-
ule maintains two congestion windows for each flow.cong_winvm

is used when vFlood is online for flooding packets to the driver do-
main; whilecong_winvm

′ is maintained according to the TCP Reno
specification and will be used when vFlood goes offline.

The vFlood VM module interacts with the guest OS kernel through
the same interface used by the standard congestion control mod-
ules, hence it does not require any modifications to the TCP/IP
stack of the VM. Additionally, this module interacts with the driver
domain via the communication channelvFlood_channel, whose
implementation will be described shortly. Both the VM and driver
domain modules of vFlood maintain a control structure for each
TCP flow to store the per-flow state. Each control structure isac-
cessed by a hash function that takes as input the source/destination
IP addresses and port numbers of a given flow.

Congestion Control Module This driver domain module of vFlood
is implemented as two hook functions to the Linux bridge mod-
ule. vFlood_txintercepts all packets on the transmit path and per-
forms congestion control for VM flows for which vFlood is online.
More specifically, upon receiving a packet from the sender VM,
vFlood_txtransmits the packet immediately if allowed by the Reno
congestion control algorithm (i.e., based on the congestion window,
advertised receive window, and the number of transmitted, unac-
knowledged packets); otherwise, it buffers the packet.vFlood_rx
intercepts all packets on the receive path and performs three main
tasks. First, as ACKs arrive,vFlood_rx updatescong_windrv per
TCP Reno semantics. Second, if allowed by the congestion control
algorithm, it fetches packets from the per-flow buffer and trans-
mits more packets. Third, it notifies the vFlood VM module via
vFlood_channelof the available buffer allocation so that the vFlood
VM module can adjust its congestion window accordingly.

vFlood_channelis implemented like a standard Xen device, sim-
ilar to the virtual network device described earlier. One set of ring
buffer and event channel is used for communication from a VM to
dom0. Upon receiving an event on this channel, the event-handler
at the congestion control module takes vFlood offline or online
based on the command passed from the vFlood VM module. The
other set of ring buffer and event channel is used for communication

7

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100

C
D

F

Throughput (MB/s)

Vanilla Xen
Xen + vFlood

Figure 6: CDFs for 100 successive 100KB transfers with and
without vFlood

from dom0 to the VM. Upon receiving an event on this channel, the
event-handler at the vFlood VM module adjustscong_winVM based
on the buffer threshold and allocation passed from dom0. Theonly
difference betweenvFlood_channeland a typical Xen device is that
we use the ring buffer itself, not a separate shared page, forpassing
commands between the VM and dom0.

Buffer Management Module The main task of the buffer man-
agement module is to manage the per-VM buffer space in dom0.
This module maintains a FIFO queue ofsk_buffstructures for each
flow. Additionally, it keeps track of per-VM and per-flow buffer al-
location and usage. As we described earlier, this module interacts
directly with vFlood’s congestion control module in dom0.

5. EVALUATION
In this section, we present a detailed evaluation of vFlood using

our prototype implementation. Our evaluation is focused onan-
swering the following key questions: (1) By how much does vFlood
improve TCP throughput? (2) How does the TCP throughput gain
translate into application-level improvements? (3) How much over-
head does vFlood incur? Before we answer these questions, wefirst
describe the experimental setup.

Experimental Setup Each server runs Xen 3.3 as the VMM, and
Linux 2.6.18 as the operating system for the VMs and driver do-
mains. For the experiments described in Section 5.1, we use a
machine with dual-core 3GHz Intel Xeon CPU, 3GB of RAM as
the server, while the client is a 2.4GHz Intel Core 2 Quad CPU
machine with 2GB of RAM. For application-level experimentsin
Section 5.2, we use Dell PowerEdge servers with a 3.06GHz Intel
Xeon CPU and 4GB of RAM. All machines are connected via com-
modity Gigabit NICs. In all experiments, we configure VMs with
512MB of memory and use TCP Reno implementation. In order to
keep the CPU utilization at determined levels in our experiments,
we use a load generator utility which can make the CPU busy by
performing simple CPU bound operations. We selected 30ms as
the duty cycle of this utility as it aligns with the VM scheduling
time slice of Xen.

5.1 TCP Throughput Evaluation
This section presents our evaluation of TCP throughput improve-

ment under a variety of scenarios. For experiments in this section,
we allocate a 2048-segment buffer for each VM in the driver do-
main to support vFlood operations and use a custom application
that makes data transmissions of different size (similar toIperf [5])
over TCP sockets. For the rest of this section, we compare TCP
throughput of the vFlood setup with the vanilla Xen/Linux setup.

Basic Comparison with Xen Due to small sizes of the flows we
are experimenting with and the VM scheduling effects, the through-
put results are subject to high variation during different runs of the
experiment. Figure 6 shows the CDF of TCP throughput for one
hundred 100 KB transfers from a VM to a non-virtualized ma-
chine with and without vFlood. In this experiment, the sending
VM is sharing a single core with two other VMs with 60% CPU
load (i.e. all VMs show 60% CPU utilization). The results indicate
the high variability exists for both vanilla Xen and vFlood setups;
however, vFlood consistently outperforms the vanilla Xen config-
uration. The median throughput achieved by vFlood is almost5×
higher than that of the vanilla Xen. For all the remaining experi-
ments, we conduct 100 runs of each experiment and compare the
median throughputs across the vFlood and vanilla Xen setups.

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(a) 2 non-idle VMs per core

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(b) 3 non-idle VMs per core

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(c) 4 non-idle VMs per core

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(d) 5 non-idle VMs per core

Figure 7: TCP throughput improvement with different number
of VMs per core.

 0x

 0.2x

 0.4x

 0.6x

 0.8x

 1x

 1.2x

100K 250K 500K 1M

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

Figure 8: TCP throughput improvement for the 1-VM scenario

Number of VMs Per-Core In this experiment, we vary the total
number of VMs running on the same core as the sender VM from
2 to 5 (including the sender VM) and fix the CPU load of each VM
to 60%. The normalized performance gains of vFlood are shownin
Figures 7(a), 7(b), 7(c) and 7(d), where 2, 3, 4 and 5 VMs sharethe
same core. As we can see, vFlood results in significant improve-
ment for all transfer sizes for different number of VMs per core.

While it is indeed expected that vFlood performs well when there
are a lot of VMs per core, one may guess that there will be no ben-
efits of vFlood when one VM is running. However, as we can ob-
serve in Figure 8, even for the case where only one VM is running,

8

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(a) 3 VMs, 40% load

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(b) 3 VMs, 60% load

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(c) 3 VMs, 80% load

Figure 10: Performance of vFlood with varying load. We fix thenumber of VMs per core to 3.

 0%

 10%

 20%

 30%

 40%

 50%

2 3 4 5

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

VMs per core

10MB Flow
100MB Flow

Figure 9: vFlood throughput improvement for large flows

vFlood is able to perform slightly better than vanilla Xen. We at-
tribute this slight improvement to the fact that even in the 1-VM
scenario the driver domain and the VM compete with each other
to run on the same CPU. Therefore, while the scheduling delayfor
this scenario is not as high as the multi-VM scenarios, the driver
domain can still process incoming ACKs more quickly and conse-
quently can make faster transmissions compared to the vanilla Xen
scenario.

Large Transfers Similarly, we also expect the most gains to be
for short flows (which as we pointed out dominate data center en-
vironments). To study the benefits of vFlood for large transfers, we
experimented with two sizes – 10MB and 100MB. Our results in
Figure 9 shows that, even for large transfers, vFlood improves TCP
throughput by 19% to 41%.

Varying CPU Load To study the benefits of vFlood across differ-
ent CPU loads, we fix the number of VMs sharing the same core
to 3 and set CPU load of each VM to 40%, 60% and 80%. Fig-
ure 10 shows the normalized throughput gain across these different
loads, and shows vFlood outperforms the vanilla Xen setup signif-
icantly and consistently across all configurations. We observe that
improvements are particularly high for 250KB transfers, with up to
12× for the 3-VM 40% load scenario.

To investigate further the cause behind this special case, we se-
lect one of the configurations (3 VMs sharing the same core, each
with 40% CPU load) and study TCP throughput values when we
vary the flow size all the way from 50KB to 1GB. Figure 11 shows
the results. Interestingly, this figure shows when transfersize is
about 340KB we obtain the maximum improvement. This phe-
nomenon corresponds to the number of slots in Xen’s ring buffers
(240 slots), which leads to a maximum transfer of about 240 seg-
ments (of size 1500 bytes) within one VM scheduling interval.

Scalability of vFlood Most of the experiments described above
consist of only one flow at a particular instance. In order to verify
that vFlood scale well with the number of flows, we measured the

 0

 5

 10

 15

 20

 25

 30

50
K

10
0K

20
0K

34
0K

50
0K

80
0K

1M 1.
6M

3.
2M

6.
4M

10
M

50
M

10
0M

1G

T
hr

ou
gh

pu
t (

M
b/

s)

Flow Size (Bytes)

Vanilla Xen
Xen + vFlood

Figure 11: vFlood improvement for different flow sizes

throughput gains of vFlood when there are 10 and 100 concurrent
flows from the same VM (with 3 VMs sharing the same core run-
ning 40% load). Figure 12(a) shows that as we scale up the number
of flows, gains drop marginally, but still vFlood is able to produce
significant throughput improvements compared to the vanilla Xen.

Effectiveness of Buffer Management Policies In Section 3.3,
we discussed the importance of having a buffer management pol-
icy, specially when high-RTT (low throughput) and low-RTT (high
throughput) flows share the same per-VM buffer space. This sec-
tion presents a comparison of the three buffering policies presented
earlier, namelyno policy, fair policy (i.e., with sameαi) andprior-
itized policy(with higherαi for low RTT connections). For these
experiments we run the sender VM and the low-RTT receiver in the
same local area network, while for high-RTT connections we place
the receiver on a remote PlanetLab node (planetlab1.ucsd.edu). In
our implementation, we designate flows with RTT less than 1msas
low-RTT and other flows as high-RTT. Additionally, we dedicate a
per-VM buffer of size 2048 segments for vFlood operations.

Figure 12(b) shows the median TCP throughput values for dif-
ferent buffering policies when the sender VM repeatedly (for a 2-
minute period) starts 20 concurrent flows to local and remotere-
ceivers and transmits 500KB blocks of data. Our evaluation com-
pares throughput values for the aforementioned policies under dif-
ferent flow mixes (i.e., different ratio of low-RTT to high-RTT
flows). For low-RTT flows, we see improvements by going from
no policyto fair policy and fromfair policy to prioritized policyfor
all flow mixes. The benefits for low-RTT flows are the highest for
the 30/70 mix where a naive policy would let the majority (70%)
high-RTT flows steal buffer space from the minority (30%) low-

9

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

Flow Size [Bytes]

1 Flow
10 Flows
100 Flows

(a) Concurrent flows

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���� ������
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���� �
�
�
�

�
�
�
�

���� �������� ���� ������
��
��
��

���� �
�
�
�

����

��
��
��
��

��
��
��
��

 0
 2
 4
 6
 8

 10
 12

30/70 50/50 70/30

T
hr

ou
gh

pu
t (

M
bp

s)

Flow Mix (Low RTT/High RTT Percentage)

NoPolicy−LowRTT
NoPolicy−HighRTT
Fair−LowRTT
Fair−HighRTT
Prioritized−LowRTT
Prioritized−HighRTT

(b) Buffer management policies

Figure 12: Subgraph (a) shows TCP throughput gains with concurrent flows. Subgraph (b) shows the comparison between the three
buffer management policies

Figure 13: vFlood Apache Olio test setup

RTT flows. We also note that different buffering policies do not
make any difference to high-RTT flows as for them network RTT
dominates VM scheduling-induced RTT (Section 3.3).

5.2 Apache Olio Benchmark
To show the effectiveness of vFlood for typical cloud applica-

tions, we use the Apache Olio benchmark [2, 41]. Apache Olio is a
social-event calendar Web 2.0 application, where users cancreate,
RSVP, rate, and review events. We use the PHP implementationfor
our experiments which includes four components: (1) An Apache
Web server which acts as the request processor and web front-end,
(2) A MySQL server that stores user information and event details,
(3) An NFS server that stores user files and event specific data, and
(4) A Memcached server to cache rendered page fragments.

Figure 13 shows our testbed configuration. We use four VMs
on four distinct physical hosts to run each component of the Olio
system. We also run one other VM (with 30% load) per physical
server sharing the same core with Olio VM to trigger VM schedul-
ing. vFlood is deployed on all physical servers so that the commu-
nication between each component as well as the communication
between clients and the Apache web server can benefit from con-
gestion control offloading. We allocate a 4096-segment buffer in
the driver domain for each VM to support vFlood operations and
use Faban [4] as the client load generator. Faban is configured to
run for 6 minutes (30-second ramp up, 300-second steady state,
and 30-second ramp down) during which 200 client threads gener-
ate different types of requests.

We evaluate the number of operations performed by Olio for
three different configurations: (1) Vanilla Xen, (2) Xen with vFlood
only, (3) Xen with vSnoop (Section 1) only, and (4) Xen with vFlood
and vSnoop (whose integration is discussed in Section 6). Table 1
shows the total count of different operations performed by Olio.
When vFlood alone is deployed in the system, we see total through-
put rising from 31.7 ops/sec in the vanilla Xen configurationto

Operation Count Count Count Count
Vanilla Xen vFlood vSnoop vFlood +vSnoop

HomePage 2544 3271 3416 4215
TagSearch 3290 4281 4020 5550
EventDetail 2363 3077 3135 3925
PersonDetail 219 331 312 410
AddPerson 53 96 71 123
AddEvent 156 245 178 257
Total 9512 12642 11940 15167
Rate(ops/sec) 31.7 42.1 39.8 50.5
Percentage

- 32.9% 25.5% 59.5%Improvement

Table 1: Apache Olio benchmark results

42.1 ops/sec (a 33% improvement). When vSnoop is deployed we
see a 25.5% increase in total throughput. When both vFlood and
vSnoop are deployed, TCP throughput improves on both receive
and transmit paths and we see throughput rising to 50.5 ops/sec (a
59.5% improvement). Our results indicate that the effects of vFlood
and vSnoopcomplementeach other and the performance gains they
achieve are cumulative.

5.3 vFlood Overhead

vFlood Routine CPU Cycles CPU %
vFlood_tx() 65 0.62
vFlood_rx() 370 3.05
vFlood_hash_lookup() 78 0.73
vFlood_update_VM() 59 0.56
vFlood_process_threshold() 57 0.92

Table 2: vFlood per-packet CPU usage

In order to understand the runtime overhead of vFlood, we use
Xenoprof [32] to profile vFlood’s overhead at both the VM and
driver domain. We specifically use Xenoprof to measure CPU cy-
cles consumed by different vFlood routines. Also we instrument
main vFlood routines to record the number of packets they pro-
cess. Table 2 showsper-packetCPU cycles consumed by differ-
ent vFlood routines and their percentage of CPU usage when Iperf
transmits for a 20-second period. From the table, we can see much
of the overhead is associated withvFlood_rx() routine. This rou-
tine is responsible for intercepting acknowledgements destined to
VMs, calculating congestion window, releasing buffered packets
and notifying VMs about their buffer usage. On the other hand,
the overhead caused byvFlood_tx() is minimal because this rou-
tine’s primary responsibility is to queue packets coming from the
VM. Our queuing mechanism (we reuse Linux sk_buff queuing
mechanismskb_queue_tail()) also incurs negligible overhead. The

10

function which is called by the driver domain whenever it needs
to update the buffering threshold (vFlood_update_VM()) and the
function which called by the VM to process buffer threshold in-
formation sent by the driver domain (vFlood_process_threshold())
also do not add much overhead.

6. DISCUSSION
VM Migration Given that the vFlood VM module also runs a
fully functional standard congestion control algorithm inthe back-
ground, the VM state is very much self-contained and can be mi-
grated to other hosts. If we are to move a VM from a vFlood-
enabled host to one without vFlood support, we only need to switch
the vFlood VM module to the original congestion control modebe-
fore the migration. Moving a VM from a vFlood-enabled host to
another vFlood-enabled host requires some state initialization at
the driver component of the destination host for the existing flows.
While the state needed for initialization can be migrated from the
source host to the destination host, either by modifying theVM
migration protocol, or by leveraging thevFlood_channelto trans-
fer the state from VM module to the driver domain, we suspect
that the benefits would be typically marginal as most flows in dat-
acenter environments are fairly short-lived [26, 13]. Therefore, our
current implementation supports live VM migration in a limited,
yet effective fashion by taking vFlood offline for those active flows
established before the migration.

Buffer Space Management Typically, if the number of VMs is
small, the buffer space in the driver domain may not be an issue. In
environments where the number of VMs may be large (say, 30-40),
buffer space may become an issue. Thus, instead of making the
buffer space increase proportional to the number of VMs, we can
potentially allocate the per-VM vFlood buffer from the VM’sown
memory. In such a scheme, a VM can share one or multiple pages
with the driver domain for buffering purposes (e.g., through the
Grant Table facility in Xen) thus reducing vFlood’s dependency on
driver domain resources. Another advantage of this scheme is that
during VM migration, the buffered regions can also be migrated
with the VM as they are now part of the VM’s address space.

vFlood and vSnoop Integration In section 5.2, we presented
some promising results using a preliminary integration of vSnoop
and vFlood. We found that the integration effort is non-trivial as
they both operate on the same set of packets, and rely on some
shared data structures for their operation. For example, anincom-
ing ACK packet with data payload can trigger acknowledgement
from vSnoop and a packet transmission from vFlood. Our prelim-
inary implementation is based on a pipelined architecture where
on the receive (transmit) path packets gets processed by vSnoop
(vFlood) first and then by vFlood (vSnoop). This approach, how-
ever, does not implement features such as ACK piggybacking—
combining pro-active vSnoop’s ACKs with vFlood’s data packets
to reduce the number of packet transmissions. We are currently
working on a more efficient solution based on an integrated state-
machine that would collapse the different actions that vSnoop and
vFlood would take, thus ensuring functional equivalence with a
non-virtualized TCP stack in terms of number of packets on the
wire.

Interplay with Emerging Hardware A few techniques have been
proposed to give VMs direct access to specialized networking hard-
ware (e.g., use of IOMMU-based SR-IOV in Xen 4.0 and VMDi-
rectPath in VMware vSphere). While these techniques lower the
network virtualization overhead by bypassing the driver domain or
the hypervisor, they still do not address the significant increase in
RTT due to VM CPU scheduling. In such settings, we envision

implementing vFlood (except the vFlood VM module) combined
with vSnoop in the hardware itself, thus eliminating the VMM
overheads completely. We believe that the vFlood state machine
described Section 3.2 should lend itself to a scalable hardware im-
plementation. We will pursue this vision in our future work.

7. RELATED WORK
We have already discussed most of the work that is directly re-

lated to vFlood in Section 2.1. We now discuss other related efforts
that fall into the general area of performance improvement for vir-
tualized environments. We group them into three categories: (1)
reducing virtualization overheads along the I/O path, (2) improv-
ing VMM I/O scheduling, and (3) optimizing TCP for datacenters.

Reducing Virtualization Overheads There exists substantial re-
search focusing on optimizations that reduce virtualization-induced
overheads along the I/O path. For instance, Menonet al. have pro-
posed several optimizations to improve device virtualization using
techniques such as packet coalescing, scatter/gather I/O,checksum
offload, segmentation offload, and offloading device driver func-
tionality [34, 31, 33]. vFlood is quite complementary to these tech-
niques. By addressing the interplay between VM consolidation and
network transport protocol, vFlood operates one level higher than
those optimization techniques. XenSocket [45], XenLoop [43],
Fido [15] and Xway [30] specialize in improving inter-VM com-
munication when the VMs are all on the same physical host; vFlood
is more general as it improves transport protocol performance re-
gardless of where the other end of a connection is located. IVC
[24] is another effort in this direction that targets high performance
computing platforms and applications.

Improving VMM I/O Scheduling I/O scheduling for VMs has
received significant attention. Some recent efforts include mClock [19]
and DVT [28, 29]. mClock provides proportional-share fairness
with limits and reservations to schedule I/O requests from VMs.
DVT proposes the differential virtual time concept to ensure that
VMs experience less variability in I/O service time. These solu-
tions focus on modifying the VMM I/O scheduler, whereas vFlood
is agnostic to the VMM’s CPU and I/O schedulers.

Optimizing TCP for Datacenters Alizadehet al. show that the
traditional TCP falls short of handling flows requiring small pre-
dictable latency and flows requiring large sustained throughput due
to TCP’s demand on the limited buffer space available in datacenter
network switches [10]. They propose DCTCP for datacenter net-
working, which leverages ECN capability available in the switches.
Vasudevanet al. observe the “in-cast” problem where multiple
hosts send bursts of data to a barrier-synchronized client,thus caus-
ing overflows in Ethernet switch buffers [42] and TCP performance
degradation. Their mechanism focuses on desynchronizing retrans-
missions by adding randomness to the TCP retransmission timer.
Both of these approaches essentially modify the TCP protocol to
adapt to the new environments; whereas for vFlood, we do not
change TCP’s behavior but merely re-architect it across theVM
and driver domain to improve TCP throughput.

8. CONCLUSION
The main motivation of this paper stems from our investigations

that reveal the negative impact of VM consolidation on transport
protocols such as TCP. In virtualized cloud environments, TCP
packets may experience significantly high RTTs despite sub-millisecond
network latency, because of the VM CPU scheduling latency that
is in the orders of tens of milliseconds. For many TCP connec-
tions, especially the small flows, such dramatic increase inRTTs

11

leads to slower connection progress and lower throughput. To miti-
gate this impact, we have presented a solution called vFloodthat
effectively masks the VM CPU scheduling-induced latenciesby
offloading congestion control function from the sender VM tothe
driver domain and letting the sender VM opportunistically flood the
driver domain with data to send. Our evaluation results indicate sig-
nificant improvement in both TCP flow-level and application-level
performance. Our experience with building a Xen-based proto-
type indicates that vFlood requires relatively small amount of code
changes (about 1500 lines with 40% code reused from Xen/Linux),
and its design is potentially portable to other VMMs.

9. REFERENCES
[1] Alacritech corporation. http://www.alacritech.com.
[2] Apache Olio. http://http://incubator.apache.org/olio/.
[3] Chelsio communications. http://www.chelsio.com.
[4] Faban. http://www.opensparc.net/sunsource/faban/www/index.html.
[5] The Iperf Benchmark. http://www.noc.ucf.edu/Tools/Iperf/.
[6] Linux Networking:TOE. http:

//www.linuxfoundation.org/collaborate/workgroups/networking/toe.
[7] Server Virtualization Landscape. http:

//events.1105govinfo.com/events/vcg-summit-2010/information/~/
media/GIG/GIG%20Events/2010%20Enterprise%20Architecture/
Presentations_0/VCG10_3%201_Oltsik%20Bowker.ashx.

[8] VMware Knowledge Base article.
http://kb.vmware.com/kb/1006143.

[9] VMware Tools. http://kb.vmware.com/kb/340.
[10] ALIZADEH , M., GREENBERG, A., MALTZ , D. A., PADHYE , J.,

PATEL , P., PRABHAKAR , B., SENGUPTA, S.,AND SRIDHARAN ,
M. Data center TCP (DCTCP). InACM SIGCOMM(2010).

[11] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ ,
R., KONWINSKI, A., LEE, G., PATTERSON, D. A., RABKIN , A.,
STOICA, I., AND ZAHARIA , M. Above the clouds: A Berkeley view
of cloud computing. Tech. Rep. UCB/EECS-2009-28, UC Berkeley,
2009.

[12] BARHAM , P., DRAGOVIC, B., FRASER, K., HAND , S., HARRIS,
T., HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A.
Xen and the art of virtualization. InACM SOSP(2003).

[13] BENSON, T., ANAND , A., AKELLA , A., AND ZHANG, M.
Understanding data center traffic characteristics. InFirst ACM
Workshop on Research on Enterprise Networking (WREN ’09)
(2009).

[14] BRAKMO , L. S.,AND PETERSON, L. L. TCP Vegas: end to end
congestion avoidance on a global Internet.IEEE Journal on Selected
Areas in Communications 13, 8 (1995).

[15] BURTSEV, A., SRINIVASAN , K., RADHAKRISHNAN , P.,
BAIRAVASUNDARAM , L. N., VORUGANTI, K., AND GOODSON,
G. R. Fido: Fast inter-virtual-machine communication for enterprise
appliances. InUSENIX ATC(2009).

[16] CHOUDHURY, A. K., AND HAHNE, E. L. Dynamic queue length
thresholds for shared-memory packet switches.IEEE/ACM
Transaction on Networking 6(1998).

[17] DEAN, J.,AND GHEMAWAT, S. MapReduce: Simplified Data
Processing on Large Clusters. InUSENIX OSDI(2004).

[18] GOVINDAN , S., NATH , A. R., DAS, A., URGAONKAR, B., AND

SIVASUBRAMANIAM , A. Xen and Co.: communication-aware CPU
scheduling for consolidated Xen-based hosting platforms.In ACM
VEE(2007).

[19] GULATI , A., MERCHANT, A., AND VARMAN , P. mClock: Handling
throughput variability for hypervisor IO scheduling. InUSENIX
OSDI’10(2010).

[20] GUO, D., LIAO , G., AND BHUYAN , L. Performance
characterization and cache-aware core scheduling in a virtualized
multi-core server under 10GbE. InIEEE IISWC(2009).

[21] GUPTA, D., CHERKASOVA, L., GARDNER, R., AND VAHDAT, A.
Enforcing performance isolation across virtual machines in Xen. In
ACM/USENIX Middleware(2006).

[22] GUPTA, D., LEE, S., VRABLE, M., SAVAGE , S., SNOEREN, A. C.,
VARGHESE, G., VOELKER, G. M., AND VAHDAT, A. Difference

engine: Harnessing memory redundancy in virtual machines.In
USENIX OSDI(2008).

[23] HA , S., RHEE, I., AND XU, L. CUBIC: A new TCP-friendly
high-speed TCP variant.ACM SIGOPS Operating System Review 42,
5 (2008).

[24] HUANG, W., KOOP, M. J., GAO, Q., AND PANDA , D. K. Virtual
machine aware communication libraries for high performance
computing. InACM/IEEE SC(2007).

[25] JIN , C., WEI, D., AND LOW, S. FAST TCP: Motivation,
Architecture, Algorithms, Performance. InIEEE INFOCOM(2004).

[26] KANDULA , S., SENGUPTA, S., GREENBERG, A., PATEL , P.,AND
CHAIKEN , R. The nature of data center traffic: measurements &
analysis. InACM/USENIX IMC ’09(2009).

[27] KANGARLOU, A., GAMAGE , S., KOMPELLA, R. R.,AND XU, D.
vSnoop: Improving TCP throughput in virtualized environments via
acknowledgement offload. InACM/IEEE SC(2010).

[28] KESAVAN, M., GAVRILOVSKA , A., AND SCHWAN, K. Differential
Virtual Time (DVT): Rethinking I/O service differentiation for
virtual machines. InACM SOCC(2010).

[29] KESAVAN, M., GAVRILOVSKA , A., AND SCHWAN, K. On disk
scheduling in virtual machines. InSecond Workshop on I/O
Virtualization (WIOV ’10)(2010).

[30] K IM , K., K IM , C., JUNG, S.-I., SHIN , H.-S.,AND K IM , J.-S.
Inter-domain socket communications supporting high performance
and full binary compatibility on Xen. InACM VEE(2008).

[31] MENON, A., COX, A. L., AND ZWAENEPOEL, W. Optimizing
network virtualization in Xen. InUSENIX ATC(2006).

[32] MENON, A., SANTOS, J. R., TURNER, Y., JANAKIRAMAN , G. J.,
AND ZWAENEPOEL, W. Diagnosing performance overheads in the
Xen virtual machine environment. InACM VEE(2005).

[33] MENON, A., SCHUBERT, S.,AND ZWAENEPOEL, W. TwinDrivers:
semi-automatic derivation of fast and safe hypervisor network drivers
from guest OS drivers. InACM ASPLOS(2009).

[34] MENON, A., AND ZWAENEPOEL, W. Optimizing TCP receive
performance. InUSENIX ATC(2008).

[35] M ILOS, G., MURRAY, D. G., HAND , S.,AND FETTERMAN, M. A.
Satori: Enlightened page sharing. InUSENIX ATC(2009).

[36] MOGUL, J. C. TCP offload is a dumb idea whose time has come. In
USENIX HOTOS IX(2003).

[37] NURMI , D., WOLSKI, R., GRZEGORCZYK, C., OBERTELLI, G.,
SOMAN , S., YOUSEFF, L., AND ZAGORODNOV, D. The Eucalyptus
open-source cloud-computing system. InIEEE/ACM CCGrid(2009).

[38] ONGARO, D., COX, A. L., AND RIXNER, S. Scheduling I/O in
virtual machine monitors. InACM VEE(2008).

[39] REGNIER, G., MAKINENI , S., ILLIKKAL , R., IYER, R., MINTURN,
D., HUGGAHALLI , R., NEWELL, D., CLINE , L., AND FOONG, A.
TCP onloading for data center servers.IEEE Computer 37(2004).

[40] SHALEV, L., SATRAN , J., BOROVIK, E., AND BEN-YEHUDA, M.
IsoStack: Highly efficient network processing on dedicatedcores. In
USENIX ATC(2010).

[41] SOBEL, W., SUBRAMANYAM , S., SUCHARITAKUL , A., NGUYEN,
J., WONG, H., KLEPCHUKOV, A., PATIL , S., FOX, O., AND

PATTERSON, D. Cloudstone: Multi-platform, multi-language
benchmark and measurement tools for Web 2.0. InFirst Workshop
on Cloud Computing (CCA)(2008).

[42] VASUDEVAN, V., PHANISHAYEE, A., SHAH , H., KREVAT, E.,
ANDERSEN, D. G., GANGER, G. R., GIBSON, G. A., AND
MUELLER, B. Safe and effective fine-grained TCP retransmissions
for datacenter communication. InACM SIGCOMM(2009).

[43] WANG, J., WRIGHT, K.-L., AND GOPALAN, K. XenLoop: A
transparent high performance inter-vm network loopback. In ACM
HPDC (2008).

[44] WOOD, T., SHENOY, P., VENKATARAMANI , A., AND YOUSIF, M.
Black-box and gray-box strategies for virtual machine migration. In
USENIX NSDI(2007).

[45] ZHANG, X., MCINTOSH, S., ROHATGI, P.,AND GRIFFIN, J. L.
XenSocket: A high-throughput interdomain transport for virtual
machines. InACM/IFIP/USENIX Middleware(2007).

12

