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ABSTRACT

Virtualization is a key technology that powers cloud conipyt
platforms such as Amazon EC2. Virtual machine (VM) consoli-
dation, where multiple VMs share a physical host, has segid ra
adoption in practice with increasingly large number of VMa p
machine and per CPU core. Our investigations, however,esigg
that the increasing degree of VM consolidation has seriegstive
effects on the VMs’ TCP transport performance. As multipids/
share a given CPU, the scheduling latencies, which can Heein t
order of tens of milliseconds, substantially increase ¥ipécally
sub-millisecond round-trip times (RTTs) for TCP conneation a
datacenter, causing significant degradation in throughputhis
paper, we propose a light-weight solution called vFlood (haal-
lows a TCP sender VM to opportunistically flood the driver dam
in the same host, and (b) offloads the VM's TCP congestiorrabnt
function to the driver domain in order to mask the effects ™ V
consolidation. Our evaluation of a vFlood prototype on Xag-s
gests that vFlood substantially improves TCP transmituhput
with minimal per-packet CPU overhead. Further, our appitica
level evaluation using Apache Olio, a web 2.0 cloud appitcat
indicates a 33% improvement in the number of operationsger s
ond.
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1. INTRODUCTION

North America indicate that they already deploy 11-25 VMs pe
server, and another 12% indicate as high as 25 VMs per sefjer [
We believe that technological advances such as technigueke
sharing of CPU [21, 44] and memory [22, 35] among VMs will
only catalyze this trend further, leading to even higherrdeg of
VM consolidation in the future.

Meanwhile, many cloud applications tend todmmmunication
intensive The reason lies in the wide adoption of distributed com-
puting techniques such as MapReduce [17] for large-scidemia-
cessing and analysis. In addition, many scalable onlineicesr
(e.g., e-commerce, Web 2.0) hosted in the cloud are oftea-org
nized as multi-tier services with server load balancerg&reeting
clients to web frontend servers, which in turn interact vioéckend
servers (e.g., database, authentication servers). Thetieaions
involve communication across multiple VMs in the datacerged
thus the application-level performance is directly degenan the
network performance between the VMs.

Unfortunately, our recent investigations [27] suggest tiha two
trends above are directly at odds with each other. Spedyficed
observe thasharing of CPU by multiple VMs negatively impacts
the VMs' TCP transport performangcavhich in turn affects the
overall performance of many cloud applications. In patticuvith
multiple VMs sharing the same CPU, the latency experienged b
each VM to obtain its CPU time slices increases. Furtherpsoreh
CPU access latency (tens/hundreds of milliseconds) camdszs
of magnitude highethan the typical (sub-millisecond) round-trip
time (RTT) between physical machines within a datacenten-C
sequently, the CPU access latency dominates the RTT between
VMs, significantly slowing down the progress of TCP connatsi

Recent advances in cloud computing [11] and datacenter tech between them.

nologies have significantly changed the computing landscEp-
terprises and individual users are increasingly migrativegr ap-
plications to public or private cloud infrastructures (e 4mazon
EC2, GoGrid, and Eucalyptus [37]) due to their inherent ecoic
and management benefits. The key technology that powerd clou
computing isvirtualization By breaking away from the traditional
model of hosting applications in physical machines, viiazion
enables the “slicing” of each physical machine in a cloudaisf
tructure into multiple virtual machines (VMs), each indiually
hosting a server, service instance, or application compuorighis
practice, commonly known agM consolidation(or server con-
solidation), allows dynamic multiplexing of physical resoces and
results in higher resource utilization and scalability loé cloud
infrastructure.

The practice of VM consolidation naturally exploits the ikva
ability of modern commaodity multi-core and multi-processys-
tems that facilitate easy allocation of resources (e.gmang and
CPU) across multiple VMs. Recent trends indicatafd increase
in VM density—in a recent survey, about 25% of the enterprises in

Due to the closed loop nature of TCP, VM CPU sharing can neg-
atively impact both thé&ransmitandreceivepaths of a TCP connec-
tion. On the receive path, a data packet may arrive at theigalys
host from a remote sender in less than a millisecond; butdblkgt
needs to wait for the receiving VM to be scheduled to process i
and generate an acknowledgment (ACK). In our prior work [27]
we have proposed a solution called vSnoop, in which we place a
small module within the driver domain that essentially gates an
ACK for an in-order data packet on behalf of the receiving VM u
der safe conditions, thus causing the TCP sender to rampstgr fa
than otherwise. We demonstrated that this approach castieély
improve the performance of network-oriented applications

In this paper, we focus on thieansmit paththat has not been
addressed in our prior work. On the sender side, because df CP
scheduling latency, the sender VM can get delayed in prowgss
the TCP ACKs coming from the remote receiver, which causes it
congestion window (and hence the sending rate) to grow glowl
over time. At first glance, it may appear that this problemuiey



similar to that on the receive path, and hence, we could devis
solution similar to vSnoop. However, notice that for theeige
path, vSnoop could easily fabricate the ACKs in the drivendm
since they are generated in response to data packets teatalr
contain all the information necessary (mainly, sequenaalmar)

for generating the ACKs. Unfortunately, the same cannotdred
on the transmit path since the driver domain cannot fatwioatv
data packets on behalf of the VM and only the VM can undertake
this task. Thus, a straightforward extension of vSnoop wnait
work on the transmit path.

Of course, the principle of getting help from the driver dama
is still logical even on the transmit path. However, givenaganot
change the fundamental fact that only the VM can generatédte
packets, the only other recourse then is to create a situstat
encourages the VM to generate a lot of data packets and titansm
them quickly. Achieving this is not easy though, since the VM
itself will generally adhere to the standard TCP congestimtrol
semantics such as slow start and congestion avoidance eacd,h
cannot send too many data packets at the beginning. Thisioeha
will continue even if the receiver advertises a large enauigidow,
since a normal TCP sender is programmed to behave nicelys flo
sharing the network path.

To address this problem, we propose a solution call€idod
in which we make a small modification to the sending VM’s TCP
stack that essentially “offloads” congestion control fimality to
the driver domain. Specifically, we install a small kerneldule
that replaces the TCP congestion control functionalityhie YM
with one that just “floods” the driver domain with a lot of pack
ets that are subsequently buffered in the driver domain.dFiver
domain handles congestion control on behalf of the VM, thus e
suring the compliance of TCP semantics as far as the netwgork i
concerned.

There are two other challenges that still remain. Firstfdsuf
in the driver domain is a finite resource that needs to be nethag
acrossdifferent VMs and connections in a fair fashion. Thus, no
one connection should be able to completely occupy all tHieibu
space, which would prevent other connections from takinguad
tage of vFlood. Second, there has to be a flow control meatmanis
between the VM and the driver domain that would prevent the VM
from continuously flooding the driver domain. This is espégi
important for connections that have low bottleneck netweaac-
ity. To solve the first problem, we propose to use a simpledbuff
allocation policy that ensures some free space to be alwajik a
able for a new connection. We solve the second problem wih th
help of a simple backchannel through which the driver domaim
easily communicate with the VM about when to stop/resume the
flooding.

We have developed a prototype of vFlood in Xen [12]. Our im-
plementation of vFlood required only about 1500 lines ofe;amlit
of which 40% was reused from Xen/Linux code base. Using this
prototype, we performed extensive evaluation at both TG dlod
application levels. For the flow-level experiments, vFleathieves
about 5¢< higher median TCP throughput for 100 KB flows com-
pared to the vanilla Xen. Our application-level evaluatigth the
Apache Olio [2, 41] Web 2.0 benchmark shows that vFlood im-
proves its performance by 33% over the default Xen.

While we have so far discussed the receive and tranismié-
pendently in general, a given VM may have some TCP connec-
tions that are transmit-intensive, some receive-intensind some
which involve both simultaneously. Thus, in a real systemneed
an integrated version of vFlood and vSnoop. A curious gaesti
here is how an integrated version compares with vFlood oogfn
alone, i.e., whether the resulting benefits are cumulativaa.

We have also implemented an integrated version of vSnoop and
vFlood in our prototype system, and our evaluation (with a&@n
only, vFlood only, and vSnoop+vFlood configurations) shoat

they do indeed yield orthogonal, non-counteracting perforce
improvements, with the integrated system improving thdqper
mance of the Apache Olio benchmark by almost 60% compared to
about 33% by vFlood alone and 26% by vSnoop alone.

2. vFlood MOTIVATION

We motivate the problem and the need for vFlood using an exam-
ple shown in Figure 1. We first focus on the “vanilla” case show
in the figure on the left. In this scenario, we consider thrédsV
labeled VM1-VM3 sharing a CPU. Assume a TCP sender in VM1
is transmitting packets to a remote TCP receiver not in timeesa
physical host. In this case, according to the standard TGRuse
tics, the TCP sender will start conservatively with one (dewa
depending on the TCP implementation) packet at the beginofin
the connection. In many VMMs (e.g., Xen), a data packet gasse
via a buffer that is shared between the VM and the driver domai
(e.g., the ring buffer in Xen). Once the driver domain is stthed,
it will transmit the packet on the wire towards the TCP reeeiv

Since each CPU scheduling slice is typically in tder of mil-
lisecondqe.g., 30ms in Xen), and network RTTs in a datacenter are
typically sub-millisecond, the ACK packet may arrive quitéckly
but may not find VM1 running at that instance. Consequenty th
packet will be buffered by the driver domain. Later when VMg
scheduled, this packet will be consumed. Unfortunatelghasvn
in the figure, this delay could be as high as 60ms if both VM2 and
VM3 use up the entire slice of 30ms (as in Xen). Once the ACK
packet arrives at VM1, VM1 will increase its congestion wind
according to the TCP slow start semantics and will send twe ne
packets. Assuming network RTT is 1ms, the ACKs for these two
packets may arrive 1ms later from the network, but they mag ha
to get buffered until VM1 gets scheduled to process thentnéurt

As a result of this additional scheduling latency, the pesgr
of the TCP connection is severely hampered. Had there been no
virtualization, the TCP sender would have doubled the cstige
window every 1ms during the slow start phase thus ramping up
quickly to the available bandwidth. Under the VM consolidat
scenario with 3 VMs and CPU slice of 30ms, we can see that in the
worst case the TCP sender doubles congestion window paltgnti
every 60ms. Extending this argument to the TCP congestioidav
ance phase, we can find that every 1ms (true network RTT), TCP
will grow its congestion window by 1 MSS, whereas the same may
happen every 60ms due to the additional latency of CPU sthedu
ing among the VMs. The slow ramp up of the connection will
negatively affect the overall TCP throughput, especiadiydmall
flows which spend most of their lifetime in TCP slow start. Beftc
studies on datacenter network characteristics [26, 13¢atel that
the majority of flows in datacenters are small flows, suggggtiat
the impact of CPU sharing on TCP throughput is particulaciyte
in virtualized datacenters.

2.1 Possible Approaches

We now discuss some possible approaches to address this prob
lem. We group them into three categories depending on tlee &ty
which the approach resides.

TCP Atthe TCP layer, one possible approach is to turn off TCP
slow start completely, and start with a reasonably highesébu the
congestion window. While it may mitigate the problem to some
extent, this approach will lead to a congestion collapsdénrtet-
work as each connection, irrespective of the congestiote $ta
the network, will start flooding a large number of packets.isTh



Scheduled Shared Driver TCP
VM Buffer Domain Receiver
Data
Data
] Data
ACK ..
e ACK  lgomoommommon”
oo
Time
Vanilla VMM

Driver
Domain

Shared
Buffer

TCP
Receiver

Scheduled
VM

Data

Data

Better network
utilization

Time

With vFlood

Figure 1: lllustration of TCP connection progress with vanilla VMM and with vFlood-enabled VMM.

is especially undesirable in datacenter networks thahaftaploy
switches with shallow buffers for cost reasons [10]. Fas thiason,
we choose not to disable TCP slow start. More generallykida
decades to perfect protocols such as TCP, and a cursory figfo T
such as shutting off slow start may result in undesirable exrmh
unpredictable consequences. Of course, it may be integesdi
conduct a more careful investigation to see if we can makegd®m
at the TCP layer to address this problem.

VM Scheduler At the VMM layer, one option could be to mod-
ify the scheduler to immediately schedule the VM for which an
ACK packet arrives, so that it can quickly respond to the A®Ks
sending more data. Unfortunately, this option is prone tee
context switch overheads as the scheduler needs to keepisgap
the VMs in response to the packets on the wire, making it prac-
tically infeasible. A variation of this idea is to make thehed-
uler communication-aware and prioritize network inteasiWMs
when making scheduling decisions. This approach does Rot in
cur aforementioned overhead of additional context switghiln-
deed, Govindart al. have proposed modifications to Xen’s Sim-
ple Earliest-Deadline First (SEDF) CPU scheduler to makeoite
communication-aware by preferential scheduling of remeWMs
and anticipatory scheduling of sender VMs to improve thdquer
mance of network-intensive workloads [18]. While their edtl-

ing mechanism achieves high performance for VMs with neltwor
intensive workload, the improvement may come at the expefse
VMs running latency-sensitive applications with littletwerk traf-

fic [38]. We do however believe that a communication-aware VM
scheduler will create moffavorableconditions for vFlood; we will
investigate such an integration in our future work.

Hardware (TOEs) One other possible approach adopted by mod-
ern TCP offload engines (TOES) offered by different venderg.(

[1, 3]) is to implement TCP in the network interface carddily.
While TOEs are actually designed for a different purposestince

the CPU overhead involved in TCP processing, they do méigat
our problem to some extent. However, TOEs come with several
limitations such as requiring to modify the existing apations in
order to achieve improved performance [40], lacking fldiioin
protocol processing (such as pluggable congestion conttfilter
and QoS features available in Linux), and being potentiatne

to bugs that cannot be fixed easily [36]. Interestingly, papuir-
tualization platforms, such as VMware ESX and Xen, stilnot

fully support offloading complete TCP processing to harean,

8]. Linux also does not natively support full TCP stack offlahue

to various reasons such as RFC compliance, hardware-sgenfi
itations, and inability to apply security patches by the oamity
(due to the closed source nature of TOE firmware) [6]. An alter
native approach, motivated by the presence of many cordsein t
modern processors, is TCP onloading [39, 40], where TCP pro-
cessing is dedicated to one of the cores. Since onloadingdresqg
extensive modifications to a guest VM'’s TCP stack, it is aleb n
widely adopted.

2.2 Key Intuition behind vFlood

Based on the above discussion, we opt for a solution thab@d d
not change the TCP protocaol itself, (2) does not require ware-
level changes such as TOEs, and (3) does not modify the VMM-
level scheduler. Our approach relies on K&y observatiorthat
some components of a virtualized host get scheduled more fre
quently than the VMs. For instance, the driver domain in Xasd
the VMkernel in VMware ESX, the parent partition in Microsof
Hyper-V, etc.) is scheduled very frequently in order to perf I/O
processing and other management tasks on behalf of all the VM
that are running on the host. Although not shown in Figurerl fo
clarity, the gaps between VM slices are essentially takeithiby
driver domain. (In Xen, the driver domain can get scheduled e
ery 10ms — even though the scheduling slice time may be 30ms —
so that it can process any pending I/O from the VMs.) This ob-
servation suggests the following idea: If the driver domaipon
the arrival of an ACK packet from the TCP receiver, can pugh th
next data segment(sn behalfof the sending VM, the connection
will make much faster progress and be largely decoupled ffem
scheduling/execution of the VM. vFlood is proposed exaittlye-
alize this idea.

Moreover, since the driver domain itself cannot generata da
behalf of the sending VM, the data generated by some apiplicat
in the VM must first be pushed to the driver domain. (We show
one convenient approach to achieve this in Section 3.) Thdtre
ing progress of the TCP connection is shown on the right side o
Figure 1: The driver domain, on behalf of the VM, can emulate
the same TCP slow start and congestion avoidance semantis i
sponse to ACKs that are arriving from the TCP receiver, aihie
faster TCP connection progress and higher TCP throughiciw
approaches the throughput achieved by a non-virtualizeto-



erwise the same) TCP sender. The figure also shows that #re int
actions between the driver domain and the TCP receiver are co
pliant with the TCP standards.

3. vFlood DESIGN
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Figure 2: vFlood architecture

vFlood essentially offloads the TCP congestion control tione
ality from the sender VM to the driver domain of the same host.
Under vFlood, the sender VM is allowed to opportunisticélihpd
data packets at a high rate to the driver domain during its @&
slice, while the driver domain will perform congestion amhton
behalf of the VM to ensure TCP congestion control semanties a
followed across the network. To realize congestion comtfftdad-
ing, vFlood needs to accomplish three main tasks:

(1) Enable the VM adopt aaggressivecongestion control strat-

module within the VM that effectively replaces the VM's casy
tion control function with a customized one that sets thegestion
window to a high value (e.gcong_winm=512 segments) whenever
desired (detailed conditions in Section 3.2). We note floatnost
operating systems, such replacement is quite straighafahas the
TCP congestion control functionality is usually implenehias a
pluggable module so that an operating system can easilyrifgjeo
ured with different congestion control implementationgj(eReno,
Vegas [14], CUBIC [23], FastTCP [25]). In our Linux-basedoie+
mentation, vFlood leverages the same interface as othetarbp
used congestion control implementations in Linux to intexaith

the kernel. Note that only the congestion window management
functions, such as growing and shrinking window in respdiese
ACKs and packet losses, are replaced and offloaded to therdriv
domain; whereas the VM’'s TCP stack still implements all othe
functionalities required for reliable transmission sushtianeout
and retransmission.

As discussed earlier, such a minimal change to VMs is unavoid
able for vFlood to realize opportunistic flooding and coniges
control offloading. However, we deem such a design quiteoreas
able in virtualized cloud platforms where the guest kerriel ¥M
can becustomizedor better performance, security, and manage-
ability. In paravirtualized VMMs such as Xen, the guest letrn
is already patched for optimized interactions with the ulyiteg
VMMSs; so intuitively, one can think of our approach paravirtu-
alizing the TCP stacko some extent. Our approach is also some-
what similar to the VMware tools [9], in which a set of systeruls
are installed in a VM to improve the VM'’s performance.

Note that our approach requines modificationither to the ap-
plications or to the TCP protocol itself — all we require istaling
a small kernel module in the guest OS that essentially durolys d
the congestion control portion of TCP, and a module withia th
driver domain for congestion control offloading. Thus, opr a
proach is not as radical as TOEs or implementing a new variant

egy during slow start and congestion avoidance phases of agf TCP.

TCP flow;
(2) Implement a standards-compliant congestion contratexy
in the driver domain on behalf of the vFlood-enabled VMs;
(3) Manage buffer space for the flooded data in the driver doma
so that tasks (1) and (2) are performed in a coordinated way.

vFlood accomplishes the above tasks using three main m®odule

as shown in Figure 2: (1) @Flood VM moduléghat resides within
the VM and its main responsibility to shut off the default gestion
control in the VM and flood the driver domain as fast as allowed
(2) acongestion control modul@ the driver domain that performs
TCP congestion control on behalf of the VM; and (3judfer man-
agement modulia the driver domain that controls the flooding of
packets so that the buffer space for flooded packets is ugtyg fa

3.2 Congestion Control Module

The vFlood congestion control module in the driver domaiimntya
performs the offloaded TCP congestion control function. tJac
rival of ACKs from a TCP receiver, the congestion control mod
ule will transmit packets that have already been flooded fitmen
sender VM. However, unlike the artificial congestion windset
in the VM (cong_wiRm), the congestion window maintained by the
driver domain ¢ong_winw) grows and shrinks according to TCP
standards and appears to the network and the receiver asttis
value used for the end-to-end connection. With this design, one
can see that the presence of vFlood does not lead to anyigivlat
of end-to-end TCP semantics and would yield an approachighat

across all connections and VMs. We will discuss each of these at most as aggressive as a TCP sender from the driver donrain (o

modules in detail for the remainder of this section. We nlée the
generic design of these modules demonstrates vFlood'scapiit
ity to a wide class of virtualization platforms (e.g., XenViware
ESX, and Hyper-V). We defer the discussion of platform-#pec
implementation details to Section 4.

3.1 vFlood VM Module

The vFlood VM module resides in the VM and its main respon-
sibility is to opportunistically flood the driver domain \wifTCP
packets when the VM is scheduled. For packet flooding, vFlood
modifies the standard congestion control behavior of the glthat
transmissions are done in a more aggressive fashion sosswyrh
a strategy does not exhaust driver domain and network ressur
This task can be conveniently implemented by installing rendle

from a non-virtualized sender).

vFlood relies on th@assumptiorthat the driver domain has suffi-
cient memory and computation resources to buffer packedddid
by the VMs and to perform congestion control functions on be-
half of them. Given that TCP processing overheads are tipica
dominated by the checksum computation and segmentatiah, an
that these tasks are increasingly delegated to hardwared®m
NICs, we believe that this assumption is quite reasonablew-H
ever, vFlood still has to carefully manage the finite amodibudfer
space for flooded data among multiple connections. (We siéscu
this issue in Section 3.3.) In addition, vFlood’s designuiegs an
additionalcommunication channéteferred to avflood_channgl
between the congestion control module in the driver domath a
the vFlood VM module. This channel is used by the driver do-
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main to setcong_winm (Section 3.3), which effectively throttles
the VM’s transmission rate based on available buffer splsiean-
while, the VM module uses the channel to signal the congestio
control module when to go offline/online.

vFlood State Machine vFlood effectively de-synchronizes the
TCP sender and receiver that are usually tightly coupled (amce,
susceptible to VM scheduling latencies) with the help obéesta-
chine (Figure 3). For each flow, vFlood maintains a small amhou
of state so that it can enable or disable congestion coriiiobd-
ing depending on the state. In addition to the standard ctioge
control state maintained, notably congestion window aod start
threshold, vFlood’s congestion control module keeps tcdekfew
other variables: (1) the highest sequence number ackngedtiy
the receiver, and the number of times a packet with this segue
number has been acknowledged (for counting duplicate AQR$)
the count of unacknowledged, transmitted packets, (3) dvera
tised receive window of the receiver, (4) the window scafaxgor,
and (5) buffer usage of a flow. These values collectively rdeitee
when the congestion control module should actively engageri-
gestion control on behalf of the sender VM, and when it shgold
offline and let the VM re-take the congestion control resfzhs
ity. The driver domain initializes the per-flow state uponeiging

a SYN or SYN-ACK packet and sets the flow’s state to ACTIVE.

Online Mode While a flow is in the ACTIVE state, vFlood buffers
all packets coming from the VM (subject to the buffer-mamagpt
policy described in Section 3.3) and performs congestiartrob
and packet transmission. The flow remains in the ACTIVE state
until the flow experiences one of the two conditions: Fitsg, het-
work bottleneck capacity of the flow may decrease, in whicdeca
the flow may start to exceed its share of the buffer usage the.
per-flow buffer occupancy threshold defined in Section 28&3ing

to buffer space overflow. In this case, the vFlood VM module-ca
not continue to assume a large window size and pump more fzacke
to the driver domain. Second, depending on the severityeofiéit-

gestion control. While detecting triple duplicate ACKs @dso be
done easily based on the state maintained, it is unfortlynate
easy to detect timeouts since it requires timers and RT asti
tors. Additionally, to perform retransmissions, all unaoWwledged
packets need to be buffered. To keep vFlood’s design liggte
we resort to the sender VM's TCP stack for handling thesegath
logical situations: Once the VM’'s TCP stack detects a timeibu
will notify the vFlood VM module, which will in turn notify tie
congestion control module in the driver domainvidood_channel
The congestion control module will then go offline (PACKET &6
state) and transfer congestion control back to the sendiig V

Offline Mode When vFlood goes offline (i.e., when it switches
to NO BUFFER or PACKET LOSS state), the congestion con-
trol module in the driver domain operates in a pass-througten
where it does not transmit any new packets and instead lets th
sending VM do that. However, notice that the sender VM'’s esag
tion control has been replaced by the vFlood VM module thist se
a larger congestion window than the driver domain. To sdh t
problem, once congestion control responsibility is trarmsfd back
to the sender VM, it will stop using the more aggressive cenge
tion window. Instead, the vFlood VM module will function &khe
original TCP stack without vFlood. To achieve this effedtjaod
basically employs a shadow varialleng_winm’ that, similar to
cong_winyw, grows and shrinks according to TCP semantics. This
variable is in addition t@wong_winm that is used when vFlood is
online (i.e., in ACTIVE state). Note thaibng_win,n’ may not be
exactly the same asong_win, at any given instance due to the
slight lag in TCP processing, but are going to be roughly simi
lar since the driver domain and the VM see the same sequence of
events.

Maintaining the extra shadow variable above does not causb m
overhead as it only entails growingng_wirm,' by 1 MSS for ev-
ery ACK during slow start and by 1 MSS for each RTT during
congestion avoidance. Therefore, when the driver domaiduheo
goes offline, the vFlood VM module can seamlessly take over. |
some sense, the vFlood VM module still retains the full-fidig
TCP congestion control mechanism; however, when conditiva
right, it will switch back to the flooding (online) mode andload
congestion control back to the driver domain. Upon receivan
notification from the sender VM that the lost packets havenlvee
covered or upon detecting available buffer space, the Htbiver
domain module will become online again and resume its conges
tion control duty.

Adjusting Receive Window One issue that we have not discussed
so far is the value of the advertised receive window sent & th
ACKs. Given that a TCP connections&nd windowis the min-
imum of its congestion windovand thereceiver advertised win-
dow, we also have to modify the receiver advertised window in or-
der to make the VM TCP stack flood packets to the driver domain.
One solution is to rewrite ACK packets’ receive window fiekd a
the driver domain module while vFlood is online, so that threl$

work congestion, one or more packets may be dropped. In this receiver advertised window does not inhibit flooding. Hoerev

case, the TCP receiver will continue to send duplicate agkno
edgements for each of the subsequent packets receivedttadter
dropped packet. In case of three dup-ACKs, standard TCResend
would trigger a fast retransmit and cut the congestion winty
half, and in case of a timeout, they would trigger a retrassion
but will cut the congestion window to 1IMSS and switch to slow
start.

Buffer space overflow is easy to detect in the driver domain.

rewriting receive window invalidates a packet’'s TCP checksso
vFlood either has to recalculate the checksum or requireksiuen
validation at the physical NIC. This solution might alsodda re-
transmission of more packets than expected by the receivar i
situation where the VM detects packet losses and retrasnfasied
on the inflated value written by the driver domain. Hence,isim
lar to the congestion window maintenance, vFlood’s VM medul
maintains two variables. One variable corresponds to theabie-

Once the congestion control module becomes aware of such anceiver advertised window as read from incoming ACKs and éslus

overflow, it will go offline by setting the state to NO BUFFERdan
signaling the vFlood VM module to switch to standard TCP con-

when vFlood is offline (i.e., vFlood enters PACKET LOSS or NO
BUFFER state). The other variable corresponds to the bsiter
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in the driver domain and is used when vFlood is online (ie., i
ACTIVE state).

Choice of Congestion Control Algorithm Another issue con-
cerns the exact congestion control algorithm used in theeddo-
main out of many possible variants. In order to ensure maximu
flexibility in a cloud environment, we assume the driver doma
implements almost all the standard algorithms that anykdtowix

or Windows kernel implements (e.g., Reno, NewReno, Vegals, C
BIC). Also we have modularized the design of the congestam c
trol module in the driver domain such that plugging-in a ne@PT
congestion control algorithm is fairly easy. That way, aprap
priate congestion control algorithm can be configured padgilen
vFlood is enabled as an option. We can even run differenteong
tion control algorithms simultaneously depending on whatMMs
desire thus ensuring functional equivalence between tliiesoand
offline modes of vFlood.

3.3 Buffer Management Module

Finally, vFlood uses the buffer management module to régula
the buffer usage across different flows, both within and sskMs.
The need for this module stems from the fact that, in the A&V
state, the sender VM acts as fireducerand the network becomes
the consumerof packets for a given flow (according to TCP se-
mantics). If the consumer process (network) becomes tog #lo
would lead to exhaustion of buffer resources in the drivendio.

This problem becomes more acute when there are multipleg gues

VMs, each with multiple active TCP flows, contending for thee
buffer space. Note that this problem does not arise in owgivee
path solution vSnoop [27]. More specifically, on the receside,
the buffer space is limited by the amount of space in the shiémg
buffer (in Xen), or whatever other mechanism a given VMM uses

transfer between the VMM and the receiver VM (whether vSnoop

is used or not). However, in vFlood, without care, one slowflo
(perhaps with a bottleneck in the network) can occupy albtiféer
space thus denying the benefits of congestion control offigatd
other flows—the scenario we wish to avoid.

In vFlood, we provide two levels of isolation. First, in orde
guarantee complete isolation for flows belonginglifferent VMs
vFlood assigns to each VM its own dedicated buffer space, @.9
4MB buffer) that is not shared with other VMs. This is similar
spirit to the approach many VMMs (e.g., Xen) take to provisio
ring buffers for network transfers between the driver domeid
the VMs. As a result, no one VM can greedily occupy all the lavai

that high RTT connections and low bottleneck bandwidth esan
tions benefit less from vFlood, and also consume more byfferes
since the discrepancy between the rates at which the serider V
produces and network drains is the most for such flows.

To understand how RTTs affect the buffer usage, we conduct a
simple experiment where a VM sends a 2MB file to three differ-
ent receivers simultaneously. The first flow has 0.1ms RT Tewhi
the other two flows have 60ms RTT. We ensure that all three flows
havesimilar bottleneck capacityFigure 4 shows the buffer occu-
pancy of the vFlood per-VM buffer space for all three flows. As
illustrated, flows 2 and 3 occupy a larger share of the bufiecs
compared to flow 1. The larger buffer occupancy stems from the
fact thatcong_winn grows more slowly for the high-RTT flows.
As aresult, it takes longer to transmit buffered packetdléavs 2
and 3. These high RTT connections will prevent a low RTT high
bandwidth connection from taking better advantage of v&lbg
occupying more available buffer space.

Buffer Allocation Algorithm  Interestingly, the high-level prob-
lem faced by vFlood buffer management module is conceptuall
similar to the problem of buffer allocation confounded bywark
routers, where different flows compete for the same set debuf
resources. While many ideas have been proposed in thatxtomte
simple yet elegant scheme that we can borrow is due to Choydha
and Hahne [16], where the amount of available free spacesea

a dynamic threshold for each flow. Specifically, in this schethe
buffer usage threshold; for flow i is defined as

Ti =ai- (B—-Q(1)) 1)

whereB is the total buffer size)(¢) is the total buffer usage at time
t, anda; is a constant which can be set according to the priority of
flows. Thus, if only a single flow is present, it can occupy up to
one half of the total buffer space (assumimg= 1). As soon as
a new flow arrives, both flows can occupy orily3rd of the total
buffer space, with the remaining’3 reserved for future flows. The
main advantage of this scheme lies in the fact that some amoun
of buffer is always reserved for future flows, while the thesl
dynamically adapts based on the number of active flows.

In vFlood’s buffer management module, we implement a sim-
ilar scheme that determines how many more segments the drive
domain can receive for flow(pkt_irf,,) from the VM module as:

pkt_injy = cong_wirky, — pkt_oufy, + 7; — Qi(t) (@)
N——
0; P

wherecong_wir,, is the congestion window for flowat the driver
domain,pkt_outy, is the number of transmitted, unacknowledged
packets for flow: as maintained by the driver domaiff; is the
buffer threshold as defined by Equation 1, &dt) is the buffer
usage of flow: at time¢. In Equation 2, the ternd; refers to
the number of segments that can be sent immediately, witmut
buffering, while the terng; refers to available buffer space for flow
i. Consequently, the congestion window for float the VM mod-
ule is defined as:

cong_Wiryy = pkt_iny + pkt_oufy )

where pkt_outy, is the number of transmitted, unacknowledged
packets for flows as maintained by the VM module while vFlood is
online. To implement &air buffering policy among all VM flows,

able buffer at the expense of other VMs. Second, we provide a it Suffices to pick the same value foz (Equation 1) for all flows.
mechanism to manage buffer usage across flows that belohg to t With this policy, flow 1 in Figure 4 would have more buffer spac
same VM Note that it does not make sense to strictly partition the @nd would benefit more from the presence of vFlood.

buffer across flows since the number of active flows may beslarg Prioritized Buffering Policy

and not all flows benefit equally from vFlood. In particulag mote

In general, however, not all flows
benefit equally from the buffer allocation. We can broadliega-
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Figure 5: vFlood implementation on Xen

rize flows into four classes depending on their RTT (highjlawd
bottleneck capacity (high/low). Flows with high RTT or lowtb
tleneck capacity will occupy significant buffer space. Hearethe
benefit of allocating buffer for these type of flows is relativmin-
imal as: (1) For high RTT flows, the VM CPU scheduling-induced
extra latency is not dominant with respect to the alread Inigt-
work RTTs. (2) For low bottleneck capacity flows, pushingc¢be-
gestion control to the driver domain is not likely to improV€P
throughput anyway. Therefore, flows with low RTT and high-bot
tleneck capacity would mainly benefit from vFlood. Fortuahat
much of the traffic in datacenters fall into this category.

Given this classification, we devisepaioritized bufferingpol-
icy where vFlood favors low-RTT flows by picking larger vatue
for «; for them. While we can do similar prioritization for high-
bandwidth flows, it is not practical due to two reasons. [ilst
tecting bottleneck bandwidth is harder to do in the drivemdmn
and requires keeping additional state. One could implemast
estimation as in TCP Vegas [14], but Vegas assumes rateasese
by 1 MSS every other RTT to ensure stable rate calculatiochvhi
is different from Reno semantics. Further, it requires tholaial
timing variables making it, although not completely imgbks a
bit more tedious to perform. A bigger problem, however, & the
rate estimation during slow start — arguably the stage w¥ieieod
benefits the most — is unreliable since the window size hastaet
bilized yet. Thus, we advocate classifying flows mainly lobse
their RTTs without considering their bottleneck capasitie

We note that in typical cloud environments, due to overprovi
sioning of datacenter networks (to provide full bisectiamtwidth
within a datacenter), intra-data center capacities arehnhigher
compared to the lower-bandwidth cross-datacenter linksthEr,
intra-datacenter RTTs are typically much lower than acaas
centers; thus, high (low) bandwidths are positively cated with
low (high) RTTs. Thus, focusing on RTT-based prioritizatalone
works reasonably well in our settings. In our evaluations,oon-
sider 1.0ms as a reasonable threshold to distinguish hidhoan
RTTs.

4. vFlood IMPLEMENTATION

We have implemented a prototype of vFlood with paraviraeadi
Xen 3.3 as VMM and Linux 2.6.18 as the guest OS kernel. One
of our main implementation goals is to minimize the code hafse
vFlood and maximize the reuse of existing Xen and Linux cddle.
fact, out of the approximately 1500 lines of vFlood cdgdd0% is
directly reused from existing Xen/Linux code. The reusedicim-
cludes part of Linux’s Reno congestion control implemeataand

L According to cloc tool (http://cloc.sourceforge.net)

flow hashing functionality; and Xen'’s I/O ring buffer managent.

As shown in Figure 5, Xen adoptssalit driver model for par-
avirtualized devices. Each virtual device (e.g., a virtmetwork
or block device) has a front-end interface in the VM and a back
end interface in the driver domain (dom0Q). The communicatio
between the two interfaces takes place via the following utexd
(1) aring buffer that holds descriptors of 1/O activities in one di-
rection (i.e., from front-end to back-end or vice versa) g&hared
pagereferenced by ring buffer that holds the exchanged data (e.g
a network packet, disk block, etc.), and (3) @rent channethat
serves like an interrupt mechanism between the two ends.

When a VM transmits a packet, the packet gets placed on the
shared page between the VM and domO andeant(a paravir-
tual IRQ) is sent to domO0. Upon receiving the event from the,VM
domO constructs a socket buffesk( buff kernel structure for the
packet and passes it to the Linux bridge module en route todtie
work interface card (NIC). Similar type of activities takgace on
the receive path but in the reverse order, wherslatuffstructure
arrives at the bridge from the NIC, the bridge identifies thetd
nation VM and passes it to the corresponding back-end axterf
Finally the back-end interface delivers the packet to the Vil
the front-end interface. We next describe the implemeoradif
different modules of vFlood outlined in Section 3.

vFlood VM Module Replacing the default congestion control
module in the VM is the only modification we made to the VM. As
we briefly alluded to in Sections 3.1 and 3.2, the vFlood VM mod
ule maintains two congestion windows for each fl@eng_winm

is used when vFlood is online for flooding packets to the drie
main; whilecong_winn’ is maintained according to the TCP Reno
specification and will be used when vFlood goes offline.

The vFlood VM module interacts with the guest OS kernel thfou
the same interface used by the standard congestion contrdd m
ules, hence it does not require any modifications to the TRCP/I
stack of the VM. Additionally, this module interacts wittetlriver
domain via the communication channdflood channel whose
implementation will be described shortly. Both the VM andver
domain modules of vFlood maintain a control structure farhea
TCP flow to store the per-flow state. Each control structuicis
cessed by a hash function that takes as input the sourdeatast
IP addresses and port numbers of a given flow.

Congestion Control Module This driver domain module of vFlood
is implemented as two hook functions to the Linux bridge mod-
ule. vFlood_txintercepts all packets on the transmit path and per-
forms congestion control for VM flows for which vFlood is améi.
More specifically, upon receiving a packet from the sender, VM
vFlood_txtransmits the packet immediately if allowed by the Reno
congestion control algorithm (i.e., based on the congestiadow,
advertised receive window, and the number of transmittedcu
knowledged packets); otherwise, it buffers the pack&tiood_rx
intercepts all packets on the receive path and performs tiign
tasks. First, as ACKs arrivejFlood_rxupdatescong_winy per
TCP Reno semantics. Second, if allowed by the congestiotnaion
algorithm, it fetches packets from the per-flow buffer arahg-
mits more packets. Third, it notifies the vFlood VM module via
vFlood_channebf the available buffer allocation so that the vFlood
VM module can adjust its congestion window accordingly.
vFlood_channeis implemented like a standard Xen device, sim-
ilar to the virtual network device described earlier. Oneddeing
buffer and event channel is used for communication from a UM t
dom0. Upon receiving an event on this channel, the everdiaan
at the congestion control module takes vFlood offline orramli
based on the command passed from the vFlood VM module. The
other set of ring buffer and event channel is used for comaatiain



1 Basic Comparison with Xen Due to small sizes of the flows we
09 | are experimenting with and the VM scheduling effects, theugh-
08 | put results are subject to high variation during differams of the
0.7 | experiment. Figure 6 shows the CDF of TCP throughput for one
L 061 hundred 100 KB transfers from a VM to a non-virtualized ma-
8 05f chine with and without vFlood. In this experiment, the seqdi
04 | VM is sharing a single core with two other VMs with 60% CPU
03 | load (i.e. all VMs show 60% CPU utilization). The resultsizate
0.2 | the high variability exists for both vanilla Xen and vFloogtsps;
01 gt Xen + vFlood ] however, vFlood consistently outperforms the vanilla Xenfig-
00 1 = '1 —= ““Io — "“1‘00 uration. The median throughput achieved by vFlood is alrBest

higher than that of the vanilla Xen. For all the remaining exp
ments, we conduct 100 runs of each experiment and compare the
median throughputs across the vFlood and vanilla Xen setups

Throughput (MB/s)

Figure 6: CDFs for 100 successive 100KB transfers with and
without vFlood

from domO to the VM. Upon receiving an event on this chani, t
event-handler at the vFlood VM module adjustsg_wirw based
on the buffer threshold and allocation passed from dom0.ohhe
difference betweenFlood_channehnd a typical Xen device is that
we use the ring buffer itself, not a separate shared pagpafsing 100K 250K 500K 1M 100K 250K 500K 1M
commands between the VM and dom0. Flow Size [Byes] Flow Size [Byes]

] (a) 2 non-idle VMs per core  (b) 3 non-idle VMs per core
Buffer Management Module The main task of the buffer man-
agement module is to manage the per-VM buffer space in domO.
This module maintains a FIFO queuestf_buffstructures for each
flow. Additionally, it keeps track of per-VM and per-flow beffal-
location and usage. As we described earlier, this moduégants
directly with vFlood’s congestion control module in domO.
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In this section, we present a detailed evaluation of vFlogidgl
our prototype implementation. Our evaluation is focusedann
swering the following key questions: (1) By how much doesodél Figure 7: TCP throughputimprovement with different number
improve TCP throughput? (2) How does the TCP throughput gain of VMs per core.
translate into application-level improvements? (3) Howchaver-
head does vFlood incur? Before we answer these questiotigstve
describe the experimental setup.

Throughput Improvement
Throughput Improvement

m Vanilla Xen
O Xen+vFlood

Experimental Setup Each server runs Xen 3.3 as the VMM, and 2 1.2x : :
Linux 2.6.18 as the operating system for the VMs and driver do % AL

mains. For the experiments described in Section 5.1, we use a g oaxl |

machine with dual-core 3GHz Intel Xeon CPU, 3GB of RAM as £

the server, while the client is a 2.4GHz Intel Core 2 Quad CPU E] 0-6x]

machine with 2GB of RAM. For application-level experimeiris 5 0.4

Section 5.2, we use Dell PowerEdge servers with a 3.06GH# Int 2 0.2x

Xeon CPU and 4GB of RAM. All machines are connected via com- P

100K 250K 500K M
Flow Size [Bytes]

modity Gigabit NICs. In all experiments, we configure VMs it
512MB of memory and use TCP Reno implementation. In order to
keep the CPU utilization at determined levels in our experits,

we use a load generator utility which can make the CPU busy by
performing simple CPU bound operations. We selected 30ms as

Figure 8: TCP throughput improvement for the 1-VM scenario

the duty cycle of this utility as it aligns with the VM scheihg Number of VMs Per-Core In this experiment, we vary the total
time slice of Xen. number of VMs running on the same core as the sender VM from
. 2 to 5 (including the sender VM) and fix the CPU load of each VM
5.1 TCP Throughput Evaluation to 60%. The normalized performance gains of vFlood are shown
This section presents our evaluation of TCP throughputawesr Figures 7(a), 7(b), 7(c) and 7(d), where 2, 3, 4 and 5 VMs sthare
ment under a variety of scenarios. For experiments in tligse same core. As we can see, VFlood results in significant ingprov
we allocate a 2048-segment buffer for each VM in the driver do ment for all transfer sizes for different number of VMs pereco
main to support vFlood operations and use a custom aplicati While itis indeed expected that vFlood performs well whesréh
that makes data transmissions of different size (simil&péof [5]) are a lot of VMs per core, one may guess that there will be ne ben
over TCP sockets. For the rest of this section, we compare TCP efits of vFlood when one VM is running. However, as we can ob-
throughput of the vFlood setup with the vanilla Xen/Linuxuge serve in Figure 8, even for the case where only one VM is rugmnin
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Figure 10: Performance of vFlood with varying load. We fix thenumber of VMs per core to 3.
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Figure 9: vFlood throughput improvement for large flows

vFlood is able to perform slightly better than vanilla Xene \&t-
tribute this slight improvement to the fact that even in thgM
scenario the driver domain and the VM compete with each other
to run on the same CPU. Therefore, while the scheduling detay
this scenario is not as high as the multi-VM scenarios, tleedr
domain can still process incoming ACKs more quickly and esns
quently can make faster transmissions compared to thdaafgh
scenario.

Large Transfers Similarly, we also expect the most gains to be
for short flows (which as we pointed out dominate data cemter e
vironments). To study the benefits of vFlood for large trarsfwe
experimented with two sizes — 10MB and 100MB. Our results in
Figure 9 shows that, even for large transfers, vFlood imgsdVCP
throughput by 19% to 41%.

Varying CPU Load To study the benefits of vFlood across differ-
ent CPU loads, we fix the number of VMs sharing the same core
to 3 and set CPU load of each VM to 40%, 60% and 80%. Fig-
ure 10 shows the normalized throughput gain across theeeatit
loads, and shows vFlood outperforms the vanilla Xen setipifsi
icantly and consistently across all configurations. We plesthat
improvements are particularly high for 250KB transfersjwip to

12x for the 3-VM 40% load scenario.

To investigate further the cause behind this special casesen
lect one of the configurations (3 VMs sharing the same coieh ea
with 40% CPU load) and study TCP throughput values when we
vary the flow size all the way from 50KB to 1GB. Figure 11 shows
the results. Interestingly, this figure shows when transiee is
about 340KB we obtain the maximum improvement. This phe-
nomenon corresponds to the number of slots in Xen'’s ringebsiff
(240 slots), which leads to a maximum transfer of about 249 se
ments (of size 1500 bytes) within one VM scheduling interval

Scalability of vFlood Most of the experiments described above
consist of only one flow at a particular instance. In orderdudfy
that vFlood scale well with the number of flows, we measured th
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Figure 11: vFlood improvement for different flow sizes

throughput gains of vFlood when there are 10 and 100 conaurre
flows from the same VM (with 3 VMs sharing the same core run-
ning 40% load). Figure 12(a) shows that as we scale up the @umb
of flows, gains drop marginally, but still vFlood is able tmgduce
significant throughput improvements compared to the \aién.

Effectiveness of Buffer Management Policies In Section 3.3,
we discussed the importance of having a buffer managemént po
icy, specially when high-RTT (low throughput) and low-RTHigh
throughput) flows share the same per-VM buffer space. Tlis se
tion presents a comparison of the three buffering policiesented
earlier, namelyo policy, fair policy (i.e., with samey;) andprior-
itized policy(with higherc; for low RTT connections). For these
experiments we run the sender VM and the low-RTT receiveren t
same local area network, while for high-RTT connections laeg
the receiver on a remote PlanetLab noglfetlabl.ucsd.eduin
our implementation, we designate flows with RTT less than dss
low-RTT and other flows as high-RTT. Additionally, we ded&a
per-VM buffer of size 2048 segments for vFlood operations.
Figure 12(b) shows the median TCP throughput values for dif-
ferent buffering policies when the sender VM repeatedly &@-
minute period) starts 20 concurrent flows to local and remete
ceivers and transmits 500KB blocks of data. Our evaluat@m-c
pares throughput values for the aforementioned policieeudif-
ferent flow mixes (i.e., different ratio of low-RTT to hight®R
flows). For low-RTT flows, we see improvements by going from
no policyto fair policy and fromfair policy to prioritized policyfor
all flow mixes. The benefits for low-RTT flows are the highest fo
the 30/70 mix where a naive policy would let the majority (70%
high-RTT flows steal buffer space from the minority (30%) {ow
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Figure 13: vFlood Apache Olio test setup

RTT flows. We also note that different buffering policies dut n
make any difference to high-RTT flows as for them network RTT
dominates VM scheduling-induced RTT (Section 3.3).

5.2 Apache Olio Benchmark

To show the effectiveness of vFlood for typical cloud apglic
tions, we use the Apache Olio benchmark [2, 41]. Apache Gla i
social-event calendar Web 2.0 application, where usersiete,
RSVP, rate, and review events. We use the PHP implementfation
our experiments which includes four components: (1) An Agac
Web server which acts as the request processor and webefndnt-
(2) A MySQL server that stores user information and everaitiet
(3) An NFS server that stores user files and event specific aiata
(4) A Memcached server to cache rendered page fragments.

Figure 13 shows our testbed configuration. We use four VMs
on four distinct physical hosts to run each component of the O
system. We also run one other VM (with 30% load) per physical
server sharing the same core with Olio VM to trigger VM scHedu
ing. vFlood is deployed on all physical servers so that threroo-
nication between each component as well as the communicatio
between clients and the Apache web server can benefit from con
gestion control offloading. We allocate a 4096-segmenteluiff
the driver domain for each VM to support vFlood operationd an
use Faban [4] as the client load generator. Faban is configare
run for 6 minutes (30-second ramp up, 300-second steady, stat
and 30-second ramp down) during which 200 client threadsrgen
ate different types of requests.

We evaluate the number of operations performed by Olio for
three different configurations: (1) Vanilla Xen, (2) XenitFlood
only, (3) Xen with vSnoop (Section 1) only, and (4) Xen witHeéd
and vSnoop (whose integration is discussed in Section &)leTa
shows the total count of different operations performed Htip.O
When vFlood alone is deployed in the system, we see totalgjfro
put rising from 31.7 ops/sec in the vanilla Xen configuration

10

. Count Count | Count Count
Operation Vanilla Xen | vFlood | vSnoop | vFlood +vSnoop
HomePage 2544 3271 3416 4215
TagSearch 3290 4281 4020 5550
EventDetail 2363 3077 3135 3925
PersonDetail 219 331 312 410
AddPerson 53 96 71 123
AddEvent 156 245 178 257
Total 9512 12642 | 11940 15167
Rate(ops/sec) 31.7 42.1 39.8 50.5
percentage - 32.9% | 25.5% 59.5%
Improvement

Table 1: Apache Olio benchmark results

42.1 ops/sec (a 33% improvement). When vSnoop is deployed we
see a 25.5% increase in total throughput. When both vFlodd an
vSnoop are deployed, TCP throughput improves on both receiv
and transmit paths and we see throughput rising to 50.5epé#s
59.5% improvement). Our results indicate that the effetté-tmod

and vSnoogomplemeneach other and the performance gains they
achieve are cumulative.

5.3 vFlood Overhead

vFlood Routine CPU Cycles| CPU %
vFlood_tx() 65 0.62
vFlood_rx() 370 3.05
vFlood_hash_lookup() 78 0.73
vFlood_update_VM() 59 0.56
vFlood_process_threshold() 57 0.92

Table 2: vFlood per-packet CPU usage

In order to understand the runtime overhead of vFlood, we use
Xenoprof [32] to profile vFlood's overhead at both the VM and
driver domain. We specifically use Xenoprof to measure CPU cy
cles consumed by different vFlood routines. Also we insgnom
main vFlood routines to record the number of packets they pro
cess. Table 2 showger-packetCPU cycles consumed by differ-
ent vFlood routines and their percentage of CPU usage whesh Ip
transmits for a 20-second period. From the table, we can seé m
of the overhead is associated witRlood_rx() routine. This rou-
tine is responsible for intercepting acknowledgementsimies to
VMs, calculating congestion window, releasing bufferedkeeas
and notifying VMs about their buffer usage. On the other hand
the overhead caused Wrlood_tx()is minimal because this rou-
tine’s primary responsibility is to queue packets comimgnfrthe
VM. Our queuing mechanism (we reuse Linux sk_buff queuing
mechanisnskb_queue_tailf)also incurs negligible overhead. The



function which is called by the driver domain whenever it dee
to update the buffering threshol#Rlood_update_VMJ})and the

function which called by the VM to process buffer threshatd i
formation sent by the driver domainRlood_process_threshold()
also do not add much overhead.

6. DISCUSSION

VM Migration  Given that the vFlood VM module also runs a
fully functional standard congestion control algorithnthe back-
ground, the VM state is very much self-contained and can be mi
grated to other hosts. If we are to move a VM from a vFlood-
enabled host to one without vFlood support, we only need tchw
the vFlood VM module to the original congestion control mbee
fore the migration. Moving a VM from a vFlood-enabled host to
another vFlood-enabled host requires some state inat#diz at
the driver component of the destination host for the existiows.
While the state needed for initialization can be migratearnfithe
source host to the destination host, either by modifying\thé
migration protocol, or by leveraging thé-lood_channeto trans-

fer the state from VM module to the driver domain, we suspect
that the benefits would be typically marginal as most flowsat d
acenter environments are fairly short-lived [26, 13]. Hiere, our
current implementation supports live VM migration in a lied,
yet effective fashion by taking vFlood offline for those aetflows
established before the migration.

Buffer Space Management Typically, if the number of VMs is
small, the buffer space in the driver domain may not be areisisu
environments where the number of VMs may be large (say, 30-40

implementing vFlood (except the vFlood VM module) combined
with vSnoop in the hardware itself, thus eliminating the VMM
overheads completely. We believe that the vFlood state imach
described Section 3.2 should lend itself to a scalable herehim-
plementation. We will pursue this vision in our future work.

7. RELATED WORK

We have already discussed most of the work that is directly re
lated to vFlood in Section 2.1. We now discuss other relaftedte
that fall into the general area of performance improvementif-
tualized environments. We group them into three catego(its
reducing virtualization overheads along the 1/0 path, @priov-
ing VMM 1/O scheduling, and (3) optimizing TCP for datacenste

Reducing Virtualization Overheads There exists substantial re-
search focusing on optimizations that reduce virtual@atnduced
overheads along the I/O path. For instance, Meeioal. have pro-
posed several optimizations to improve device virtuairatising
techniques such as packet coalescing, scatter/gatheriiéoksum
offload, segmentation offload, and offloading device driverct
tionality [34, 31, 33]. vFlood is quite complementary toghdech-
niques. By addressing the interplay between VM consobitiedind
network transport protocol, vFlood operates one level érighan
those optimization techniques. XenSocket [45], XenLooB),[4
Fido [15] and Xway [30] specialize in improving inter-VM com
munication when the VMs are all on the same physical hosgadFl
is more general as it improves transport protocol perfocaae-
gardless of where the other end of a connection is located IV
[24] is another effort in this direction that targets highfpemance

buffer space may become an issue. Thus, instead of making thecomputing platforms and applications.

buffer space increase proportional to the number of VMs, are c
potentially allocate the per-VM vFlood buffer from the VMsvn

memory. In such a scheme, a VM can share one or multiple pages

with the driver domain for buffering purposes (e.g., thiouge
Grant Table facility in Xen) thus reducing vFlood's depemcieon
driver domain resources. Another advantage of this schertieai
during VM migration, the buffered regions can also be miggat
with the VM as they are now part of the VM'’s address space.

vFlood and vSnoop Integration In section 5.2, we presented
some promising results using a preliminary integration ®heop
and vFlood. We found that the integration effort is noni&iias

shared data structures for their operation. For exampl&@m-

ing ACK packet with data payload can trigger acknowledgemen
from vSnoop and a packet transmission from vFlood. Our ipreli
inary implementation is based on a pipelined architectuneres
on the receive (transmit) path packets gets processed byopSn
(vFlood) first and then by vFlood (vSnoop). This approactwy-ho

ever, does not implement features such as ACK piggybacking—

combining pro-active vSnoop’s ACKs with vFlood’s data paisk
to reduce the number of packet transmissions. We are clyrrent
working on a more efficient solution based on an integratatbst
machine that would collapse the different actions that \dpremd
vFlood would take, thus ensuring functional equivalencéhvei
non-virtualized TCP stack in terms of number of packets @ th
wire.

Interplay with Emerging Hardware A few techniques have been
proposed to give VMs direct access to specialized netwgttkard-
ware (e.g., use of IOMMU-based SR-IOV in Xen 4.0 and VMDi-
rectPath in VMware vSphere). While these techniques lower t
network virtualization overhead by bypassing the drivenda or

Improving VMM 1/O Scheduling 1/O scheduling for VMs has
received significant attention. Some recent efforts inelClock [19]
and DVT [28, 29]. mClock provides proportional-share fasa
with limits and reservations to schedule 1/0 requests frokisV
DVT proposes the differential virtual time concept to emsthat
VMs experience less variability in 1/O service time. Thesks
tions focus on modifying the VMM I/O scheduler, whereas delo
is agnostic to the VMM'’s CPU and I/O schedulers.

Optimizing TCP for Datacenters Alizadehet al. show that the
traditional TCP falls short of handling flows requiring sirgte-
dictable latency and flows requiring large sustained thinpugydue

o TCP's demand on the limited buffer space available incatter

network switches [10]. They propose DCTCP for datacenter ne
working, which leverages ECN capability available in thétshes.
Vasudevaret al. observe the “in-cast” problem where multiple
hosts send bursts of data to a barrier-synchronized ctiau,caus-
ing overflows in Ethernet switch buffers [42] and TCP perfance
degradation. Their mechanism focuses on desynchronieingns-
missions by adding randomness to the TCP retransmissia@r.tim
Both of these approaches essentially modify the TCP prbtoco
adapt to the new environments; whereas for vFlood, we do not
change TCP’s behavior but merely re-architect it acrossvikle
and driver domain to improve TCP throughput.

8. CONCLUSION

The main motivation of this paper stems from our investmati
that reveal the negative impact of VM consolidation on tpams
protocols such as TCP. In virtualized cloud environmentSPT
packets may experience significantly high RTTs despitemsillisecond
network latency, because of the VM CPU scheduling latenay th

the hypervisor, they still do not address the significantéase in is in the orders of tens of milliseconds. For many TCP connec-
RTT due to VM CPU scheduling. In such settings, we envision tions, especially the small flows, such dramatic increadeTims

11



leads to slower connection progress and lower through mutnifi-
gate this impact, we have presented a solution called vRioad
effectively masks the VM CPU scheduling-induced latendigs
offloading congestion control function from the sender VMhe
driver domain and letting the sender VM opportunisticalbofl the
driver domain with data to send. Our evaluation resultscatdi sig-
nificant improvement in both TCP flow-level and applicatiexel

performance. Our experience with building a Xen-basedoprot

type indicates that vFlood requires relatively small amafrtode

changes (about 1500 lines with 40% code reused from XenX)inu

and its design is potentially portable to other VMMs.
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